JPWO2008099872A1 - Icモジュールシステム - Google Patents

Icモジュールシステム Download PDF

Info

Publication number
JPWO2008099872A1
JPWO2008099872A1 JP2008558112A JP2008558112A JPWO2008099872A1 JP WO2008099872 A1 JPWO2008099872 A1 JP WO2008099872A1 JP 2008558112 A JP2008558112 A JP 2008558112A JP 2008558112 A JP2008558112 A JP 2008558112A JP WO2008099872 A1 JPWO2008099872 A1 JP WO2008099872A1
Authority
JP
Japan
Prior art keywords
module
wiring
power source
distributed
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008558112A
Other languages
English (en)
Inventor
三浦 貞彦
貞彦 三浦
森 透
透 森
浩一 竹村
浩一 竹村
岩佐 繁之
繁之 岩佐
入山 次郎
次郎 入山
雄樹 草地
雄樹 草地
森岡 由紀子
森岡  由紀子
中原 謙太郎
謙太郎 中原
須黒 雅博
雅博 須黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2008099872A1 publication Critical patent/JPWO2008099872A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Power Sources (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

ICモジュールシステムは、直流主電源の両端にそれぞれ接続される第1及び第2の主配線と、ICモジュールと、ICモジュールに接続されている第1及び第2のモジュール配線と、直流主電源とは別個に設けられ、有機ラジカル電池を備える分散直流電源と、分散直流電源の両端にそれぞれ接続されている第1及び第2の分散配線と、を有する。第1の主配線は、第1のモジュール配線と第1の分散配線とに接続する。第2の主配線は、第2のモジュール配線と第2の分散配線とに接続する。

