JPWO2008114674A1 - Insulating composite, method for producing the same, and use of insulating composite - Google Patents

Insulating composite, method for producing the same, and use of insulating composite Download PDF

Info

Publication number
JPWO2008114674A1
JPWO2008114674A1 JP2009505164A JP2009505164A JPWO2008114674A1 JP WO2008114674 A1 JPWO2008114674 A1 JP WO2008114674A1 JP 2009505164 A JP2009505164 A JP 2009505164A JP 2009505164 A JP2009505164 A JP 2009505164A JP WO2008114674 A1 JPWO2008114674 A1 JP WO2008114674A1
Authority
JP
Japan
Prior art keywords
polymer
varnish
insulating composite
conductor layer
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009505164A
Other languages
Japanese (ja)
Other versions
JP5267453B2 (en
Inventor
川崎 雅史
雅史 川崎
陽介 藤戸
陽介 藤戸
木下 耕次
耕次 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2009505164A priority Critical patent/JP5267453B2/en
Publication of JPWO2008114674A1 publication Critical patent/JPWO2008114674A1/en
Application granted granted Critical
Publication of JP5267453B2 publication Critical patent/JP5267453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/246Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using polymer based synthetic fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、微細配線パターン形成性に優れた硬化物を形成するための組成を有するワニス(1)、および、難燃性などの特性に優れた硬化物を形成するための組成を有し、かつ特定の分子量の重合体を有するワニス(2)を、繊維基材にそれぞれ片面ずつ塗布した後、有機溶剤除去し、繊維基材に支持された熱硬化性組成物を形成して得られる絶縁性複合体を提供するものである。本発明の絶縁性複合体は、難燃性、電気絶縁性、および耐クラック性に優れ、かつ、微細配線パターンを有する多層回路基板の製造に適している。The present invention has a varnish (1) having a composition for forming a cured product excellent in fine wiring pattern formability, and a composition for forming a cured product excellent in properties such as flame retardancy, Insulation obtained by applying a varnish (2) having a polymer of a specific molecular weight to a fiber base material on each side, then removing the organic solvent to form a thermosetting composition supported by the fiber base material. A sex complex is provided. The insulating composite of the present invention is excellent in flame retardancy, electrical insulation, and crack resistance, and is suitable for the production of a multilayer circuit board having a fine wiring pattern.

Description

本発明は、難燃性、電気絶縁性および耐クラック性に優れ、かつ、微細配線パターンを有する多層回路基板の製造に適した絶縁性複合体、およびその製造方法に関する。さらに、本発明は、前記絶縁性複合体を硬化してなる硬化物、基板と前記硬化物からなる電気絶縁層とを積層してなる積層体およびその製造方法、前記積層体の電気絶縁層上にさらに導体層を形成してなる多層回路基板及びその製造方法、並びにこの多層回路基板を有する電子機器に関する。   The present invention relates to an insulating composite that is excellent in flame retardancy, electrical insulation and crack resistance, and suitable for manufacturing a multilayer circuit board having a fine wiring pattern, and a method for manufacturing the same. Furthermore, the present invention provides a cured product obtained by curing the insulating composite, a laminate obtained by laminating a substrate and an electrical insulating layer comprising the cured product, a method for producing the same, and an electrical insulation layer of the laminate. Furthermore, the present invention relates to a multilayer circuit board formed by further forming a conductor layer, a method for manufacturing the same, and an electronic device having the multilayer circuit board.

近年における電子機器の小型化、多機能化、高速通信化等に伴い、電子機器に用いられる回路基板には、より高密度化、高精度化が要求されている。そして、これらの要求を満足させるため、多層回路基板の採用が急増している。   With recent miniaturization, multifunctionalization, high-speed communication, and the like of electronic devices, circuit boards used in electronic devices are required to have higher density and higher accuracy. In order to satisfy these requirements, the use of multilayer circuit boards is rapidly increasing.

多層回路基板は、通常、電気絶縁層とその表面に形成された導体層とからなる内層基板の上に、絶縁性複合体または絶縁性フィルムを硬化してなる電気絶縁層を積層し、この電気絶縁層の上に導体層を形成することによって得られる。電気絶縁層と導体層とは、必要に応じて、数段積層することもできる。   In a multilayer circuit board, an electric insulating layer obtained by curing an insulating composite or an insulating film is usually laminated on an inner layer board composed of an electric insulating layer and a conductor layer formed on the surface thereof. It is obtained by forming a conductor layer on the insulating layer. The electrical insulating layer and the conductor layer can be laminated in several stages as required.

ところで、このような多層回路基板の導体層が高密度のパターンである場合、導体層や基板の発熱が大きくなるため、電気絶縁層の難燃性向上が求められている。   By the way, when the conductor layer of such a multilayer circuit board is a high-density pattern, since heat_generation | fever of a conductor layer or a board | substrate becomes large, the flame retardance improvement of an electrically insulating layer is calculated | required.

従来、電気絶縁層の難燃性を向上させる手段としては、電気絶縁層にハロゲン系難燃剤等の難燃剤を配合する方法が知られている(特許文献1)。   Conventionally, as a means for improving the flame retardancy of an electrical insulation layer, a method of blending a flame retardant such as a halogen-based flame retardant into the electrical insulation layer is known (Patent Document 1).

しかしながら、使用済みの多層回路基板の焼却時に、電気絶縁層に配合されているハロゲン系難燃剤が熱分解して、ハロゲン系有害物質が発生するという問題があった。また、難燃剤を配合した電気絶縁層は、強度が不十分で衝撃や熱履歴を受けることにより、クラックが入ったり、電気特性が低下したりするという問題もあった。電気絶縁層の強度を高める方法としては、ガラスクロスで補強する方法が知られているが、この方法では電気特性がさらに低下し、また、難燃剤が電気絶縁層全体に均一に行き渡らずに難燃性が不十分となる場合があった。   However, when the used multilayer circuit board is incinerated, there is a problem that the halogen-based flame retardant mixed in the electrical insulating layer is thermally decomposed to generate a halogen-based harmful substance. In addition, the electrical insulating layer containing the flame retardant has problems that the strength is insufficient and the impact and heat history are received, so that cracks occur and electrical characteristics are deteriorated. As a method of increasing the strength of the electrical insulating layer, a method of reinforcing with a glass cloth is known, but this method further deteriorates the electrical characteristics, and the flame retardant is difficult to spread uniformly throughout the electrical insulating layer. In some cases, the flammability was insufficient.

一方、電気絶縁層を形成する方法として、多層配線板用接着シートを用いる方法が知られている。例えば、特許文献2には、ビフェニル及びノボラック構造を有するエポキシ樹脂、アクリロニトリルブタジエンゴム及び熱硬化剤を必須成分とする樹脂組成物を、液晶ポリエステルからなる不織布に含浸させた後、乾燥させる工程を経て半硬化状態にする方法が提案されている。   On the other hand, as a method for forming an electrical insulating layer, a method using an adhesive sheet for multilayer wiring boards is known. For example, in Patent Document 2, a resin composition containing biphenyl and a novolak structure epoxy resin, acrylonitrile butadiene rubber and a thermosetting agent as essential components is impregnated into a nonwoven fabric made of liquid crystal polyester, and then dried. A method for achieving a semi-cured state has been proposed.

しかしながら、この方法で得られる多層配線板用接着シートを用いて形成した電気絶縁層は、その誘電率や誘電正接等の電気特性が不十分であり、形成した電気絶縁層上に高密度で微細な配線を形成することが困難であった。   However, the electrical insulation layer formed using the adhesive sheet for multilayer wiring boards obtained by this method has insufficient electrical properties such as dielectric constant and dielectric loss tangent, and the electrical insulation layer formed on the formed electrical insulation layer is dense and fine. It was difficult to form a simple wiring.

特開平2−255848号公報JP-A-2-255848 特開2005−175265号公報JP 2005-175265 A

本発明は、このような従来技術の実情に鑑みてなされたものであり、難燃性、電気絶縁性及び耐クラック性に優れ、かつ、微細配線パターンを有する多層回路基板の製造に適した絶縁性複合体、及びその製造方法を提供することを課題とする。さらに本発明は、前記絶縁性複合体を硬化してなる硬化物、基板と前記硬化物からなる電気絶縁層とを積層してなる積層体及びその製造方法、前記積層体の電気絶縁層上にさらに導体層を形成してなる多層回路基板及びその製造方法、並びにこの多層回路基板を有する電子機器を提供することを課題とする。   The present invention has been made in view of such a state of the art, and has excellent flame retardancy, electrical insulation and crack resistance, and is suitable for manufacturing a multilayer circuit board having a fine wiring pattern. It is an object to provide a sex composite and a method for producing the same. Furthermore, the present invention provides a cured product obtained by curing the insulating composite, a laminate obtained by laminating a substrate and an electrical insulation layer comprising the cured product, a method for producing the laminate, and an electrical insulation layer of the laminate. It is another object of the present invention to provide a multilayer circuit board formed with a conductor layer, a method for manufacturing the same, and an electronic apparatus having the multilayer circuit board.

本発明者らは上記課題を解決すべく鋭意検討した結果、繊維基材および熱硬化性組成物からなる絶縁性複合体を製造するにあたり、微細配線パターン形成性に優れた硬化物を形成するための組成を有するワニス(1)、および難燃性などの特性に優れた硬化物を形成するための組成を有し、かつ特定の分子量の重合体を有するワニス(2)を、該繊維基材にそれぞれ片面ずつ塗布することで、難燃性、電気絶縁性及び耐クラック性に優れ、かつ、微細配線パターンを有する多層回路基板の製造に適した絶縁性複合体が得られることを見出し、この知見に基づき本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have formed a cured product excellent in fine wiring pattern formability in producing an insulating composite comprising a fiber base material and a thermosetting composition. The varnish (1) having the composition of (1) and the varnish (2) having a composition for forming a cured product excellent in properties such as flame retardancy and having a polymer having a specific molecular weight are used as the fiber substrate. It has been found that an insulating composite that is excellent in flame retardancy, electrical insulation and crack resistance and suitable for the production of a multilayer circuit board having a fine wiring pattern can be obtained by coating one surface on each side. The present invention has been completed based on the findings.

かくして本発明の第1によれば、下記工程により得られる、繊維基材および熱硬化性組成物からなる絶縁性複合体が提供される。
(工程1)繊維基材の片面に、カルボキシル基または酸無水物基を有する重合体(1)、多価エポキシ化合物(1)、ゴムおよび有機溶剤(1)を含有し、かつ、実質的にフィラーを含有しないワニス(1)を塗工する工程
(工程2)繊維基材の、工程1で塗工する面とは反対の面に、カルボキシル基または酸無水物基を有し、重量平均分子量が15,000〜100,000である重合体(2)、多価エポキシ化合物(2)、フィラーおよび有機溶剤(2)を含有するワニス(2)を塗工する工程
(工程3)有機溶剤(1)および(2)を除去し、繊維基材に支持された熱硬化性組成物を形成する工程
Thus, according to the first aspect of the present invention, there is provided an insulating composite comprising a fiber base material and a thermosetting composition obtained by the following steps.
(Step 1) Containing a polymer (1) having a carboxyl group or an acid anhydride group, a polyvalent epoxy compound (1), rubber and an organic solvent (1) on one side of the fiber substrate, and substantially Step of applying varnish (1) not containing filler (Step 2) The fiber base has a carboxyl group or an acid anhydride group on the surface opposite to the surface to be applied in Step 1, and has a weight average molecular weight. Step of applying a varnish (2) containing a polymer (2) having a molecular weight of 15,000 to 100,000, a polyvalent epoxy compound (2), a filler and an organic solvent (2) (step 3) an organic solvent ( Steps for removing 1) and (2) to form a thermosetting composition supported by a fiber substrate

本発明の絶縁性複合体においては、前記重合体(1)が、カルボキシル基または酸無水物基を有する脂環式オレフィン重合体であり、前記重合体(2)が、カルボキシル基または酸無水物基を有する脂環式オレフィン重合体であり、前記ワニス(2)に含有されるフィラーが、難燃剤であり、前記繊維基材が、液晶ポリマーの長繊維からなるクロスであることが、それぞれ好ましい。   In the insulating composite of the present invention, the polymer (1) is an alicyclic olefin polymer having a carboxyl group or an acid anhydride group, and the polymer (2) is a carboxyl group or an acid anhydride. It is preferably an alicyclic olefin polymer having a group, the filler contained in the varnish (2) is a flame retardant, and the fiber base material is a cloth made of long fibers of a liquid crystal polymer. .

本発明の第2によれば、繊維基材および熱硬化性組成物からなる絶縁性複合体を製造する方法であって、下記工程を有することを特徴とする絶縁性複合体の製造方法が提供される。
(工程1)繊維基材の片面に、 カルボキシル基または酸無水物基を有する重合体(1)、多価エポキシ化合物(1)、ゴムおよび有機溶剤(1)を含有し、かつ、実質的にフィラーを含有しないワニス(1)を塗工する工程
(工程2)繊維基材の、工程1で塗工する面とは反対の面に、カルボキシル基または酸無水物基を有し、重量平均分子量が15,000〜100,000である重合体(2)、多価エポキシ化合物(2)、フィラーおよび有機溶剤(2)を含有するワニス(2)を塗工する工程
(工程3)有機溶剤(1)および(2)を除去し、繊維基材に支持された熱硬化性組成物を形成する工程
According to a second aspect of the present invention, there is provided a method for producing an insulating composite comprising a fiber substrate and a thermosetting composition, the method comprising the following steps: Is done.
(Step 1) Containing a polymer (1) having a carboxyl group or an acid anhydride group, a polyvalent epoxy compound (1), rubber and an organic solvent (1) on one side of the fiber substrate, and substantially Step of applying varnish (1) not containing filler (Step 2) The fiber base has a carboxyl group or an acid anhydride group on the surface opposite to the surface to be applied in Step 1, and has a weight average molecular weight. Step of applying a varnish (2) containing a polymer (2) having a molecular weight of 15,000 to 100,000, a polyvalent epoxy compound (2), a filler and an organic solvent (2) (step 3) an organic solvent ( Steps for removing 1) and (2) to form a thermosetting composition supported by a fiber substrate

本発明の第3によれば、本発明の絶縁性複合体を硬化してなる硬化物が提供される。
本発明の第4によれば、表面に導体層(1)を有する基板と、本発明の硬化物からなる電気絶縁層とを積層してなる積層体が提供される。
According to the third aspect of the present invention, there is provided a cured product obtained by curing the insulating composite of the present invention.
According to the 4th of this invention, the laminated body formed by laminating | stacking the board | substrate which has a conductor layer (1) on the surface, and the electrically insulating layer which consists of hardened | cured material of this invention is provided.

本発明の第5によれば、表面に導体層(1)を有する基板上に、本発明の絶縁性複合体を、前記工程2で塗工した面を導体層(1)に接するように加熱圧着し、硬化して電気絶縁層を形成することを特徴とする本発明の積層体の製造方法が提供される。
本発明の第6によれば、本発明の積層体の電気絶縁層上に、さらに導体層(2)を形成してなる多層回路基板が提供される。
本発明の第7によれば、本発明の積層体の電気絶縁層上に、めっき法により導体層(2)を形成する工程を有する本発明の多層回路基板の製造方法が提供される。
本発明の第8によれば、本発明の多層回路基板を備える電子機器が提供される。
According to the fifth aspect of the present invention, on the substrate having the conductor layer (1) on the surface, the insulating composite of the present invention is heated so that the surface coated in the step 2 is in contact with the conductor layer (1). A method for producing a laminate according to the present invention is provided, wherein the electrical insulating layer is formed by pressure bonding and curing.
According to the sixth aspect of the present invention, there is provided a multilayer circuit board in which a conductor layer (2) is further formed on the electrical insulating layer of the laminate of the present invention.
According to the seventh aspect of the present invention, there is provided a method for producing a multilayer circuit board according to the present invention, which comprises a step of forming a conductor layer (2) on the electrical insulating layer of the laminate according to the present invention by plating.
According to an eighth aspect of the present invention, there is provided an electronic apparatus including the multilayer circuit board according to the present invention.

本発明によれば、難燃性、電気絶縁性及び耐クラック性に優れ、かつ、微細配線パターンを有する多層回路基板の製造に適した絶縁性複合体、およびその製造方法が提供される。
本発明によれば、本発明の絶縁性複合体を硬化してなる硬化物、基板と前記硬化物からなる電気絶縁層とを積層してなる積層体およびその製造方法、前記積層体の電気絶縁層上にさらに導体層を形成してなる多層回路基板及びその製造方法が提供される。
本発明で提供される多層回路基板は、コンピュータや携帯電話等の電子機器における、CPUやメモリ等の半導体素子、その他の実装部品用基板として好適に使用できる。
ADVANTAGE OF THE INVENTION According to this invention, the insulating composite_body | complex excellent in a flame retardance, electrical insulation, and crack resistance, and suitable for manufacture of the multilayer circuit board which has a fine wiring pattern, and its manufacturing method are provided.
According to the present invention, a cured product obtained by curing the insulating composite of the present invention, a laminate obtained by laminating a substrate and an electrical insulating layer made of the cured product, a method for producing the same, and electrical insulation of the laminate. Provided are a multilayer circuit board in which a conductor layer is further formed on the layer and a method for producing the same.
The multilayer circuit board provided by the present invention can be suitably used as a semiconductor element such as a CPU or a memory or other mounting component board in an electronic device such as a computer or a mobile phone.

以下、本発明を詳細に説明する。
1)絶縁性複合体
本発明の第1は、下記工程により得られる、繊維基材および熱硬化性組成物からなる絶縁性複合体である。
Hereinafter, the present invention will be described in detail.
1) Insulating composite The first of the present invention is an insulating composite comprising a fiber base material and a thermosetting composition, which is obtained by the following steps.

(工程1)繊維基材の片面に、カルボキシル基または酸無水物基を有する重合体(1)、多価エポキシ化合物(1)、ゴムおよび有機溶剤(1)を含有し、かつ、実質的にフィラーを含有しないワニス(1)を塗工する工程
(工程2)繊維基材の、工程1で塗工する面とは反対の面に、カルボキシル基または酸無水物基を有し、重量平均分子量が15,000〜100,000である重合体(2)、多価エポキシ化合物(2)、フィラーおよび有機溶剤(2)を含有するワニス(2)を塗工する工程
(工程3)有機溶剤(1)および(2)を除去し、繊維基材に支持された熱硬化性組成物を形成する工程
(Step 1) Containing a polymer (1) having a carboxyl group or an acid anhydride group, a polyvalent epoxy compound (1), rubber and an organic solvent (1) on one side of the fiber substrate, and substantially Step of applying varnish (1) not containing filler (Step 2) The fiber base has a carboxyl group or an acid anhydride group on the surface opposite to the surface to be applied in Step 1, and has a weight average molecular weight. Step of applying a varnish (2) containing a polymer (2) having a molecular weight of 15,000 to 100,000, a polyvalent epoxy compound (2), a filler and an organic solvent (2) (step 3) an organic solvent ( Steps for removing 1) and (2) to form a thermosetting composition supported by a fiber substrate

工程1
工程1は、繊維基材の片面に、カルボキシル基または酸無水物基を有する重合体(1)、多価エポキシ化合物(1)、ゴムおよび有機溶剤(1)を含有し、かつ、実質的にフィラーを含有しないワニス(1)を塗工する工程である。
Process 1
Step 1 contains a polymer (1) having a carboxyl group or an acid anhydride group on one side of a fiber base, a polyvalent epoxy compound (1), rubber and an organic solvent (1), and substantially It is a step of applying a varnish (1) containing no filler.