Description

本発明は、直流電力が供給されて動作するIC(集積回路)モジュールを備えるICモジュールシステムに関し、特に、充放電可能な二次電池からなる分散電源を備えるICモジュールシステムに関する。
半導体集積回路は、一般に、直流電源から供給される電力によって動作する。特定の機能を実現するために、例えばCPU(中央処理ユニット)やメモリICなどのいくつかの半導体集積回路を組み合わせて使用することもある。そこで、1または複数の半導体集積回路からなって一体のものとして構成されたものをICモジュールと呼ぶ。
近年、ICモジュールにおける実装の高密度化、高集積化が進んでおり、それとともに、ICモジュール内に含まれる、例えばメモリやCPUにおける微細化、高集積化も進んでいる。これらの技術の進展に伴い、ICモジュールに動作電源として印加される電圧に関し、以下の式(A1)に示すような電圧変動ΔVが問題となってきており、電圧変動ΔVを所定値以下に抑えることが求められている。
Figure 2008099872
ここでΔRは抵抗変動であり、ΔCは容量変動であり、iは電流を示し、tは時間を示している。このような電源電圧の変動は、現象としては、停電等によって電力供給が途絶えることと類似している。
SRAM(スタティック型ランダムアクセスメモリ)等の揮発性メモリにおいては、停電等によって電力供給が途絶すると、そのメモリに蓄積されているデータが消失する。このようなデータ消失を防止するために、メモリに近接して補助電源を設けて停電時にはその補助電源からの電力をメモリに供給することが行われている。補助電源としては電池やコンデンサなどの蓄電デバイスを使用することが一般的である。例えば、特開平2−128209号公報(特許文献1)には、揮発性メモリでのデータ消失の問題を解決するために、揮発性メモリと並列に電気二重層コンデンサを配置することが記載されている。特開2005−18825号公報(特許文献2)には、揮発性メモリと並列に、ニッケル水素電池あるいはリチウムイオン電池を配置することが記載されている。特開平5−89260号公報(特許文献3)には、集積回路チップをデュアルインライン型のパッケージに封止する場合に、そのパッケージにボタン型のリチウム一次電池を受け入れるソケットを設け、ソケットに装着された電池からの電力によって集積回路チップ内のメモリ回路のバックアップを行うことが記載されている。
ところで、SRAM等の揮発性メモリにおいてデータ保持に必要な電流は小さく、1Mビット程度の記憶容量のメモリでは、データ保持に必要な電流は高々数μA〜数十μAである。そのため、メモリバックアップの用途には、電気二重層コンデンサのように容量の小さな蓄電デバイス、あるいは、ニッケル水素電池、リチウムイオン電池のように出力電流値の小さな蓄電デバイスでも対応が可能であった。
しかしながら式(A1)で問題となっていることは、ICモジュールに印加される電圧の変動である。例えば、ICモジュールに含まれるCPUは、駆動時に十数mA〜数十mAの電流が必要であり、補助電源として高出力特性を有するものを必要とする。一方、比較的長時間(数10秒〜数分)にわたる電圧変動に対しては、補助電源として高容量特性を有するものであることが必要とされる。特開平2−128209号公報で示された電気二重層キャパシタは、CPUなどを含むICモジュールに対する補助電源として用いるには容量が小さい、という課題を有する。また、特開2005−18825号公報で示されたニッケル水素電池、リチウムイオン電池は、出力電流値が低すぎる、すなわち高出力特性を有しない、という課題を有する。同様に、特開平5−89260号公報に記載された構成も、小型のリチウム一次電池を使用するので、容量の点でも出力電流値の点でも不十分である。
特開平2−128209号公報 特開2005−18825号公報 特開平5−89260号公報 特開2002−151084号公報 特開2002−304996号公報
電圧変動に対してICモジュールに一定電圧を供給するために、補助電源として以下の性能を有することが要求される:
(1)十数mA〜数十mAの出力電流を数十秒〜数分間にわたって供給可能であり、その際に出力電圧は一定である;
(2)ICモジュールとともに実装するために、補助電源の厚さとしては望ましくは2mm以下である。
そこで本発明の目的は、ICモジュールを有するICモジュールシステムであって、ICモジュールに電力を供給する電源の電圧変動を吸収してICモジュールに対して一定電圧を供給可能な補助電源を備えたICモジュールシステムを提供することにある。
本発明の目的は、直流主電源の両端に対してそれぞれ接続される第1及び第2の主配線と、ICモジュールと、ICモジュールに直流電力を供給するためにICモジュールに接続されている第1及び第2のモジュール配線と、直流主電源とは別個に設けられ、有機ラジカル電池を備える分散直流電源と、分散直流電源の両端にそれぞれ接続されている第1及び第2の分散配線と、を有し、第1の主配線と第1のモジュール配線が接続され、第1の主配線と第1の分散配線が接続され、第2の主配線と第2のモジュール配線が接続され、第2の主配線と第2の分散配線が接続されている、ICモジュールシステムによって達成される。
本発明によれば、直流主電源から直流電力が供給されるとともにICモジュールと補助電源とを備えるICモジュールシステムにおいて、補助電源すなわち分散直流電源として有機ラジカル電池を使用することにより、直流主電源側での電圧変動によらず、長時間にわたってICモジュールに大電流で一定電圧を供給できるようになる。
本発明の一例示実施形態のICモジュールシステムの構成を示す回路図である。 本発明の別の例示実施形態のICモジュールシステムの構成を示す回路図である。 薄型有機ラジカル電池の斜視図である。 薄型有機ラジカル電池の内部構成を示す分解斜視図である。 実施例1のICモジュールシステムを示す斜視図である。 実施例2のICモジュールシステムを示す斜視図である。 実施例3のICモジュールシステムを示す斜視図である。 実施例4のICモジュールシステムを示す断面図である。 実施例5のICモジュールシステムを示す断面図である。
本発明の基本的な例示実施形態において、ICモジュールシステムは、直流主電源の両端に対してそれぞれ接続される第1及び第2の主配線と、ICモジュールと、ICモジュールに直流電力を供給するためにICモジュールに接続されている第1及び第2のモジュール配線と、直流主電源とは別個に設けられ、有機ラジカル電池を備える分散直流電源と、分散直流電源の両端にそれぞれ接続されている第1及び第2の分散配線と、を有する。そしてこのICモジュールシステムでは、第1の主配線と第1のモジュール配線が接続され、第1の主配線と第1の分散配線が接続され、第2の主配線と第2のモジュール配線が接続され、第2の主配線と第2の分散配線が接続されている。
すなわちこの基本的な例示実施形態のICモジュールシステムは、直流主電源から直流電力が供給されるとともにICモジュールと補助電源とを備えるICモジュールシステムにおいて、補助電源すなわち分散直流電源として、2mm以下の厚さとすることが可能であり、かつ充放電が可能な有機ラジカル電池を使用することを特徴とする。このようなICモジュールシステムで用いられる有機ラジカル電池は、活物質である有機ラジカル化合物の酸化還元反応を用いる電池である。例示実施形態で用いることが可能な有機ラジカル電池の例として、特開2002−151084号公報(特許文献4)には、ニトロキシドラジカル化合物、アリールオキシラジカル化合物及び特定のアミノトリアジン構造を有する高分子化合物などのラジカル化合物を正極材料として用いる有機ラジカル電池が開示されている。また、例示実施形態では、特開2002−304996号公報(特許文献5)に記載された有機ラジカル化合物の酸化還元反応を用いる電池を用いることもできる。特開2002−304996号公報に記載された電池では、ニトロキシル高分子と炭素(導電付与剤)を混合した正極が用いられている。
このような有機ラジカル電池を用いることで、薄型軽量であり、ICモジュール用の電圧安定化補助電源として、高出力電流かつ高容量のものを提供することができる。有機ラジカル電池は短時間での充電も可能であり、ICモジュール用の補助電源としては最適である。
基本的な例示実施形態のICモジュールシステムでは、例えば、配線基板にICモジュールと有機ラジカル電池すなわち分散補助電源とを実装する。その際、配線基板における有機ラジカル電池とICモジュールとの配置については、種々のものが考えられる。例えば、(a)両者を同一の配線基板において相互に接近させて配置する構成、(b)両者を同一の配線基板上に設けるとともに、ICモジュールを取り囲むように有機ラジカル電池を配置する構成、(c)ICモジュールは配線基板上に配置し、有機ラジカル電池は配線基板内に埋め込んでおく構成、(d)ICモジュール及び有機ラジカル電池の双方を配線基板内に埋め込んでおく構成、などを考えることができる。
以下、本発明に基づく例示実施形態のICモジュールシステムについて、さらに詳しく説明する。図1及び図2は、いずれも本発明に基づくICモジュールシステムの構成の例を示す回路図である。図1は、直流分散電源すなわち補助電源として用いられる有機ラジカル電池の充電電圧がICモジュールの電源電圧と一致する場合の構成例を示している。図2は、ICモジュールの電源電圧と有機ラジカル電池の充電電圧が異なる場合、あるいは、有機ラジカル電池への充電経路が異なる場合の構成例を示している。充電経路が異なる場合としては、例えば、有機ラジカル電池に対して別電源からの定電流充電を行う場合がある。
図1に示す構成では、ICモジュール10に対して主電源11すなわち直流主電源から直流電力を供給するようになっており、補助電源すなわち分散直流電源として、有機ラジカル電池12が設けられている。直流電力を供給する主電源11の負側端子は接地されており、主電源10の正側端子とノード13との間に、主電源11の側がアノードとなるように、ダイオードD1が挿入されている。ICモジュール10の1対の電源端子のうち、正側の電源端子はノード13に接続し、負側の電源端子は接地されている。有機ラジカル電池12の負極は接地され、正極はダイオードD2を介してノード13に接続している。ダイオードD2は、有機ラジカル電池12側がアノードとなっている。さらに、ダイオードD2に対して並列に抵抗R1が設けられている。
図1に示す回路では、主電源11からダイオードD1を介してICモジュール10に電源が供給されるとともに、抵抗R1を介して有機ラジカル電池12が充電されるようになっている。有機ラジカル電池12は、主電源11に電圧変動が発生した場合に、ICモジュール10への電力供給のバックアップをダイオードD2及びノード13を介して行うものである。有機ラジカル電池12においてはその充電経路と放電経路が異なっており、放電経路には、ダイオードD2のみを挿入することにより、大電流の放出が可能となるとともに、有機ラジカル電池12へ回り込む過電流を抑制することが可能となる。有機ラジカル電池12の充電経路は、主電源11からダイオードD1及び抵抗R1を経由するものであって、抵抗R1が設けられていることにより、過度に充電電流が大きくなることが防がれている。ダイオードD1は、主電源11が非動作状態となったときに、有機ラジカル電池12に蓄えられている直流電力が主電源11側に流れ込むのを防ぐ。