繊維基材
本発明に用いる繊維基材はクロス状のものであり、例えば、リンター紙、クラフト紙等の紙基材;ガラスクロス、ガラスマット、ガラスペーパークオーツファイバー等のガラス基材;、およびポリエステル繊維、アラミド繊維等の合成樹脂繊維基材;などを用いることができるが、好ましくは液晶ポリマーの長繊維からなるクロスである。
Fiber substrate The fiber substrate used in the present invention is in the form of a cloth, for example, a paper substrate such as linter paper or kraft paper; a glass substrate such as glass cloth, glass mat, or glass paper quartz fiber; and polyester Synthetic resin fiber base materials such as fibers and aramid fibers can be used, and a cloth made of liquid crystal polymer long fibers is preferable.

液晶ポリマーの長繊維からなるクロスは、液晶性ポリエステル長繊維を使用した織布又は不織布である。また、ここでいう液晶性ポリエステル長繊維は、エステル結合を有し、液晶状態を示すポリマー(以下「液晶ポリマー」ということがある)を溶融押し出し等で紡糸した連続したフィラメントである。   The cloth made of long fibers of liquid crystal polymer is a woven fabric or a non-woven fabric using liquid crystalline polyester long fibers. Further, the liquid crystalline polyester continuous fiber referred to here is a continuous filament obtained by spinning a polymer having an ester bond and showing a liquid crystal state (hereinafter sometimes referred to as “liquid crystal polymer”) by melt extrusion or the like.

このような液晶ポリマーとしては、以下に例示する(a)〜(d)の化合物、並びにこれらの化合物を適宜組み合わせて共重合させることより得られる、公知の液晶ポリエステル及び液晶ポリエステルアミドが挙げられる。   Examples of such a liquid crystal polymer include the compounds (a) to (d) exemplified below, and known liquid crystal polyesters and liquid crystal polyester amides obtained by copolymerizing these compounds in an appropriate combination.

(a)芳香族又は脂肪族のジヒドロキシ化合物
(b)芳香族又は脂肪族のジカルボン酸
(c)芳香族ヒドロキシカルボン酸
(d)芳香族ジアミン、芳香族ヒドロキシルアミン又は芳香族アミノカルボン酸
これらの中でも、液晶ポリマーとしては、主鎖中に脂肪族炭化水素を実質的に有しない全芳香族ポリエステルが好ましい。
(A) Aromatic or aliphatic dihydroxy compounds (b) Aromatic or aliphatic dicarboxylic acids (c) Aromatic hydroxycarboxylic acids (d) Aromatic diamines, aromatic hydroxylamines or aromatic aminocarboxylic acids Among these As the liquid crystal polymer, a wholly aromatic polyester having substantially no aliphatic hydrocarbon in the main chain is preferable.

全芳香族ポリエステルは、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸等のモノマーを組み合わせ、組成比を変えて合成される。例えば、p−ヒドロキシ安息香酸と2−ヒドロキシ−6−ナフトエ酸との共重合体、p−ヒドロキシ安息香酸又はテレフタル酸と4,4’−ジヒドロキシビフェニルとの共重合体等が挙げられる。   The wholly aromatic polyester is synthesized by combining monomers such as aromatic diol, aromatic dicarboxylic acid, and aromatic hydroxycarboxylic acid, and changing the composition ratio. Examples thereof include a copolymer of p-hydroxybenzoic acid and 2-hydroxy-6-naphthoic acid, a copolymer of p-hydroxybenzoic acid or terephthalic acid and 4,4'-dihydroxybiphenyl, and the like.

液晶ポリマーの長繊維からなるクロスの形態の例としては、ロービングクロス、チョップドマット、サーフェシングマット等の織布又は不織布が挙げられる。これらの形態の中では、寸法安定性の観点からは織布が好ましく、加工性の観点からは不織布が好ましい。
また、これらの織布または不織布を、熱ロール等で圧縮したものも好ましい。
Examples of the form of a cloth made of liquid crystal polymer long fibers include woven or non-woven cloth such as roving cloth, chopped mat, and surfacing mat. Among these forms, a woven fabric is preferable from the viewpoint of dimensional stability, and a nonwoven fabric is preferable from the viewpoint of workability.
Moreover, what compressed these woven fabrics or nonwoven fabrics with the hot roll etc. is preferable.

本発明においては、これら両者の特長を兼備させるために織布と不織布とを積層して用いても良い。また、液晶ポリマーの長繊維からなるクロスに、ガラス、アラミド、ポリベンゾオキサゾール及び天然セルロース系繊維のクロス又はミクロフィブリルを混抄して用いても良い。   In the present invention, a woven fabric and a non-woven fabric may be laminated and used in order to combine the features of both. Further, glass, aramid, polybenzoxazole and natural cellulosic fiber cloth or microfibrils may be mixed with cloth made of long fibers of liquid crystal polymer.

本発明に用いる液晶ポリマーの長繊維からなるクロスは、その単位面積当たりの質量によって、得られる絶縁性複合体の厚みを任意に変えることができる。液晶ポリマーの長繊維からなるクロスの単位面積当たりの質量は、好ましくは3〜55g/m、より好ましくは6〜45g/mである。
単位面積当たりの質量がこの範囲にあると、塗工が容易であり、また得られる多層回路基板の電気絶縁層の厚さや強度も好ましいものとなる。
The thickness of the insulating composite obtained by the cloth made of long fibers of the liquid crystal polymer used in the present invention can be arbitrarily changed depending on the mass per unit area. The mass per unit area of the cloth composed of long fibers of the liquid crystal polymer is preferably 3 to 55 g / m 2 , more preferably 6 to 45 g / m 2 .
When the mass per unit area is in this range, coating is easy, and the thickness and strength of the electrical insulating layer of the resulting multilayer circuit board are also preferable.

本発明に好適に用いる液晶ポリマーの長繊維からなるクロスとしては、全芳香族ポリエステルをメルトブロー法により、紡糸時に高配向させた繊維から構成される不織布が挙げられる。具体的にはベクルス及びベクトラン(いずれもクラレ社の商品名)等を使用できる。   Examples of the cloth composed of long fibers of a liquid crystal polymer preferably used in the present invention include a nonwoven fabric composed of fibers obtained by highly orienting a fully aromatic polyester by a melt blow method. Specifically, Vecrus and Vectran (both are trade names of Kuraray Co., Ltd.) can be used.

ワニス(1)
ワニス(1)は、カルボキシル基または酸無水物基(以下、この両者をまとめて「カルボキシル基等」と記すことがある。)を有する重合体(1)、多価エポキシ化合物(1)、ゴムおよび有機溶剤(1)を含有し、かつ、実質的にフィラーを含有しないものである。
Varnish (1)
The varnish (1) is a polymer (1) having a carboxyl group or an acid anhydride group (hereinafter, both may be collectively referred to as “carboxyl group etc.”), a polyvalent epoxy compound (1), and rubber. And the organic solvent (1) and substantially free of filler.

ここで「実質的に含有しない」とは、ワニス(1)中、5質量%以上含有しないことをいう。また、後述するワニス(2)と比較して、ワニス(1)は、微細配線パターン形成性が優れた硬化物を得るために、ゴム、好ましくは液状ゴムを含有することを特徴とする。ワニス(1)の粘度は200〜2000mPa・sが好ましく、400〜1600mPa・sがさらに好ましい。粘度がこの範囲にあると塗工性が良好であり、ワニス(2)と混ざり過ぎず好適である。   Here, “substantially not containing” means not containing 5 mass% or more in the varnish (1). Moreover, compared with the varnish (2) mentioned later, in order to obtain the hardened | cured material which was excellent in fine wiring pattern formation property, a varnish (1) is characterized by containing rubber | gum, Preferably liquid rubber. The viscosity of the varnish (1) is preferably 200 to 2000 mPa · s, more preferably 400 to 1600 mPa · s. When the viscosity is in this range, the coating property is good and it is preferable that the viscosity is not excessively mixed with the varnish (2).

重合体(1)
重合体(1)は、カルボキシル基等が、骨格をなす電気絶縁性重合体の主鎖に直接、あるいはメチレン基、オキシ基、オキシカルボニルオキシアルキレン基、フェニレン基等他の二価の連結基を介して結合したものである。
Polymer (1)
In the polymer (1), a carboxyl group or the like has other divalent linking groups such as a methylene group, an oxy group, an oxycarbonyloxyalkylene group, and a phenylene group directly on the main chain of the electrically insulating polymer forming a skeleton. It is connected through.

重合体(1)の骨格をなす重合体は、特に限定されないが、その具体例としては、マレイミド樹脂、アクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、脂環式オレフィン重合体、芳香族ポリエーテル重合体、ベンゾシクロブテン重合体、シアネートエステル重合体、およびポリイミド樹脂;等が挙げられる。本発明においては、これらの重合体を1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、誘電率や誘電正接等の電気特性が優れることから、脂環式オレフィン重合体、芳香族ポリエーテル重合体、ベンゾシクロブテン重合体、シアネートエステル重合体、およびポリイミド樹脂が好ましく、脂環式オレフィン重合体および芳香族ポリエーテル重合体がより好ましく、脂環式オレフィン重合体が特に好ましい。   The polymer constituting the skeleton of the polymer (1) is not particularly limited, and specific examples thereof include maleimide resin, acrylic resin, diallyl phthalate resin, triazine resin, alicyclic olefin polymer, and aromatic polyether polymer. Benzocyclobutene polymer, cyanate ester polymer, and polyimide resin. In the present invention, these polymers can be used alone or in combination of two or more. Among these, alicyclic olefin polymer, aromatic polyether polymer, benzocyclobutene polymer, cyanate ester polymer, and polyimide resin are preferable because of excellent electrical properties such as dielectric constant and dielectric loss tangent. Cyclic olefin polymers and aromatic polyether polymers are more preferred, and alicyclic olefin polymers are particularly preferred.

重合体(1)におけるカルボキシル基等の含有量は、特に限定されないが、5〜50モル%の範囲が好ましく、10〜40モル%の範囲がより好ましい。カルボキシル基等の含有量が小さすぎると、電気絶縁層のめっき密着性や耐熱性が低下するおそれがあり、カルボキシル基等の含有量が大きすぎると、電気絶縁層の絶縁特性が低下する可能性がある。カルボキシル基等の含有量は、重合体中の総単量体単位数に対するカルボキシル基等のモル数の割合であり、例えば、1H−NMRスペクトルの測定結果より算出することができる。Although content, such as a carboxyl group, in a polymer (1) is not specifically limited, The range of 5-50 mol% is preferable and the range of 10-40 mol% is more preferable. If the content of carboxyl groups, etc. is too small, the plating adhesion and heat resistance of the electrical insulation layer may be reduced. If the content of carboxyl groups, etc. is too large, the insulation properties of the electrical insulation layer may be reduced. There is. The content of the carboxyl group or the like is a ratio of the number of moles of the carboxyl group or the like to the total number of monomer units in the polymer, and can be calculated from the measurement result of 1 H-NMR spectrum, for example.

重合体(1)の重量平均分子量(Mw)は、特に限定されないが、好ましくは15,000〜150,000であり、より好ましくは20,000〜100,000である。Mwがこの範囲であると、得られる硬化物の強度、電気絶縁性および表面粗度が良好となる。
なお、本発明において、Mwは、ゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算値である。
Although the weight average molecular weight (Mw) of a polymer (1) is not specifically limited, Preferably it is 15,000-150,000, More preferably, it is 20,000-100,000. When the Mw is within this range, the strength, electrical insulation and surface roughness of the resulting cured product will be good.
In the present invention, Mw is a polystyrene equivalent value determined by gel permeation chromatography (GPC).

重合体(1)のガラス転移温度(Tg)は、120〜300℃であることが好ましい。Tgが低すぎると、得られる電気絶縁層が高温下において十分な電気絶縁性を維持できず、Tgが高すぎると、多層配線板が強い衝撃を受けた際にクラックを生じて導体層が破損する可能性がある。   It is preferable that the glass transition temperature (Tg) of a polymer (1) is 120-300 degreeC. If the Tg is too low, the resulting electrical insulation layer cannot maintain sufficient electrical insulation at high temperatures. If the Tg is too high, the multilayer wiring board will crack when subjected to a strong impact, causing damage to the conductor layer. there's a possibility that.

脂環式オレフィン重合体は、炭素−炭素不飽和結合を有する脂環式化合物(以下、「脂環式オレフィン」ということがある。)の単独重合体および共重合体並びにこれらの誘導体(以下、「水素添加物等」ということがある。)の総称である。また、重合の様式は、付加重合であっても開環重合であってもよい。   The alicyclic olefin polymer is a homopolymer or copolymer of an alicyclic compound having a carbon-carbon unsaturated bond (hereinafter sometimes referred to as “alicyclic olefin”) and a derivative thereof (hereinafter referred to as “alicyclic olefin”). It is a general term for “hydrogenated products”. The polymerization mode may be addition polymerization or ring-opening polymerization.

脂環式オレフィン重合体の具体例としては、ノルボルネン環を有する単量体(以下、「ノルボルネン系単量体」という。)の開環重合体およびその水素添加物、ノルボルネン系単量体の付加重合体、ノルボルネン系単量体とビニル化合物との付加重合体、単環シクロアルケン付加重合体、脂環式共役ジエン重合体、ビニル系脂環式炭化水素重合体およびその水素添加物を挙げることができる。更に、芳香族オレフィン重合体の芳香環水素添加物等の、重合後の水素化によって脂環構造が形成されて、脂環式オレフィン重合体と同等の構造を有するに至った重合体もその一例である。これらの中でも、ノルボルネン系単量体の開環重合体およびその水素添加物、ノルボルネン系単量体の付加重合体、ノルボルネン系単量体とビニル化合物との付加重合体、および芳香族オレフィン重合体の芳香環水素添加物が好ましく、特にノルボルネン系単量体の開環重合体の水素添加物が好ましい。   Specific examples of the alicyclic olefin polymer include a ring-opening polymer of a monomer having a norbornene ring (hereinafter referred to as “norbornene-based monomer”), a hydrogenated product thereof, and attachment of a norbornene-based monomer. Mentioning addition polymers, addition polymers of norbornene monomers and vinyl compounds, monocyclic cycloalkene addition polymers, alicyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers and hydrogenated products thereof. Can do. An example is a polymer in which an alicyclic structure is formed by hydrogenation after polymerization, such as an aromatic olefin hydrogenated product of an aromatic olefin polymer, and has a structure equivalent to an alicyclic olefin polymer. It is. Among these, ring-opening polymers of norbornene monomers and hydrogenated products thereof, addition polymers of norbornene monomers, addition polymers of norbornene monomers and vinyl compounds, and aromatic olefin polymers Aromatic hydrogenated products are preferred, and in particular, hydrogenated products of ring-opening polymers of norbornene monomers are preferred.

重合体(1)のカルボキシル基等の含有量を上記範囲とする方法は、制限されない。例えば、(i)カルボキシル基等を有する単量体を単独重合、または、カルボキシル基等を有する単量体、およびこれと共重合可能な単量体を共重合する方法;(ii)カルボキシル基等を有しない重合体に、カルボキシル基等および炭素−炭素不飽和結合を有する化合物を、例えばラジカル開始剤存在下でグラフト結合させることにより、カルボキシル基等を導入する方法;(iii)カルボン酸エステル基等の、カルボキシル基の前駆体となる基を有する単量体を重合した後、加水分解等によって前駆体基をカルボキシル基へ変換する方法;等がある。   The method for setting the content of the carboxyl group or the like of the polymer (1) in the above range is not limited. For example, (i) a method of homopolymerizing a monomer having a carboxyl group or the like, or a method of copolymerizing a monomer having a carboxyl group or the like and a monomer copolymerizable therewith; (ii) a carboxyl group or the like A method of introducing a carboxyl group or the like by graft-bonding a compound having a carboxyl group or the like and a carbon-carbon unsaturated bond, for example, in the presence of a radical initiator to a polymer having no carboxyl group; (iii) a carboxylate group There is a method of polymerizing a monomer having a group that becomes a precursor of a carboxyl group, and then converting the precursor group to a carboxyl group by hydrolysis or the like.

(i)の方法に用いられるカルボキシル基含有脂環式オレフィン単量体としては、8−ヒドロキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−メチル−5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシメチル−5−ヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、8−メチル−8−ヒドロキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−カルボキシメチル−8−ヒドロキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、5−エキソ−6−エンド−ジヒドロキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、および8−エキソ−9−エンド−ジヒドロキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン;等が挙げられる。As the carboxyl group-containing alicyclic olefin monomer used in the method (i), 8-hydroxycarbonyltetracyclo [4.4.0.1 2,5 . 17, 10 ] dodec-3-ene, 5-hydroxycarbonylbicyclo [2.2.1] hept-2-ene, 5-methyl-5-hydroxycarbonylbicyclo [2.2.1] hept-2-ene , 5-carboxymethyl-5-hydroxycarbonylbicyclo [2.2.1] hept-2-ene, 8-methyl-8-hydroxycarbonyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-carboxymethyl-8-hydroxycarbonyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 5-exo-6-endo-dihydroxycarbonylbicyclo [2.2.1] hept-2-ene, and 8-exo-9-endo-dihydroxycarbonyltetracyclo [4]. .4.0.1 2,5 . 1 7,10 ] dodec-3-ene;

また、(i)の方法に用いられる酸無水物基含有脂環式オレフィン単量体としては、ビシクロ[2.2.1]ヘプト−2−エン−5,6−ジカルボン酸無水物、テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン−8,9−ジカルボン酸無水物、およびヘキサシクロ[6.6.1.13,6.110,13.02,7.09,14]ヘプタデカ−4−エン−11,12−ジカルボン酸無水物;等が挙げられる。
(i)の方法に用いられる、カルボキシル基含有脂環式オレフィン単量体と共重合可能な単量体は、特に限定されないが、カルボキシル基等を有さない脂環式オレフィン単量体が好ましい。
Examples of the acid anhydride group-containing alicyclic olefin monomer used in the method (i) include bicyclo [2.2.1] hept-2-ene-5,6-dicarboxylic acid anhydride, tetracyclo [ 4.4.0.1 2,5 . 1 7,10 ] dodec- 3 -ene-8,9-dicarboxylic anhydride, and hexacyclo [6.6.1.1 3,6 . 1 10,13 . 0 2,7 . 0 9,14] heptadec-4-ene-11,12-dicarboxylic acid anhydride; and the like.
The monomer copolymerizable with the carboxyl group-containing alicyclic olefin monomer used in the method (i) is not particularly limited, but an alicyclic olefin monomer having no carboxyl group or the like is preferable. .