図2に示す構成は、主電源11とICモジュール10の間、及び有機ラジカル電池11とICモジュール10の間に、ダイオードではなくスイッチトランジスタを配するとともに、副電源18から有機ラジカル電池12を充電するようにしたものである。主電源11の負側端子は接地されており、主電源11の正側端子とノード15との間に、MOS(金属−酸化物−半導体)トランジスタによるスイッチSW2が挿入されている。ICモジュール10の1対の電源端子のうち、正側の電源端子はノード15に接続し、負側の電源端子は接地されている。有機ラジカル電池12の負極は接地され、正極は、抵抗R2の一端に接続する。抵抗R2の他端は、ダイオードD3のカソードに接続するとともに、MOSトランジスタによるスイッチSW1を介してノード15に接続している。ダイオードD3のアノードは副電源18に接続している。ICモジュール10に対して並列に、すなわちノード15と接地点との間に、コンデンサC1が設けられている。スイッチSW2と主電源11からの配線の接続点をノード17とすると、ノード17の電圧、すなわちノード17と接地電位との間の電圧を検出して制御信号を出力する電圧検出器16が設けられており、電圧検出器16からの出力信号(制御信号)はスイッチSW2のゲートに印加されるとともに、インバータ14を介してスイッチSW1のゲートに印加される。
図2に示す回路では、電圧検出器16は、ノード17において主電源11の電圧を監視しており、その電圧が規定の電圧値の範囲に入っているかどうかをチェックする。規定の電圧範囲内であれば、電圧検出器16は、出力信号として“1”を出力し、規定の電圧範囲外であれば、“0”を出力する。出力信号が“1”の場合、スイッチSW2は導通状態に、またインバータ14を介してスイッチSW1は遮断状態となる。それにより、主電源11からの直流電圧がICモジュール10に印加される。一方、出力信号が“0”の場合、スイッチSW2は遮断状態に、スイッチSW1は導通状態となるから、それにより、有機ラジカル電池12からの直流電圧が抵抗R2を介してICモジュール10に印加されることになる。図2に示す回路では、有機ラジカル電池12に対する充電が別系統で行われるため、有機ラジカル電池12の急速充電が可能となり、電流の大きな変動に対して耐えられるシステムを構築することができる。
以下、図1及び図2に示した回路で用いられている各構成要素について詳しく説明する。
[薄型有機ラジカル電池]
図1及び図2に示したICモジュールシステムにおいては、有機ラジカル電池12として、薄型有機ラジカル電池を使用することが好ましい。そこで、薄型有機ラジカル電池について説明する。図3及び図4は薄型有機ラジカル電池の構成の一例を説明するための図である。
薄型有機ラジカル電池は、その厚さが0.7mm以下である薄型の有機ラジカル電池のことである。薄型有機ラジカル電池は、その基本構成において、安定ラジカル化合物を正極活物質としたラジカル正極202と、多孔質ポリプロピレンやセルロースなどからなるセパレータ203と、金属リチウムなどからなる負極204と、正極202に接続された正極リード205と、負極204に接続された負極リード206と、電解液と、これらを封止する外装用フィルム201と、を備えている。外装用フィルム201としては、水蒸気透過性の低いアルミニウムラミネートフィルムなどが使用される。以下、薄型有機ラジカル電池を構成する各要素について説明する。
ラジカル正極:
ラジカル正極202における正極活物質として、還元状態において式(I)で表わされるニトロキシドラジカルを部分構造として分子中に有し、酸化状態において式(II)で表わされるオキソアンモニウム(ニトロキシドカチオン)を部分構造として分子中に有する、ニトロキシドラジカルポリマーを用いることができる。
Figure 2008099872
これらのニトロキシドラジカルポリマーの代表的な構造の例を下記に示す。
Figure 2008099872
ニトロキシドラジカルポリマーの分子量は、500以上であることが好ましく、さらには5000以上であることがより好ましい。これは、分子量が500以上であると電池用電解液に溶解しづらくなり、さらに分子量5000以上になるとほぼ不溶となるからである。重合体における分子の結合形状は、鎖状、分岐状、網目状のいずれであってもよい。また、架橋剤で架橋したような構造であってもよい。
また、ニトロキシドラジカルポリマーは、単独で用いることができるが、二種類以上のポリマーを組み合わせて用いてもよい。また、他の活物質と組み合わせて用いてもよい。
また、ニトロキシドラジカルポリマーを用いて電極を形成する場合に、インピーダンスを低下させる目的で、導電付与剤あるいは導電補助剤を混合させることもできる。導電付与剤の材料としては、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子が挙げられる。
また、ニトロキシドラジカルポリマーと導電付与剤との結びつきを強めるために、結着剤を用いることもできる。このような結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、各種ポリウレタン等の樹脂バインダーが挙げられる。
ラジカル正極は、正極集電体上に形成することができ、正極集電体としては、例えば、ニッケルやアルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等からなる箔、金属平板などを用いることができる。
負極:
負極204としては、リチウム金属やリチウム合金を用いることができる。これらの形状としては特に限定されるものではなく、例えば、薄膜状、粉末を固めたもの、繊維状のもの、フレーク状のもの等であってもよい。また、これらの負極活物質を単独、もしくは組み合わせて使用できる。
負極の各構成材料間の結びつきを強めるために、結着剤を用いることもできる。このような結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、部分カルボキシ化セルロース、各種ポリウレタン等が挙げられる。
負極としては、例えば、ニッケルやアルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等からなる箔、金属平板などの上に形成されたものを用いることができる。
電解質:
電解質は、負極204と正極202の両極間の荷電担体輸送を行うものであり、一般には、20℃で10−5〜10−1S/cmのイオン伝導性を有していることが好ましい。電解質としては、例えば、電解質塩を溶剤に溶解した電解液を利用することができる。電解質塩として、例えば、LiPF、LiClO、LiBF、LiCFSO、Li(CFSON、Li(CSON、Li(CFSOC、Li(CSOC等の従来から公知の材料を用いることができる。
電解液に溶剤を用いる場合、溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン等の有機溶媒を用いることができる。これらの溶剤を単独もしくは2種類以上混合して用いることもできる。
さらに、電解質として固体電解質を用いることもできる。固体電解質に用いられる高分子化合物としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−モノフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体や、アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−メチルアクリレート共重合体、アクリロニトリル−エチルメタクリレート共重合体、アクリロニトリル−エチルアクリレート共重合体、アクリロニトリル−メタクリル酸共重合体、アクリロニトリル−アクリル酸共重合体、アクリロニトリル−ビニルアセテート共重合体等のアクリルニトリル系重合体、さらにポリエチレンオキサイド、エチレンオキサイド−プロピレンオキサイド共重合体、これらのアクリレート体やメタクリレート体の重合体などが挙げられる。これらの高分子化合物に電解液を含ませてゲル状にしたものを用いても、高分子化合物のみをそのまま用いてもよい。
セパレータ:
ラジカル正極と負極とが相互に接触しないように、例えば、ポリエチレン、ポリプロピレン等からなる多孔質フィルム、セルロース膜、不織布などのセパレータ203を用いることもできる。
電池形状:
例示実施形態において、薄型有機ラジカル電池の形状は特に限定されるものではなく、二次電池として従来から公知のものを用いることができる。電池形状としては、例えば、円筒型、角型、コイン型、およびシート型等が挙げられる。このような電池は、上述した正極、負極、電解質、セパレータなどを電極積層体あるいは巻回体とし、そのような電極積層体あるいは巻回体を金属ケース、樹脂ケース、あるいはアルミニウム箔などの金属箔と合成樹脂フィルムからなるラミネートフィルム等によって封止することによって作製される。しかしながら、例示実施形態における電池の形状はこれらに限定されるものではない。薄くしやすいという観点から、電池形状は、ラミネートフィルムによって封止されたシート型等とすることが好ましい。
(薄型有機ラジカル電池の作製例)
次に、薄型有機ラジカル電池の作製例について説明する。
Figure 2008099872
微粉化した上記式(1)で表されるポリラジカル化合物1.68g、炭素粉末0.6g、カルボキシメチルセルロース(CMC)96mg、ポリテトラフルオロエチレン(PTFE)24mgと水7.2mLをホモジナイザーにて攪拌し、均一なスラリー状に調整した。このスラリーを電極作製用コーターにて、アルミニウム箔(厚さ20μm)上に塗布し、さらに80℃で3分間乾燥し、厚さ50μmのラジカル正極層を形成した。
次に、このようにして得られた正極を20×20mmの正方形の形状に打ち抜いた。この正極のアルミニウム箔面に、長さ3cm、幅0.5mmのニッケルリードを溶接した。また、リチウム張り合わせ銅箔(リチウム厚30μm)を正極同様に20×20mmの正方形の形状に打ち抜いて金属リチウム負極とし、長さ3cm、幅0.5mmのニッケルリードを銅箔面に溶接した。正極、25×25mmの大きさの正方形の多孔質ポリプロピレンセパレータ、負極の順に、ラジカル正極層と金属リチウム負極とを対峙する向きで重ね合わせ、ニッケルリード付電極対とした。
2枚の熱融着可能なアルミニウムラミネートフィルムの三方を熱融着することにより袋状のケースとし、ニッケルリード付電極対を入れた。各アルミニウムラミネートフィルムの寸法は、縦40mm×横40mm×厚さ0.76mmであった。電解液[1.0mol/LのLiPF電解質塩を含むエチレンカーボネート/ジエチルカーボネート混合溶液(混合比3:7)]をアルミニウムラミネートフィルムケースの中に0.5cc入れた。この際、ニッケルリード付電極のニッケルリードの端を1cm外に出し、アルミニウムラミネートフィルムケースの未溶着の一辺を熱融着した。これにより、電極と電解液をアルミニウムラミネートフィルムケース中に完全に密閉した。
以上のようにして、外形寸法が縦40mm×横40mm×厚さ0.4mmである薄型有機ラジカル電池を作製した。この電池を100mAで30秒充電した後に、0.1mAの定電流で放電した。その結果、平均電圧3.5Vで5時間放電を行うことができた。すなわち、有機ラジカル電池に蓄えられるエネルギー量として、1.8mWhが達成された。
上述したICモジュールシステムについて、実施例によりさらに詳しく説明する。
(実施例1)
図5は、実施例1のICモジュールシステムを示す図であり、有機ラジカル電池の配置の概略を示している。ICモジュール10と有機ラジカル電池12との距離を短くすることにより、ICモジュール10への印加電圧の変動を小さくすることが可能となる。そのため、ICモジュール10と有機ラジカル電池12との距離は、ICモジュール10と有機ラジカル電池12とが最も近接している位置における両者の間隔で表して、10mm以下とすることが望ましい。また、CPU、LSI(大規模集積回路)、メモリチップなどのICモジュール10と有機ラジカル電池12とを同一の基板上に実装することが望ましく、そのために、有機ラジカル電池12の厚さは1mm以下であることが望ましい。例えば、配線基板の一方の表面に、ICモジュール10と有機ラジカル電池12とを配置する。