カルボキシル基等を有さない脂環式オレフィン単量体の具体例としては、ビシクロ[2.2.1]ヘプト−2−エン(慣用名:ノルボルネン)、5−エチル−ビシクロ[2.2.1]ヘプト−2−エン、5−ブチル−ビシクロ[2.2.1]ヘプト−2−エン、5−エチリデン−ビシクロ[2.2.1]ヘプト−2−エン、5−メチリデン−ビシクロ[2.2.1]ヘプト−2−エン、5−ビニル−ビシクロ[2.2.1]ヘプト−2−エン、トリシクロ[4.3.0.12,5]デカ−3,7−ジエン(慣用名:ジシクロペンタジエン)、テトラシクロ[8.4.0.111,14.02,8]テトラデカ−3,5,7,12,11−テトラエン、テトラシクロ[4.4.0.12,5.17,10]デカ−3−エン(慣用名:テトラシクロドデセン)、8−メチル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−エチル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−メチリデン−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−エチリデン−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−ビニル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、8−プロペニル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカ−3,10−ジエン、ペンタシクロ[7.4.0.13,6.110,13.02,7]ペンタデカ−4,11−ジエン、シクロペンテン、シクロペンタジエン、1,4−メタノ−1,4,4a,5,10,10a−ヘキサヒドロアントラセン、および8−フェニル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン;等が挙げられる。Specific examples of the alicyclic olefin monomer having no carboxyl group and the like include bicyclo [2.2.1] hept-2-ene (common name: norbornene), 5-ethyl-bicyclo [2.2. 1] hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.1] hept-2-ene, 5-methylidene-bicyclo [ 2.2.1] Hept-2-ene, 5-vinyl-bicyclo [2.2.1] hept-2-ene, tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tetracyclo [8.4.0.1 11,14. 0 2,8 ] tetradeca-3,5,7,12,11-tetraene, tetracyclo [4.4.0. 12, 5 . 1 7,10 ] dec-3-ene (common name: tetracyclododecene), 8-methyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-methylidene-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethylidene-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-vinyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-propenyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13] pentadeca-3,10-diene, pentacyclo [7.4.0.1 3,6. 1 10,13 . 0 2,7 ] pentadeca-4,11-diene, cyclopentene, cyclopentadiene, 1,4-methano-1,4,4a, 5,10,10a-hexahydroanthracene, and 8-phenyl-tetracyclo [4.4. .0.1 2,5 . 1 7,10 ] dodec-3-ene;

(ii)の方法に用いられる、カルボキシル基等を有しない脂環式オレフィン重合体は、前記のカルボキシル基等を有さない脂環式オレフィン単量体を重合させたものである。
重合の様式は、付加重合であっても開環重合であってもよく、それらの誘導体(水素添加物等)であってもよい。
The alicyclic olefin polymer having no carboxyl group or the like used in the method (ii) is obtained by polymerizing the alicyclic olefin monomer having no carboxyl group or the like.
The mode of polymerization may be addition polymerization, ring-opening polymerization, or a derivative thereof (hydrogenated product or the like).

また、(ii)の方法に用いられる、カルボキシル基等を有する炭素−炭素不飽和結合含有化合物としては、アクリル酸、メタクリル酸、α−エチルアクリル酸、2−ヒドロキシエチル(メタ)アクリル酸、マレイン酸、フマール酸、イタコン酸、エンドシス−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸、およびメチル−エンドシス−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸等の不飽和カルボン酸化合物;無水マレイン酸、クロロ無水マレイン酸、ブテニル無水コハク酸、テトラヒドロ無水フタル酸、および無水シトラコン酸等の不飽和カルボン酸無水物;等が挙げられる。   Examples of the carbon-carbon unsaturated bond-containing compound having a carboxyl group or the like used in the method (ii) include acrylic acid, methacrylic acid, α-ethylacrylic acid, 2-hydroxyethyl (meth) acrylic acid, maleic acid. Acids, fumaric acid, itaconic acid, endocis-bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid, and methyl-endocis-bicyclo [2.2.1] hept-5-ene- Unsaturated carboxylic acid compounds such as 2,3-dicarboxylic acid; unsaturated carboxylic acid anhydrides such as maleic anhydride, chloromaleic anhydride, butenyl succinic anhydride, tetrahydrophthalic anhydride, and citraconic anhydride; .

(iii)の方法に用いられる、カルボキシル基の前駆体となる基を有するノルボルネン系単量体としては、8−メチル−8−メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン、5−メトキシカルボニル−ビシクロ[2.2.1]ヘプト−2−エン、および5−メチル−5−メトキシカルボニル−ビシクロ[2.2.1]ヘプト−2−エン;等が挙げられる。As the norbornene-based monomer having a carboxyl group precursor used in the method (iii), 8-methyl-8-methoxycarbonyltetracyclo [4.4.0.1 2,5 . 17, 10 ] dodec-3-ene, 5-methoxycarbonyl-bicyclo [2.2.1] hept-2-ene, and 5-methyl-5-methoxycarbonyl-bicyclo [2.2.1] hept- 2-ene; and the like.

重合体(1)は、カルボキシル基等以外の官能基を有していてもよい。カルボキシル基等以外の官能基としては、アルコキシカルボニル基、シアノ基、水酸基、エポキシ基、アルコキシル基、アミノ基、アミド基、およびイミド基;等が挙げられる。   The polymer (1) may have a functional group other than a carboxyl group. Examples of the functional group other than the carboxyl group include an alkoxycarbonyl group, a cyano group, a hydroxyl group, an epoxy group, an alkoxyl group, an amino group, an amide group, and an imide group.

〔多価エポキシ化合物(1)〕
多価エポキシ化合物(1)は、分子内に2個以上のエポキシ基を有する化合物である。多価エポキシ化合物(1)の例としては、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、クレゾール型エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、臭素化ビスフェノールA型エポキシ化合物、臭素化ビスフェノールF型エポキシ化合物、水素添加ビスフェノールA型エポキシ化合物、等のグリシジルエーテル型エポキシ化合物、脂環式エポキシ化合物、グリシジルエステル型エポキシ化合物、グリシジルアミン型エポキシ化合物、イソシアヌレート型エポキシ化合物等が挙げられる。
[Polyvalent epoxy compound (1)]
The polyvalent epoxy compound (1) is a compound having two or more epoxy groups in the molecule. Examples of the polyvalent epoxy compound (1) include phenol novolac type epoxy compounds, cresol novolac type epoxy compounds, cresol type epoxy compounds, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, brominated bisphenol A type epoxy compounds, bromine Glycidyl ether type epoxy compounds such as hydrogenated bisphenol F type epoxy compounds, hydrogenated bisphenol A type epoxy compounds, alicyclic epoxy compounds, glycidyl ester type epoxy compounds, glycidyl amine type epoxy compounds, isocyanurate type epoxy compounds, etc. .

これらの中でも、重合体(1)との相溶性が良好であり、得られる絶縁性複合体の機械物性が良好となるため、ビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテルなどのビスフェノールA型エポキシ化合物が好ましい。
これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。
多価エポキシ化合物(1)の使用量は、重合体(1)の100質量部に対して、通常1〜100質量部、好ましくは5〜80質量部、より好ましくは10〜50質量部の範囲である。
Among these, bisphenol A type epoxy compounds such as bisphenol A bis (propylene glycol glycidyl ether) ether, because the compatibility with the polymer (1) is good and the mechanical properties of the resulting insulating composite are good. Is preferred.
These can be used alone or in combination of two or more.
The usage-amount of a polyvalent epoxy compound (1) is 1-100 mass parts normally with respect to 100 mass parts of a polymer (1), Preferably it is 5-80 mass parts, More preferably, it is the range of 10-50 mass parts. It is.

硬化促進剤
ワニス(1)は、耐熱性の高い硬化物を容易に得ることができる観点から、硬化促進剤をさらに含有することが好ましい。例えば、第3級アミン化合物や三弗化ホウ素錯化合物等の硬化促進剤が好適に用いられる。なかでも、第3級アミン化合物を使用すると、絶縁抵抗性、耐熱性、耐薬品性等が向上するので好ましい。
The curing accelerator varnish (1) preferably further contains a curing accelerator from the viewpoint of easily obtaining a cured product having high heat resistance. For example, curing accelerators such as tertiary amine compounds and boron trifluoride complex compounds are preferably used. Of these, the use of a tertiary amine compound is preferred because the insulation resistance, heat resistance, chemical resistance and the like are improved.

第3級アミン化合物としては、ベンジルメチルアミン、トリエタノールアミン、トリエチルアミン、トリブチルアミン、トリベンジルアミン、ジメチルホルムアミド等の鎖状3級アミン化合物;ピラゾール類、ピリジン類、ピラジン類、ピリミジン類、インダゾール類、キノリン類、イソキノリン類、イミダゾール類、トリアゾール類等の含窒素ヘテロ環化合物;等が挙げられる。これらの中で、イミダゾール類、特に置換基を有する置換イミダゾール化合物が好ましい。   As tertiary amine compounds, chain tertiary amine compounds such as benzylmethylamine, triethanolamine, triethylamine, tributylamine, tribenzylamine, dimethylformamide; pyrazoles, pyridines, pyrazines, pyrimidines, indazoles , Nitrogen-containing heterocyclic compounds such as quinolines, isoquinolines, imidazoles, and triazoles; Among these, imidazoles, particularly substituted imidazole compounds having a substituent are preferable.

置換イミダゾール化合物としては、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、ビス−2−エチル−4−メチルイミダゾール、1−メチル−2−エチルイミダゾール、2−イソプロピルイミダゾール、2,4−ジメチルイミダゾール、2−ヘプタデシルイミダゾール等のアルキル置換イミダゾール化合物;2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−エチルイミダゾール、ベンズイミダゾール、2−エチル−4−メチル−1−(2’−シアノエチル)イミダゾール、2−エチル−4−メチル−1−[2’−(3’’,5’’−ジアミノトリアジニル)エチル]イミダゾール、1−ベンジル−2−フェニルイミダゾール等のアリール基やアラルキル基等の環構造を有する炭化水素基で置換されたイミダゾール化合物;等が挙げられる。これらの硬化促進剤は、一種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、環構造を有する炭化水素基で置換されたイミダゾール化合物が好ましく、1−ベンジル−2−フェニルイミダゾールが特に好ましい。   Examples of substituted imidazole compounds include 2-ethylimidazole, 2-ethyl-4-methylimidazole, bis-2-ethyl-4-methylimidazole, 1-methyl-2-ethylimidazole, 2-isopropylimidazole, and 2,4-dimethyl. Alkyl-substituted imidazole compounds such as imidazole and 2-heptadecylimidazole; 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-ethylimidazole, benzimidazole, 2-ethyl-4-methyl-1- (2′-cyanoethyl) imidazole, 2-ethyl-4-methyl-1- [2 ′-(3 ″, 5 ″ -diaminotriazinyl) ethyl] imidazole, 1-benzyl-2-phenylimidazole, etc. Carbonization with a ring structure such as aryl or aralkyl groups Imidazole compounds substituted with a containing group; and the like. These curing accelerators can be used alone or in combination of two or more. Among these, an imidazole compound substituted with a hydrocarbon group having a ring structure is preferable, and 1-benzyl-2-phenylimidazole is particularly preferable.

硬化促進剤の配合量は使用目的に応じて適宜設定されるが、重合体1の100質量部に対して、通常0.001〜30質量部、好ましくは0.01〜10質量部、より好ましくは0.03〜5質量部である。   Although the compounding quantity of a hardening accelerator is suitably set according to a use purpose, it is 0.001-30 mass parts normally with respect to 100 mass parts of the polymer 1, Preferably it is 0.01-10 mass parts, More preferably Is 0.03 to 5 parts by mass.

硬化助剤
ワニス(1)は、耐熱性や耐熱衝撃性などを改善するために硬化助剤をさらに含有させてもよい。ここにおいて硬化助剤とは、重合体(1)または多価エポキシ化合物(1)と硬化反応して、硬化物の物性を改質するものである。用いる硬化助剤としては、例えば、分子内に2個以上の酸無水物基を有するカルボン酸無水物(以下、「テトラカルボン酸二無水物等」ということがある。)が挙げられる。
The curing aid varnish (1) may further contain a curing aid in order to improve heat resistance and thermal shock resistance. Here, the curing aid is a compound that undergoes a curing reaction with the polymer (1) or the polyvalent epoxy compound (1) to modify the physical properties of the cured product. Examples of the curing aid to be used include carboxylic anhydrides having two or more acid anhydride groups in the molecule (hereinafter sometimes referred to as “tetracarboxylic dianhydride”).

テトラカルボン酸二無水物等の例としては、無水ピロメリット酸、ヘキサヒドロ無水ピロメリット酸、無水シクロブタンテトラカルボン酸、無水ナフタレンテトラカルボン酸、ベンゾフェノンテトラカルボン酸無水物、ウンデカヒドロベンゾフェノンテトラカルボン酸無水物、テトラリン−ジ酸無水物、エチレングリコールビス(アンヒドロトリメリテート)、エチレングリコールビス(アンヒドロトリメリテート)モノアセテート、グリセリンビス(アンヒドロトリメリテート)モノアセテート、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレン−1,2−ジカルボン酸無水物、5−(2,5ジオキソテトラヒドロキシフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、4,4’−スルホニルジ無水フタル酸;等が挙げられる。これらの中で、硬化性樹脂組成物(b2)の他の成分との相溶性の観点から、エチレングリコールビス(アンヒドロトリメリテート)、エチレングリコールビス(アンヒドロトリメリテート)モノアセテート及びグリセリンビス(アンヒドロトリメリテート)モノアセテートが好ましく、特にエチレングリコールビス(アンヒドロトリメリテート)モノアセテート及びグリセリンビス(アンヒドロトリメリテート)モノアセテートが好ましい。   Examples of tetracarboxylic dianhydrides include pyromellitic anhydride, hexahydropyromellitic anhydride, cyclobutanetetracarboxylic anhydride, naphthalenetetracarboxylic anhydride, benzophenonetetracarboxylic anhydride, undecahydrobenzophenonetetracarboxylic anhydride , Tetralin-dianhydride, ethylene glycol bis (anhydro trimellitate), ethylene glycol bis (anhydro trimellitate) monoacetate, glycerin bis (anhydro trimellitate) monoacetate, 4- (2, 5-Dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride, 5- (2,5 dioxotetrahydroxyfuryl) -3-methyl-3- Cyclohexene-1,2-dicarboxylic acid Anhydride, 1,2,3,4-butane tetracarboxylic acid dianhydride, 4,4'-sulfonyldibenzoic phthalic anhydride; and the like. Among these, ethylene glycol bis (anhydro trimellitate), ethylene glycol bis (anhydro trimellitate) monoacetate and glycerin from the viewpoint of compatibility with the other components of the curable resin composition (b2). Bis (anhydrotrimellitate) monoacetate is preferred, and ethylene glycol bis (anhydrotrimellitate) monoacetate and glycerin bis (anhydrotrimellitate) monoacetate are particularly preferred.

ゴム
本発明に使用されるゴムは、示差走査熱量法により測定したガラス転移温度が30℃以下の高分子化合物である。なかでも、溶液の不存在下の常温(25℃)で液状のゴム(液状ゴム)が好ましい。
Rubber The rubber used in the present invention is a polymer compound having a glass transition temperature measured by differential scanning calorimetry of 30 ° C. or less. Among these, liquid rubber (liquid rubber) at normal temperature (25 ° C.) in the absence of a solution is preferable.

ゴムの使用量は、重合体(1)の100質量部に対して、通常1〜100質量部、好ましくは5〜70質量部、より好ましくは10〜50質量部の範囲である。ゴムの配合量がこの範囲にある微細配線パターン形成性が優れる。   The usage-amount of rubber | gum is 1-100 mass parts normally with respect to 100 mass parts of a polymer (1), Preferably it is 5-70 mass parts, More preferably, it is the range of 10-50 mass parts. The fine wiring pattern formability in which the blending amount of rubber is within this range is excellent.

液状ゴムとしては、液状ポリイソプレン、液状ポリブタジエン、液状スチレン−ブタジエンゴム、液状アクリロニトリル−ブタジエンゴム、液状ポリクロロプレン、液状シリコーンゴム、液状ポリスルフィドゴム、液状フッ素ゴム、液状ポリイソブチレン等が挙げられる。これらの液状ゴムは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。液状ゴムの25℃における粘度は、通常0.01〜10,000Pa・s、好ましくは0.05〜1,000Pa・s、より好ましくは0.1〜500Pa・sの範囲である。   Examples of the liquid rubber include liquid polyisoprene, liquid polybutadiene, liquid styrene-butadiene rubber, liquid acrylonitrile-butadiene rubber, liquid polychloroprene, liquid silicone rubber, liquid polysulfide rubber, liquid fluororubber, and liquid polyisobutylene. These liquid rubbers can be used alone or in combination of two or more. The viscosity of the liquid rubber at 25 ° C. is usually in the range of 0.01 to 10,000 Pa · s, preferably 0.05 to 1,000 Pa · s, more preferably 0.1 to 500 Pa · s.

液状ゴム以外のゴムとしては、常温(25℃)で固体状のゴム質重合体を挙げることができる。常温で固体のゴム質重合体としては、例えば、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、アクリロニトリル・ブタジエン共重合体ゴム、スチレン・ブタジエン共重合体ゴム、スチレン・イソプレン共重合体ゴム、スチレン・ブタジエン・イソプレン三元共重合体ゴム等のジエン系ゴム;これらジエン系ゴムの水素添加物;エチレン・プロピレン共重合体等のエチレン・α−オレフィン共重合体、プロピレン・その他のα−オレフィン共重合体等の飽和ポリオレフィンゴム;エチレン・プロピレン・ジエン共重合体、α−オレフィン・ジエン共重合体、イソブチレン・イソプレン共重合体、イソブチレン・ジエン共重合体等のα−オレフィン・ジエン系重合体ゴム;ウレタンゴム、ポリエーテル系ゴム、アクリルゴム、プロピレンオキサイドゴム、エチレンアクリルゴム等の特殊ゴム;スチレン・ブタジエン・スチレンブロック共重合体ゴム、スチレン・イソプレンの水素添加物・スチレンブロック共重合体ゴム等の熱可塑性エラストマー;ウレタン系熱可塑性エラストマー;ポリアミド系熱可塑性エラストマー;1,2−ポリブタジエン系熱可塑性エラストマー;等が挙げられる。   Examples of the rubber other than the liquid rubber include a solid rubbery polymer at normal temperature (25 ° C.). Examples of rubber polymers that are solid at room temperature include natural rubber, polybutadiene rubber, polyisoprene rubber, acrylonitrile / butadiene copolymer rubber, styrene / butadiene copolymer rubber, styrene / isoprene copolymer rubber, and styrene / butadiene.・ Diene rubbers such as isoprene terpolymer rubbers; hydrogenated products of these diene rubbers; ethylene / α-olefin copolymers such as ethylene / propylene copolymers, propylene / other α-olefin copolymers Saturated polyolefin rubber such as ethylene / propylene / diene copolymer, α-olefin / diene copolymer, isobutylene / isoprene copolymer, isobutylene / diene copolymer, etc. α-olefin / diene polymer rubber; urethane Rubber, polyether rubber, acrylic rubber, propylene resin Special rubbers such as side rubber and ethylene acrylic rubber; Thermoplastic elastomers such as styrene / butadiene / styrene block copolymer rubber, hydrogenated styrene / isoprene / styrene block copolymer rubber; Urethane thermoplastic elastomer; Polyamide heat Plastic elastomer; 1,2-polybutadiene thermoplastic elastomer; and the like.