図5に示すものでは、ICモジュール10、有機ラジカル電池12及び主電源11の相互の結線の形態として、図1に示すようにダイオードD1と抵抗R1とが挿入されているものを採用したが、充電用の電源すなわち副電源を主電源11から分離させる図2に示したような結線を採用してもよい。
(実施例2)
図6は、実施例2のICモジュールシステムを示す図であり、有機ラジカル電池の配置の概略を示している。ICモジュール10の近傍に有機ラジカル電池12を配置し、ICモジュール10と有機ラジカル電池12との距離を短くすることにより、ICモジュール10への印加電圧の変動を小さくすることが可能となる。そのため上述と同様に、ICモジュール10と有機ラジカル電池12との距離は、ICモジュール10と有機ラジカル電池12とが最も近接している位置における両者の間隔で表して、10mm以下とすることが望ましい。有機ラジカル電池12の容量を増加させ、内部抵抗を減少させ、さらに、ICモジュールとの配線抵抗の影響や、放熱の影響を低減させるために、ICモジュール10の少なくとも2辺を取り囲むように、有機ラジカル電池12を配置する。すなわち、ICモジュール10の平面形状が正方形または長方形であるとして、有機ラジカル電池12の形状を、例えば、L字型としたり、長方形の3辺に沿う形状としたり、正方形の4辺に沿う形状とする。シート型の有機ラジカル電池は、任意の平面形状のものとして製造することができるため、ICモジュールを囲むように配置するのに適している。CPU、LSI、メモリチップなどのICモジュール10と有機ラジカル電池12とを同一の基板上に実装することが望ましく、そのために、有機ラジカル電池12の厚さは1mm以下であることが望ましい。例えば、配線基板の一方の表面に、ICモジュール10と有機ラジカル電池12とを配置する。
図6に示すものでは、ICモジュール10、有機ラジカル電池12及び主電源11の相互の結線の形態として、図1に示すようにダイオードD1と抵抗R1とが挿入されているものを採用したが、充電用の電源すなわち副電源を主電源11から分離させる図2に示したような結線を採用してもよい。
(実施例3)
図7は、実施例3のICモジュールシステムの概略の構成を示している。この例では、ICモジュール10と有機ラジカル電池12との距離を短くするために、配線基板20の一方の主面にLSIを含むICモジュール10を実装し、配線基板20の他方の主面に有機ラジカル電池12を実装する。ICモジュール10の電源入力端子と有機ラジカル電池の端子とは、配線基板20に設けた貫通スルーホールないしビアを通じて電気的に接続される。これによりICモジュール10と有機ラジカル電池12との距離、あるいはこれらの間の配線長を、配線基板20の厚さと同等のものにすることができる。
(実施例4)
図8は、実施例4のICモジュールシステムの概略の構成を示している。この例では、ICモジュール10と有機ラジカル電池12との距離を短くするために、配線基板20の一方の主面にLSIを含むICモジュール10を実装し、配線基板20の他方の主面には、ザグリ加工によって凹部(キャビティ)21を設け、凹部21内に有機ラジカル電池12を実装する。この場合、有機ラジカル電池12の少なくとも一部の表面は、外部に対して露出している。ICモジュール10の電源入力端子と有機ラジカル電池12の端子とは、実施例3の場合と同様に、配線基板20に設けた貫通スルーホールないしビアを通じて電気的に接続される。これによりICモジュール10と有機ラジカル電池12との距離、あるいはこれらの間の配線長を、配線基板20の厚さよりも小さくすることができる。
なお、配線基板20の表面、つまりICモジュール10と同一面でかつ実施例2で示した有機ラジカル電源の配置に対応する位置にザグリ加工によって凹部を設け、その凹部に有機ラジカル電池を実装する構造であっても構わない。その場合、ICモジュールの電源端子と有機ラジカル電池の端子とは、表層配線もしくはビアを介した表層配線によって電気的に接続される。
(実施例5)
図9は、実施例5のICモジュールシステムの概略の構成を示している。この例では、ICモジュール10と有機ラジカル電池12との距離を短くするために、配線基板20の内部に有機ラジカル電池12を埋め込んでいる。有機ラジカル電池は薄く形成することが可能なので、配線基板の厚さよりも薄くして配線基板内に埋め込むことが可能である。
有機ラジカル電池12を配線基板20内に内蔵する方法は、配線基板20にザグリ加工を行って凹部を形成し、その凹部内に有機ラジカル電池12を実装した後に封止樹脂で封止する方法を用いることができる。配線基板20が多層基板である場合には、配線基板のコア基板に有機ラジカル電池12を実装し、その後、1枚ないし複数枚のビルドアップ樹脂を積層・圧着する方法や、コア基板にザグリ加工により形成した凹部に有機ラジカル電池を実装した後に、1枚ないし複数枚のビルドアップ樹脂をその凹部内に積層する方法を用いて構わない。
ICモジュール10の電源入力端子と有機ラジカル電池12の端子とは、配線基板20に設けたビアを通じて電気的に接続される。ICモジュール10と有機ラジカル電池12との距離をできるだけ小さくするためには、有機ラジカル電池12を配線基板20内においてICモジュール10の直下の位置に配置することが効果的であるが、ICモジュール10に含まれるLSIの消費電力が大きい場合には、動作時の発熱が大きくなり、ひいては有機ラジカル電池12の温度も上昇するためにそのような配置は好ましくはない。しかしながら、LSIの消費電力がそれほど大きくない場合には、有機ラジカル電池12をICモジュール10の直下に置くことも可能である。
以上、例示実施形態及び実施例を参照して本発明を説明したが、本発明は上記の実施形態及び実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2007年2月14日に出願された日本国特許出願:特願2007−33341を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (13)