有機溶剤(1)
有機溶剤(1)としては、ワニス(1)に含有される重合体1、多価エポキシ化合物(1)、およびゴム等を溶解させるものが好ましい。また、沸点は30〜250℃のものが好ましく、50〜200℃のものがより好ましい。このような範囲の沸点を有する有機溶剤を使用すると、後に加熱して揮散させ、乾燥するのに好適である。
Organic solvent (1)
As the organic solvent (1), those capable of dissolving the polymer 1, the polyvalent epoxy compound (1), rubber and the like contained in the varnish (1) are preferable. The boiling point is preferably 30 to 250 ° C, more preferably 50 to 200 ° C. When an organic solvent having a boiling point in such a range is used, it is suitable for heating and volatilizing and drying later.

かかる有機溶剤の具体例としては、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素系溶剤;n−ペンタン、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素系溶剤;シクロペンタン、シクロヘキサン等の脂環式炭化水素系溶剤;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤;等が挙げられる。   Specific examples of such organic solvents include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and trimethylbenzene; aliphatic hydrocarbon solvents such as n-pentane, n-hexane and n-heptane; cyclopentane and cyclohexane And alicyclic hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone;

有機溶剤(1)の使用量は、ワニス(1)の粘度や得られる熱硬化性組成物の厚みに応じて適宜選択されるが、ワニス(1)の固形分濃度(ワニス中の有機溶剤以外の濃度)が、通常、5〜70質量%、好ましくは10〜65質量%、より好ましくは20〜60質量%になる範囲である。   The amount of the organic solvent (1) used is appropriately selected according to the viscosity of the varnish (1) and the thickness of the resulting thermosetting composition, but the solid content concentration of the varnish (1) (other than the organic solvent in the varnish) Is usually in the range of 5 to 70% by mass, preferably 10 to 65% by mass, more preferably 20 to 60% by mass.

前記ワニス(1)には、上記したもののほか、必要に応じてレーザ加工性向上剤、熱安定剤、耐候安定剤、老化防止剤、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス、乳剤などを含有させることができる。それらの配合量は、本発明の目的を損ねない範囲で適宜選択される。   In addition to the above, the varnish (1) includes a laser processability improver, a thermal stabilizer, a weathering stabilizer, an anti-aging agent, a leveling agent, an antistatic agent, a slip agent, an antiblocking agent, Clouding agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, emulsions and the like can be included. The blending amounts thereof are appropriately selected within a range that does not impair the object of the present invention.

繊維基材の片面に、ワニス(1)を塗工する方法としては、例えば、ロールコート法、カーテンコート法、ダイコート法、スリットコート法、グラビアコート法等の公知の塗工法が挙げられる。   Examples of the method for coating the varnish (1) on one side of the fiber base include known coating methods such as a roll coating method, a curtain coating method, a die coating method, a slit coating method, and a gravure coating method.

通常、工程1においてワニス(1)を塗工する厚さは、工程3において形成される組成物の繊維基材上の厚さが0.1〜30μm、好ましくは1〜20μm、より好ましくは3〜10μmとなるように設計すればよい。この範囲にあると得られる硬化物の難燃性及び機械物性が良好となる。   In general, the thickness of the varnish (1) applied in step 1 is 0.1 to 30 μm, preferably 1 to 20 μm, more preferably 3 on the fiber substrate of the composition formed in step 3. What is necessary is just to design so that it may become 10 micrometers. When in this range, the cured product obtained has good flame retardancy and mechanical properties.

工程2
工程2は、繊維基材の、工程1で塗工する面とは反対の面に、ワニス(2)を塗工する工程である。
Process 2
Step 2 is a step of coating the varnish (2) on the surface of the fiber base opposite to the surface to be coated in Step 1.

ワニス(2)
ワニス(2)は、カルボキシル基または酸無水物基を有し、重量平均分子量が15,000〜100,000である重合体(2)、多価エポキシ化合物(2)、フィラーおよび有機溶剤(2)を含有する。また、ワニス(1)と比較して、ワニス(2)は、難燃性等の特性に優れた硬化物を形成するためにフィラーを含有すること、および、特定の分子量をもつ重合体を有することを特徴とする。
Varnish (2)
The varnish (2) has a carboxyl group or an acid anhydride group and has a weight average molecular weight of 15,000 to 100,000, a polymer (2), a polyvalent epoxy compound (2), a filler and an organic solvent (2 ). Moreover, compared with varnish (1), varnish (2) contains a filler in order to form hardened | cured material excellent in characteristics, such as a flame retardance, and has a polymer with a specific molecular weight. It is characterized by that.

ワニス(2)の粘度は200〜2000mPa・sが好ましく、400〜1600mPa・sがさらに好ましい。粘度がこの範囲にあると塗工性が良好であり、ワニス(1)と混ざり過ぎず好適である。   The viscosity of the varnish (2) is preferably 200 to 2000 mPa · s, more preferably 400 to 1600 mPa · s. When the viscosity is within this range, the coating property is good and it is preferable that the viscosity is not excessively mixed with the varnish (1).

重合体(2)は、カルボキシル基または酸無水物基を有し、重量平均分子量が15,000〜100,000のものであれば、ワニス(1)に含有される重合体(1)と同様のもので良く、重合体(1)と同じものであっても、異なったものでも良い。   If the polymer (2) has a carboxyl group or an acid anhydride group and has a weight average molecular weight of 15,000 to 100,000, it is the same as the polymer (1) contained in the varnish (1). May be the same as or different from the polymer (1).

重合体(2)の重量平均分子量(Mw)は、15,000〜100,000であり、好ましくは25,000〜70,000である。Mwがこの範囲であると、得られる絶縁性複合体の積層性が良好であり、得られる硬化物の強度や電気特性が良好となる。   The weight average molecular weight (Mw) of the polymer (2) is 15,000 to 100,000, preferably 25,000 to 70,000. When the Mw is within this range, the laminate property of the obtained insulating composite is good, and the strength and electrical properties of the resulting cured product are good.

多価エポキシ化合物(2)は、ワニス(1)に含有される多価エポキシ化合物(1)と同様のもので良く、多価エポキシ化合物(1)と同じものであっても、異なったものでも良い。その使用量もワニス(1)における使用量と同様で良い。   The polyvalent epoxy compound (2) may be the same as the polyvalent epoxy compound (1) contained in the varnish (1), and may be the same as or different from the polyvalent epoxy compound (1). good. The amount used may be the same as the amount used in varnish (1).

フィラー
ワニス(2)に含有されるフィラーは、難燃剤であることが好ましく、環境保護の観点から焼却時にハロゲン含有有害物質を発生しない、ハロゲンを含有しない化合物(以下、非ハロゲン系難燃剤ということがある)がさらに好ましい。
The filler contained in the filler varnish (2) is preferably a flame retardant. From the viewpoint of environmental protection, a halogen-free compound that does not generate halogen-containing harmful substances during incineration (hereinafter referred to as a non-halogen flame retardant) Is more preferable.

非ハロゲン系難燃剤としては、例えば、水酸化アルミニウムおよび水酸化マグネシウム等の金属水酸化物;リン酸源となるオルトリン酸アンモニウム、オルトリン酸、縮合リン酸、無水リン酸、リン酸尿素、リン酸一水素アンモニウム及びこれらの混合物と、窒素源となるメラミン、ジシアンシアナミド、グアニジン、グアニル尿素及びこれらの混合物とを、縮合剤としての尿素、リン酸尿素(これはリン酸源にもなる)及びこれらの混合物の存在下に、加熱縮合反応させ、次いで焼成することによって得られる塩基性含窒素化合物のリン酸塩;等が挙げられる。塩基性含窒素化合物のリン酸塩として、好ましい化合物は、ポリリン酸メラミン塩、ポリリン酸メラム塩、ポリリン酸メレム塩、ポリリン酸メラミン・メラム・メレム複塩のようなポリリン酸メラミン系化合物である。   Non-halogen flame retardants include, for example, metal hydroxides such as aluminum hydroxide and magnesium hydroxide; ammonium orthophosphate, orthophosphoric acid, condensed phosphoric acid, phosphoric anhydride, urea phosphate, phosphoric acid serving as a phosphoric acid source Ammonium monohydrogen and a mixture thereof, and melamine, dicyancyanamide, guanidine, guanylurea and a mixture thereof as nitrogen sources, urea as a condensing agent, urea phosphate (which also serves as a phosphate source) and In the presence of these mixtures, a phosphate of a basic nitrogen-containing compound obtained by subjecting it to a heat condensation reaction and then calcining; As the phosphate of the basic nitrogen-containing compound, preferred compounds are melamine polyphosphate compounds such as melamine polyphosphate, melam salt of polyphosphate, melem salt of polyphosphate, melamine / melam / melem double salt of polyphosphate.

このほかの難燃剤としては、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダのごときアンチモン化合物;硼酸亜鉛、スルファミン酸グアニジン、ジルコニウム化合物、モリブデン化合物、すず化合物等の無機難燃剤;トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、オクチルジフェニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、レゾルシノールビス(ジフェニル)ホスフェート、2−エチルヘキシルジフェニルホスフェート、ジメチルメチルホスフェート、トリアリルホスフェート、ジエチルビス(ヒドロキシエチル)アミノメチルホスフェート、トリアリルホスフェート、トリス(3−ヒドロキシプロピル)ホスフィンオキシド、グリシジル−α−メチル−β−ジ(ブトキシ)ホスフィニル・プロピオネート、ジブチルヒドロオキシメチルホスフォネート、ジメチルメチルホスフォネート、芳香族縮合りん酸エステル、ジ(エトキシ−ビス−(2−ヒドロキシエチル)−アミノメチルホスフェート、ジ(ポリオキシエチレン)−ヒドロキシメチル・ホスフォネート、ポリりん酸アンモニウム、ブチルピロホスフェート、ブチルアシッドホスフェート、ブトキシエチルアシッドホスフェート、2−エチルヘキシルアシッドホスフェート、ジエチルフェニルホスフォネート、ジメチルフェニルホスフォネート、ジ(イソプロピル)N,N−ビス(2−ヒドロキシエチル)アミノメチルホスフォネート、ジブチルビス(2−ヒドロキシプロピル)ピロホスフォネート、フェニルホスフィン酸等が挙げられる。   Other flame retardants include antimony compounds such as antimony trioxide, antimony pentoxide, and sodium antimonate; inorganic flame retardants such as zinc borate, guanidine sulfamate, zirconium compounds, molybdenum compounds, tin compounds; triphenyl phosphate, tri Cresyl phosphate, trixylenyl phosphate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, octyl diphenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, resorcinol bis (diphenyl) phosphate, 2 -Ethylhexyl diphenyl phosphate, dimethyl methyl phosphate, triallyl phosphate, diethyl bis Hydroxyethyl) aminomethyl phosphate, triallyl phosphate, tris (3-hydroxypropyl) phosphine oxide, glycidyl-α-methyl-β-di (butoxy) phosphinyl propionate, dibutylhydroxymethyl phosphonate, dimethylmethyl phosphonate Condensed aromatic phosphates, di (ethoxy-bis- (2-hydroxyethyl) -aminomethyl phosphate, di (polyoxyethylene) -hydroxymethyl phosphonate, ammonium polyphosphate, butyl pyrophosphate, butyl acid phosphate, Butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, diethyl phenyl phosphonate, dimethyl phenyl phosphonate, di (isopropyl) N, N-bi (2-hydroxyethyl) aminomethyl phosphonate, dibutylbis (2-hydroxypropyl) pyro phosphonate, and the like phenyl phosphinic acid.

難燃剤以外のフィラーとしては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の炭酸塩;ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ジルコニウム、タルク、およびクレー等のケイ酸塩;酸化亜鉛、酸化チタン、酸化マグネシウム、アルミナ、シリカ等の酸化物;硫酸バリウム、硫酸カルシウム等の硫酸塩;エポキシ系、ゴム系、ウレタン系、ポリイミド系、ポリアミド系等の高分子化合物の架橋微粒子;等が挙げられる。   As fillers other than flame retardants, carbonates such as calcium carbonate, magnesium carbonate, barium carbonate; silicates such as magnesium silicate, calcium silicate, zirconium silicate, talc, and clay; zinc oxide, titanium oxide, oxidation Examples thereof include oxides such as magnesium, alumina, and silica; sulfates such as barium sulfate and calcium sulfate; crosslinked fine particles of polymer compounds such as epoxy, rubber, urethane, polyimide, and polyamide;

これらのフィラーは1種単独で、あるいは2種以上を組み合わせて用いることができる。フィラーの含有量は、ワニス(2)に対し、好ましくは1〜100質量%、より好ましくは5〜80質量%、特に好ましくは10〜60質量%である。フィラーの使用量がこの範囲であると得られる硬化した絶縁性複合体の機械物性が良好であり、フィラーが難燃剤である場合は難燃性が良好となる。   These fillers can be used alone or in combination of two or more. The content of the filler is preferably 1 to 100% by mass, more preferably 5 to 80% by mass, and particularly preferably 10 to 60% by mass with respect to the varnish (2). When the amount of the filler used is within this range, the resulting cured insulating composite has good mechanical properties. When the filler is a flame retardant, the flame retardancy is good.

フィラーの形状および大きさは限定されない。フィラーが粒子状である場合は、その一次粒子の体積平均粒径は、0.1〜5.0μmであることが好ましく、0.5〜2.0μmであることがより好ましい。粒径がこの範囲であると前記内層基板への積層性が良好である。   The shape and size of the filler are not limited. When the filler is particulate, the volume average particle diameter of the primary particles is preferably 0.1 to 5.0 μm, and more preferably 0.5 to 2.0 μm. When the particle size is within this range, the laminate property to the inner layer substrate is good.

有機溶剤(2)
有機溶剤(2)としては、フィラーの分散性に優れ、かつ、重合体(2)および多価エポキシ化合物(2)等を溶解させるものが好ましい。また、沸点は30〜250℃のものが好ましく、50〜200℃のものがより好ましい。このような範囲の沸点を有する有機溶剤を使用すると、後に加熱して揮散させ、乾燥するのに好適である。
Organic solvent (2)
As the organic solvent (2), those having excellent filler dispersibility and dissolving the polymer (2), the polyvalent epoxy compound (2) and the like are preferable. The boiling point is preferably 30 to 250 ° C, more preferably 50 to 200 ° C. When an organic solvent having a boiling point in such a range is used, it is suitable for heating and volatilizing and drying later.

有機溶剤(2)の具体例としては、前記有機溶剤(1)と同様のものが挙げられる。
有機溶剤(2)の使用量は、ワニス(2)の粘度や得られる熱硬化性組成物の厚みに応じて適宜選択されるが、ワニス(2)の固形分濃度が、通常、5〜70質量%、好ましくは10〜65質量%、より好ましくは20〜60質量%になる範囲である。
Specific examples of the organic solvent (2) include those similar to the organic solvent (1).
Although the usage-amount of an organic solvent (2) is suitably selected according to the viscosity of a varnish (2) and the thickness of the thermosetting composition obtained, the solid content density | concentration of a varnish (2) is 5-70 normally. It is the range which becomes mass%, Preferably it is 10-65 mass%, More preferably, it is 20-60 mass%.

ワニス(2)は、工程3において形成される組成物の110℃における溶融粘度が、100〜100,000Pa・sとなるように調製されるのが好ましい。組成物の溶融粘度は、500〜75,000Pa・sがより好ましく、1,000〜50,000Pa・sがさらに好ましい。組成物の溶融粘度がこの範囲であると積層時の埋め込み性や流動性が良好である。   The varnish (2) is preferably prepared such that the melt viscosity at 110 ° C. of the composition formed in Step 3 is 100 to 100,000 Pa · s. The melt viscosity of the composition is more preferably from 500 to 75,000 Pa · s, and even more preferably from 1,000 to 50,000 Pa · s. When the melt viscosity of the composition is within this range, the embedding property and fluidity at the time of lamination are good.

本発明におけるワニス(2)には、上記のほか、必要に応じて難燃助剤、レーザ加工性向上剤、熱安定剤、耐候安定剤、老化防止剤、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス、乳剤などを含有させることができる。それらの配合量は、本発明の目的を損ねない範囲で適宜選択される。   In addition to the above, the varnish (2) in the present invention includes a flame retardant aid, a laser processability improver, a heat stabilizer, a weathering stabilizer, an anti-aging agent, a leveling agent, an antistatic agent, and a slip agent as necessary. , Antiblocking agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, emulsions, and the like. The blending amounts thereof are appropriately selected within a range that does not impair the object of the present invention.

繊維基材の工程1で塗工する面とは反対の面に、ワニス(2)を塗工する方法としては、ワニス1を塗工する方法と同様の方法が挙げられる。   As a method of applying the varnish (2) to the surface opposite to the surface to be coated in step 1 of the fiber base, the same method as the method of coating the varnish 1 can be mentioned.

通常、工程2においてワニス(2)を塗工する厚さは、工程3において形成される組成物の繊維基材上の厚さが10〜50μmとなるように調整される。該厚さは、15〜40μmが好ましく、20〜30μmがさらに好ましい。この範囲にあると、得られる絶縁性複合体の配線埋め込み性が良好となる。   Usually, the thickness which applies a varnish (2) in the process 2 is adjusted so that the thickness on the fiber base material of the composition formed in the process 3 may be 10-50 micrometers. The thickness is preferably 15 to 40 μm, and more preferably 20 to 30 μm. Within this range, the resulting insulating composite has good wiring embedding properties.

工程3
工程3は、有機溶剤(1)および(2)を除去し、繊維基材に支持された熱硬化性組成物を形成する工程である。
Process 3
Step 3 is a step of removing the organic solvents (1) and (2) to form a thermosetting composition supported by the fiber substrate.