  1. 直流主電源の両端に対してそれぞれ接続される第1及び第2の主配線と、
    ICモジュールと、
    前記ICモジュールに直流電力を供給するために前記ICモジュールに接続されている第1及び第2のモジュール配線と、
    前記直流主電源とは別個に設けられ、有機ラジカル電池を備える分散直流電源と、
    前記分散直流電源の両端にそれぞれ接続されている第1及び第2の分散配線と、
    を有し、
    前記第1の主配線と前記第1のモジュール配線が接続され、前記第1の主配線と前記第1の分散配線が接続され、前記第2の主配線と前記第2のモジュール配線が接続され、前記第2の主配線と前記第2の分散配線が接続されている、ICモジュールシステム。
  2. 前記第1の主配線と前記第1の分散配線とは、前記直流主電源への逆方向の電流を阻止するダイオードを介して接続されている、請求項1に記載のICモジュールシステム。
  3. 前記第1の主配線と前記第1の分散配線とは、トランジスタを介して接続されている、請求項1に記載のICモジュールシステム。
  4. 前記直流主電源とは別個に設けられ、前記分散直流電源を充電する副電源をさらに有する請求項3に記載のICモジュールシステム。
  5. 前記第1の主配線と前記第1のモジュール配線とは、トランジスタを介して接続されている、請求項1乃至3のいずれか1項に記載のICモジュールシステム。
  6. 前記第1の主配線と前記第2の主配線との間の電圧を検出して前記トランジスタのゲートを制御する電圧検出器をさらに備える、請求項3乃至5のいずれか1項に記載のICモジュールシステム。
  7. 前記直流分散電源は扁平な形状を有して厚みが2mm以下である、請求項1乃至6のいずれか1項に記載のICモジュールシステム。
  8. 前記直流分散電源と前記ICモジュールとが最も近接している位置における前記直流分散電源と前記ICモジュールとの間隔が10mm以下である、請求項1乃至7のいずれか1項に記載のICモジュールシステム。
  9. 前記直流分散電源と前記ICモジュールとが同一面内に配置されている、請求項1乃至8のいずれか1項に記載のICモジュールシステム。
  10. 前記ICモジュールの周囲の半分以上を取り囲むように前記直流分散電源が配置されている、請求項9に記載のICモジュールシステム。
  11. 前記直流分散電源が配線基板の一方の主面に実装され、前記ICモジュールが前記配線基板の他方の主面に実装されている、請求項1乃至8のいずれか1項に記載のICモジュールシステム。
  12. 前記直流分散電源が配線基板に形成されたキャビティー内に実装され、前記直流分散電源の一部が露出している、請求項1乃至8のいずれか1項に記載のICモジュールシステム。
  13. 前記直流分散電源が配線基板の内部に配置され、前記直流分散電源の端子が、前記配線基板に形成されたビアを介して、前記基板の表面に形成されている端子または配線に接続されている、請求項1乃至8のいずれか1項に記載のICモジュールシステム。
JP2008558112A 2007-02-14 2008-02-14 Icモジュールシステム Pending JPWO2008099872A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007033341 2007-02-14
JP2007033341 2007-02-14
PCT/JP2008/052415 WO2008099872A1 (ja) 2007-02-14 2008-02-14 Icモジュールシステム