有機溶剤の除去方法、すなわち乾燥方法は、有機溶剤の種類により適宜選択されるが、通常、熱風乾燥法や遠赤外乾燥法が採用される。乾燥温度は、通常20〜300℃、好ましくは30〜200℃である。乾燥温度が高すぎると、硬化反応が進行して、得られる複合樹脂成形体が未硬化又は半硬化の状態とならなくなるおそれがある。また、乾燥時間は、通常30秒〜1時間、好ましくは1分〜30分である。   A method for removing the organic solvent, that is, a drying method is appropriately selected depending on the type of the organic solvent, and a hot-air drying method or a far-infrared drying method is usually employed. A drying temperature is 20-300 degreeC normally, Preferably it is 30-200 degreeC. If the drying temperature is too high, the curing reaction proceeds and the resulting composite resin molded article may not be in an uncured or semi-cured state. The drying time is usually 30 seconds to 1 hour, preferably 1 minute to 30 minutes.

ここで「未硬化」とは、重合体(1)または(2)を溶解可能な溶剤に実質的に重合体全部が溶解する状態である。また「半硬化」とは、加熱すれば更に硬化しうる程度に途中まで硬化された状態であり、好ましくは、重合体(1)または(2)を溶解可能な溶剤に重合体の一部(具体的には7質量%以上)が溶解する状態であるか、溶剤中に得られる絶縁性複合体を24時間浸漬したときの膨潤率が、浸漬前の体積の200%以上である状態をいう。   Here, “uncured” is a state in which substantially the entire polymer is dissolved in a solvent capable of dissolving the polymer (1) or (2). Further, “semi-cured” is a state in which the polymer (1) or (2) is dissolved in a solvent capable of dissolving the polymer (1) or (2). Specifically, it means a state in which 7% by mass or more) is dissolved, or a swelling rate when the insulating composite obtained in a solvent is immersed for 24 hours is 200% or more of the volume before immersion. .

熱硬化性組成物
本発明における熱硬化性組成物は、微細配線パターン形成性に優れた硬化物を形成するための組成を有するワニス(1)、および難燃性等の特性に優れた硬化物を形成するための組成を有するワニス(2)を、該繊維基材にそれぞれ片面ずつ塗布し、有機溶剤を除去することにより、繊維基材に支持された形態で形成される。
Thermosetting composition The thermosetting composition in the present invention is a varnish (1) having a composition for forming a cured product excellent in fine wiring pattern formability, and a cured product excellent in properties such as flame retardancy. The varnish (2) having a composition for forming the film is applied to the fiber base material one side at a time, and the organic solvent is removed to form a varnish supported on the fiber base material.

(工程の順序)
工程1と工程2はどちらが先であっても良いし、同時であっても良い。工程3は工程1および工程2の後であるが、工程1の後および工程2の後の2回行っても良い。生産性および生産コストの観点から、工程1と工程2を同時ないしは連続で行い、次いで工程3を行うことが好ましい。この場合の塗工装置としては、両面同時ダイコーターおよび両面同時ロールコーター等が挙げられる。
(Process order)
Either step 1 or step 2 may be performed first or simultaneously. Step 3 is after step 1 and step 2, but may be performed twice after step 1 and after step 2. From the viewpoint of productivity and production cost, it is preferable to perform Step 1 and Step 2 simultaneously or continuously, and then perform Step 3. Examples of the coating apparatus in this case include a double-sided simultaneous die coater and a double-sided simultaneous roll coater.

2)硬化物
本発明の硬化物は、上述した本発明の絶縁性複合体を硬化して得られるものである。
絶縁性複合体の硬化は、通常、絶縁性複合体を加熱することにより行う。硬化条件は硬化剤の種類等に応じて適宜選択される。硬化温度は、通常30〜400℃、好ましくは70〜300℃、より好ましくは100〜200℃である。硬化時間は、通常0.1〜5時間、好ましくは0.5〜3時間である。加熱の方法は特に制限されず、例えば電気オーブンを用いて行えばよい。
2) Cured product The cured product of the present invention is obtained by curing the above-described insulating composite of the present invention.
Curing of the insulating composite is usually performed by heating the insulating composite. Curing conditions are appropriately selected according to the type of curing agent. The curing temperature is usually 30 to 400 ° C, preferably 70 to 300 ° C, more preferably 100 to 200 ° C. The curing time is usually 0.1 to 5 hours, preferably 0.5 to 3 hours. The heating method is not particularly limited, and may be performed using, for example, an electric oven.

なお、硬化に先立って、絶縁性複合体に金属配位能を有する化合物を接触させ、次いで、水等の、これらの化合物の良溶剤で洗浄する工程を設けることが好ましい。この工程により、絶縁性複合体の表面の平滑化を図り、この上に後工程で被覆される金属薄膜との密着性を向上させることができる。用いる金属配位能を有する化合物としては、1−(2−アミノエチル)−2−メチルイミダゾール等のイミダゾール類;ピラゾール類;トリアゾール類;トリアジン類;等が挙げられる。   Prior to curing, it is preferable to provide a step of bringing a compound having metal coordination ability into contact with the insulating composite and then washing with a good solvent for these compounds such as water. By this step, the surface of the insulating composite can be smoothed, and the adhesion with the metal thin film coated thereon in the subsequent step can be improved. Examples of the compound having metal coordination ability include imidazoles such as 1- (2-aminoethyl) -2-methylimidazole; pyrazoles; triazoles; triazines;

本発明の硬化物は、難燃性、電気絶縁性及び耐クラック性に優れ、かつ、微細配線パターン形成性に優れたものである。従って、本発明の積層体及び多層回路基板の電気絶縁層として好適である。   The cured product of the present invention is excellent in flame retardancy, electrical insulation and crack resistance, and excellent in fine wiring pattern formability. Therefore, it is suitable as an electrical insulating layer of the laminate and the multilayer circuit board of the present invention.

3)積層体
本発明の積層体は、表面に導体層(1)を有する基板と前記本発明の硬化物からなる電気絶縁層とを積層してなる。
3) Laminate The laminate of the present invention is formed by laminating a substrate having a conductor layer (1) on the surface and an electrically insulating layer made of the cured product of the present invention.

基板
本発明に用いる基板は、電気絶縁性基板の表面に導体層(1)を有するものである。
電気絶縁性基板は、公知の電気絶縁材料(例えば、脂環式オレフィン重合体、エポキシ樹脂、マレイミド樹脂、アクリル樹脂、メタクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、ポリフェニルエーテル、ガラス等)を含有する硬化性樹脂組成物を硬化して形成されたものである。
Substrate The substrate used in the present invention has a conductor layer (1) on the surface of an electrically insulating substrate.
The electrically insulating substrate contains a known electrically insulating material (for example, alicyclic olefin polymer, epoxy resin, maleimide resin, acrylic resin, methacrylic resin, diallyl phthalate resin, triazine resin, polyphenyl ether, glass, etc.). It is formed by curing a curable resin composition.

導体層(1)
導体層(1)は、特に限定されないが、通常、導電性金属等の導電体により形成された配線を含む層であって、更に各種の回路を含んでいてもよい。また、配線や回路の構成、厚み等は、特に限定されない。
Conductor layer (1)
The conductor layer (1) is not particularly limited, but is usually a layer including wiring formed of a conductor such as a conductive metal, and may further include various circuits. Further, the configuration and thickness of the wiring and circuit are not particularly limited.

表面に導体層(1)を有する基板の具体例としては、プリント配線基板、シリコンウェーハ基板等を挙げることができる。表面に導体層(1)を有する基板の厚みは、通常10μmから10mm、好ましくは20μmから5mm、より好ましくは30μmから2mmである。   Specific examples of the substrate having the conductor layer (1) on the surface include a printed wiring board and a silicon wafer substrate. The thickness of the substrate having the conductor layer (1) on the surface is usually 10 μm to 10 mm, preferably 20 μm to 5 mm, more preferably 30 μm to 2 mm.

本発明に用いる表面に導体層(1)を有する基板は、電気絶縁層との密着性を向上させるために、導体層(1)表面に前処理が施されていることが好ましい。   The substrate having the conductor layer (1) on the surface used in the present invention is preferably pretreated on the surface of the conductor layer (1) in order to improve adhesion to the electrical insulating layer.

前処理の方法としては、公知の技術が特に限定されず使用できる。例えば、導体層(1)が銅からなるものであれば、強アルカリ酸化性溶液を導体層(1)表面に接触させて、導体層(1)表面に酸化銅の層を形成して粗化する酸化処理方法、導体層(1)表面を先の方法で酸化した後に水素化ホウ素ナトリウム、ホルマリン等で還元する方法、導体層(1)にめっきを析出させて粗化する方法、導体層(1)に有機酸を接触させて銅の粒界を溶出して粗化する方法、及び導体層(1)にチオール化合物やシラン化合物等によりプライマー層を形成する方法等、が挙げられる。   As a pretreatment method, a known technique is not particularly limited and can be used. For example, if the conductor layer (1) is made of copper, a strong alkali oxidizing solution is brought into contact with the surface of the conductor layer (1) to form a copper oxide layer on the surface of the conductor layer (1) and roughened. An oxidation treatment method, a method in which the surface of the conductor layer (1) is oxidized by the previous method and then reduced with sodium borohydride, formalin, etc., a method in which the conductor layer (1) is plated and roughened, a conductor layer ( Examples thereof include a method in which an organic acid is brought into contact with 1) to elute and roughen the grain boundaries of copper, and a method in which a primer layer is formed on the conductor layer (1) with a thiol compound or a silane compound.

これらのうち、微細な配線パターンの形状維持の容易性の観点から、導体層(1)に有機酸を接触させて銅の粒界を溶出して粗化する方法、および、チオール化合物やシラン化合物等によりプライマー層を形成する方法が好ましい。   Among these, from the viewpoint of easy maintenance of the shape of the fine wiring pattern, a method of bringing the conductor layer (1) into contact with an organic acid to elute and roughen the copper grain boundary, and a thiol compound or a silane compound A method of forming the primer layer by, for example, is preferable.

積層体の製造方法
本発明の積層体は、表面に導体層(1)を有する基板上に、前記本発明の絶縁性複合体を工程2で塗工した面を導体層(1)に接するように加熱圧着し、硬化して電気絶縁層を形成することにより製造できる。工程2で塗工した面を導体層(1)に接するように加熱圧着することにより製造することができる。
このようにして、工程1で塗工した面が表面となり、微細配線パターン形成性に優れた積層体を効率よく製造できる。
Method for Producing Laminate The laminate of the present invention is such that the surface on which the insulating composite of the present invention is applied in step 2 is in contact with the conductor layer (1) on the substrate having the conductor layer (1) on the surface. It can be manufactured by thermocompression-bonding and curing to form an electrically insulating layer. It can manufacture by carrying out thermocompression bonding so that the surface coated at the process 2 may contact the conductor layer (1).
Thus, the surface coated in step 1 becomes the surface, and a laminate excellent in fine wiring pattern formability can be produced efficiently.

加熱圧着する方法としては、絶縁性複合体を、前記基板の導体層(1)に接するように重ね合わせ、さらにその上に剥離フィルムを重ね合わせた後、加圧ラミネータ、プレス、真空ラミネータ、真空プレス、ロールラミネータ等の加圧機を使用して加熱圧着(ラミネーション)して、導体層(1)上に絶縁性複合体層を形成する方法が挙げられる。加熱加圧することにより、前記基板表面の導体層(1)と絶縁性複合体層との界面に、空隙が実質的に存在しないように結合させることができる。   As a method of thermocompression bonding, an insulating composite is overlaid so as to be in contact with the conductor layer (1) of the substrate, and a release film is overlaid thereon, followed by a pressure laminator, press, vacuum laminator, vacuum Examples thereof include a method of forming an insulating composite layer on the conductor layer (1) by thermocompression bonding (lamination) using a press such as a press or a roll laminator. By heating and pressurizing, bonding can be performed so that voids do not substantially exist at the interface between the conductor layer (1) and the insulating composite layer on the substrate surface.

前記剥離フィルムとしては、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム、ポリカーボネートフィルム、ポリエチレンナフタレートフィルム、ポリアリレートフィルム、ナイロンフィルム等の樹脂フィルムが挙げられる。
これらのフィルムのうち、耐熱性、耐薬品性、剥離性等の観点から、ポリエチレンテレフタレートフィルム及びポリエチレンナフタレートフィルムが好ましい。
Examples of the release film include resin films such as polyethylene terephthalate film, polypropylene film, polyethylene film, polycarbonate film, polyethylene naphthalate film, polyarylate film, and nylon film.
Among these films, a polyethylene terephthalate film and a polyethylene naphthalate film are preferable from the viewpoints of heat resistance, chemical resistance, peelability, and the like.

加熱圧着操作の温度は、通常30〜250℃、好ましくは70〜200℃であり、加える圧力は、通常10kPa〜20MPa、好ましくは100kPa〜10MPaである。
加熱圧着時間は、通常30秒から5時間、好ましくは1分から3時間である。
また、加熱圧着は、配線パターンの埋め込み性を向上させ、気泡の発生を抑えるために減圧下で行うのが好ましい。加熱圧着を行う雰囲気の圧力は、通常100kPa〜1Pa、好ましくは40kPa〜10Paである。
The temperature of the thermocompression bonding operation is usually 30 to 250 ° C., preferably 70 to 200 ° C., and the applied pressure is usually 10 kPa to 20 MPa, preferably 100 kPa to 10 MPa.
The thermocompression bonding time is usually 30 seconds to 5 hours, preferably 1 minute to 3 hours.
The thermocompression bonding is preferably performed under reduced pressure in order to improve the embedding property of the wiring pattern and suppress the generation of bubbles. The pressure of the atmosphere in which thermocompression bonding is performed is usually 100 kPa to 1 Pa, preferably 40 kPa to 10 Pa.

絶縁性複合体の硬化は、通常、剥離フィルムを剥離した後に、導体層(1)上に絶縁性複合体が形成された基板全体を加熱することにより行う。硬化は、前記加熱圧着操作と同時に行うことができる。また、先ず加熱圧着操作を硬化の起こらない条件、すなわち比較的低温、短時間で行った後、硬化を行ってもよい。
また、電気絶縁層の平坦性を向上させる目的や、電気絶縁層の厚みを増す目的で、前記基板の導体層(1)上に絶縁性複合体を2以上接して貼り合わせて積層してもよい。
The insulating composite is usually cured by heating the entire substrate on which the insulating composite is formed on the conductor layer (1) after peeling the release film. Curing can be performed simultaneously with the thermocompression bonding operation. Alternatively, the thermocompression may be performed after the thermocompression operation is performed under conditions that do not cause curing, that is, at a relatively low temperature for a short time.
Further, for the purpose of improving the flatness of the electrical insulating layer or increasing the thickness of the electrical insulating layer, two or more insulating composites may be bonded and laminated on the conductor layer (1) of the substrate. Good.

4)多層回路基板およびその製造方法
本発明の多層回路基板は、上述した本発明の積層体の電気絶縁層上に、導体層(2)を形成してなる。
4) Multilayer circuit board and its manufacturing method The multilayer circuit board of this invention forms a conductor layer (2) on the electric insulation layer of the laminated body of this invention mentioned above.

本発明の多層回路基板は、前記積層体の製造において、電気絶縁層上にめっき法等により導体層(2)を形成することにより製造することが好ましい。また、剥離フィルムに代えて金属箔を用い、公知のエッチング法により該金属箔をパターン状にエッチングして導体層(2)を形成することにより製造することもできる。   The multilayer circuit board of the present invention is preferably manufactured by forming the conductor layer (2) on the electrical insulating layer by plating or the like in the manufacture of the laminate. Moreover, it can also manufacture by replacing with a peeling film and using a metal foil, etching this metal foil in a pattern shape by a well-known etching method, and forming a conductor layer (2).

用いる金属箔としては、銅箔、アルミ箔、ニッケル箔、クロム箔、金箔、銀箔等が挙げられる。なかでも、導電性が良好である点から、銅箔、特に電解銅箔や圧延銅箔が好適である。   Examples of the metal foil used include copper foil, aluminum foil, nickel foil, chrome foil, gold foil, and silver foil. Among these, a copper foil, particularly an electrolytic copper foil or a rolled copper foil is preferable from the viewpoint of good conductivity.

以下に、電気絶縁層上にめっき法により導体層(2)を形成して本発明の多層回路基板を製造する方法について具体的に説明する。   Hereinafter, a method for producing the multilayer circuit board of the present invention by forming the conductor layer (2) on the electrically insulating layer by plating will be specifically described.

まず、多層回路基板の製造に際し、導体層(2)を形成する前に、多層回路基板中の各導体層を連結するために、積層体を貫通するビアホールを形成する。   First, in manufacturing a multilayer circuit board, before forming the conductor layer (2), via holes penetrating the laminate are formed to connect the conductor layers in the multilayer circuit board.

ビアホールは、フォトリソグラフィ法のような化学的処理により、又は、ドリル、レーザー、プラズマエッチング等の物理的処理等により形成することができる。なかでも、レーザーによる方法(炭酸ガスレーザー、エキシマレーザー、UV−YAGレーザー等)は、より微細なビアホールを電気絶縁層の特性を低下させずに形成できるので好ましい。   The via hole can be formed by chemical processing such as photolithography, or physical processing such as drilling, laser, or plasma etching. Among these, a method using a laser (a carbon dioxide laser, an excimer laser, a UV-YAG laser, or the like) is preferable because a finer via hole can be formed without degrading the characteristics of the electrical insulating layer.

次に、導体層(2)との接着性を高めるために、電気絶縁層の表面を酸化して粗化し、所望の表面平均粗さに調整する。
本発明において電気絶縁層の表面平均粗さRaは、通常0.05μm以上0.3μm未満、好ましくは0.06μm以上0.2μm以下であり、かつ表面十点平均粗さRzjisは0.3μm以上4μm未満、好ましくは0.5μm以上2μm以下である。
Next, in order to improve the adhesiveness with the conductor layer (2), the surface of the electrical insulating layer is oxidized and roughened, and adjusted to a desired average surface roughness.
In the present invention, the surface average roughness Ra of the electrical insulating layer is usually 0.05 μm or more and less than 0.3 μm, preferably 0.06 μm or more and 0.2 μm or less, and the surface ten-point average roughness Rzjis is 0.3 μm or more. It is less than 4 μm, preferably 0.5 μm or more and 2 μm or less.

ここで、Raは、JIS B0601:2001(ISO 4207:1997)に示される中心線平均粗さであり、表面十点平均粗さRzjisは、JIS B0601:2001(ISO 4207:1997)付属書1に示される十点平均粗さである。   Here, Ra is the centerline average roughness shown in JIS B0601: 2001 (ISO 4207: 1997), and the surface ten-point average roughness Rzjis is in JIS B0601: 2001 (ISO 4207: 1997) Annex 1. The ten-point average roughness shown.

電気絶縁層表面と酸化性化合物とを接触させることにより、電気絶縁層表面を酸化することができる。   The electrical insulating layer surface can be oxidized by bringing the electrical insulating layer surface into contact with the oxidizing compound.

用いる酸化性化合物としては、無機過酸化物や有機過酸化物;気体;等酸化能を有する公知の化合物が挙げられる。電気絶縁層の表面平均粗さの制御の容易さから、無機過酸化物や有機過酸化物を用いるのが特に好ましい。   Examples of the oxidizing compound to be used include known compounds having an oxidizing ability such as inorganic peroxides and organic peroxides; gas; In view of easy control of the average surface roughness of the electrical insulating layer, it is particularly preferable to use an inorganic peroxide or an organic peroxide.

無機過酸化物の具体例としては、過マンガン酸塩、無水クロム酸、重クロム酸塩、クロム酸塩、過硫酸塩、活性二酸化マンガン、四酸化オスミウム、過酸化水素、過よう素酸塩、オゾン等が挙げられる。
有機過酸化物の具体例としては、ジクミルパーオキサイド、オクタノイルパーオキサイド、m−クロロ過安息香酸、過酢酸等が挙げられる。
Specific examples of inorganic peroxides include permanganate, chromic anhydride, dichromate, chromate, persulfate, activated manganese dioxide, osmium tetroxide, hydrogen peroxide, periodate, Examples include ozone.
Specific examples of the organic peroxide include dicumyl peroxide, octanoyl peroxide, m-chloroperbenzoic acid, peracetic acid and the like.

無機過酸化物や有機過酸化物を用いて電気絶縁層表面を酸化する方法に格別な制限はない。例えば、上記酸化性化合物を溶解可能な溶媒に溶解して調製した酸化性化合物溶液を電気絶縁層表面に接触させる方法が挙げられる。   There is no particular limitation on the method of oxidizing the surface of the electrical insulating layer using an inorganic peroxide or an organic peroxide. For example, there is a method in which an oxidizing compound solution prepared by dissolving the oxidizing compound in a soluble solvent is brought into contact with the surface of the electrical insulating layer.

無機過酸化物や有機過酸化物又はこれらの溶液を電気絶縁層表面に接触させる方法に格別な制限はなく、例えば、電気絶縁層を酸化性化合物の溶液に浸漬するディップ法、酸化性化合物溶液を表面張力の利用で電気絶縁層に載せる液盛り法、酸化性化合物の溶液を基材に噴霧するスプレー法、等いかなる方法であっても良い。   There is no particular limitation on the method of bringing the inorganic peroxide or organic peroxide or these solutions into contact with the surface of the electrical insulating layer. For example, a dipping method in which the electrical insulating layer is immersed in an oxidizing compound solution, an oxidizing compound solution Any method may be used, such as a liquid filling method in which a surface tension is applied to an electric insulating layer, or a spray method in which a solution of an oxidizing compound is sprayed onto a substrate.

これらの無機過酸化物や有機過酸化物を電気絶縁層表面に接触させる温度や時間は、過酸化物の濃度や種類、接触方法等を考慮して、任意に設定すれば良い。前記温度は通常10〜250℃、好ましくは20〜180℃であり、前記時間は通常0.5〜60分、好ましくは1〜30分である。   The temperature and time for bringing these inorganic peroxides and organic peroxides into contact with the surface of the electrical insulating layer may be arbitrarily set in consideration of the concentration and type of peroxide, the contact method, and the like. The said temperature is 10-250 degreeC normally, Preferably it is 20-180 degreeC, and the said time is 0.5-60 minutes normally, Preferably it is 1-30 minutes.

気体を用いて酸化処理する方法としては、逆スパッタリングやコロナ放電等気体をラジカルやイオン化させるプラズマ処理が挙げられる。気体としては、大気、酸素、窒素、アルゴン、水、二硫化炭素、四塩化炭素等が例示される。   Examples of the method for oxidizing using gas include plasma treatment for radical or ionization of gas such as reverse sputtering and corona discharge. Examples of the gas include air, oxygen, nitrogen, argon, water, carbon disulfide, and carbon tetrachloride.

酸化処理用の気体が処理温度では液体であるが減圧下で気体になる場合は、減圧下で酸化処理を行う。
また、酸化処理用の気体が処理温度、圧力において気体の場合は、ラジカル化やイオン化が可能な圧力に加圧した後、酸化処理を行う。
When the gas for oxidation treatment is liquid at the treatment temperature but becomes gas under reduced pressure, the oxidation treatment is performed under reduced pressure.
Further, when the gas for oxidation treatment is a gas at the treatment temperature and pressure, the oxidation treatment is performed after pressurizing to a pressure capable of radicalization or ionization.

プラズマを電気絶縁層表面に接触させる温度や時間は、ガスの種類や流量等を考慮して設定すれば良い。接触させる温度は通常10〜250℃、好ましくは20〜180℃であり、接触させる時間は通常0.5〜60分、好ましくは1〜30分である。   The temperature and time for bringing the plasma into contact with the surface of the electrical insulating layer may be set in consideration of the type and flow rate of the gas. The contacting temperature is usually 10 to 250 ° C., preferably 20 to 180 ° C., and the contacting time is usually 0.5 to 60 minutes, preferably 1 to 30 minutes.

電気絶縁層の酸化処理後は、酸化性化合物を除去するため、通常、電気絶縁層表面を水で洗浄する。水だけでは洗浄しきれない物質が付着している場合には、その物質を溶解可能な洗浄液で更に洗浄したり、他の化合物と接触させることにより水に可溶な物質にしてから水で洗浄する。例えば、過マンガン酸カリウム水溶液や過マンガン酸ナトリウム水溶液等のアルカリ性水溶液を電気絶縁層と接触させた場合は、発生した二酸化マンガンの皮膜を除去する目的で、硫酸ヒドロキシアミンと硫酸との混合液等の酸性水溶液により中和還元処理した後に水で洗浄することができる。   After the oxidation treatment of the electrical insulating layer, the surface of the electrical insulating layer is usually washed with water in order to remove the oxidizing compound. If a substance that cannot be cleaned with water alone is attached, wash the substance further with a cleaning solution that can be dissolved, or make it a water-soluble substance by bringing it into contact with other compounds, and then wash with water. To do. For example, when an alkaline aqueous solution such as an aqueous potassium permanganate solution or an aqueous sodium permanganate solution is brought into contact with the electrical insulating layer, a mixed solution of hydroxyamine sulfate and sulfuric acid for the purpose of removing the generated manganese dioxide film, etc. It can wash | clean with water, after neutralizing-reducing process with the acidic aqueous solution of this.

電気絶縁層を酸化して表面平均粗さを調整した後、積層体の電気絶縁層表面とビアホール内壁面に導体層(2)を形成する。導体層(2)を形成する方法としては、密着性に優れる導体層(2)を形成する観点からめっき法が好ましい。   After the electrical insulation layer is oxidized to adjust the surface average roughness, a conductor layer (2) is formed on the electrical insulation layer surface and the inner wall surface of the via hole. As a method for forming the conductor layer (2), a plating method is preferable from the viewpoint of forming the conductor layer (2) having excellent adhesion.

導体層(2)をめっき法により形成する方法としては、例えば電気絶縁層上にめっき等により金属薄膜を形成し、次いで厚付けめっきにより金属層を成長させる方法が挙げられる。   Examples of the method for forming the conductor layer (2) by plating include a method in which a metal thin film is formed on the electrical insulating layer by plating or the like, and then the metal layer is grown by thick plating.

金属薄膜の形成を無電解めっきにより行う場合、金属薄膜を電気絶縁層の表面に形成させる前に、電気絶縁層上に、銀、パラジウム、亜鉛、コバルト等の触媒核を付着させるのが一般的である。   When forming a metal thin film by electroless plating, it is common to deposit catalyst nuclei such as silver, palladium, zinc and cobalt on the electrical insulation layer before forming the metal thin film on the surface of the electrical insulation layer. It is.

触媒核を電気絶縁層に付着させる方法は特に制限されず、例えば、銀、パラジウム、亜鉛、コバルト等の金属化合物やこれらの塩や錯体を、水又はアルコール若しくはクロロホルム等の有機溶剤に0.001〜10質量%の濃度で溶解した液(必要に応じて酸、アルカリ、錯化剤、還元剤等を含有していてもよい)に浸漬した後、金属を還元する方法等が挙げられる。   The method for attaching the catalyst nucleus to the electrical insulating layer is not particularly limited. For example, a metal compound such as silver, palladium, zinc, or cobalt, or a salt or complex thereof is added to water or an organic solvent such as alcohol or chloroform to 0.001. Examples include a method of reducing a metal after dipping in a solution (which may contain an acid, an alkali, a complexing agent, a reducing agent, etc., if necessary) dissolved at a concentration of 10 to 10% by mass.

無電解めっき法に用いる無電解めっき液としては、公知の自己触媒型の無電解めっき液を用いればよく、めっき液中に含まれる金属種、還元剤種、錯化剤種、水素イオン濃度、溶存酸素濃度等は特に限定されない。   As the electroless plating solution used in the electroless plating method, a known autocatalytic electroless plating solution may be used, and the metal species, reducing agent species, complexing agent species, hydrogen ion concentration, The dissolved oxygen concentration and the like are not particularly limited.

例えば、次亜リン酸アンモニウム、次亜リン酸、水素化硼素アンモニウム、ヒドラジン、ホルマリン等を還元剤とする無電解銅めっき液;次亜リン酸ナトリウムを還元剤とする無電解ニッケル−リンめっき液;ジメチルアミンボランを還元剤とする無電解ニッケル−ホウ素めっき液;無電解パラジウムめっき液;次亜リン酸ナトリウムを還元剤とする無電解パラジウム−リンめっき液;無電解金めっき液;無電解銀めっき液;次亜リン酸ナトリウムを還元剤とする無電解ニッケル−コバルト−リンめっき液等の無電解めっき液を用いることができる。   For example, electroless copper plating solution using ammonium hypophosphite, hypophosphorous acid, ammonium borohydride, hydrazine, formalin, etc. as a reducing agent; electroless nickel-phosphorous plating solution using sodium hypophosphite as a reducing agent Electroless nickel-boron plating solution using dimethylamine borane as a reducing agent; electroless palladium plating solution; electroless palladium-phosphorous plating solution using sodium hypophosphite as a reducing agent; electroless gold plating solution; electroless silver Plating solution: An electroless plating solution such as an electroless nickel-cobalt-phosphorous plating solution using sodium hypophosphite as a reducing agent can be used.

金属薄膜を形成した後、基板表面を防錆剤と接触させて防錆処理を施すことができる。
また、金属薄膜を形成した後、密着性向上等のため、金属薄膜を加熱することもできる。
加熱温度は、通常、50〜350℃、好ましくは80〜250℃である。
加熱は加圧条件下で実施してもよい。このときの加圧方法としては、例えば、熱プレス機、加圧加熱ロール機等の物理的加圧手段を用いる方法が挙げられる。加える圧力は、通常、0.1〜20MPa、好ましくは0.5〜10MPaである。この範囲であれば、金属薄膜と電気絶縁層との高い密着性が確保できる。
After the metal thin film is formed, the substrate surface can be brought into contact with a rust preventive agent to carry out a rust prevention treatment.
Moreover, after forming a metal thin film, a metal thin film can also be heated for the adhesive improvement etc.
The heating temperature is usually 50 to 350 ° C, preferably 80 to 250 ° C.
Heating may be performed under pressurized conditions. Examples of the pressing method at this time include a method using physical pressing means such as a hot press machine and a pressurizing and heating roll machine. The applied pressure is usually 0.1 to 20 MPa, preferably 0.5 to 10 MPa. If it is this range, the high adhesiveness of a metal thin film and an electrically insulating layer is securable.

こうして形成された金属薄膜上にめっき用レジストパターンを形成し、更にその上に電解めっき等の湿式めっきによりめっきを成長させ(厚付けめっき)、次いで、レジストを除去し、更にエッチングにより金属薄膜をパターン状にエッチングして導体層(2)を形成する。従って、この方法により形成される導体層(2)は、通常、パターン状の金属薄膜と、その上に成長させためっきとからなる。   A resist pattern for plating is formed on the metal thin film thus formed, and further, plating is grown thereon by wet plating such as electrolytic plating (thick plating), then the resist is removed, and the metal thin film is formed by etching. The conductor layer (2) is formed by etching in a pattern. Therefore, the conductor layer (2) formed by this method is usually composed of a patterned metal thin film and plating grown thereon.

以上のようにして得られた多層回路基板を新たな積層体として用いて、上述の電気絶縁層形成と導体層(2)形成の工程を繰り返すことにより、更なる多層化を行うことができ   By using the multilayer circuit board obtained as described above as a new laminate, the above-described steps of forming the electrical insulating layer and the conductor layer (2) can be repeated to achieve further multilayering.

これにより所望の多層回路基板を得ることができる。
本発明の多層回路基板は電気絶縁層と導体層(2)との密着性に優れる。本発明の多層回路基板における導体層(2)と電気絶縁層との間の、JIS C6481:1996に準拠して測定した引き剥がし強さは、通常6N/cm以上、好ましくは8N/cm以上である。
Thereby, a desired multilayer circuit board can be obtained.
The multilayer circuit board of the present invention is excellent in adhesion between the electrical insulating layer and the conductor layer (2). The peel strength measured in accordance with JIS C6481: 1996 between the conductor layer (2) and the electrical insulating layer in the multilayer circuit board of the present invention is usually 6 N / cm or more, preferably 8 N / cm or more. is there.

本発明の多層回路基板は耐クラック性に優れる。本発明の多層回路基板を、JIS Z2247:2006に準拠して試験を行った場合において、基板の表面に割れを生じた時点の、ポンチ先端がしわ押さえ面から移動した距離(エリクセン値)は、通常4mm以上、好ましくは5mm以上である。   The multilayer circuit board of the present invention is excellent in crack resistance. When the multilayer circuit board of the present invention was tested according to JIS Z2247: 2006, the distance (Erichsen value) that the punch tip moved from the wrinkle holding surface when the surface of the board was cracked was: Usually, it is 4 mm or more, preferably 5 mm or more.

本発明の多層回路基板は優れた電気特性を有しているので、後述するように、コンピューターや携帯電話等の電子機器における、CPUやメモリ等の半導体素子、その他の実装部品用基板として好適に使用できる。   Since the multilayer circuit board of the present invention has excellent electrical characteristics, as will be described later, it is suitable as a substrate for semiconductor elements such as CPU and memory and other mounting parts in electronic devices such as computers and mobile phones. Can be used.

5)電子機器
本発明の電子機器は、上述した本発明の多層回路基板を有することを特徴とする。
本発明の電子機器としては、携帯電話機、PHS、ノート型パソコン、PDA(携帯情報端末)、携帯テレビ電話機、パーソナルコンピューター、スーパーコンピューター、サーバー、ルーター、液晶プロジェクタ、エンジニアリング・ワークステーション(EWS)、ページャ、ワードプロセッサ、テレビ、ビューファインダ型またはモニタ直視型のビデオテープレコーダ、電子手帳、電子卓上計算機、カーナビゲーション装置、POS端末、タッチパネルを備えた装置等が挙げられる。
本発明の電子機器は、本発明の多層回路基板を備えているので、高性能で高品質な電子機器となっている。
5) Electronic device The electronic device of the present invention has the multilayer circuit board of the present invention described above.
The electronic device of the present invention includes a mobile phone, PHS, notebook computer, PDA (personal digital assistant), mobile video phone, personal computer, super computer, server, router, liquid crystal projector, engineering workstation (EWS), pager. , A word processor, a television, a viewfinder type or a monitor direct-view type video tape recorder, an electronic notebook, an electronic desk calculator, a car navigation device, a POS terminal, a device equipped with a touch panel, and the like.
Since the electronic device of the present invention includes the multilayer circuit board of the present invention, it is a high-performance and high-quality electronic device.

以下に、製造例、実施例及び比較例を挙げて本発明を具体的に説明する。なお、以下において「部」は、特に断りのない限り質量基準である。また、試験、評価は下記によった。
(1)重量平均分子量(Mw)、数平均分子量(Mn)
トルエンまたはテトラヒドロフランを溶剤とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算値として測定した。
(2)水素化率及び無水マレイン酸残基含有率
水素添加前の重合体中の不飽和結合のモル数に対する水素添加率(水素化率)、及び重合体中の総単量体単位数に対する無水マレイン酸残基のモル数の割合(無水マレイン酸基含有率)は、1H−NMRスペクトルにより測定した。
(3)重合体のガラス転移温度(Tg)
JIS K7121:1987に準じ、示差走査熱量法(DSC法)により、昇温速度=5℃/分で測定した。
The present invention will be specifically described below with reference to production examples, examples and comparative examples. In the following, “part” is based on mass unless otherwise specified. The test and evaluation were as follows.
(1) Weight average molecular weight (Mw), number average molecular weight (Mn)
It was measured as a polystyrene conversion value by gel permeation chromatography (GPC) using toluene or tetrahydrofuran as a solvent.
(2) Hydrogenation rate and maleic anhydride residue content Hydrogenation rate relative to the number of moles of unsaturated bonds in the polymer before hydrogenation (hydrogenation rate), and the total number of monomer units in the polymer The ratio of the number of moles of maleic anhydride residue (maleic anhydride group content) was measured by 1 H-NMR spectrum.
(3) Glass transition temperature (Tg) of the polymer
According to JIS K7121: 1987, the temperature was increased by a differential scanning calorimetry (DSC method) at a heating rate of 5 ° C./min.

(4)難燃性
評価用の多層回路基板の導体が無い部分を、幅13mm、長さ130mmの短冊状に切断して試験片を作製した。メタンガスを管の口径9.5mm、管の長さ100mmのブンゼンバーナーにて燃焼させて高さ19mmの炎に調整して、得られた試験片に着火するまで近づけていった。着火後直ちに炎を外し、試験片が燃焼している時間を計測した。試験片が消炎後、直ちに再度試験片に着火するまで炎の近づけた。二度目の着火後も直ちに炎を外し、試験片が燃焼している時間を計測した。試験片の一度目の燃焼時間と二度目の燃焼時間の合計が5秒以内のものを○、5秒を超え10秒以内のものを△、10秒を超えるものを×として評価した。
(4) Flame retardance A portion of the multilayer circuit board for evaluation without a conductor was cut into a strip having a width of 13 mm and a length of 130 mm to prepare a test piece. Methane gas was burned with a Bunsen burner having a tube diameter of 9.5 mm and a tube length of 100 mm, adjusted to a flame with a height of 19 mm, and approached until the obtained specimen was ignited. The flame was removed immediately after ignition and the time during which the test piece was burning was measured. Immediately after the test piece was extinguished, the flame was brought closer until it ignited again. The flame was immediately removed after the second ignition, and the time during which the test piece was burning was measured. When the total of the first burning time and the second burning time of the test piece was within 5 seconds, the test piece was evaluated as “◯”, the case where it exceeded 5 seconds and within 10 seconds, and the case where it exceeded 10 seconds were evaluated as “X”.