Publications (1)

Publication Number Publication Date
JPWO2008099872A1 true JPWO2008099872A1 (ja) 2010-05-27

Family

ID=39690099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008558112A Pending JPWO2008099872A1 (ja) 2007-02-14 2008-02-14 Icモジュールシステム

Country Status (2)

Country Link
JP (1) JPWO2008099872A1 (ja)
WO (1) WO2008099872A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137251B2 (ja) * 2008-09-18 2013-02-06 フマキラー株式会社 送風式薬剤放散装置
JP5137253B2 (ja) * 2008-09-25 2013-02-06 フマキラー株式会社 送風式の薬剤放散装置
TWI460963B (zh) * 2011-09-05 2014-11-11 Delta Electronics Inc 具適應性電能控制之太陽光伏發電系統及其操作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260435A (ja) * 1988-08-25 1990-02-28 Toshiba Corp バックアップ電源装置
JP2924583B2 (ja) * 1993-06-30 1999-07-26 日本電気株式会社 素子分離型複合マイクロ波回路モジュール
JP3547423B2 (ja) * 2000-12-27 2004-07-28 松下電器産業株式会社 部品内蔵モジュール及びその製造方法
JP2005018825A (ja) * 2003-06-23 2005-01-20 Renesas Technology Corp 半導体記憶装置
JP2006166577A (ja) * 2004-12-07 2006-06-22 Ricoh Co Ltd 電源供給制御方法及び電源装置
JP2007037291A (ja) * 2005-07-27 2007-02-08 Nec Corp 自動車用蓄電システム

Also Published As

Publication number Publication date
WO2008099872A1 (ja) 2008-08-21

Similar Documents

Publication Publication Date Title
US11450857B2 (en) Current collector with insulating substrate and conductive layer, electrode plate using the same, and electrode assembly using the same
TW496002B (en) Charging method for charging nonaqueous electrolyte secondary battery
US20130224551A1 (en) Apparatus and Associated Methods
US20060078797A1 (en) Lithium ion battery and methods of manufacture
US8974966B2 (en) Negative electrode for lithium rechargeable battery and lithium rechargeable battery adopting the same
US20220336820A1 (en) Non-aqueous electrolyte secondary battery, collector, and method for manufacturing non-aqueous electrolyte secondary battery
JPH11345604A (ja) リチウム2次電池及び電池モジュール
JP2979963B2 (ja) 二次電池
KR20080081297A (ko) 리튬이온 커패시터
KR20140032577A (ko) 리튬 박막을 삽입한 실리콘계 음극활물질 전극 및 이의 제조방법 및 이를 구비한 리튬이차전지
EP2850678B1 (en) An apparatus and associated methods
JP2004355823A (ja) ハイブリッド型蓄電部品
KR20190017275A (ko) 배터리 모듈 및 배터리 모듈의 제조 방법
JP2002100411A (ja) 電池パック
TWI534845B (zh) 裝置及其相關聯方法
US20140315084A1 (en) Method and apparatus for energy storage
JPWO2008099872A1 (ja) Icモジュールシステム
US20160028048A1 (en) Lithium battery and method of manufacturing the same
JPH11274735A (ja) 多層印刷配線板
US20230079429A1 (en) Secondary battery
JP2003257393A (ja) 電気化学デバイス
KR102028677B1 (ko) 그래핀 전극을 적용한 적층형 리튬 이온 커패시터
JP2001256936A (ja) 電池パック
JPH11121040A (ja) リチウム二次電池
WO2021145345A1 (ja) 非水電解質二次電池、集電体、及びこれらの製造方法