(5)パターニング性
電気絶縁層上に配線パターンを形成する時のパターニング性を次のように評価した。
電気絶縁層上にパターニング性評価用パターンとして、配線幅20μm、配線間距離20μm、配線長が10cmである100本の配線パターンを形成した。形成したパターンを光学顕微鏡で観察し、100本がいずれも形状に乱れの無いものを○、形状に乱れがあるが欠損の無いものを△、欠損のあるものを×とした。
(5) Patterning property The patterning property when forming a wiring pattern on an electrically insulating layer was evaluated as follows.
On the electrical insulating layer, 100 wiring patterns having a wiring width of 20 μm, a wiring distance of 20 μm, and a wiring length of 10 cm were formed as patterns for patterning evaluation. The formed pattern was observed with an optical microscope, and all of the 100 patterns were evaluated as ◯ when the shape was not disturbed, Δ when the shape was disordered but not defective, and × when the defect was defective.

(6)埋め込み性
パターンを有する基板に絶縁性複合体を積層した時の埋め込み性を次のように評価した。
埋め込み性評価用パターンとして、配線幅20μm、配線間距離20μm、配線長10cm、配線高さ15μmの100本の配線パターンを有する両面銅張り積層板を用い、評価用多層回路基板を作製した。精密切断機(ストルアス社製)を用いて、評価用多層回路基板を配線の長手方向に対して垂直に切断し、その切断面を研磨機(ストルアス社製)にて研磨した。研磨した断面を、光学顕微鏡で観察し、配線間における樹脂の埋め込み性を確認した。100本の配線パターンに対して、埋め込み不良箇所が1ヶ所も無いものは○、埋め込み不良箇所が1ヶ所以上5ヶ所以下のものは△、埋め込み不良箇所が6ヶ所以上のものは×として評価した。
(6) Embedding property The embedding property when an insulating composite was laminated on a substrate having a pattern was evaluated as follows.
As a pattern for evaluating embedding, a double-sided copper-clad laminate having 100 wiring patterns with a wiring width of 20 μm, a wiring distance of 20 μm, a wiring length of 10 cm, and a wiring height of 15 μm was used to produce a multilayer circuit board for evaluation. The multilayer circuit board for evaluation was cut perpendicularly to the longitudinal direction of the wiring using a precision cutting machine (manufactured by Struers), and the cut surface was polished by a polishing machine (manufactured by Struers). The polished cross section was observed with an optical microscope, and the embedding property of the resin between the wirings was confirmed. 100 wiring patterns were evaluated as ○ when there was no embedding failure location, ○ when embedding failure location was 1 or more and 5 or less, and × when embedding failure location was 6 or more. .

(7)平坦性
パターンを有する基板に絶縁性複合体を積層・硬化した時の平坦性を次のように評価した。
埋め込み性評価と同様の評価用多層回路基板を作製した。その表面の凹凸を配線の長手方向に対して垂直方向に触針式膜厚計(商品名:P−10、テンコール社製)にて測定し、パターンがある部分と無い部分との段差が0μm以上1μm未満のものは○、1μm以上2μm未満のものは△、2μm以上のものを×として評価した。
(7) Flatness Flatness when an insulating composite was laminated and cured on a substrate having a pattern was evaluated as follows.
A multilayer circuit board for evaluation similar to the evaluation of embedding was produced. The surface irregularities were measured with a stylus type film thickness meter (trade name: P-10, manufactured by Tencor) in the direction perpendicular to the longitudinal direction of the wiring, and the step between the portion with the pattern and the portion without the pattern was 0 μm. Those having a particle size of less than 1 μm were evaluated as ◯, those having a particle size of 1 μm or more but less than 2 μm were evaluated as Δ, and those having a particle size of 2 μm or more as x.

(製造例1)ワニス(1)の調製
8−エチル−テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エンを、1−ブテンを分子量調整剤として添加して開環重合し、次いで水素添加反応を行い、Mn31,200、Mw55,800、Tg140℃の水素化重合体を得た。得られた水素化重合体の水素化率は99%以上であった。
この水素化重合体100部および無水マレイン酸55部をシクロヘキサン233部に溶解した。135℃に昇温した後、ジクミルパーオキシド5.5部をシクロヘキサノン105部に溶解した溶液を2時間で滴下し、さらにその温度で3時間反応を行った。得られた反応生成物溶液をシクロヘキサノン42部、トルエン362部で希釈した後、2768部のイソプロピルアルコール中に注ぎ、反応生成物を凝固させ、得られた固形分を100℃で20時間真空乾燥して、マレイン酸変性水素化重合体aを得た。このマレイン酸変性水素化重合体aの分子量は、Mn=29,000、Mw=76,000であった。また、Tgは170℃で、マレイン酸基含有率は29モル%であった。
(Production Example 1) Preparation of Varnish (1) 8-Ethyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene is subjected to ring-opening polymerization by adding 1-butene as a molecular weight modifier, followed by hydrogenation reaction, and hydrogenated polymer of Mn 31,200, Mw 55,800, Tg 140 ° C. Got. The hydrogenation rate of the obtained hydrogenated polymer was 99% or more.
100 parts of this hydrogenated polymer and 55 parts of maleic anhydride were dissolved in 233 parts of cyclohexane. After raising the temperature to 135 ° C., a solution prepared by dissolving 5.5 parts of dicumyl peroxide in 105 parts of cyclohexanone was added dropwise over 2 hours, and the reaction was further performed at that temperature for 3 hours. The resulting reaction product solution was diluted with 42 parts of cyclohexanone and 362 parts of toluene and then poured into 2768 parts of isopropyl alcohol to solidify the reaction product, and the resulting solid was vacuum dried at 100 ° C. for 20 hours. Thus, a maleic acid-modified hydrogenated polymer a was obtained. The molecular weight of this maleic acid-modified hydrogenated polymer a was Mn = 29,000 and Mw = 76,000. Moreover, Tg was 170 degreeC and maleic acid group content rate was 29 mol%.

重合体(1)としてマレイン酸変性水素化重合体a100部、多価エポキシ化合物(1)としてビスフェノールF型エポキシ樹脂(商品名:EPICLON 830S、大日本インキ化学工業社製)26.5部、ゴムして液状ポリブタジエン(商品名:Ricon156、サートマー社製)30部、硬化促進剤として1−ベンジル−2−フェニルイミダゾール0.1部、硬化助剤(商品名:リカシッドTMTA−C、新日本理化社製)2部、レーザ加工性向上剤として2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]ベンゾトリアゾール1部、および老化防止剤としてトリス(3、5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト1部を、キシレン337部およびシクロペンタノン145部からなる混合溶剤に溶解させ、遊星式攪拌機にて混合してワニス(1)を得た。   100 parts of maleic acid-modified hydrogenated polymer a as polymer (1), 26.5 parts of bisphenol F type epoxy resin (trade name: EPICLON 830S, manufactured by Dainippon Ink and Chemicals) as polyvalent epoxy compound (1), rubber 30 parts of liquid polybutadiene (trade name: Ricon 156, manufactured by Sartomer), 0.1 part of 1-benzyl-2-phenylimidazole as a curing accelerator, curing aid (trade name: Ricacid TMTA-C, Shin Nippon Rika Co., Ltd.) 2 parts), 1 part of 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] benzotriazole as a laser processability improver, and Tris (3,5-di -T-butyl-4-hydroxybenzyl) -isocyanurate is replaced with 337 parts of xylene and 145 parts of cyclopentanone. It was dissolved in a mixed solvent of, to give a varnish (1) mixing with a planetary stirrer.

(製造例2)ワニス(2)の調製
8−エチル−テトラシクロ〔4.4.0.12,5.17,10〕ドデカ−3−エンを、1−ブテンを分子量調整剤として添加して開環重合し、次いで水素添加反応を行って、Mn25,000、Mw45,000、Tg140℃の水素化重合体を得た。得られた水素化重合体の水素化率は99%以上であった。
この水素化重合体100部および無水マレイン酸55部をシクロヘキサン233部に溶解した。135℃に昇温した後、ジクミルパーオキシド5.5部をシクロヘキサノン105部に溶解した溶液を2時間で滴下し、さらにその温度で3時間反応を行った。得られた反応生成物溶液を、シクロヘキサノン42部およびトルエン362部からなる混合溶剤で希釈した後、イソプロピルアルコール2768部中に注ぎ、反応生成物を凝固させた。得られた固形分を100℃で20時間真空乾燥して、マレイン酸変性水素化重合体bを得た。このマレイン酸変性水素化重合体bの分子量は、Mn=21,000、Mw=55,000であった。また、Tgは160℃で、マレイン酸基含有率は29モル%であった。
(Production Example 2) Preparation of Varnish (2) 8-Ethyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene was subjected to ring-opening polymerization by adding 1-butene as a molecular weight modifier, and then subjected to hydrogenation reaction to obtain a hydrogenation weight of Mn 25,000, Mw 45,000, Tg 140 ° C. Coalescence was obtained. The hydrogenation rate of the obtained hydrogenated polymer was 99% or more.
100 parts of this hydrogenated polymer and 55 parts of maleic anhydride were dissolved in 233 parts of cyclohexane. After raising the temperature to 135 ° C., a solution prepared by dissolving 5.5 parts of dicumyl peroxide in 105 parts of cyclohexanone was added dropwise over 2 hours, and the reaction was further performed at that temperature for 3 hours. The resulting reaction product solution was diluted with a mixed solvent consisting of 42 parts of cyclohexanone and 362 parts of toluene, and then poured into 2768 parts of isopropyl alcohol to coagulate the reaction product. The obtained solid content was vacuum-dried at 100 ° C. for 20 hours to obtain a maleic acid-modified hydrogenated polymer b. The molecular weight of this maleic acid-modified hydrogenated polymer b was Mn = 21,000 and Mw = 55,000. Moreover, Tg was 160 degreeC and maleic acid group content rate was 29 mol%.

重合体(2)として、マレイン酸変性水素化重合体b100部、多価エポキシ化合物2としてビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテル(商品名:アデカレジンEP4000S、旭電化工業社製)40部、フィラー(難燃剤)としてポリリン酸メラミン難燃剤(商品名:PMP200、日産化学工業社製)20部を、難燃助剤として縮合リン酸エステル難燃剤(商品名:PX200、大八化学工業社製)20部を、レーザー加工性向上剤として2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルべンジル)フェニル]べンゾトリアゾール1部、老化防止剤としてトリス(3、5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト1部、硬化促進剤として1−べンジル−2−フェニルイミダゾール0.1部、および硬化助剤(商品名:リカシッドTMTA−C、新日本理化社製)5部を、キシレン196部及びシクロペンタノン84部からなる混合溶剤に溶解させて樹脂溶液を得た。   As polymer (2), maleic acid-modified hydrogenated polymer b 100 parts, as polyvalent epoxy compound 2, bisphenol A bis (propylene glycol glycidyl ether) ether (trade name: Adeka Resin EP4000S, manufactured by Asahi Denka Kogyo Co., Ltd.), filler 20 parts of melamine polyphosphate flame retardant (trade name: PMP200, manufactured by Nissan Chemical Industries) as (flame retardant), and condensed phosphate ester flame retardant (trade name: PX200, manufactured by Daihachi Chemical Industry Co., Ltd.) as a flame retardant aid 20 parts, 1 part 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] benzotriazole as a laser processability improver, and tris (3,5- 1 part of di-t-butyl-4-hydroxybenzyl) -isocyanurate, 1-benzyl-2-phenylimid as curing accelerator A resin solution is obtained by dissolving 0.1 part of dazole and 5 parts of a curing aid (trade name: Ricacid TMTA-C, manufactured by Shin Nippon Chemical Co., Ltd.) in a mixed solvent consisting of 196 parts of xylene and 84 parts of cyclopentanone. It was.

(製造例3)ワニス(2’)の調製
分子量調整剤である1−ブテンの使用量を変更した以外は製造例2と同様にして、マレイン酸変性水素化重合体cを含有するワニス(2’)を得た。マレイン酸変性水素化重合体cの分子量は、Mn=65,000、Mw=170,000であった。また、Tgは160℃で、マレイン酸基含有率は29モル%であった。
(Production Example 3) Preparation of Varnish (2 ') Varnish (2 containing maleic acid-modified hydrogenated polymer c) in the same manner as in Production Example 2 except that the amount of 1-butene used as the molecular weight modifier was changed. ') Got. The molecular weight of the maleic acid-modified hydrogenated polymer c was Mn = 65,000 and Mw = 170,000. Moreover, Tg was 160 degreeC and maleic acid group content rate was 29 mol%.

(実施例)
幅250mmで厚みが20μm、単位面積当たりの質量が14g/mの、全芳香族ポリエステルの液晶ポリマー不織布(商品名:ベクルスMBBK14FXSP、クラレ社製)に、両面グラビアコーターを用いて、上記で得たワニス(1)を、5μmの厚さで、反対の面よりワニス(2)を25μmの厚さで、それぞれ塗布した。次いで、窒素雰囲気下、80℃で10分間乾燥し、厚みが50μm、液晶ポリマー含有量が40%である複合樹脂成形体を得た。
(Example)
Using a double-sided gravure coater on a liquid crystal polymer nonwoven fabric (trade name: Vecrus MBBK14FXSP, manufactured by Kuraray Co., Ltd.) of a wholly aromatic polyester having a width of 250 mm, a thickness of 20 μm, and a mass per unit area of 14 g / m 2. The varnish (1) was applied at a thickness of 5 μm, and the varnish (2) was applied at a thickness of 25 μm from the opposite side. Subsequently, it was dried at 80 ° C. for 10 minutes in a nitrogen atmosphere to obtain a composite resin molded body having a thickness of 50 μm and a liquid crystal polymer content of 40%.

厚さ1.6mmで両面に埋め込み性評価用パターンを有する両面銅張り積層板(商品名:CCL−HL830、三菱ガス化学社製、ガラスフィラー及びエポキシ樹脂を含有するワニスをガラスクロスに含浸させて得られたコア基板の両面に厚み15μmの銅箔が貼られ、配線形成したもの)を用意した。この両面銅張り基板を5%硫酸水溶液に25℃で1分間浸漬した後に純水で洗浄して内層基板(本発明でいう「表面に導体層(1)を有する基板」に該当する。)を得た。次いで、2,4,6−トリメルカプト−s−トリアジンの0.1%イソプロピルアルコール溶液を調製し、この溶液に前述のコア基板を25℃で1分間浸漬した後、90℃で15分間、窒素置換されたオーブン中で乾燥させて内層基板上にプライマー層を形成させた。   Double-sided copper-clad laminate having a thickness of 1.6 mm and a pattern for evaluation of embedding on both sides (trade name: CCL-HL830, manufactured by Mitsubishi Gas Chemical Company, glass cloth and varnish containing epoxy resin are impregnated into glass cloth A copper foil having a thickness of 15 μm was pasted on both surfaces of the obtained core substrate to form a wiring). This double-sided copper-clad substrate is immersed in a 5% sulfuric acid aqueous solution at 25 ° C. for 1 minute, and then washed with pure water to provide an inner layer substrate (corresponding to “a substrate having a conductor layer (1) on the surface” in the present invention). Obtained. Next, a 0.1% isopropyl alcohol solution of 2,4,6-trimercapto-s-triazine was prepared, and the above core substrate was immersed in this solution at 25 ° C. for 1 minute, and then at 90 ° C. for 15 minutes. The primer layer was formed on the inner layer substrate by drying in the replaced oven.

次いで、得られた複合樹脂成形体を、ワニス(2)を塗工した面が内側となるようにして内層基板に重ね合わせた。さらにこの上に剥離フィルムとして、厚さが40μm、表面平均粗さRaが0.08μmのポリエチレンナフタレートフィルムを重ねた。これを、耐熱ゴム製プレス板を上下に備えた真空積層装置を用いて、200Paに減圧して、温度110℃、圧力1.0MPaで60秒間加熱圧着した(一次プレス)。次いで、金属製プレス板で覆われた耐熱ゴム製プレス板を上下に備えた真空積層装置を用いて、200Paに減圧して、温度140℃、圧力1.0MPaで60秒間加熱圧着した(二次プレス)。この後、剥離フィルムのみを剥がして、表面に樹脂成形体層を有する内層基板を得た。   Next, the obtained composite resin molded body was overlaid on the inner layer substrate so that the surface coated with the varnish (2) was inside. Further, a polyethylene naphthalate film having a thickness of 40 μm and a surface average roughness Ra of 0.08 μm was stacked thereon as a release film. This was decompressed to 200 Pa using a vacuum laminator equipped with heat-resistant rubber press plates at the top and bottom, and thermocompression bonded at a temperature of 110 ° C. and a pressure of 1.0 MPa for 60 seconds (primary press). Next, the pressure was reduced to 200 Pa using a heat-resistant rubber press plate covered with a metal press plate at the top and bottom, and thermocompression bonded at a temperature of 140 ° C. and a pressure of 1.0 MPa for 60 seconds (secondary press). Thereafter, only the release film was peeled off to obtain an inner layer substrate having a resin molded body layer on the surface.

次いで、この表面に樹脂成形体層を有する内層基板を、1−(2−アミノエチル)−2−メチルイミダゾールの1.0%水溶液に30℃で10分間浸漬し、次いで25℃の水に1分間浸漬した後、エアーナイフにより余分な溶液を除去した。これを窒素オーブン中に60℃で30分間、170℃で60分間放置して樹脂成形体層を乾燥・硬化して、内層基板の表面に、電気絶縁層が積層された回路基板を得た。得られた回路基板において、配線埋め込み性及び平坦性の評価を行った。評価結果を表1に示す。   Next, the inner layer substrate having the resin molded body layer on the surface is immersed in a 1.0% aqueous solution of 1- (2-aminoethyl) -2-methylimidazole at 30 ° C. for 10 minutes, and then 1 in 25 ° C. water. After dipping for a minute, the excess solution was removed with an air knife. This was left in a nitrogen oven at 60 ° C. for 30 minutes and at 170 ° C. for 60 minutes to dry and cure the resin molded body layer, thereby obtaining a circuit board in which an electrical insulating layer was laminated on the surface of the inner layer board. The obtained circuit board was evaluated for wiring embedding and flatness. The evaluation results are shown in Table 1.

得られた回路基板の電気絶縁層部分に、UV−YAGレーザ第3高調波を用いて直径30μmの層間接続のビアホールを形成した。
得られたビアホールつき多層回路基板を、過マンガン酸濃度60g/リットル、水酸化ナトリウム濃度28g/リットルになるように調整した70℃の水溶液に10分間揺動浸漬した。次いで、この多層回路基板を水槽に1分間揺動浸漬し、更に別の水槽に1分間揺動浸漬することにより水洗した。続いて硫酸ヒドロキシルアミン濃度170g/リットル、硫酸80g/リットルになるように調整した25℃の水溶液に、多層回路基板を5分間浸漬し、中和還元処理をした後、水洗した。
An interlayer connection via hole having a diameter of 30 μm was formed in the electrically insulating layer portion of the obtained circuit board using a third harmonic of a UV-YAG laser.
The obtained multilayer circuit board with via holes was rock-immersed in an aqueous solution at 70 ° C. adjusted to have a permanganate concentration of 60 g / liter and a sodium hydroxide concentration of 28 g / liter for 10 minutes. Next, this multilayer circuit board was immersed in a water tank for 1 minute and further washed in water by immersion in another water tank for 1 minute. Subsequently, the multilayer circuit board was immersed for 5 minutes in a 25 ° C. aqueous solution adjusted to a hydroxylamine sulfate concentration of 170 g / liter and sulfuric acid 80 g / liter, neutralized and reduced, and then washed with water.

次いで、めっき前処理として、上記水洗後の多層回路基板をアルカップアクチベータMAT−1−A(上村工業社製)が200ml/リットル、アルカップアクチベータMAT−1−B(上村工業社製)が30ml/リットル、水酸化ナトリウムが0.35g/リットルになるように調整した60℃のPd塩含有めっき触媒水溶液に5分間浸漬した。この多層回路基板を水槽に1分間揺動浸漬し、更に別の水槽に1分間揺動浸漬することにより水洗した後、アルカップレデユーサ−MAB−4−A(上村工業社製)が20ml/リットル、アルカップレデユーサ−MAB−4−B(上村工業社製)が200ml/リットルになるように調整した溶液に35℃で、3分間浸漬し、めっき触媒を還元処理した。このようにしてめっき触媒を吸着させ、めっき前処理を施した多層回路基板を得た。   Next, as pre-plating treatment, Alcup activator MAT-1-A (manufactured by Uemura Kogyo Co., Ltd.) is 200 ml / liter, and Alcup activator MAT-1-B (manufactured by Uemura Kogyo Co., Ltd.) is 30 ml. / L, and immersed in a 60 ° C. Pd salt-containing plating catalyst aqueous solution adjusted to 0.35 g / L of sodium hydroxide for 5 minutes. This multilayer circuit board was rocked and immersed in a water tank for 1 minute, and further rinsed and immersed in another water tank for 1 minute, followed by washing with water, and then Alcapredeusa-MAB-4-A (manufactured by Uemura Kogyo Co., Ltd.) was 20 ml / The plating catalyst was reduced by immersion for 3 minutes at 35 ° C. in a solution prepared so that L and Alcapredeusa-MAB-4-B (manufactured by Uemura Kogyo Co., Ltd.) were 200 ml / liter. In this way, a plating catalyst was adsorbed to obtain a multilayer circuit board subjected to plating pretreatment.

次に、めっき前処理後の多層回路基板を、スルカップPSY−1A(上村工業社製)100ml/リットル、スルカップPSY−1B(上村工業社製)40ml/リットル、ホルマリン0.2モル/リットルとなるように調整した水溶液に空気を吹き込みながら、温度36℃、5分間浸漬して無電解銅めっき処理を行った。   Next, the multilayer circuit board after the plating pretreatment is Sulcup PSY-1A (manufactured by Uemura Kogyo) 100 ml / liter, Sulcup PSY-1B (manufactured by Uemura Kogyo) 40 ml / liter, and formalin 0.2 mol / liter. While blowing air into the aqueous solution adjusted as described above, the electroless copper plating treatment was performed by dipping at a temperature of 36 ° C. for 5 minutes.

無電解めっき処理により金属薄膜層が形成された多層回路基板を、更に水槽に1分間揺動浸漬し、更に別の水槽に1分間揺動浸漬することにより水洗した後、乾燥し、防錆処理を施し、無電解めっき皮膜が形成された多層回路基板を得た。   The multilayer circuit board on which the metal thin film layer is formed by electroless plating is further immersed in a water tank for 1 minute, and further washed in a water tank for 1 minute, and then washed and dried to prevent rust. To obtain a multilayer circuit board on which an electroless plating film was formed.

この防錆処理が施された多層回路基板表面に、市販の感光性レジストのドライフィルムを熱圧着して貼り付け、さらに、このドライフィルム上にパターニング性評価用パターンに対応するマスクを密着させ露光した後、現像してレジストパターンを得た。次に硫酸100g/リットルの水溶液に25℃で1分間浸漬させ防錆剤を除去し、レジスト非形成部分に電解銅めっきを施し厚さ18μmの電解銅めっき膜を形成させた。   A dry film of a commercially available photosensitive resist is attached to the surface of the multilayer circuit board that has been subjected to rust prevention treatment by thermocompression bonding, and a mask corresponding to a pattern for patterning evaluation is adhered to the dry film for exposure. Then, development was performed to obtain a resist pattern. Next, it was immersed in an aqueous solution of 100 g / liter of sulfuric acid at 25 ° C. for 1 minute to remove the rust preventive, and electrolytic copper plating was applied to the resist non-formed portion to form an electrolytic copper plating film having a thickness of 18 μm.

次いで、レジストパターンを剥離液にて剥離除去し、塩化第二銅と塩酸の混合水溶液によりエッチング処理を行うことにより、前記金属薄膜及び電解銅めっき膜からなる配線パターンを形成し両面2層の配線パターン付き多層回路基板を得た。最後に、170℃で30分間アニール処理をして多層プリント配線板(評価用多層回路基板)を得た。
得られた評価用多層回路基板について、埋め込み性、平坦性、難燃性およびパターニング性の評価を行った。評価結果を表1に示す。
Next, the resist pattern is stripped and removed with a stripping solution, and an etching process is performed with a mixed aqueous solution of cupric chloride and hydrochloric acid to form a wiring pattern composed of the metal thin film and the electrolytic copper plating film. A patterned multilayer circuit board was obtained. Finally, annealing treatment was performed at 170 ° C. for 30 minutes to obtain a multilayer printed wiring board (evaluation multilayer circuit board).
The obtained evaluation multilayer circuit board was evaluated for embeddability, flatness, flame retardancy, and patterning property. The evaluation results are shown in Table 1.

(比較例1)
ワニス(2)に代えてワニス(2’)を用いた以外は実施例1と同様にして、評価用多層回路基板を得た。評価結果を表1に示す。
(Comparative Example 1)
A multilayer circuit board for evaluation was obtained in the same manner as in Example 1 except that the varnish (2 ′) was used instead of the varnish (2). The evaluation results are shown in Table 1.

(比較例2)
ワニス(2)に代えてワニス(1)を用いた以外は実施例1と同様にして、評価用多層回路基板を得た。評価結果を表1に示す。
(Comparative Example 2)
A multilayer circuit board for evaluation was obtained in the same manner as in Example 1 except that the varnish (1) was used instead of the varnish (2). The evaluation results are shown in Table 1.

(比較例3)
ワニス(1)に代えてワニス(2)を用いた以外は実施例1と同様にして、評価用多層回路基板を得た。評価結果を表1に示す。
(Comparative Example 3)
A multilayer circuit board for evaluation was obtained in the same manner as in Example 1 except that the varnish (2) was used instead of the varnish (1). The evaluation results are shown in Table 1.

Figure 2008114674
Figure 2008114674

表1に示した結果によると、本発明(実施例)の多層回路基板は難燃性に優れ、ファインパターン形成も可能であった。これに対して、重量平均分子量の高い重合体を用いた比較例1では、埋め込み性、平坦性が劣る結果となった。
また、難燃性等の特性に優れた硬化物を形成するための組成を有するワニス(2)を用いなかった比較例2は、ファインパターンが形成出来なかった。
さらに、微細配線パターン形成性に優れた硬化物を形成するための組成を有するワニス(1)を用いなかった比較例3は、難燃性が不十分であった。
According to the results shown in Table 1, the multilayer circuit board of the present invention (Example) was excellent in flame retardancy, and a fine pattern could be formed. In contrast, Comparative Example 1 using a polymer having a high weight average molecular weight resulted in poor embeddability and flatness.
Moreover, the fine pattern was not able to be formed in the comparative example 2 which did not use the varnish (2) which has a composition for forming the hardened | cured material excellent in characteristics, such as a flame retardance.
Furthermore, the comparative example 3 which did not use the varnish (1) which has a composition for forming the hardened | cured material excellent in fine wiring pattern formation property was inadequate in flame retardance.

Claims (12)

下記工程により得られる、繊維基材および熱硬化性組成物からなる絶縁性複合体。
(工程1)繊維基材の片面に、 カルボキシル基または酸無水物基を有する重合体(1)、多価エポキシ化合物(1)、ゴムおよび有機溶剤(1)を含有し、かつ、実質的にフィラーを含有しないワニス(1)を塗工する工程
(工程2)繊維基材の、工程1で塗工する面とは反対の面に、カルボキシル基または酸無水物基を有し、重量平均分子量が15,000〜100,000である重合体(2)、多価エポキシ化合物(2)、フィラーおよび有機溶剤(2)を含有するワニス(2)を塗工する工程
(工程3)有機溶剤(1)および(2)を除去し、繊維基材に支持された熱硬化性組成物を形成する工程
An insulating composite comprising a fiber substrate and a thermosetting composition, obtained by the following steps.
(Step 1) Containing a polymer (1) having a carboxyl group or an acid anhydride group, a polyvalent epoxy compound (1), rubber and an organic solvent (1) on one side of the fiber substrate, and substantially Step of applying varnish (1) not containing filler (Step 2) The fiber base has a carboxyl group or an acid anhydride group on the surface opposite to the surface to be applied in Step 1, and has a weight average molecular weight. Step of applying a varnish (2) containing a polymer (2) having a molecular weight of 15,000 to 100,000, a polyvalent epoxy compound (2), a filler and an organic solvent (2) (step 3) an organic solvent ( Steps for removing 1) and (2) to form a thermosetting composition supported by a fiber substrate
前記重合体(1)が、カルボキシル基または酸無水物基を有する脂環式オレフィン重合体であることを特徴とする請求項1記載の絶縁性複合体。   The insulating composite according to claim 1, wherein the polymer (1) is an alicyclic olefin polymer having a carboxyl group or an acid anhydride group. 前記重合体(2)が、カルボキシル基または酸無水物基を有する脂環式オレフィン重合体であることを特徴とする請求項1または2記載の絶縁性複合体。   The insulating composite according to claim 1 or 2, wherein the polymer (2) is an alicyclic olefin polymer having a carboxyl group or an acid anhydride group. 前記ワニス(2)に含有されるフィラーが、難燃剤であることを特徴とする請求項1〜3のいずれかに記載の絶縁性複合体。   The insulating composite according to any one of claims 1 to 3, wherein the filler contained in the varnish (2) is a flame retardant. 前記繊維基材が、液晶ポリマーの長繊維からなるクロスであることを特徴とする請求項1〜4のいずれかに記載の絶縁性複合体。   The insulating composite according to any one of claims 1 to 4, wherein the fiber base material is a cloth made of long fibers of a liquid crystal polymer. 繊維基材および熱硬化性組成物からなる絶縁性複合体を製造する方法であって、下記工程を有することを特徴とする絶縁性複合体の製造方法。
(工程1)繊維基材の片面に、 カルボキシル基または酸無水物基を有する重合体(1)、多価エポキシ化合物(1)、ゴムおよび有機溶剤(1)を含有し、かつ、実質的にフィラーを含有しないワニス(1)を塗工する工程
(工程2)繊維基材の、工程1で塗工する面とは反対の面に、カルボキシル基または酸無水物基を有し、重量平均分子量が15,000〜100,000である重合体(2)、多価エポキシ化合物(2)、フィラーおよび有機溶剤(2)を含有するワニス(2)を塗工する工程
(工程3)有機溶剤(1)および(2)を除去し、繊維基材に支持された熱硬化性組成物を形成する工程
A method for producing an insulating composite comprising a fiber base material and a thermosetting composition, comprising the following steps.
(Step 1) Containing a polymer (1) having a carboxyl group or an acid anhydride group, a polyvalent epoxy compound (1), rubber and an organic solvent (1) on one side of the fiber substrate, and substantially Step of applying varnish (1) not containing filler (Step 2) The fiber base has a carboxyl group or an acid anhydride group on the surface opposite to the surface to be applied in Step 1, and has a weight average molecular weight. Step of applying a varnish (2) containing a polymer (2) having a molecular weight of 15,000 to 100,000, a polyvalent epoxy compound (2), a filler and an organic solvent (2) (step 3) an organic solvent ( Steps for removing 1) and (2) to form a thermosetting composition supported by a fiber substrate
請求項1〜5のいずれか1項に記載の絶縁性複合体を硬化してなる硬化物。   Hardened | cured material formed by hardening | curing the insulating composite of any one of Claims 1-5. 表面に導体層(1)を有する基板と、請求項7記載の硬化物からなる電気絶縁層とを、積層してなる積層体。   The laminated body formed by laminating | stacking the board | substrate which has a conductor layer (1) on the surface, and the electrically insulating layer which consists of hardened | cured material of Claim 7. 表面に導体層(1)を有する基板上に、請求項1記載の絶縁性複合体を、請求項1記載の工程2で塗工した面を導体層(1)に接するように加熱圧着し、硬化して電気絶縁層を形成することを特徴とする請求項8記載の積層体の製造方法。   On the substrate having the conductor layer (1) on the surface, the insulating composite according to claim 1 is thermocompression-bonded so that the surface coated in step 2 of claim 1 is in contact with the conductor layer (1), The method for producing a laminate according to claim 8, wherein the electrically insulating layer is formed by curing. 請求項8記載の積層体の電気絶縁層上に、さらに導体層(2)を形成してなる多層回路基板。   A multilayer circuit board obtained by further forming a conductor layer (2) on the electrically insulating layer of the laminate according to claim 8. 請求項8記載の積層体の電気絶縁層上に、めっき法により導体層(2)を形成する工程を有する請求項10に記載の多層回路基板の製造方法。   The method for producing a multilayer circuit board according to claim 10, further comprising a step of forming a conductor layer (2) on the electrical insulating layer of the laminate according to claim 8 by a plating method. 請求項10記載の多層回路基板を備える電子機器。   An electronic device comprising the multilayer circuit board according to claim 10.
JP2009505164A 2007-03-14 2008-03-13 Insulating composite, method for producing the same, and use of insulating composite Expired - Fee Related JP5267453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009505164A JP5267453B2 (en) 2007-03-14 2008-03-13 Insulating composite, method for producing the same, and use of insulating composite

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007065761 2007-03-14
JP2007065761 2007-03-14
JP2009505164A JP5267453B2 (en) 2007-03-14 2008-03-13 Insulating composite, method for producing the same, and use of insulating composite
PCT/JP2008/054580 WO2008114674A1 (en) 2007-03-14 2008-03-13 Insulating composite body, method for producing the same, and use of insulating composite body

Publications (2)

Publication Number Publication Date
JPWO2008114674A1 true JPWO2008114674A1 (en) 2010-07-01
JP5267453B2 JP5267453B2 (en) 2013-08-21

Family

ID=39765782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009505164A Expired - Fee Related JP5267453B2 (en) 2007-03-14 2008-03-13 Insulating composite, method for producing the same, and use of insulating composite

Country Status (2)

Country Link
JP (1) JP5267453B2 (en)
WO (1) WO2008114674A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101708934B1 (en) * 2010-07-05 2017-03-08 심천 워트 어드밴스드 머티리얼즈 주식회사 Composition for preparing thermosetting resin, cured product of the composition, prepreg and prepreg laminate having the cured product, and metal clad laminate and printed circuit board having the prepreg or the prepreg laminate
KR101934460B1 (en) * 2011-09-30 2019-01-02 제온 코포레이션 Insulating adhesive film, laminate, cured product, and composite body
JP6156079B2 (en) * 2012-11-13 2017-07-05 三菱瓦斯化学株式会社 Metal-clad laminate and method for producing the same, printed wiring board using the same, and method for producing the same
JP7484422B2 (en) 2020-05-26 2024-05-16 株式会社レゾナック Prepreg, laminate, metal-clad laminate and semiconductor package, and method for manufacturing laminate and metal-clad laminate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336528A (en) * 1993-05-28 1994-12-06 Sumitomo Bakelite Co Ltd Single-copper-clad laminate for printed circuit
JP2002225056A (en) * 2001-01-29 2002-08-14 Sumitomo Bakelite Co Ltd Method for producing composite laminated plate
JP4078818B2 (en) * 2001-08-30 2008-04-23 新神戸電機株式会社 Multilayer circuit board manufacturing method
WO2004086833A1 (en) * 2003-03-27 2004-10-07 Zeon Corporation Printed wiring board, its manufacturing method, and curing resin molded article with support
JP2005264076A (en) * 2004-03-19 2005-09-29 Nippon Zeon Co Ltd Thermosetting slurry and electric insulating film using the same
CN101296977A (en) * 2005-08-26 2008-10-29 日本瑞翁株式会社 Composite resin molded article, laminate, multi-layer circuit board, and electronic device

Also Published As

Publication number Publication date
WO2008114674A1 (en) 2008-09-25
JP5267453B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JPWO2007023944A1 (en) Composite resin molded body, laminate, multilayer circuit board, and electronic device
JPWO2008047583A1 (en) Curable resin composition, composite, molded body, laminate and multilayer circuit board
TWI685289B (en) Method for producing printed wiring board
TWI677528B (en) Thermosetting epoxy resin composition for insulating layer of multilayer printed wiring board, adhesive film for insulating layer of multilayer printed wiring board, and multilayer printed wiring board
JP2010248473A (en) Thermosetting resin composition, and prepreg, laminate and multi-layered printed wiring board using same
JPWO2009038177A1 (en) Curable resin composition and use thereof
KR102414820B1 (en) Method for producing resin sheet
JP2014148562A (en) Curable resin composition, film, prepreg, and cured product
JP5505778B2 (en) Film for multilayer printed circuit boards
JP5267453B2 (en) Insulating composite, method for producing the same, and use of insulating composite
JP2018125378A (en) Dry film, cured product, printed wiring board, and method for manufacturing cured product
JPWO2013001726A1 (en) Prepreg, laminated board, semiconductor package, and laminated board manufacturing method
JP2014133877A (en) Curable resin composition and cured article
WO2014091750A1 (en) Curable resin composition, insulating film, prepreg, cured product, composite, and substrate for electronic material
WO2014148538A1 (en) Curable epoxy composition, film, laminate film, prepreg, laminate body, cured product, and composite body
JP2014120687A (en) Laminated plate, multilayer laminated plate, printed wiring board, multilayer printed wiring board, and method for manufacturing laminated plate
JP5256819B2 (en) Composite resin molded body, laminate and multilayer circuit board
JP2009188163A (en) Insulating film with multilayer printed wiring board supporter, multilayer printed wiring board, and method of manufacturing same
JP2007273616A (en) Manufacturing method for multilayer printed circuit board
TW201127900A (en) Resin composition
JP2009226791A (en) Curable resin molded product for insulator layers, and use thereof
JP2010084026A (en) Curable resin composition
JP2013055301A (en) Manufacturing method of multilayer printed wiring board
JP5729167B2 (en) Resin composition, film, laminate, cured product, and composite
JP2008182146A (en) Multi-layer circuit board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Ref document number: 5267453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees