JPWO2006106973A1 - 光通信方法、光通信装置、及び光通信システム - Google Patents

光通信方法、光通信装置、及び光通信システム Download PDF

Info

Publication number
JPWO2006106973A1
JPWO2006106973A1 JP2007511205A JP2007511205A JPWO2006106973A1 JP WO2006106973 A1 JPWO2006106973 A1 JP WO2006106973A1 JP 2007511205 A JP2007511205 A JP 2007511205A JP 2007511205 A JP2007511205 A JP 2007511205A JP WO2006106973 A1 JPWO2006106973 A1 JP WO2006106973A1
Authority
JP
Japan
Prior art keywords
optical
signal
line
node
optical communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007511205A
Other languages
English (en)
Other versions
JP4844558B2 (ja
Inventor
吉隆 横山
吉隆 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007511205A priority Critical patent/JP4844558B2/ja
Publication of JPWO2006106973A1 publication Critical patent/JPWO2006106973A1/ja
Application granted granted Critical
Publication of JP4844558B2 publication Critical patent/JP4844558B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0238Wavelength allocation for communications one-to-many, e.g. multicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/028WDM bus architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/062Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers
    • H04J3/0626Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers plesiochronous multiplexing systems, e.g. plesiochronous digital hierarchy [PDH], jitter attenuators
    • H04J3/0629Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers plesiochronous multiplexing systems, e.g. plesiochronous digital hierarchy [PDH], jitter attenuators in a network, e.g. in combination with switching or multiplexing, slip buffers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0045Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

高速回線を複数の低速回線に分割して伝送を行うインバースマトリックス伝送において、信号伝送の長距離化のために設けた複数のノードでの波長入替の制御に関し、隣接するノード間に発生する最大スキーを測定し、測定した最大スキューに基づいて1つ又は複数のノードにおいて波長チャネルの入替を行って、インバースマックス伝送系全体のスキューを所定値以下とする。また、光通信装置には、伝送路側の高速回線が接続されたNNI機能ブロックと、クライアント側の低速配線が接続されたUNI機能ブロックを設ける。

Description

本発明は、波長分割多重(WDM(Wavelength Division Multiplexing)を利用したインバースマックス(Inverse MUX)伝送を行う光通信方法、クロスコネクト機能を持つ光通信装置、及びこの光通信装置により構成される光通信システムに関する。
光通信に使用するネットワーク装置の大型化によりポートカウント(伝送路に設けたノードが接続のために使用するポート数)が増大し、ポートあたりの伝送速度が増大している。このような高速化した回線を使用して高い適応能力を持たせて光通信を長距離伝送する伝送方法としてインバースマックス伝送方式が知られている。なお、インバースマックス伝送は「逆多重伝送」とも称される。
インバースマックス方式は、伝送速度の大きな高速回線を複数の低速回線に分離(分割)した後に、分離した低速回線を再び多重化して高速回線とするものであり、光損失などの光ファイバ犠牲により高速回線での伝送が困難な場合に、低速回線を使用することにより高速回線で生ずる光信号劣化を抑制することができるという利点がある。
図33において、前段の装置(図示せず)から伝送されてきた高速光信号は送信ノード(端部ノード)10に加えられ、高速光トランシーバ12において電気信号に変換される。分離回路14において分離された複数の低速電気信号は、WDM伝送装置16を構成する低速光トランシーバ18で光信号に変換され、光ファイバなどの光伝送路20を介して伝送される。送信ノード10から伝送されてきた光信号は、受信ノード(端部ノード)25において、WDM伝送装置22を構成する低速の光トランシーバ24によって再び電気信号に変換され、デスキュー回路26において伝送中に生じたスキュー(到達時間差或いは遅延差)が補償され、多重回路28において多重化される。その後、高速の光トランシーバ30で光信号に変換されて高速光伝送路31に送出される。
しかしながら、特許文献1の従来技術では、どのような高速信号の分離方式を採用したとしても、1つの高速回線を複数の低速回線に分離して伝送する場合、伝送路である光ファイバでの波長分散の影響により、伝送距離に比例して複数の低速光ファイバ間に生ずるスキュー(量)が大きくなる。したがって、高速信号を再生する端部ノード(受信ノード)では、バッファメモリの容量を大きくしなければならないという問題がある。あるいは、高速信号を比較的小さなフレームに分離して伝送させる場合には、小フレーム許容スキューは小さくなるので、伝送距離を長くできないという問題がある。
この問題を解決するため、例えば、図34に示すように、図33のWDM伝送装置16及び22の間に複数の中継ノード、例えば、2つの中継ノードND1及びND2を追加することが考えられる。このようにすれば、WDM伝送装置32,34,36及び38を夫々構成する光トランシーバ40,42,44,46において電気信号再生中継が可能なので光信号波形自体の劣化の問題を回避できる。しかし、ノード間でのスキュー補償の機能を持たないため、伝送距離に応じてスキューが増大し、高速フレームを終端する受信ノード25においてスキュー補償ができない場合があるという問題がある。
一方、分散補償ファイバなどで物理的な分散値の補償を行えば、スキュー補償が可能なので上述の問題を解決できる。しかし、この方法では高機能の伝送システムを設計する必要があるため伝送コストが高くなるという別の問題が生ずる。
また、従来より、クロスコネクト機能を持ち、クライアント回線を収容可能な光通信装置が開発されている(例えば、特許文献1参照。)。図35は、特許文献2に記載の従来の光通信装置を示すブロック図である。図35に示すように、この従来の光通信装置は、時分割スイッチと空間スイッチを組み合わせたスイッチカードを備えている。即ち、この従来の光通信装置においては、スイッチカード101が設けられており、スイッチカード101には、空間スイッチ102と、この空間スイッチ102に接続された2つの時分割スイッチ103とが設けられている。空間スイッチ102の回線速度は10ギガビット/秒(以下、10Gb/sと表記する)である。
空間スイッチ102は、NNI(Network Node Interface)104を介して、伝送路側の2つのラインカード105に接続されている。ラインカード105は高速トラフィックを伝送するものである。各ラインカード105には、高速回線として一般化している10Gb/s回線106が複数設けられており、10Gb/s回線106はNNI104と1対1で接続されている。
また、時分割スイッチ103は、UNI(User Network Interface)107を介して、クライアント側のラインカード108に接続されている。ラインカード108は低速トラフィックを伝送するものである。ラインカード108には、夫々複数の2.5Gb/s回線109及び600メガビット/秒(以下、600Mb/sと表記する)110が設けられており、夫々UNI107に接続されている。
そして、ラインカード108からUNI107を介して時分割スイッチ103に入力された低速トラフィックの回線速度は、時分割スイッチ103に付与された多重化機能により、空間スイッチ102が取り扱う回線速度、即ち、10Gb/sに引き上げられる。また、ラインカード105に接続された10Gb/s回線106を伝送する高速トラフィックの回線速度は、空間スイッチ102が取り扱う回線速度と等しくなっている。これにより、高速回線を搭載するラインカード105とスイッチカード101内の空間スイッチ102とは、NNIを介して直接接続される。この結果、高速回線のトラフィックと、複数のUNIトラフィックが多重化された信号とを、空間スイッチにて統一的にスイッチングすることが可能となり、全体としてシンプルな構成の光通信装置が実現する。
しかしながら、上述の特許文献2に記載の光通信装置には、以下に示すような問題点がある。第1の問題点は、装置の柔軟性を高める機能をスイッチカード部分に集約しているため、スイッチカードの負荷が増大し、スイッチカードの消費電力、サイズ、コストが増加することである。スイッチカードに搭載する空間スイッチを、特定の回線容量に限定した空間スイッチとするのであれば、比較的小型化及び低コスト化を図ることができる。しかし、特許文献1に記載の光通信装置は、その種類及び速度が相互に異なる複数のクライアント側の回線を効率よく多重化して収容するために時分割スイッチを適用している。このため、スイッチカード部分には負荷が高いフレーム処理といった機能回路が必要となり、結果的に消費電力が大きくなる。これによって、スイッチカードの密度を高め拡張性を高めることが困難になる。
第2の問題点は、NNIの速度と空間スイッチが処理できる信号速度との間にミスマッチがあると、このミスマッチを解消するための回路が更に必要になり、スイッチカードの構成がより複雑化することである。特許文献1においては、空間スイッチの速度を、NNIに接続される高速回線の回線速度として一般的な速度である10Gb/sとしているが、10Gb/sの回線速度で動作可能なスイッチは小規模な電気スイッチ又は光スイッチに限られてしまう。なお、電気的な空間スイッチが取り扱うことが可能な回線速度が限定されていることは、特許文献A1の中でも述べられている。また、10Gb/sという回線速度は、電気スイッチのデバイス技術的な問題だけでなく、電気伝送技術的にも問題がある。10Gb/sでは高周波成分の高い伝送損失による波形歪みが大きく、高度な補償技術を適用しない限り、伝送距離は数センチメートル以内に限定され、スイッチと光トランシーバ等を直接接続することが困難になる。
10Gb/sの信号を処理するために光スイッチを使用する場合は、UNIを介して入力された信号を多重化した後、光スイッチに導入する前に、及びNNIを介して入力された信号を光スイッチへ導入する前に、電気/光変換が必要となる。逆に、光スイッチからUNI及びNNIへ信号を導くときは、光/電気変換が必要になる。この結果、スイッチカードに電気/光変換装置及び光/電気変換装置を設ける必要が生じ、スイッチカードのより一層の複雑化及び大型化を引き起こしてしまう。
また、ライン側の光信号を電気的な終端を実施せずに光スイッチに導入する場合は、光スイッチ周辺に光の損失及び波長分散を補償する光伝送デバイスを配置することによる光伝送機能の高コスト化、大型化、複雑化が生じる。また、波長変換デバイスがない限り、DWDM(Dense Wavelength Division Multiplexing:高密度波長分割多重方式)信号においてチャンネル間の接続性がなく、接続可能なポート数が限定されてしまうため、柔軟性が低い。
そこで、特許文献3には、高速回線の信号をそのままの単位で空間スイッチに導入することはせず、受信回路でフレーム処理した後、複数のブロックに分割して空間スイッチに導入する技術が開示されている。図36は、特許文献3に記載された従来の光通信装置の空間スイッチ及びその周辺部分を示すブロック図である。図36に示すように、この従来の光通信装置においては、空間スイッチ201が設けられており、この空間スイッチ201の伝送路の受信側には4つのVC−4分離部202が接続されており、送信側には4つのVC−4多重部203が接続されている。そして、VC−4分離部202には夫々STM−16受信インタフェース204が接続されており、VC−4多重部203には夫々STM−16送信インタフェース205が接続されている。また、空間スイッチ201の加入者側(クライアント側)には、各1つのVC−4分離部206及びVC−4多重部207が接続されており、VC−4分離部206にはSTM−4受信インタフェース208が接続されており、VC−4多重部207にはSTM送信インタフェース209が接続されている。
これにより、特許文献3に記載の光通信装置においては、伝送路からSTM−16受信インタフェース204に入力された信号は、STM−16受信インタフェース204でフレーム処理を施された後、VC−4分離部202においてVC−4という150Mb/sのブロックに分割され、光スイッチ201に入力する。光スイッチ201から伝送路側に出力された信号は、VC−4多重部203において多重化され、STM−16送信インタフェース205を介して出力される。また、加入者側から入力された信号は、STM−4受信インタフェース208でフレーム処理が施され、VC−4分離部206で150Mb/sのブロックに分割されて、光スイッチ201に入力する。光スイッチ201から加入者側に出力された信号は、VC−4多重部207において多重化され、STM−4送信インタフェース209を介して出力される。
この光通信装置においては、高速回線の信号をそのままの単位で空間スイッチに導入せず、150Mb/sのブロックに分割してから空間スイッチに導入している。これにより、150Mb/sのブロックによって、高速回線と低速回線との間で第一次のクロスコネクトが行われる。低速回線側では150Mb/sのブロックを更に分割して取り扱うために、信号がさらに時分割スイッチ(図示せず)に入力され、より小粒度のクロスコネクトが行われる。このように、特許文献3においては、空間スイッチと時分割スイッチの二つの階層にスイッチを分離することで、全体の回路構成を単純化している。また、高速回線は電気処理を実施しやすい速度に分離されてから空間スイッチに導入されている。
特開2002−135223号公報 特開2003−169355号公報 特開2003−061171号公報
しかしながら、特許文献1ではインバースマックス方式の光伝送路が長距離になった場合のスキュー補償対策は全く述べられておらず、更に、上述の特開2002−135232号公報に開示された技術を用いたとしても、経済的な光伝送システムを構築するには次のような問題がある。
即ち、伝送システムのノード間で発生するスキューを把握することができないので、波長チャネルの入替を行うためには、ノード内部の波長チャネル入替えは事実上不可能といえる。
WDM伝送装置によるインバースマックス方式を用いた長距離伝送は、低速伝送技術利用による伝送負荷の低減だけでなく、単位ポートあたりの伝送速度の増大に対処できるという観点から、上述の課題を解決することは非常に重要である。
また、特許文献3に記載の光通信装置においては、スイッチ部分だけを見るとシンプルな構成となっていると言えるが、スイッチと接続するインタフェースであるUNI及びNNIにおいては、スイッチに回線を接続するためのフレーム処理と多重分離機能が必要となる。この結果、本来一つあれば十分であったフレーム処理及び多重分離を行うICを、UNIからスイッチ、そしてスイッチからNNIに至る過程で最低二つずつ設ける必要が生じる。特に、10Gb/sといった高速回線を多数収容するような装置については、フレーム処理部分の消費電力が大きくなり高密度化の障害となる。
また、特許文献3においては、スイッチ周辺でフレーム処理を行う必要があるため、スイッチが対応するプロトコルを限定している。このため、プロトコル依存性が生じ、トランスペアレントなクロスコネクトが不可能となり、装置の柔軟性が低下する。
本発明の目的は、インバースマックス方式を利用したWDM伝送において、低速伝送路を設けた隣接ノード間で発生するスキューを簡単な方法で自動的に測定が可能であり、波長チャネル入替えを行うべきノードの判定も自動的におこなうことができて、波長チャネル入替えのノードの決定を自動化することによりWDM低速伝送路においてスキュー補償を可能とし、オペレーションコストを増大させることなく低速伝送路を長くすることができる光通信方法を提供することにある。
また、本発明の他の目的は、クロスコネクト可能な光通信装置において、コストが低く、小型で、伝送能力が高く、柔軟性及び拡張性が高い光通信装置を提供することにある。
本発明に係る光通信方法は、クロスコネクトスイッチとWDM(波長分割多重)伝送機能とを夫々有する複数のノードをインバースマックス伝送路に設け、隣接するノード間には複数の波長チャネルがあり、前記インバースマックス伝送路で発生するスキューを所定値以下とする光通信方法に関し、隣接するノード間に設けた波長チャンネル間のスキューを測定するステップ(a)とステップ(b)で決定したノードのクロスコネクトスイッチを波長チャンネルの入替えのために設定するステップ(c)からことを特徴とする。
また、本発明は、前記ステップ(a)において、隣接するノード間に設けられた波長チャネル間のスキュー測定は、夫々のノードに設けたスキュー測定装置で行われ、前記隣接するノードの第1のノードのクロスコネクトスイッチを設定して対応する第1のスキュー測定装置から発生する2つのテスト信号を夫々2つの波長チャネルに送出し、前記隣接するノードの第2のノードのクロスコネクトスイッチを設定して前記第1のノードから送出されて夫々前記2つの波長チャネルを介して送られてきた2つのテスト信号を対応する第2のスキュー測定装置に入力し、該第2のスキュー測定装置において前記隣接するノード間の波長チャネル間のスキューを測定することが好ましい。
更に、本発明は、前記ステップ(a)において、隣接するノード間のスキュー測定は夫々のノードに設けたスキュー測定装置で行われ、前記隣接するノードの第1のノードのクロスコネクトスイッチを設定して対応する第1のスキュー測定装置から発生する1つのテスト信号を分岐させて夫々2つの波長チャネルに送出し、前記隣接するノードの第2のノードのクロスコネクトスイッチを設定して前記第1のノードから送出されて夫々前記2つの波長チャネルを介して夫々送られてきた2つのテスト信号を対応する第2のスキュー測定装置に入力し、該第2のスキュー測定装置において前記隣接するノード間の波長チャネル間のスキューを測定することができる。
更にまた、本発明は前記ステップ(c)において、波長入替えを行うノードのクロスコネクトスイッチ設定は、終端ノード間での伝送試験を行うステップを含み、該伝送試験は、インバースマックス伝送を行う波長チャンネルのうち2つの波長チャンネルについては、各ノードのクロスコネクトスイッチのマルチキャストにより、各ノードに設けたスキュー測定装置に導いてスキュー測定を行うステップを有することができる。
更にまた、本発明は、前記ステップ(b)において、波長入れ替えを行う中継ノードを決定するステップは、波長入れ替えにかかわらず、あらかじめ指定したスキューの条件を満たすことができない場合、回線終端を行う最適なノードを指定するステップを含むことができる。
更にまた、本発明は、前記ステップ(a)において測定したスキューは、外部ネットワークを介してネットワーク制御装置に送出されるステップを有することができる。
本発明に係る光通信装置は、インバースマックス伝送路に設けられ、クロスコネクトスイッチとWDM(波長分割多重)伝送機能とを夫々有する複数のノードと、該複数のノードの夫々に設けたスキュー測定装置とを具え、隣接するノードに設けたスキュー測定装置の一方からスキュー測定用のテスト信号を発生させ、前記クロスコネクトスイッチを設定して前記隣接するノード間の波長チャネルにテスト信号を送出し、前記隣接するノードに設けた他方のスキュー測定装置で前記テスト信号を受けて、隣接するノード間のスキューを測定することを特徴とする。
この光通信装置においては、前記スキュー測定装置は、テスト信号発生部を有する送信部と、前記テスト信号を受けて、テスト信号を検出するテスト信号検出部および検出されたテスト信号からスキューを測定するスキュー測定部とを有することができる。
また、前記クロスコネクトスイッチは、電気的な空間スイッチとすることができる。
本発明に係る光通信システムは、複数ヶ所のノードと、このノード間において光信号を伝送する伝送路側の光回線と、少なくとも1ヶ所の前記ノードに接続されたクライアント側の光回線と、前記伝送路側の光回線及び前記クライアント側の光回線が接続され、前記両光回線のクロスコネクトを行う光通信装置とを有し、前記光通信装置は、前記伝送路側の光回線に接続される第1の機能ブロックと、前記クライアント側の光回線に接続される第2の機能ブロックと、を有し、前記第1の機能ブロックは、前記伝送路側の光回線に接続され光信号と電気信号との間の変換を行う第1の光トランシーバモジュールと、この第1の光トランシーバモジュール及び前記第2の機能ブロックに接続された電気的な空間スイッチと、を有し、前記第1の光トランシーバモジュール及び前記空間スイッチは、5Gb/s以下のマルチレートで動作するものであり、
前記伝送路側の光回線において、光信号が複数の分離信号に分離され複数の波長チャンネルに割り当てられて伝送されており、少なくとも1ヶ所の前記ノードにおいて、入力された光信号の各分離信号に割り当てられた波長チャンネルの波長の順番を、逆になるように入れ替えて出力し、割り当てられた波長チャンネル間のスキュー量が、回線を終端するノードを含む複数のノードにおいて所定の値以下となるように、1又は複数のノードにおいて前記波長チャンネルの入れ替えを行うことを特徴とする。
本発明に係る他の光通信システムは、複数ヶ所のノードと、このノード間において光信号を伝送する伝送路側の光回線と、少なくとも1ヶ所の前記ノードに接続されたクライアント側の光回線と、前記伝送路側の光回線及び前記クライアント側の光回線が接続され、前記両光回線のクロスコネクトを行う光通信装置とを有し、前記光通信装置は、前記伝送路側の光回線に接続される第1の機能ブロックと、前記クライアント側の光回線に接続される第2の機能ブロックと、を有し、前記第1の機能ブロックは、前記伝送路側の光回線に接続され光信号と電気信号との間の変換を行う第1の光トランシーバモジュールと、この第1の光トランシーバモジュール及び前記第2の機能ブロックに接続された電気的な空間スイッチと、を有し、前記第1の光トランシーバモジュール及び前記空間スイッチは、5Gb/s以下のマルチレートで動作するものであり、
前記伝送路側の光回線において、光信号が複数の分離信号に分離され複数の波長チャンネルに割り当てられて伝送されており、少なくとも1ヶ所の前記ノードにおいて、入力された光信号の各分離信号に割り当てられた波長チャンネルの波長の順番を、逆になるように入れ替えて出力し、割り当てられた波長チャンネル間のスキュー量が、回線を終端するノードにおいて所定の値以下となるように、1ヶ所のノードにおいて前記波長チャンネルの入れ替えを行うことを特徴とする。
これらの光通信システムに使用される光通信装置は、第1の光トランシーバモジュール及び空間スイッチが5Gb/s以下のマルチレートで動作することにより、半導体レーザを直接変調する簡単な方式で100km以上の光ファイバ伝送が可能となる。これにより、光通信装置のコストを低減し、小型化を図ると共に、伝送能力を向上させることができる。また、光通信装置を、伝送路側の光回線が接続される第1の機能ブロックと、クライアント側の光回線が接続される第2の機能ブロックとに分けることにより、光通信装置の柔軟性及び拡張性を向上させることができる。
また、前記第1の光トランシーバモジュールがプラガブルであることが好ましい。これにより、光通信装置の柔軟性及び拡張性が更に向上する。
更に、前記第2の機能ブロックは、前記クライアント側の光回線に接続され光信号と電気信号との間の変換を行う第2の光トランシーバモジュールと、この第2の光トランシーバモジュールから出力された電気信号に対してフレーム処理を行い5Gb/s以下のシリアル信号として前記空間スイッチに対して出力するプロトコルチップと、を有することが好ましい。プロトコルチップを第2の機能ブロックに配置することにより、第1の機能ブロックの構成を単純化し、光通信装置の小型化及び低コスト化を図ると共に、拡張性を向上させることができる。
本発明に係る光通信システムは、複数ヶ所のノードと、このノード間において光信号を伝送する伝送路側の光回線と、少なくとも1ヶ所の前記ノードに接続されたクライアント側の光回線と、を有し、前記クライアント側の光回線が接続されたノードは、前記光通信装置によって構成されていることを特徴とする。
また、前記伝送路側の光回線において、光信号が複数の分離信号に分離され複数の波長チャンネルに割り当てられて伝送されており、少なくとも1ヶ所の前記ノードにおいて、入力された光信号の各分離信号に割り当てられた波長チャンネルの波長の順番を、逆になるように入れ替えて出力することが好ましい。これにより、光回線において発生する波長分散を複数の光回線間で相殺し、スキュー量を低減することができる。
本発明に係る光通信方法は、複数ヶ所のノード間で光回線を介して光信号を伝送する光通信方法において、前記ノードを構成する光通信装置において、この光通信装置の一方の側に接続された前記光回線から入力された光信号を、5Gb/s以下のマルチレートで動作する光トランシーバモジュールによって電気信号に変換し、5Gb/s以下のマルチレートで動作する空間スイッチによって前記電気信号の伝送先を切り替えて、5Gb/s以下のマルチレートで動作する光トランシーバモジュールによって光信号に変換し、前記光通信装置の他方の側に接続された前記光回線に対して出力し、
前記伝送路側の光回線において、光信号が複数の分離信号に分離され複数の波長チャンネルに割り当てられて伝送されており、少なくとも1ヶ所の前記ノードにおいて、入力された光信号の各分離信号に割り当てられた波長チャンネルの波長の順番を、逆になるように入れ替えて出力し、
割り当てられた波長チャンネル間のスキュー量が、回線を終端するノードを含む複数のノードにおいて所定の値以下となるように、1又は複数のノードにおいて前記波長チャンネルの入れ替えを行うことを特徴とする。
本発明に係る他の光通信方法は、複数ヶ所のノード間で光回線を介して光信号を伝送する光通信方法において、前記ノードを構成する光通信装置において、この光通信装置の一方の側に接続された前記光回線から入力された光信号を、5Gb/s以下のマルチレートで動作する光トランシーバモジュールによって電気信号に変換し、5Gb/s以下のマルチレートで動作する空間スイッチによって前記電気信号の伝送先を切り替えて、5Gb/s以下のマルチレートで動作する光トランシーバモジュールによって光信号に変換し、前記光通信装置の他方の側に接続された前記光回線に対して出力し、
前記伝送路側の光回線において、光信号が複数の分離信号に分離され複数の波長チャンネルに割り当てられて伝送されており、少なくとも1ヶ所の前記ノードにおいて、入力された光信号の各分離信号に割り当てられた波長チャンネルの波長の順番を、逆になるように入れ替えて出力し、
割り当てられた波長チャンネル間のスキュー量が、回線を終端するノードにおいて所定の値以下となるように、1ヶ所のノードにおいて前記波長チャンネルの入れ替えを行うことを特徴とする。
本発明の光通信方法によれば、インバースマックス方式を利用したWDM伝送において、低速伝送路を設けた隣接ノード間で発生するスキューを簡単な方法で自動的に測定が可能であり、波長チャネル入替えを行うべきノードの判定も自動的におこなうことができる。波長チャネル入替えのノードの決定を自動化することによりWDM低速伝送路においてスキュー補償が可能となるので、オペレーションコストを増大させることなく低速伝送路を長くすることができる。
また、本発明の光通信システムによれば、第1の光トランシーバモジュール及び空間スイッチが5Gb/s以下のマルチレートで動作することにより、コストが低く、小型で、伝送能力が高く、柔軟性及び拡張性が高いクロスコネクト可能な光通信装置を得ることができる。
本発明に係るインバースマックス伝送の実施の形態を説明するためのブロック図である。 図1においてブロックで示したスキュー測定装置を説明するための図である。 図1の実施の形態におけるテスト信号の流れを太線で示した図である。 本発明の実施の形態によるスキュー測定及びこの測定結果に基づいてスキュー補償を行なう工程を示したフローチャートである。 本発明の実施の形態において、あるノードのクロスコネクトスイッチにおいてスキュー補償が行われているかを検証する様子を説明するためのブロック図である。 本発明の実施の形態において、スキュー補償を行った後に所望どおりスキュー補償が行われているかを検証する様子を説明するためのブロック図である。 本発明の実施の形態の変形例を示すブロック図である。 本発明の実施の形態の他の変形例を示すブロック図である。 本発明の第2の実施形態に係る光通信装置を示すブロック図である。 この光通信装置を示す斜視図である。 第2の実施形態の第1の変形例に係る光通信装置を示すブロック図である。 (a)は第2の実施形態の第2の変形例において、UNI機能ブロックに1Gb/s以下の低速回線を収容した場合を示すブロック図であり、(b)は40Gb/sの大容量回線を収容した場合を示すブロック図である。 第2の実施形態の第3の変形性に係る光通信装置を示す斜視図である。 第2の実施形態の第4の変形例に係る光通信装置を示す斜視図である。 この光通信装置を示すブロック図である。 本発明の第3の実施形態に係る光通信装置の動作を示すフローチャート図である。 本発明の第4の実施形態に係る光通信装置を示すブロック図である。 第4の実施形態の第1の変形例に係る光通信装置を示すブロック図である。 本発明の第5の実施形態に係る光通信装置のUNI機能ブロックを示すブロック図である。 本発明の第6の実施形態に係る光通信装置を示すブロック図である。 第6の実施形態の第1の変形例に係る光通信装置を示すブロック図である。 本発明の第7の実施形態に係る光通信システムを示すブロック図である。 本実施形態における第1のパス構成を示すパス構成図である。 第2のパス構成を示すパス構成図である。 第3のパス構成を示すパス構成図である。 第4のパス構成を示すパス構成図である。 第5のパス構成を示すパス構成図である。 第6のパス構成を示すパス構成図である。 第7のパス構成を示すパス構成図である。 第7の実施形態の第1の変形例に係る光通信システムを示すブロック図である。 第8の実施形態に係る光通信システムを示すブロック図である。 この光通信システムにおけるチャンネル接続方法の一例を示すブロック図である。 第1の従来例を示すブロック図である。 図9に示した第1の従来例に基づいた従来技術を説明するブロック図である。 特許文献1に記載の従来の光通信装置を示すブロック図である。 特許文献2に記載された従来の光通信装置の空間スイッチ及びその周辺部分を示すブロック図である。
符号の説明
1;光通信装置
2;NNI機能ブロック
3;UNI機能ブロック
3a;UNI機能ブロック(20Gb/s)
4;接続部
5;高速回線
6;低速配線
7;バックプレーンポート
8;空間スイッチ
9;CDRチップ
10;DWDM光トランシーバモジュール
11;波長分離フィルタ
12;波長多重フィルタ
13;光トランシーバ
14;プロトコルチップ
15;セレクタ
16;現用系バックプレーンポート
17;予備系バックプレーンポート
21;光ファイバケーブル
21a;分岐ケーブル
24;プロトコルチップ
25;シャーシ
26;電源ブロック
27;光パラレルトランシーバ
28;ミッドプレーン
31;光増幅ユニット
32;プリアンプ
33;ブースターアンプ
34;光増幅ユニット
35;可変アッテネータ
36;順方向誤り訂正チップ
37;波長モニタリングユニット
38;タップカプラー
39;スペクトルモニタリングデバイス
40;波長モニタリングユニット
41;(1×4)光スイッチ
51;光通信システム
52;光ファイバ
53;10Gb/s回線
55a、55b;大規模拡張スイッチユニット
61;光通信システム
62;大容量回線
A、B、C;ノード
F1乃至F4;伝送路
N1乃至NM;ノード
X1乃至X4;レーン
λ0乃至λ7;波長チャンネル
102 高速光回線
104 高速トランシーバ
106 回線分離回路
110 デスキュー回路
112 回線多重回路
114 高速トランシーバ
115 高速光回線
N1−C乃至Nn−C クロスコネクトスイッチ
N1−S乃至Nn−S スキュー測定装置
N1−N乃至Nn−N ノード制御装置
116 外部ネットワーク
118 ネットワーク制御装置
130 パタン信号発生部
132a及び132b 送信部(インターフェイス)
134a及び134b 受信部(インターフェイス)
136a及び136b パタン信号検出部
138 スキュー測定部
140 バッファメモリ
次に、本発明の光通信方法の実施形態について、添付の図面を参照して詳細に説明する。
図1は、本発明に係る光通信方法が応用される光伝送システム全体の概略を示すブロック図である。図1に示した伝送システムはn個(nは自然数)のノードN1〜Nnを有し、両端のノードN1及びNnには高速回線が収容される。例えば、端部ノードN1はクライアント側で他方の端部ノードNnはライン側である。
図1の伝送システムには、図面上で“右方向の伝送系”と“左方向の伝送系”があり、これらの右及び左方向の伝送系の構成、機能、動作は同一なので、右方向の伝送系についてのみ説明する。
端部ノードN1には高速回線102が収納され、この高速回線102で伝送されてきた高速光信号は、高速光トランシーバ104で電気信号に変換され、分離回路106で4つの低速電気信号に分離される。なお、この分離される低速信号の数は単なる例示であり、本発明はこの数に限定されないのは勿論である。この4つの低速電気信号はそれぞれ対応する4本の低速回線108を介してクロスコネクトスイッチ(電気的な空間スイッチ)N1−Cに入力される。本発明に係る「波長チャネル入替」を行う前は、説明を簡単にするため、クロスコネクトスイッチの入力側と出力側は、破線で示すように接続されていると仮定する。
クロスコネクトスイッチN1−Cの出力は、夫々対応する4つのトランシーバN1−Tにより光信号に変換された後に波長多重フィルタ(図示せず)で波長多重されて、1本の光伝送路(光ファイバー)F1を介して次段の中間ノードN2に伝送される。伝送されてきた光信号は、中間ノードN2の波長分離フィルタ(図示せず)において波長多重され、4つの対応するトランシーバN2−T1に入力する。
トランシーバN2−T1において光信号は電気信号に変換され、変換された電気信号はクロスコネクトスイッチN2−Cを介してトランシーバN2−T2で光信号に変換される。変換された光信号は、上述の場合と同様に、波長多重フィルタ(図示せず)で波長分離されて、1本の光伝送路(光ファイバー)F2を介して次の中間ノードN3のトランシーバN3−T1に入力する。この中間ノードN3の構成は、中間ノードN2の構成と同様であり、その動作もN2と同様なので説明を省略する。ノードN3の前段及び後段のトランシーバを、N3−T1及び、N3−T2で示し、クロスコネクトスイッチをN3−Cで示している。
右端のノードNnでは左端のノードN1と略逆の信号処理が行われる。即ち、光伝送路で伝送されてきた光信号はトランシーバNn―Tで電気信号に変換され、クロスコネクトスイッチNn−Cを介してデスキュー回路110に入力され、このデスキュー回路110においてスキュー補償が行われる。その後、多重回路112において高速回線が再生され、高速回路用の光トランシーバ114において光信号に変換されて光高速回線115に出力される。
なお、説明の都合上、図1に示したインバースマックス伝送に使用する複数の低速伝送路の一番上(図面上)を最長波長チャネルとし、一番下の低速伝送路を最短波長チャネルとする。中間の伝送路の信号伝送に使用する波長は上から順に波長が短くなるとする。
高速光信号を電気信号に変換し、この電気信号を分離回路で分離し、夫々の電気信号をWDM(波長分割多重伝送)の波長に割り当てて光ファイバ中を伝送させると、波長分散(異なる波長の光信号の伝播速度が異なる現象)の影響により波長チャネル間でスキューが発生する。図1のデスキュー回路110においてスキュー補償が行われるが、この補償は、分離された信号を伝送する光伝送路の長さによってスキューが異なり、特に、WDM伝送での光伝送路が長くなると、デスキュー回路110の標準仕様では補償ができなくなるという問題がある。
この問題を解決しようとすると、大きなフレームを用いたインバースマックス伝送方式を使用し、更に、終端ノードNnにおいて大容量のバッファメモリを用意する必要があり構成が複雑となる。適切なノードのクロスコネクトスイッチにより波長チャネルの入替えを実施すればこの問題を解決することができるが、適切なノードを自動的に決定することは従来技術では不可能である。本発明は、上述したように、この問題を解決するものである。
この問題を解決するため、本実施形態によれば、夫々のノードN1乃至Nnの夫々にスキュー測定装置N1−S乃至Nn−Sを設けている。夫々のスキュー測定装置N1−S乃至Nn−Sはノード制御装置N1−N乃至Nn−Nに接続している。図1の場合には、夫々のノード制御装置N1−N乃至Nn−Nは、外部ネットワーク116を介してネットワーク制御装置118に接続している。
夫々のスキュー測定装置N1−S乃至Nn−Sは同一構成であり、対応するクロスコネクトスイッチにテスト信号を送出する2本のラインと、クロスコネクトスイッチからテスト信号を受信する2本のラインを有する。即ち、スキュー測定装置及び対応するクロスコネクトスイッチの夫々には、テスト信号の送受信のための2つのポートが設けられている。
次に、図2を参照して図1にブロックで示したスキュー測定装置(N1−S乃至Nn−S)について説明する。スキュー測定装置N1−S乃至Nn−Sは夫々同一構成なので、スキュー測定装置N2−S及びN3−Sを代表として説明する。ここで注意すべきことは、図2(a)に示したスキュー測定装置N2−Sのパタン信号発生器130からの2つのパタン信号は、夫々送信部132a及び132bを介してクロスコネクトスイッチN2−Cに送出され、光伝送装路F2(図1)を介し、図2(b)に示すスキュー測定装置N3−Sの受信部134a及び134bに入力する点である。つまり、図2(a)の受信部150及び図2(b)の送信部152は、図1の右から左方向への伝送路のスキュー測定に使用される。
図3の太線は、以下に説明するスキュー測定装置N2−S及びスキュー測定装置N3Sが関与する「ノードN2及びN3間」のスキュー測定でのパタン信号の流れを示したものである。
図1及び図2に戻って、図2(a)のパタン信号発生器130から2つのパタン信号(アライメント信号)が出力される。これら2つのパタン信号は、送信部(インターフェイス)132a及び132bを介してクロスコネクトスイッチN2−Cに送出され、ノードN2とN3の間の光伝送路F2及びクロスコネクトスイッチN3−Cを通って、図2(b)に示したスキュー測定装置N3−Sに入力される。つまり、スキュー測定装置N2−Sからの2つのパタン信号は、夫々、図2(b)の受信部134a及び134bを介し、パタン信号検出部136a及び136bにおいて検出され、次段のスキュー測定部138のバッファメモリ140に記憶される。
スキュー測定装置138はバッファメモリ140に記憶された2つのパタン信号を比較して最長波長チャネルと最短波長チャネルの間に発生する最大スキューを測定する。測定された最大スキューは制御部142の制御にしたがって、外部ネットワーク116を介してネットワーク制御装置118に送られる。尚、上述の制御部142は、スキュー測定部以外にも、パタン発生器及びパタン検出部などのスキュー測定部全体の動作を制御する。図2(a)の制御部142も同様である。
上述したように、図2(a)のスキュー測定装置N2−Sの受信部分150及び図2(b)のスキュー測定装置N3−Sの送信部分152は、図1の右から左への左方向の伝送路でのスキューを測定する部分であり、現在説明している右方向への伝送路でのスキュー測定と同様なので説明を省略する。ただし、図2(a)の受信部分150の構成部、及び、図2(b)の送信部部分52の構成部には、図2(b)の受信部分及び図2(a)の送信部分で使用した参照番号と同一のものを使用している。
ネットワーク制御装置118は、上述したように、外部ネットワーク116を介してスキュー測定装置N3−Sで測定された最大スキューを受け取る。この最大スキューを受け取る前に、ネットワーク制御装置118は、ノード制御装置N2−N及びN3−Nに対して、図3で示したテスト信号が流れるように、夫々のポートの選択を指示する。
更に、ネットワーク制御装置118は、ノードN2及びN3に接続したノード制御装置以外のノード制御装置(N1−N、Nn−Nなど)に指示を出して、図1に示したすべてのノードN1〜Nnの隣接する2つのノード間の最大スキューを測定させて、それらの結果を受け取る。
図4のフローチャートを参照してネットワーク制御装置118(図1)及び制御部140,142(図2)による隣接ノード間の最大スキュー測定を説明する。
先ずステップS1において、ネットワーク制御装置118は、最大スキュー測定を行う伝送路、即ち、隣接するノードを指定する。このノード指定は、図1の場合には、ノード制御装置(N1−Nなど)を介して行われる。尚、説明の便宜上、伝送路上流のノードを始点ノードとし、伝送路下流のノードを終点ノードとする。次に、ノード制御装置は、始点ノードのスキュー測定装置の2つの送信部を、対応するクロスコネクトスイッチを介して最長波長及び最短波長のチャネルのトランシーバに接続する(ステップS2)。さらに、ノード制御装置は、終点ノードのスキュー測定装置の2つの受信部を、対応するクロス
コネクトスイッチを介して最長波長及び最短波長のチャネルのトランシーバに接続する(S3)。続いて、ノード制御装置を介してネットワーク制御装置118から指示を受けた制御装置142は、始点ノードのスキュー測定装置から2つのテスト信号を夫々2つの送信部から送出する(ステップS4)。
ステップS5では、この2つのテスト信号を終点ノードのスキュー測定装置で受信し、このスキュー測定装置において最大スキューが測定される。測定されたスキューは対応するノード制御装置及び外部ネットワーク116を介してネットワーク制御装置118に送出される。続いて、ステップS6では、未測定の伝送路(即ち、隣接する全てのノード間の伝送路で未測定)がないかをチェックし、未測定の伝送路があれば、ステップS1に戻って上述の動作を繰り返し、一方、未測定の伝送路がなければ、ステップS7に進む。
ステップS7では、ネットワーク制御装置118は、スキュー測定装置から送られてきた最大スキューからどのノード(単数或いは複数)において波長チャネルの波長昇降順変換を行うかを決定し、ステップS8では、決定されたノードにおいて波長チャネルの波長昇降順変換を行う。ここで、波長チャネルの波長昇降順変換とは、波長順になっている低速伝送路(波長チャネル)の順序を入れ替えることを意味する。
尚、図1の場合は、スキュー測定装置(N1−Sなど)はノード制御装置(N1−Nなど)に接続しているが、外部ネットワーク116に直接接続するようにしてもよい。
図1に、隣接するノード間で測定された最大スキューをSn(n=1,2,3…(n−1))で示す。最大スキューSnは伝送路(ファイバ)の全てが同一種類のファイバで構成されているとすると隣接ノード間の伝送路の距離に比例する。また、伝送路の種類によっては負の値をとることがある。ここで、各ノードについて、波長チャネルについて波長昇降順変換を実施するノードに関してパラメータPnを導入し、波長チャネルの波長昇降順変換を実施するノードについてはPn=―1とし、波長チャネルの波長昇降順変換を実施しないノードについてはPn=1とする。上述の最大スキューSn及びパラメータPnを用いれば、ノードN1からNnへの信号伝送後に残留するスキュー(即ち、WDM伝送系の総スキュー)Rn(n>2)は次の数式1で表せる。
Figure 2006106973
隣接するノード間のスキューは判明しているので、このRnを用いることによって波長昇降順変換を行なうノードを決定することができる。更に具体的に説明すれば、図1に示す伝送系の残留スキューRnは、デスキュー回路110でのデスキュー補償能力を考慮して所定値以下にする必要がある。この“所定値”即ち所定値をSmaxとすると、残留スキューRnが規定値Smaxを超えていれば、ネットワーク制御装置118は、あるノードにおいて波長チャネルの入替(波長昇降順変換)を行う必要がある。若し、複数のノードのいずれかで波長チャネル入替を行えばRnがSmax以下になるのであれば、その複数のノードの内の任意のノードで波長チャネル入替を行えばよい。
又は、波長チャネル入替を実施するノードを次のようにして決めることもできる。即ち、第1番目の隣接するノードN1とN2の伝送路のパラメータP1を−1或いは1(即ち波長チャネル入替を行うか否か)の何れかに設定し、次の隣接するノードN2とN3の伝送路のパラメータP2が1の場合にN3までの残留スキューR3と規定値Smaxとを比較する。R3≦SmaxであればP2=1(即ち、波長チャネル入替を行わない)とし、一方、R3>SmaxであればP2=−1(即ち、波長チャネル入替を行う)とする。次に、設定したP1及びP2を用いてR4を計算してP3を決定していく。この操作を最後のノードNnまで続けて最終的にどのノードにおいて波長チャネル入替が必要かを決定する。
図5は、ノードN2において波長チャネルの波長昇降順変換を実施した様子を示す図である。即ち、クロスコネクトスイッチN2−Cにおいて、最長波長チャネルを最短波長チャネルに接続し、最短波長チャネルを最長波長チャネルに接続し、更に、上から2段目の波長チャネルを3段目の波長チャネルに接続し、上から3段目の波長チャネルを2段目の波長チャネルに接続している。
このように、隣接するノード間で生ずるスキューを測定することで、波長分散量や波長チャネルの波長間隔などの伝送路パラメータを予め取得することなく、図1に示したWDN(光波長分割多重伝送)での伝送路に発生するスキューを所定値に収めることができる。
波長昇降順変換を行なうノードが決定し、そのノードのクロスコネクトスイッチを設定することで、インバースマックス伝送パスの設定が終了することになる。しかし、実際に適切な設定が行われているかを判定するためにパス設定の確認試験を実施することが望ましい。
この確認試験の実施には、図6に示すように、各中継ノード及び終端ノードのクロスコネクトスイッチのマルチキャスト機能を用いて、最長波長と最短波長の波長チャンネルの信号を分岐し、スキュー測定装置に接続することで、各ノードにおける最大スキューの積算値を測定することができる。従って、各ノードにおいて設定どおりのスキューとなっているかを実際の信号伝送状態のまま測定して管理することにより安全性の高い回線設定が実現できる。つまり、この装置は、回線を実際に使用中であっても回線状態に影響を与えることなく、いつでも実施することが可能である。従って、低い維持コストで伝送路のスキュー監視が可能である。
ここでは、右方向のみの信号伝送について図示した。左方向のスキューを監視する場合は、時間的にずらしてスイッチを切り替えるなどの工夫が必要である。また、本発明はスキュー監視でなく信号品質の監視にも応用できる。この場合、スキュー測定装置では2つの入力を必要としないので、右方向と左方向の両方の回路品質を同時に監視することもできる。複数の波長チャンネルの監視を行う場合についても、時間的にスイッチの切り替えをずらす対策を講ずればよい。
上記の波長昇降順変換ノードを決定するステップの中で、指定したスキュー条件を満たすことができないような場合は、中継ノードのどこかでスキューをリセットするという対策が必要となる。この場合は、自動的に終端すべきノードを指定する機能が搭載されていることが望ましい。指定されたノードの回線終端については、ノードのクロスコネクトスイッチを介して、回線を終端しスキューをリセットする機能部分を接続することが望ましい。その後、上記の回線の終端を実行する中継ノードを新たに受信ノード及び送信ノードとし、これまで述べたようにそれぞれの回線パスの中で波長入れ替えノードを決定することができる。
以上の説明では、各ノードで測定された最大スキューは外部ネットワーク116を介してネットワーク制御装置118に送られ、このネットワーク制御装置118において伝送系のスキュー補償を制御していた。しかし、外部ネットワーク116及びネットワーク制御装置118を省略し、ある特定のノード生業装置にネットワーク制御装置118の機能を持たせることにより、上述の本発明に係るスキュー補償を行なうことも可能である。この様子を図7に示す。
図8を参照して本実施の形態の変形例を説明する。図2に示したように、今までは、スキュー測定装置の夫々は送信部を2つ備えていることを前提として説明したが、2つの内の一方の送信部を省略することもできる。この変形例では、パタン信号発生部130(図2)は1つのパタン信号を発生するだけでよい。このようにした場合、クロスコネクトスイッチのマルチキャスト機能を利用し、単一のパタン信号から1つのパタン信号を分岐させて2つのパタン信号とし、隣接するノードのスキュー測定装置の2つの送信部に夫々送信するようにする。
更に、以上の説明では、図1に示すように、外部ネットワークを使用してノード制御装置(N1−N〜Nn−N)を制御するか、或いは、図7に示すように複数のノード制御装置を直接接続してスキュー補償を実施している。しかし、複数の低速伝送路の内で信号伝送に使用していない伝送路があれば、この未使用の伝送路を介して複数のノード制御装置を接続すると共に、その内の1つのノード制御装置に全体の制御を行なうようにしてスキュー補償を行うようにしてもよい。
以上説明したように、本発明によれば、インバースマックス方式を利用したWDM伝送において、低速伝送路に設けた隣接ノード間で発生するスキューを簡単な方法で自動的に測定が可能であり、波長チャネル入替えを行うべきノードの判定も自動的におこなうことができる。波長チャネル入替えのノードの決定を自動化することによりWDM低速伝送路において、低速伝送路に設けた隣接ノード間で発生するスキューを簡単な方法で自動的に測定が可能であり、波長チャネル入替えを行うべきノードの判定も自動的に行うことができる。波長チャネル入替えノードの決定を自動化することによりWDM低速伝送路においてスキュー補償が可能となるので、オペレーションコストを増大させることなく低速伝送路を長くすることができる。
次に、本発明の光通信システムの実施形態について説明する。先ず、本発明の第2の実施形態について説明する。図9は、本実施形態に係る光通信装置を示すブロック図であり、図10は、この光通信装置を示す斜視図である。図9に示すように、本実施形態に係る光通信装置1においては、ライン側の高速回線の伝送とスイッチング機能を担保するNNI機能ブロック2と、クライアント側の種々の回線を収容するUNI機能ブロック3が設けられている。1台の光通信装置1に、NNI機能ブロック2は1個、UNI機能ブロック3は1個又は複数個設けられている。NNI機能ブロック2及びUNI機能ブロック3は接続部4によって相互に接続されている。また、NNI機能ブロック2には、伝送路を構成する高速回線5が接続されており、UNI機能ブロック3には、クライアント配線を構成する低速配線6が接続されている。高速回線5及び低速配線6は光ファイバにより形成されている。
NNI機能ブロック2においては、UNI機能ブロック3と接続するためのバックプレーンポート7が設けられており、その一方側がバックプレーンポート7に接続された空間スイッチ8が設けられている。空間スイッチ8は、5Gb/s以下のマルチレートで動作する電気的なクロスポイントスイッチであり、非同期で且つプロトコルに依存することなく動作可能である。また、バックプレーンポート7と空間スイッチ8とは、5Gb/s以下の電気シリアル回線によって相互に接続されている。
空間スイッチ8の他方側には複数のCDR(クロック・データ・リカバリー)チップ9が相互に並列に接続されている。CDRチップ9は電気信号のリタイミングを行うものである。各CDRチップ9にはDWDM光トランシーバモジュール10が接続されている。DWDM光トランシーバモジュール10は、電気信号と光信号との間の変換を、回線速度を変更することなく行うものである。即ち、DWDM光トランシーバモジュール10は、例えば3Gb/sの光信号を受信すると、3Gb/sの電気信号を透過的に出力する。また、DWDM光トランシーバモジュール10は、5Gb/s以下にてマルチレート能力をもつDWDM対応の光トランシーバモジュールである。DWDM光トランシーバモジュール10の電気信号側の端子がCDRチップ9に接続されている。
更に、DWDM光トランシーバモジュール10の光信号側の端子と高速回線5との間には、高速回線5から入力された光信号を波長分離してDWDM光トランシーバモジュール10に入力する波長分離フィルタ11と、DWDM光トランシーバモジュール10から出力された光信号を波長多重して高速回線5に対して出力する波長多重フィルタ12が設けられている。
NNI機能ブロック2において、DWDM光トランシーバモジュール10の数がN(Nは自然数)であるとき、CDRチップ9の数もNであり、空間スイッチ8のスイッチ能力は(3N×3N)以上である。即ち、受信ポートが3N個以上であり、送信ポートが3N個以上である。このうち、N個の受信ポート及びN個の送信ポート、即ち、合計2N個のポートはCDRチップ9に接続されている。即ち、1つのCDRチップ9に各1つの受信ポート及び送信ポートが接続されている。一方、2N個の受信ポート及び2N個の送信ポート、即ち、4N個のポートが、バックプレーンポート7に接続されている。このように、結局、空間スイッチ8には3N個の送信ポート及び3N個の受信ポートが必要となるため、空間スイッチとしては(3N×3N)の能力で完全なポート間接続が可能である。
また、空間スイッチ8、CDRチップ9及びDWDM光トランシーバモジュール10は1枚のカード(図示せず)上に実装され、電気伝送ラインにより接続されている。そして、DWDM光トランシーバモジュール10は、このカードに対して、光通信装置1の動作中に着脱可能(プラガブル)となっている。また、波長分離フィルタ11及び波長多重フィルタ12もこのカード上に実装されていてもよい。このカードは1つの筐体(図示せず)内に収納されている。現実的なデバイス技術を考慮すると、例えば、32個のDWDM光トランシーバモジュール10と、(128×128)の空間スイッチ8と、4個の16チャンネル用波長分離・多重フィルタが同一基板上に実装され、これが小型の筐体内に収納されている。これにより、小型筐体の中に大容量伝送及びスイッチング機能を集積することが可能となる。
一方、UNI機能ブロック3においては、クライアント側の信号の入出力部となる光トランシーバ13が設けられている。光トランシーバ13は電気信号と光信号との間の変換を行うものであり、その光信号側の端子が低速回線6に接続されている。この光トランシーバ13は、光信号と同一の速度で電気信号を出力するものであってもよく、又は信号分離機能が内蔵されているものであってもよい。また、光トランシーバ13の電気信号側の端子に接続され、光トランシーバ13から入出力される電気信号の分離及び多重化並びにフレーミングを行うプロトコルチップ14が設けられている。プロトコルチップ14は、1つのICにより構成されていてもよく、複数のICからなる1つの機能ブロックとして構成されていてもよい。
また、UNI機能ブロック3には、プロトコルチップ14から出力された信号を現用系バックプレーンポート16又は予備系バックプレーンポート17に切り替えるセレクタ15が設けられている。光トランシーバ13、プロトコルチップ14、セレクタ15、現用系バックプレーンポート16及び予備系バックプレーンポート17は、1つの筐体(図示せず)内に実装されている。
次に、接続部4の構成について説明する。NNI機能ブロック2とUNI機能ブロック3との間の接続には、5Gb/s以下のシリアル信号を最小単位とするパラレル伝送を使用している。例えば、1つのNNI機能ブロック2のライン容量、即ち、高速回線5に接続される容量が80Gb/sであり、バックプレーン容量、即ち、シリアル配線4に接続される容量が160Gb/sであるとする。このとき、160Gb/sのバックプレーンでは、2.5Gb/sのシリアル配線を送受信合計で128本用いることになる。電気信号を伝送する場合は、ノイズを低減するために、差動信号で伝送することが一般的であるため、信号ケーブルだけで256本の接続を行う必要がある。このため、容量的にも、ケーブル本数の規模的にも、電気ケーブルにて装置間を接続するのは現実的でないと考えられる。
そこで、本実施形態においては、多数本のパラレル信号の伝送を光信号によって行う。図10に示すように、光通信装置1においては、例えば、1ユニットのNNI機能ブロック2と、2ユニットのUNI機能ブロック3とが設けられている。そして、NNI機能ブロック2は80Gb/sのインタフェース(図示せず)を備えており、このインタフェースは、バックプレーンポート7に入出力される電気信号を光信号に変換するパラレルの光トランシーバモジュールを備えている。また、UNI機能ブロック3は40Gb/sのインタフェース(図示せず)を備えており、このインタフェースは、バックプレーンポート16に入出力される電気信号を光信号に変換するパラレルの光トランシーバモジュールを備えている。更に、この光通信装置には、32本のパラレルファイバからなる光ファイバケーブル21が2本設けられている。
この光通信装置においては、NNI機能ブロック2に設けられた80Gb/sのインタフェースと、UNI機能ブロック3に設けられた40Gb/sのインタフェースとを、1本の光ファイバケーブル21により相互に接続している。このとき、光ケーブルファイバ21を構成する32本のパラレルファイバのうち、16本を送信用に使用し、残りの16本を受信用に使用する。これにより、NNI機能ブロック2とUNI機能ブロック3との間の通信容量が大きい場合においても、1本の光ファイバケーブルにより両ブロックを接続することができる。
次に、上述の如く構成された本実施形態に係る光通信装置の動作、即ち、本実施形態に係る光通信方法について説明する。先ず、UNI機能ブロック3に入力されたクライアント側の光信号が、NNI機能ブロック2からライン側に出力される場合について説明する。クライアント側の光信号が、クライアント側の低速回線6からUNI機能ブロック3の光トランシーバモジュール13に入力され、電気信号に変換される。光トランシーバモジュール13から出力された電気信号は、インタフェース形式を整えられてプロトコルチップ14に入力する。そして、このプロトコルチップ14により、信号の分離及びフレーム変換が行われ、UNI機能ブロック内で取り扱う一又は複数の5Gb/s以下のシリアル信号となる。このとき、NNI機能ブロック2から出力されるときに元の信号形式、即ち、UNI機能ブロックに入力されたときの信号形式に復元できるように、適切なプロトコル処理がなされる。プロトコルチップ14から出力された5Gb/s以下のシリアル信号は、直接又はセレクタ15を経由した後、現用系バックプレーンポート16を介して、UNI機能ブロック3から出力される。そして、この信号は、接続部4を介して、NNI機能ブロック2に入力される。
NNI機能ブロック2においては、UNI機能ブロック3から出力された電気信号がバックプレーンポート7を介して入力され、そのまま空間スイッチ8に入力される。空間スイッチ8は、入力された信号が適切なDWDMのチャンネルに出力されるように予め設定されている。その設定状態に従い、入力した一又は複数のシリアル信号がスイッチングされ、一又は複数のCDRチップ9に対して出力される。一又は複数のCDRチップ9は、信号に蓄積されたジッタを一掃した後、これらの信号を一又は複数の光トランシーバモジュール10に対して出力する。光トランシーバモジュール10は入力された電気信号を光信号に変換し、所定のチャンネルのDWDMに対応した5Gb/s以下の光信号として波長多重フィルタ12に対して出力する。波長多重フィルタ12は、この光信号を他のチャンネルの光信号と合波した後、この合波した光信号を高速回線5に対して出力する。
次に、NNI機能ブロック2に入力されたライン側の光信号が、UNI機能ブロック3からクライアント側に出力される場合について説明する。この場合、信号は、基本的には、前述のクライアント側からライン側に伝送する場合の経路を逆に辿ることになる。即ち、クライアント側の高速回線5からNNI機能ブロック2に入力された光信号は、先ず、波長分離フィルタ11に入力され、波長毎に分離されて、一又は複数の5Gb/s以下のシリアル信号となり、光トランシーバモジュール10に入力される、光トランシーバモジュール10は、入力された光信号を電気信号に変換してCDRチップ9に対して出力する。CDRチップ9は、入力された電気信号のりタイミングを行い、空間スイッチ8に対して出力する。空間スイッチ8には予め所定のスイッチングが施されており、電気信号は空間スイッチ8の所定の送信ポートから出力され、バックプレーンポート7を介して、NNI機能ブロック2から出力される。
そして、NNI機能ブロック2から出力された電気信号は、接続部4を介してUNI機能ブロック3の現用系バックプレーンポート16に入力され、セレクタ15を介して又は直接プロトコルチップ14に入力される。プロトコルチップ14はこの電気信号を多重化して光トランシーバモジュール13に対して出力する。光トランシーバモジュール13は入力された電気信号を光信号に変換して、クライアント側の低速配線6に対して出力する。
更に、NNI機能ブロック2で受信した信号のうち、UNI機能ブロック3にドロップすることなく、別のノードへ伝送する場合は、入力側のDWDM光トランシーバモジュール10が出力側のDWDM光トランシーバモジュール10に接続されるように、空間スイッチ8を設定する。これにより、ライン側の高速回線5からNNI機能ブロック2に入力された信号は、UNI機能ブロック3を経由することなく、CDRチップ9によって信号が再生された後に、別のノードへ中継されることになる。
次に、本実施形態の効果について説明する。第1の効果は、大容量の伝送能力及びスイッチング能力を備えた光通信装置を小型化できることにある。その第1の理由は、空間スイッチ8及びDWDM光トランシーバモジュール10が扱う信号を5Gb/s以下の信号としているためである。5Gb/s以下の空間スイッチは、チャンネル当たりの消費電力が小さいため、スイッチ自体の規模の大きいものが適用可能であるだけでなく、スイッチ周辺の回路構成を簡略化できる。また、5Gb/s以下のDWDM光トランシーバモジュールは、半導体レーザを直接変調する簡単な方式で100km以上の光ファイバ伝送が可能であるため、小型、低コストな装置により、DWDMでの長距離伝送が可能である。
第2の理由は、クライアント側の多様な回線速度の信号を5Gb/s以下のシリアル信号に多重又は分離しフレーミング等の伝送信号のプロトコル処理を行うプロトコルチップ14を、UNI機能ブロック3内に設けているためである。これにより、NNI機能ブロック2は、単純に5Gb/s以下のシリアル信号を空間的にスイッチし伝送することに機能限定される。また、多数配置したDWDM光トランシーバモジュール10及び空間スイッチ8を、一枚のカード上に実装して電気伝送路により相互に接続することにより、光通信装置全体を最適な機能配置としている。この結果、NNI機能ブロック2のサイズ及びコストを増加させることなく、伝送能力及びスイッチング能力を大規模化できる。
第3の理由は、NNI機能ブロック2において、波長変換による波長分割回線のスキュー補償を行うことによって、UNI機能ブロック3内のスキュー補償用バッファメモリの低減、補償回路の簡略化が可能となるためである。
本実施形態の第2の効果は、高い拡張性を実現できることにある。その理由は、上述の如く、NNI機能ブロック2は、5Gb/s以下のDWDM光トランシーバモジュール10及び5Gb/s以下のシリアル信号を取り扱う空間スイッチ8を備え、高速シリアル信号の処理に集中する構成としているため、プロトコル処理等のデジタル機能的な処理負荷が軽く、その分、多数の光トランシーバ及び大規模な空間スイッチを共通のカード上に実装することができるためである。
即ち、NNI機能ブロックには、信号のフレーム処理並びに信号の多重及び分離という複雑な機能、並びに、回線毎に内容を監視するような負荷の大きい機能は搭載せず、多数の光トランシーバモジュールと非同期の大容量のスイッチを搭載できるようにしている。一方、UNI機能ブロックは、収容する回線種類毎に最適化され、クライアント側の回線の収容を行う。収容されたクライアント側の信号は、多重若しくは分離され、又はそのままの状態で、NNI機能ブロックにて取り扱う5Gb/s以下のシリアル信号として出力される。このように、複雑な機能及び負荷の高い機能はUNI機能ブロック側に集中させる構成となっている。
そして、DWDM光トランシーバモジュール10を装置動作中でも着脱作業が可能なプラガブルタイプとすることにより、装置導入初期には必要最低限のDWDM光トランシーバモジュール10だけを実装しておき、装置稼動後に必要に応じてDWDM光トランシーバモジュール10を増設していくことができる。
また、N個の光トランシーバに対して、少なくとも(3N×3N)のスイッチング能力を持つ大規模な空間スイッチを備えているため、拡張ポートをNNI機能ブロックの容量の2倍以上確保することができる。つまり、外部の大容量スイッチと冗長構成をとりながら拡張したり、NNI機能ブロックの容量の100%を使用するようにUNI機能ブロックを接続した状態で、別のNNI機能ブロック又は別のスイッチと接続するように拡張したりすることができる。
本実施形態の第3の効果は、柔軟性が高いクロスコネクトシステムを実現できることにある。その理由は、波長依存信号を波長無依存の電気信号に変換した後に、電気の信号でクロスコネクトスイッチを行う構成として、完全なポート間の接続性があるためである。また、NNI機能ブロックにおいては、主信号の経路にフレーム処理等のプロトコル依存性がある機能を搭載する必要がないので、完全なトランスペアレントにて信号を取り扱うことができるためである。
現在、SONET/SDH(Synchronous Optical NETwork/Synchronous Digital Hierarchy)では、多様なプロトコルを収容できるように、種々の仕様が用意されており、ほとんどすべてのプロトコルをSONET/SDHレイヤ上に載せて、効率的な伝送ネットワーク網を構築することができる。但し、必ずしも簡単な仕組みでネットワークが構築されるわけではなく、多数のプロトコルをスタックするときなど、予期せぬ遅延の増加を招いたりすることがある。これらのことから、どんなプロトコルであっても、プロトコルフリーの波長チャンネルに直接収容させる機能に対する期待も強く、波長チャンネルの自由な取扱の可能な装置が望まれている。上述の如く、本実施形態では、必要に応じてSONET/SDHに収容することもできるし、直接波長チャンネルに収容することもできる。しかも、すべてのUNIポートがすべてのNNIの波長チャンネルに接続可能であるので、極めて自由度の高い、柔軟な設定が可能となるのである。
なお、上述の説明と重複する部分はあるが、NNI機能ブロック内で取り扱う信号を5Gb/s以下に限定することで得られる効果をまとめると、以下のようになる。
1.小型、低コスト、低消費電力でありながら、高い伝送能力を持ったプラガブル光トランシーバモジュールを活用できるので、システムが小型、低コスト、低消費電力となる。
2.プラガブル光トランシーバモジュールはパラレル化処理を行うことなく、透過的に光信号と電気信号との間の変換を行う能力を持ち、且つ、広いビットレートの範囲で動作するプロトコル無依存のモジュールであるため、電気伝送、光伝送を統一的に取り扱う簡単な装置アーキテクチャを実現できる。
3.信号をパラレル化することなく、一般的な基板上で電気伝送することが容易であり、装置の簡単化、その結果の高密度実装化が可能である。
4.大容量の空間スイッチを活用することができるので、拡張性を高めることができる。
5.大容量のパラレル光トランシーバを活用することができるので、よりフレキシブルな装置を構成することができる。
なお、本実施形態において、DWDM光トランジスタモジュール10として、リタイミング機能を搭載した光トランシーバモジュールを用いる場合には、CDRチップ9は必ずしも必要ではない。
次に、本第2の実施形態の第1の変形例について説明する。図11は、本変形例に係る光通信装置を示すブロック図である。図11に示すように、本変形例においては、UNI機能ブロック3のプロトコルチップ24がセレクタ機能を持っており、セレクタが省略されている。このため、プロトコルチップ24は現用系バックプレーンポート16及び予備系バックプレーンポート17に直接接続されている。本変形例における上記以外の構成は、前述の第1の実施形態と同様である。
次に、本第2の実施形態の第2の変形例について説明する。UNI機能ブロック3は、収容する回線の容量及び種類によって最適な構成が異なり、特に光トランシーバ13の種類及び数量、並びにプロトコルチップ14の機能の調整が必要になる。ある程度の適応性はプロトコルチップ14の機能として予め備えておくことができるが、全てのサービスを収容するようなチップを開発することは技術的に困難で、またコストが増大するため、現実的ではない。
このため、本変形例においては、相互に異なる構成を持ついくつかのUNI機能ブロックを開発し、UNI機能ブロックのラインナップを揃えることにより、クライアント側の回線収容に関する適応性向上を実現する。UNI機能ブロックは独立した筐体内に収納されているため、筐体のサイズ及び収容する回線の容量等の設定に対する自由度が高い。
UNI機能ブロック3において、光トランシーバモジュール及びプロトコルチップのマルチレート収容機能を高めたとしても、一つの光トランシーバで対応できる回線数は一つなので、高速回線の収容機能を持つポート群に、多くの低速の回線が接続される場合では、装置全体としての収容効率は低下してしまう。そこで、例えば、(1)1Gb/s以下、(2)1Gb/s乃至3Gb/s程度、(3)10Gb/s程度、(4)40Gb/s程度、といった回線速度レベル毎にUNI機能ブロックの構成を調整したラインナップを揃えることにより、UNI機能ブロックの収容効率を低下させることなく、光通信装置としての適応性を向上させることができる。
図12(a)はUNI機能ブロックに1Gb/s以下の低速回線を収容した場合を示すブロック図であり、(b)は40Gb/sの大容量回線を収容した場合を示すブロック図である。図12(a)に示すように、UNI機能ブロックに1Gb/s以下の低速回線を収容した場合は、プロトコルチップ24はクライアント側の回線を多重化する機能を持つ。また、図12(b)に示すように、UNI機能ブロックに40Gb/sの大容量回線を収容した場合は、プロトコルチップ24はクライアント側の回線を分離する機能を持つ。なお、UNI機能ブロックは、10Gb/sの回線を収容して、これを5Gb/s以下の信号に分離してNNI機能ブロックに対して出力するものであってもよく、5Gb/s以下の回線を収容して、これをそのままトランスペアレントにNNI機能ブロックに対して出力するものであってもよい。
上述の如く、回線速度のレベル毎に、必要とされるプロトコルチップも異なってくるが、基本的な役割と機能は同じである。どのようなクライアント回線を収容するとしても、NNI機能ブロック側にてプロトコル処理、信号の多重・分離、フレーム処理、そして5Gb/s以下のシリアル信号のトランシーバ機能までを搭載することで、NNI機能ブロック側をシンプルで大規模なスイッチで処理できる構成となり、大容量特性と小型化を両立することができる。UNI機能ブロック側の機能負担は大きくなるが、独立筐体での大容量集積化によって、少数回線毎にカード化するよりも全体として高性能化及び小型化を図ることができる。また、従来技術では、NNI機能ブロック側にもフレーマ等の高負荷な回路が必要であったが、本変形例においては、高負荷回路はUNI機能ブロックに集中的に配置されるため、光通信措置全体として無駄に重複する部分がほとんどなくなり、大容量装置の小型化を低いコストにて実現することができる。
次に、本第2の実施形態の第3の変形例について説明する。図13は、本変形性に係る光通信装置を示す斜視図である。図13に示すように、本変形例は、前述の本第1の実施形態と比較して、1ユニットの40Gb/sのUNI機能ブロック3の替わりに、2ユニットの20Gb/sのUNI機能ブロック3aを設けている。そして、これらのUNI機能ブロック3とNNI機能ブロック2との間の接続は、32本のパラレルファイバからなる光ファイバケーブル21を、16本ずつ2束の分岐ケーブル21aに分岐させて行っている。
次に、本第2の実施形態の第4の変形例について説明する。本変形例においては、光通信装置の適用形態がある程度固定される場合に、大容量の電気バックプレーンを備えたシャーシを用意して、NNI機能ブロック及びUNI機能ブロックをこのシャーシに装着する。図14は、本変形例に係る光通信装置を示す斜視図であり、図15は、この光通信装置を示すブロック図である。図14に示すように、本実施形態に係る光通信装置においては、箱状のシャーシ25が設けられており、このシャーシ25内の上段に1ユニットのNNI機能ブロック2が収納され、中段及び下段に2ユニットのUNI機能ブロック3が収納されている。また、図15に示すように、電源ブロック26及び光パラレルトランシーバ27が設けられており、電源ブロック26及び光パラレルトランシーバ27は、NNI機能ブロック2にミッドプレーン28を介して接続されている。これにより、シャーシ搭載用のユニットは、このミッドプレーン28以降の部分を切り離すだけで対応可能となる。
なお、光通信装置の構成がより限定される場合は、NNI機能ブロック及びUNI機能ブロックを同一筐体内に収納してもよい。これにより、システム構成の自由度は減少するが、装置全体で最適化を行うことにより、より一層の小型化及び低コスト化を実現できる可能性がある。
次に、本発明の第3の実施形態について説明する。図16は、本実施形態に係る光通信装置の動作を示すフローチャート図である。本実施形態は、前述の第1の実施形態と比較して、UNI機能ブロックに10ギガビットイーサネット(登録商標)(10GbE)回線を収容している点が異なっている。このため、本実施形態においては、UNI機能ブロックのプロトコルチップが、前述の第1の実施形態とは異なっている。
以下、本実施形態の動作について説明する。図16のステップS1に示すように、先ず、UNI機能ブロックの10Gb/s光トランシーバモジュールが、10GbEのLAN−PHY仕様である10.3Gb/sの光信号を受信する。そして、この光信号が電気信号に変換され、プロトコルチップに入力される。プロトコルチップは、図16のステップS2に示す方式、又はステップS3乃至S6に示す方式により、入力された信号を変換する。
即ち、ステップS2に示すように、プロトコルチップが、入力された電気信号を10GbEの4レーンシリアル規格である1レーン当たり3.125Gb/sのXAUI(10Gigabit Attachment Unit Interface)に変換する。そして、変換後の信号をそのまま出力
する。
又は、ステップS3に示すように、プロトコルチップが、インターフレームギャップの調整及びフローコントロールを行って、10GbEの実効的な回線速度を低減する。次に、ステップS4に示すように、信号をフレーミングしてVC−4という約150Mb/s単位のフレームに区切る。次に、ステップS5に示すように、4つのOC−48/STM−16にてフレーミングを行う。次に、ステップS6に示すように、2.5Gb/sのシリアル信号をプロトコルチップから出力する。
そして、ステップS2に示す工程又はステップS3乃至S6に示す工程の後、ステップS7に進み、プロトコルチップから出力された信号をNNI機能ブロックに対して出力する。いずれの方式によって信号の変換を行う場合でも、プロトコルチップはNNI機能ブロックに適した仕様となっているので、プロトコルチップから出力された信号はそのままNNI機能ブロック経由で光ファイバに伝送することができる。NNIブロックにおいては、場合によっては2.5Gb/sの信号と3.125Gb/sの信号とが混在することになるが、全く同様にスイッチングされ、伝送される。
なお、本実施形態においては、10GbEの信号を、2.5Gb/sのOC−48/STM−16×4か、又は3.125Gb/s×4のXAUIに変換し、伝送する例を示した。このように高速の信号を分離して、分離した夫々の信号をWDMの波長に割り当てて光ファイバ中を伝送させる場合は、波長分散の影響によって、波長チャンネル間でスキューが生じる。なお、波長分散とは、波長によって伝播速度が異なる現象である。OC−48/STM−16については125マイクロ秒単位という大きなフレームを参照することができるので、補償回路規模は大きくなるものの、波長分散程度の影響ではデスキューが不可能になるほどの問題に至る可能性はほとんどない。XAUIについても標準仕様でデスキューができるが、最大13ナノ秒という値であるので注意する必要がある。但し、XAUIの各レーンを割り当てる波長として、100GHz間隔の隣り合う4波長とすれば、約200kmの距離は問題なく伝送可能となる。
次に、本発明の第4の実施形態について説明する。図17は、本実施形態に係る光通信装置を示すブロック図である。図17に示すように、本実施形態に係る光通信装置は、前述の第1の実施形態と比較して、光増幅ユニット31が設けられている点が異なっている。光増幅ユニット31においては、2つのプリアンプ32及び2つのブースターアンプ33が設けられている。プリアンプ32は、NNI機能ブロック2の入力回線となる高速回線5に介在し、NNI機能ブロック2に入力される光信号を増幅するものである。ブースターアンプ33は、NNI機能ブロック2の出力回線となる高速回線5に介在し、NNI機能ブロック2から出力される光信号を増幅するものである。本実施形態によれば、光増幅ユニット31を設けて光信号を増幅することにより、伝送距離を拡大することができる。本実施形態における上記以外の構成、動作及び効果は、前述の第1の実施形態と同様である。なお、必要な伝送距離及び損失バジェットによって、光増幅ユニット31は自由に構成することができる。例えば、プリアンプのみを実装してもよく、又は、本実施形態のように、ブースターアンプ及びプリアンプを組み合わせて実装してもよい。
次に、本第4の実施形態の第1の変形例について説明する。図18は、本変形例に係る光通信装置を示すブロック図である。本変形例に係る光通信装置においては、図17に示す第3の実施形態に係る光通信装置と比較して、光増幅ユニット34において、ブースターアンプの替わりに可変アッテネータ35が設けられている点が異なっている。可変アッテネータ35は、NNI機能ブロック2から出力される光信号のパワーを低減するものである。本変形例によれば、非線形効果による波長劣化の影響が大きい場合に、送信光の出力パワーを低減し、最適出力パワーに設定することが容易になる。これにより、光信号の波長劣化を抑制することができる。なお、可変アッテネータの替わりに固定アッテネータを設けてもよい。本変形例における上記以外の構成、動作及び効果は、前述の第3の実施形態と同様である。
次に、本発明の第5の実施形態について説明する。図19は、本実施形態に係る光通信装置のUNI機能ブロックを示すブロック図である。図19に示すように、本実施形態は、前述の第2の実施形態と比較して、UNI機能ブロック3のプロトコルチップ14とセレクタ15との間に、順方向誤り訂正チップ36が設けられている点が異なっている。順方向誤り訂正チップ36は、プロトコルチップ14が出力した5Gb/s以下のシリアル信号に対して符号化を行って誤りを訂正し、訂正後の信号をセレクタ15に対して出力するものである。本実施形態における上記以外の構成、動作及び効果は、前述の第1の実施形態と同様である。なお、順方向誤り訂正チップ36を設けず、誤り訂正機能をプロトコルチップ内に集積してもよい。
次に、本発明の第6の実施形態について説明する。図20は、本実施形態に係る光通信装置を示すブロック図である。図20に示すように、本実施形態に係る光通信装置は、前述の第1の実施形態と比較して、波長モニタリングユニット37が設けられている点が異なっている。波長モニタリングユニット37においては、ライン側の高速回線5に介在するように設けられ、高速回線5を伝送するDWDM光信号から強度が10%程度の信号を分岐させるタップカプラー38と、タップカプラー38によって分岐された光信号が入力するスペクトルモニタリングデバイス39とが設けられている。スペクトルモニタリングデバイス39は、タップカプラー38によって分岐されたDWDM信号の各波長信号の波長が規定の波長範囲内にあるかどうかを監視し、規定の範囲内にないときは、NNI機能ブロック2に対してアラーム信号を出力するものである。
本実施形態においては、高速回線5を伝送するDWDM信号がタップカプラー38によって分岐され、分岐前の約10%の強度のDWDM信号がスペクトルモニタリングデバイス39に導かれる。なお、残りの約90%の強度のDWDM信号は、そのまま高速回線5を伝送する。スペクトルモニタリングデバイス39は、入力されたDWDM信号の各波長信号の波長が規定の波長範囲内にあるかどうかを監視する。そして、波長が規定の範囲内にないときには、アラーム信号をNNI機能ブロック2に対して出力する。これにより、NNI機能ブロック2に入力される2つの信号及びNNI機能ブロック2から出力される2つの信号の波長が、夫々規定の範囲内にあるかどうかをモニタすることができる。
NNIに用いるDWDM信号の間隔を50GHz又は25GHzといった狭い間隔に設定する場合は、本実施形態のように、波長モニタリングユニットを使用して一括で波長監視を行い、光トランシーバモジュールの出力信号の波長に対してフィードバックをかけることが好ましい。これにより、波長精度が高い高価な光トランシーバモジュールが不要となり、光通信装置のコストを低減することができる。本実施形態における上記以外の構成、動作及び効果は、前述の第2の実施形態と同様である。
なお、NNI機能ブロックを拡張して各DWDM光トランシーバモジュールが波長制御を行えるようにして、波長モニタリングユニットの監視結果をDWDM光トランシーバモジュールにフィードバックするようにしてもよい。これにより、波長モニタリングユニットの監視結果に基づいて、DWDM光トランシーバモジュールが光信号の波長を制御し、常に規定の範囲内にあるように維持することができる。
次に、本第6の実施形態の第1の変形例について説明する。図21は、本変形例に係る光通信装置を示すブロック図である。図21に示すように、本変形例においては、第5の実施形態における波長モニタリングユニット37(図20参照)の替わりに、波長モニタリングユニット40が設けられている。波長モニタリングユニット40においては、スペクトルモニタリングデバイス39が1個のみ設けられており、スペクトルモニタリングデバイス39を4個のタップカプラー38のうちいずれかに接続する(1×4)光スイッチ41が設けられている。
本変形例においては、(1×4)光スイッチ41が、スペクトルモニタリングデバイス39に接続するタップカプラー38を切り替えながら、スペクトルモニタリングデバイス39が、入力された光信号の監視を行う。これにより、スペクトルモニタリングデバイス39は、4本の高速回線5の夫々に流れる信号を、1本ずつ時間分割して監視することができる。光トランシーバモジュールの波長変動は短期的に生じるものではないので、本変形例のように、1個のスペクトルモニタリングデバイス39により全ての入出力信号を時間分割で監視することにより、波長モニタリングユニットのコストを抑制することができる。
次に、本発明の第7の実施形態について説明する。本実施形態は、前述の第1の実施形態に係る光通信装置を実際のネットワークに適用した光通信システムの実施形態である。図22は、本実施形態に係る光通信システムを示すブロック図である。図22に示すように、本実施形態に係る光通信システム51は、3台のノードA、B及びCが直列に接続されたリニアシステムであり、各ノードは前述の第2の実施形態に係る光通信装置1によって構成されている。また、各ノード間は、2本の光ファイバ52からなる伝送路によって接続されている。即ち、この伝送路の両端部は光通信装置1によって収容されている。
各光通信装置1のNNI機能ブロック2には、最大32個のDWDM光トランシーバモジュール10が搭載可能であり、16個ずつ東側伝送用及び西側伝送用に振り分けられている。なお、上述の「東側」及び「西側」という名称は便宜的なものであり、実際の方位とは必ずしも対応していない。以下、便宜上、図示の右側を東側といい、左側を西側という。また、図22において、DWDM光トランシーバモジュール10を示すブロックのうち、内部に「×」印が記載されたブロックは、16台のDWDM光トランシーバモジュール10が実装されていることを示し、「×」印が記載されていないブロックはDWDM光トランシーバモジュール10が未実装であり、16台分の空きスペースとなっていることを示している。
ノードAを構成する光通信装置1のNNI機能ブロックにおいては、最大32個の光トランシーバモジュールの収容能力に対して、東側(ノードB側)に16個の光トランシーバモジュールだけを実装しており、西側の16個分のスペースは未実装の空きスペースとなっている。ノードBを構成する光通信装置1においては、ノードA及びノードCとの接続用に夫々16個の光トランシーバモジュールが必要となるため、32個の光トランシーバモジュールがフル実装されている。ノードCを構成する光通信装置1においては、西側(ノードB側)に16個の光トランシーバモジュールだけを実装しており、東側の16個分のスペースは未実装の空きスペースとなっている。また、ノード間においては、光トランシーバモジュールの4つの波長信号で1本の10Gb/s回線を伝送し、ノード間の最大伝送容量は40Gb/sの双方向となっている。即ち、2本の光ファイバ52により、4本の10Gb/s回線53(図23参照)が構成されている。ノード間の通信速度は5Gb/s以下である。
また、各NNI機能ブロック2には、東側及び西側の夫々について多重用及び分離用の16チャンネルの波長多重・分離フィルタが設けられている。従って、各NNI機能ブロック2には、合計4つの波長多重・分離フィルタが設けられている。
更に、UNI機能ブロック3は、10Gb/s回線を4つ収容できるようになっており、ノードA及びノードCにおいては4つの10Gb/s光トランシーバモジュールが搭載されており、ノードBにおいては2つの10Gb/s光トランシーバモジュールが搭載されている。
次に、本実施形態に係る光通信システムの動作、即ち、本実施形態に係る光通信方法について説明する。図23は、本実施形態における第1のパス構成を示すパス構成図であり、図24は、第2のパス構成を示すパス構成図であり、図25は、第3のパス構成を示すパス構成図であり、図26は、第4のパス構成を示すパス構成図であり、図27は、第5のパス構成を示すパス構成図であり、図28は、第6のパス構成を示すパス構成図であり、図29は第7のパス構成を示すパス構成図である。
先ず、第1のパス構成について説明する。図23に示すように、ノード間においては、2本の光ファイバ52(図22参照)により、4本の10Gb/s回線53が構成されている。そして、この4本の10Gb/s回線53のうち、3本はノードAとノードBとを直接接続し、残りの1本により、ノードAとノードBとを接続すると共に、ノードBとノードCとを接続する。
本実施形態においては、収容すべきトラフィックの状況の変化等に応じて、自由にトポロジを変化させることができる。例えば、図24に示す第2のパス構成をとることができる。即ち、図23に示す第1のパス構成において、ノードAとノードCとの間の10Gb/s回線53を1本廃止し、ノードBとノードCとの間の10Gb/s回線53を1本廃止して、ノードAとノードBとの間に10Gb/s回線53を1本増設する。これにより、ノードAとノードBとの間の回線容量を倍にすることができる。図23に示す第1のパス構成と図24に示す第2のパス構成との間の切り替えは、全て遠隔からの操作のみによって行うことができる。パッチコードの付け替え、DWDMラインカードの入れ替え等の入局が必要な作業は不要である。
また、ノードAとノードBとの間の回線を更に増設したいときは、図25に示すように、第3のパス構成に切り替える。即ち、ノードBを構成する光通信装置1において、UNI機能ブロック3に10Gb/sの光トランシーバモジュールを2つ増設する。これにより、ノードBとノードCとの間に2本の10Gb/s回線53を増設することができる。 更に、図26に示すように、ノードBのUNI機能ブロックを増設し、ノードBにおける10Gb/sの光トランシーバモジュールの数を合計8つとして、第4のパス構成とすることもできる。第4のパス構成においては、ノードAとノードBとの間に4本の10Gb/s回線53を設け、ノードBとノードCとの間に4本の10Gb/s回線53を設ける。また、ノードAとノードCとを直接接続する10Gb/s回線53は設けず、全てのトラフィックにノードBのUNI機能ブロックを経由させるようにする。
本実施形態においては、任意のノードの任意のクライアントポート間を接続することができるため、どのポートを西側に出すか、東側に出すかなど、自由に、しかも瞬時に切り替えることができる。また、図26に示す第4のパス構成において、中央ノードであるノードBを構成する光通信装置に障害が発生した場合等には、図27に示す第5のパス構成に切り替えて、ノードBをスキップしてノードAとノードCとを直接接続するポイント・トゥー・ポイントシステムの形態に瞬時に変更することができる。
また、例えば、図28に示す第6のパス構成のように、ノードDを新設し、ノードCから新たな回線を増設したい場合は、現用のノードCに自由に接続して増設することができる。増設する容量が40Gb/sまでであれば、ノードCの東側(ノードD側)に16個の光トランシーバモジュールを増設して、ノードBのように光トランシーバをフル実装し、スタンバイしていた波長分離・多重フィルタの入出力ポートに新たな回線を接続すればよい。
更に、ノードCとノードDとの間に80Gb/sの容量を増設したい場合は、図29に示す第7のパス構成のように、ノードC及びノードDの双方に、32個の光トランシーバモジュールをフル実装したNNI機能ブロック2を増設する。この場合は、80Gb/sの回線を同一方向に一括で使うことになるので、波長多重・分離フィルタには、16チャンネルのフィルタではなく、32チャンネルのフィルタを使用する。波長多重・分離フィルタの個数は、多重用に1つ、分離用に1つの合計2つとする。増設するNNI機能ブロックと既設のNNI機能ブロックとは大容量のバックプレーンを経由して接続することが可能であるので、このノードを介して、西側及び東側に延びるネットワークの回線を直接接続することができる。
又は、ノード間において80Gb/sの容量の伝送が必要なときには、伝送路を挟んで対向するNNI機能ブロック2間において、64種類の波長信号を用いて1本の光ファイバによって一芯双方向伝送を行ってもよい。この場合は、各NNI機能ブロックに、一芯双方向伝送に使用する64チャンネルの波長多重・分離フィルタを1つ搭載する。同様に、ノード間において40Gb/sの容量の伝送が必要なときには、伝送路を挟んで対向するNNI機能ブロック2間において、32種類の波長信号を用いて1本の光ファイバによって双方向伝送を行ってもよい。1つのNNI機能ブロックにて使用する波長は16種類なので、32個のDWDM用光トランシーバモジュールを搭載可能であれば、東側及び西側のトラフィックを夫々1本の光ファイバにて双方向伝送行い、それを実現するノードを1つのNNI機能ブロックで構成することができる。この場合は、1つのNNI機能ブロックには32チャンネルの波長多重・分離フィルタを2つ搭載する。
上述の如く、本実施形態に係る光通信システムは、拡張性が優れている。この高い拡張性を利用して、上記構成以外にも、例えばリング状システム及びメッシュ状システムといった種々のトポロジに容易に対応することができる。
また、ノードA及びノードCを構成する光通信装置1においては、最大32個の光トランシーバ収容能力に対して、16個だけを搭載している。NNI機能ブロック2は機能をシンプル化しているため、共通コストが低く抑えられており、コストの大部分は光トランシーバモジュール部分が占めることになる。本実施形態においては、必要最小限の光トランシーバモジュールだけを実装できるように、光トランシーバモジュールがプラガブルのモジュール構造となっているため、スタートコストを削減する上で有利である。また、未実装の16個分の光トランシーバモジュールのために実装されているスイッチ等の共通コストは、元々低く抑えられているので、小容量構成時から低コストのシステムを提供することができる。共通コストとして最も高価な部品である波長多重・分離フィルタについても、一つの波長信号当たりのコストは、光トランシーバモジュールのコストの5分の1から10分の1程度と小さい値である。
なお、波長多重・分離フィルタについては、16チャンネル毎にモジュールを分割しているため、ノードA及びノードCについては、必ずしも4つ搭載する必要はなく、その後、拡張する可能性がないのであれば、はじめから2つだけを搭載してもよい。
次に、本第7の実施形態の第1の変形例について説明する。本変形例は、更に大規模なクロスコネクトを構成する場合の例である。図30は、本変形例に係る光通信システムを示すブロック図である。図30に示すように、この光通信システムにおいては、2系統の大規模拡張スイッチユニット55a及び55bが設けられている。大規模拡張スイッチユニット55aは現用系のユニットであり、大規模拡張スイッチユニット55bは予備系のユニットである。また、この光通信システムには、8台のNNI機能ブロックが設けられており、そのうち4台が大規模拡張スイッチユニット55a及び55bの一方の側に接続され、残りの4台が大規模拡張スイッチユニット55a及び55bの他方の側に接続されている。
このように、図30に示す光通信システムは大規模な接続となるが、スイッチユニット内を流れる信号は、NNIユニット内を流れる5Gb/s以下のシリアル信号と全く同一仕様の信号であり、マルチレートに対応し、プロトコルフリーのスイッチングが可能である。また、通常は、現用系の規模拡張スイッチユニット55aを介して光通信を行うが、現用系の規模拡張スイッチユニット55aに問題が発生したときには、規模拡張スイッチユニット55bに切り替える。現用系の規模拡張スイッチユニット55aと予備系の規模拡張スイッチユニット55bとの間の切り替えは、各NNI機能ブロック内の空間スイッチによって行う。
次に、本発明の第8の実施形態について説明する。本実施形態は、前述の第1の実施形態に係る光通信装置を使用して、10Gb/s以上の大容量回線を長距離伝送する光通信システムの実施形態である。図31は本実施形態に係る光通信システムを示すブロック図であり、図32は、この光通信システムにおけるチャンネル接続方法の一例を示すブロック図である。
図31に示すように、本実施形態に係る光通信システム61においては、M個(Mは2以上の整数)のノードN1乃至NMが直列に設けられている。各ノードは光通信装置によって構成されており、各光通信装置にはNNI機能ブロック2が設けられており、少なくともノードN1及びNMの光通信装置1には、NNI機能ブロック2の他にUNI機能ブロック3が設けられている。また、ノードNk−1とノードNk(kは2乃至Mの整数)との間は、伝送路Fk−1によって接続されている。更に、終端ノードであるノードN1及びNMを構成する光通信装置1には、10Gb/s以上の大容量回線62が収容されている。
また、図32に示すように、終端ノードであるノードN1及びノードNMにおいては、光通信装置1のNNI機能ブロック2とUNI機能ブロック3との間が4本のレーンX1乃至X4によって接続されており、このレーンX1乃至X4を介して4つのシリアル信号が伝送されるようになっている。ノードN1においては、UNI機能ブロック3が、大容量回線62を介して入力された多重化信号を4つのシリアル信号に分離して、レーンX1乃至X4に対して出力する。ノードNMにおいては、UNI機能ブロック3が、レーンX1乃至X4を介して入力された4つのシリアル信号を多重化して、大容量回線62に対して出力する。
一方、ノード間を伝送するDWDM信号の各波長チャンネルをλ0乃至λ7とする。波長チャンネルλ0乃至λ7の波長はこの順に長くなっており、波長チャンネルλ0の波長が最も短く、波長チャンネルλ7の波長が最も長い。そして、ノードN1の空間スイッチが、レーンX0乃至X3を介して入力されたシリアル信号を、チャンネルλ0乃至λ7のいずれかに割り当てる。このとき、設定を簡略化するために、各レーンの信号は、レーン番号(0乃至3)が増加するほど、割り当てられるチャンネル番号(0乃至7)が単調に増加又は減少するものとし、割り当てられる波長チャンネルは飛び飛びの値をとってもよいものとする。
同様に、中間ノードであるノードN2乃至NM−1においては、空間スイッチにより、入力側の伝送路の波長チャンネルを出力側の伝送路の波長チャンネルに夫々割り当てる。このとき、入力側のチャンネル番号が増加するほど、出力側のチャンネル番号が単調に増加又は減少するように、チャンネルの割り当てを行う。また、割り当てられる波長チャンネルは飛び飛びの値をとってもよいものとする。
次に、本実施形態に係る光通信システムの動作、即ち、本実施形態に係る光通信方法について説明する。図32に示すように、ノードN1に接続された大容量回線62を介して、光信号がノードN1の光通信装置1に入力されると、この光信号はUNI機能ブロック3内で、5Gb/s以下の4つのシリアル信号に分離される。そして、この4つのシリアル信号は、4本のレーンX0乃至X3を通じてNNI機能ブロック2に入力される。NNI機能ブロック2の空間スイッチは、レーンX0を伝送路F1のチャンネルλ1に接続し、レーンX1を伝送路F1のチャンネルλ3に接続し、レーンX2を伝送路F1のチャンネルλ5に接続し、レーンX3を伝送路F1のチャンネルλ7に接続する。伝送路F1は、この信号をノードN2に伝送する。
ノードN2の空間スイッチは、伝送路F1のチャンネルλ1を伝送路F2のチャンネルλ7に接続し、伝送路F1のチャンネルλ3を伝送路F2のチャンネルλ6に接続し、伝送路F1のチャンネルλ5を伝送路F2のチャンネルλ5に接続し、伝送路F1のチャンネルλ7を伝送路F2のチャンネルλ4に接続する。伝送路F2は、この信号をノードN3に伝送する。
ノードN3の空間スイッチは、伝送路F2のチャンネルλ7を伝送路F3のチャンネルλ3に接続し、伝送路F2のチャンネルλ6を伝送路F3のチャンネルλ2に接続し、伝送路F2のチャンネルλ5を伝送路F3のチャンネルλ1に接続し、伝送路F2のチャンネルλ4を伝送路F3のチャンネルλ0に接続する。伝送路F3は、この信号をノードN4に伝送する。
ノードN4の空間スイッチは、伝送路F3のチャンネルλ3を伝送路F4のチャンネルλ4に接続し、伝送路F3のチャンネルλ2を伝送路F4のチャンネルλ2に接続し、伝送路F3のチャンネルλ1を伝送路F4のチャンネルλ1に接続し、伝送路F3のチャンネルλ0を伝送路F4のチャンネルλ0に接続する。伝送路F4は、この信号をノードN5に伝送する。以後、同様にして、スイッチング及び伝送を行っていく。
そして、終端のノードNMに、伝送路F4と同じチャンネル構成で信号が入力されたとすると、ノードNMの空間スイッチは、伝送路FM−1の各チャンネルをノードNMのレーンX0乃至X3に接続する。このとき、ノードN1の各レーンを伝送した信号が、ノードNMの同じレーン番号のレーンに入力されるようにする。即ち、ノードNMの空間スイッチは、伝送路FM−1のチャンネルλ4をノードNMのレーンX0に接続し、伝送路FM−1のチャンネルλ2をレーンX1に接続し、伝送路FM−1のチャンネルλ1をレーンX2に接続し、伝送路FM−1のチャンネルλ0をレーンX3に接続する。
次に、本実施形態の効果について説明する。前述の第2の実施形態に係る光通信装置は、10Gb/s及び40Gb/sといった大容量の回線については、5Gb/s以下の複数の信号に分割して伝送している。前述の如く、高速の信号を分離し、分離した夫々の信号をWDMの波長に割り当てて光ファイバ中を伝送すると、波長分散の影響によってスキューが生じる。このスキューは、単位長さの光ファイバによる波長分散量が一定であれば、伝送距離に比例して増大する。このため、回線を終端することなく長距離伝送を行うと、両端の終端ノードでは大きなスキューを補償する必要が生じる。従って、長距離伝送の終端ノードにおいては、大規模なバッファメモリ又は大規模な遅延補償回路を設けることが必要である。また、10GbEのXAUIのように、許容されるスキュー量が小さい規格の場合は、伝送路の波長分散を補償するような光機能を導入しない限り、回線終端なしでの長距離伝送は不可能である。
これに対して、本実施形態に係る光通信システムにおいては、適切なノードにおいて、伝送路の長波長側チャンネルと短波長側チャンネルとを入れ替える波長変換を行っている。これにより、複数のノード間伝送路の波長分散特性を相殺させて、終端ノードにおけるスキュー量を低減することができる。この波長変換は、上述の如く、分割して割り当てたDWDMの各チャンネルの長波長から短波長への順序を入れ替える動作を行うので、これを特に波長昇降順変換と定義する。この波長昇降順変換によるスキュー低減方法としては、例えば、1回の波長昇降順変換によって、終端ノードにおけるスキュー量を所定の規定値(Smax)以下とする第1の方法と、1回又は複数回の波長昇降順変換によって、各ノードにおけるスキュー量を規定値Smax以下とする第2の方法とがある。
以下、このスキュー低減方法を詳細に説明する。ノードNkにて割り当てた波長チャンネルに対して、最大の波長差(例えば、図24に示すノードN1ではチャンネルλ7とチャンネルλ1との間の波長差)をIkとし、ノードNkとノードNk+1との間の伝送路Fkのファイバ距離をLk、分散量をDkとする。そうすると、信号がノードNkからノードNk+1に伝送する間に生じる最大のスキュー量Skは、単純に、波長差Ikとファイバ距離Lkと分散量Dkとの積(Ik×Lk×Dk)で表される。但し、波長差Ik及び距離Lkは正の値のパラメータとする。分散量Dkはファイバの種類によっては負の値をとる。従って、最大スキュー量Skも負の値をとることがある。
更に、波長昇降順変換を実施するノードと、その変換によって変化するスキューの値を定義するために、波長昇降順変換ノードパラメータPkを定義する。パラメータPkは、ノードNkが波長昇降順変換を実施したときは−1、実施しないときは+1の値をとる。即ち、図24に示すノードN3及びN4のように、伝送する波長チャンネルを変更したとしても、波長の昇降順の入れ替えを行わない場合は、Pk=1とする。一方、ノードN2のように、波長の昇降順の入れ替えを行う場合は、Pk=−1とする。また、回線収容ノードであるノードN1及びNMにおいては、分割した回線の内、レーン番号X0の信号と最も短い波長チャンネルが接続される場合は波長昇降順変換がないとしてPk=1とし、その反対の場合はPk=−1とする。例えば、図24においては、P1=1、PM=−1となる。これらのパラメータを用いると、信号がノードN1からノードNkに伝送した後に残留するスキュー量Rkは、下記数式2のように表すことができる。
Figure 2006106973
上述の第1の方法、即ち、終端ノードにおけるスキュー量を所定の規定値Smax以下としてスキュー量を低減する方法は、終端ノードであるノードNMでの残留スキュー量RMの絶対値が規定値Smaxよりも小さくなるように、波長昇降順変換を行うノードNkを一つ選択する方法である。このとき、条件を満たすノードNkが複数あって最適化を行う場合は、スキュー量Rkが最小値となるようなノードNkを一つ選択する。
また、上述の第2の方法、即ち、1回又は複数回の波長昇降順変換により各ノードにおけるスキュー量を規定値Smax以内としてスキュー量を低減する方法は、全てのスキュー量Rkの絶対値が規定値Smaxよりも小さくなるようにパラメータPkを設定する方法である。具体的には、パラメータP1を(+1)又は(−1)に任意に設定して、仮にP2=1とした場合についてスキュー量R3の絶対値を計算し、このスキュー量R3の絶対値が規定値Smaxを上回らなければP2=1とし、スキュー量R3の絶対値がSmaxを上回るようであればP2=−1と設定する。同様に、設定したパラメータP1及びP2の値を用いてスキュー量R4を計算してパラメータP3の値を決定する。このようにして、P2以降のパラメータを順次決定していく。なお、この第2の方法において、ノードNMからノードN1に向かうパスを設定する場合は、ノードNM側から再度計算し、ノードN1からノードNMに向かうパスとは独立に波長昇降順変換ノードを設定する。
このように、適切なノードのNNI機能ブロック内の空間スイッチにおいて、伝送する波長チャンネルを長波長側と短波長側とで入れ替える波長昇降順変換を行うことにより、波長分散によるスキューの大部分をキャンセルすることができる。これにより、例えば、XAUIの伝送距離を、途中で終端することなく拡大することができる。この手法は、例えばOC−192/STM−64又はOC−768/STM−256をOC−48/STM−16に分割して伝送する場合にも適用でき、受信端にて必要なバッファメモリの削減、並びにデスキュー処理及びポインタ処理の負荷の低減に対して有効である。
なお、前述の第7及び第8の実施形態に係る光通信システムにおいては、終端ノードを前述の第1の実施形態に係る光通信装置により構成する例を示したが、前述の第2乃至第5の実施形態のうちいずれかの実施形態に係る光通信装置によって構成してもよい。また、終端ノードに限らず、中間ノードにおいても、少なくともクライアント側の光回線が接続されたノードには、前述の第2乃至第6の実施形態のうちいずれかの実施形態に係る光通信装置を使用することができる。
本発明は、波長分割多重を利用したインバースマックス伝送を行う光通信方法及び光通信システムとして有用である。
【0031】
トコル依存性がある機能を搭載する必要がないので、完全なトランスペアレントにて信号を取り扱うことができるためである。
[0110]
現在、SONET/SDH(Synchronous Optical NETwork/Synchronous Digital Hierarchy)では、多様なプロトコルを収容できるように、種々の仕様が用意されており、ほとんどすべてのプロトコルをSONET/SDHレイヤ上に載せて、効率的な伝送ネットワーク網を構築することができる。但し、必ずしも簡単な仕組みでネットワークが構築されるわけではなく、多数のプロトコルをスタックするときなど、予期せぬ遅延の増加を招いたりすることがある。これらのことから、どんなプロトコルであっても、プロトコルフリーの波長チャンネルに直接収容させる機能に対する期待も強く、波長チャンネルの自由な取扱の可能な装置が望まれている。上述の如く、本実施形態では、必要に応じてSONET/SDHに収容することもできるし、直接波長チャンネルに収容することもできる。しかも、すべてのUNIポートがすべてのNNIの波長チャンネルに接続可能であるので、極めて自由度の高い、柔軟な設定が可能となるのである。
[0111]
なお、上述の説明と重複する部分はあるが、NNI機能ブロック内で取り扱う信号を5Gb/s以下に限定することで得られる効果をまとめると、以下のようになる。
1.小型、低コスト、低消費電力でありながら、高い伝送能力を持ったプラガブル光トランシーバモジュールを活用できるので、システムが小型、低コスト、低消費電力となる。
2.プラガブル光トランシーバモジュールはパラレル化処理を行うことなく、透過的に光信号と電気信号との間の変換を行う能力を持ち、且つ、広いビットレートの範囲で動作するプロトコル無依存のモジュールであるため、電気伝送、光伝送を統一的に取り扱う簡単な装置アーキテクチャを実現できる。
3.信号をパラレル化することなく、一般的な基板上で電気伝送することが容易であり、装置の簡単化、その結果の高密度実装化が可能である。
4.大容量の空間スイッチを活用することができるので、拡張性を高めることができる。
5.大容量のパラレル光トランシーバを活用することができるので、よりフレキシブルな装置を構成することができる。
[0112]
なお、本実施形態において、DWDM光トランシーバモジュール10として、リタイミン

Claims (37)

  1. クロスコネクトスイッチとWDM(波長分割多重)伝送機能とを夫々有する複数のノードをインバースマックス伝送路に設け、隣接するノード間には複数の波長チャネルがあり、前記インバースマックス伝送路で発生するスキューを所定値以下とする光通信方法に関し、
    (a)隣接するノード間に設けた波長チャンネル間のスキューを測定し、
    (b)測定されたスキュー量に基づいて波長チャネル間の入れ替えを行うノードを決定し、
    (c)ステップ(b)で決定したノードのクロスコネクトスイッチを波長チャネルの入替えのために設定する
    ことを特徴とする光通信方法。
  2. 前記ステップ(a)において、隣接するノード間に設けた波長チャネル間のスキュー測定は、夫々のノードに設けたスキュー測定装置で行なわれ、前記隣接するノードの第1のノードのクロスコネクトスイッチを設定して対応する第1のスキュー測定装置から発生する2つのテスト信号を夫々2つの波長チャネルに送出し、前記隣接するノードの第2のノードのクロスコネクトスイッチを設定して前記第1のノードから送出されて夫々前記2つの波長チャネルを介して送られてきた2つのテスト信号を対応する第2のスキュー測定装置に入力し、前記第2のスキュー測定装置において前記隣接するノード間の波長チャネル間のスキューを測定することを特徴とする請求項1に記載の光通信方法。
  3. 前記ステップ(a)において、隣接するノード間のスキュー測定は、夫々のノードに設けたスキュー測定装置で行なわれ、前記隣接するノードの第1のノードのクロスコネクトスイッチを設定して対応する第1のスキュー測定装置から発生する1つのテスト信号を分岐させて夫々2つの波長チャネルに送出し、前記隣接するノードの第2のノードのクロスコネクトスイッチを設定して前記第1のノードから送出されて前記2つの波長チャネルを介して夫々送られてきた2つのテスト信号を対応する第2のスキュー測定装置に入力し、前記第2のスキュー測定装置において前記隣接するノード間の波長チャネル間のスキューを測定することを特徴とする請求項1に記載の光通信方法。
  4. 前記ステップ(c)において、波長入れ替えを行うノードのクロスコネクトスイッチ設定は、終端ノード間での伝送試験を行うステップを含み、前記伝送試験は、インバースマックス伝送を行う波長チャンネルのうち2つの波長チャンネルについて、各ノードのクロスコネクトスイッチのマルチキャストにより、各ノードに設けたスキュー測定装置に導いてスキュー測定を行うステップを有することを特徴とする請求項1乃至3のいずれか1項に記載の光通信方法。
  5. 前記ステップ(b)において、波長入れ替えを行う中継ノードを決定するステップは、波長入替えにかかわらず、あらかじめ指定したスキューの条件を満たすことができない場合、回線終端を行う最適なノードを指定するステップを含むことを特徴とする請求項1乃至4のいずれか1項に記載の光通信方法。
  6. 前記ステップ(a)において測定したスキューは、外部ネットワークを介してネットワーク制御装置に送出されるステップを有することを特徴とする請求項1乃至5のいずれか1項に記載の光通信方法。
  7. インバースマックス伝送路に設けられ、クロスコネクトスイッチとWDM(波長分割多重)伝送機能とを夫々有する複数のノードと、前記複数のノードの夫々に設けたスキュー測定装置とを具え、隣接するノードに設けたスキュー測定装置の一方からスキュー測定用のテスト信号を発生させ、前記クロスコネクトスイッチを設定して前記隣接するノード間の波長チャネルにテスト信号を送出し、前記隣接するノードに設けた他方のスキュー測定装置で前記テスト信号を受けて、隣接するノード間のスキューを測定することを特徴とする光通信装置。
  8. 前記スキュー測定装置は、テスト信号発生部を有する送信部と、前記テスト信号を受けてテスト信号を検出するテスト信号検出部および検出されたテスト信号からスキューを測定するスキュー測定部とを有する請求項6に記載の光通信装置。
  9. 前記クロスコネクトスイッチは、電気的な空間スイッチであることを特徴とする請求項7又は8に記載の光通信装置。
  10. 複数ヶ所のノードと、このノード間において光信号を伝送する伝送路側の光回線と、少なくとも1ヶ所の前記ノードに接続されたクライアント側の光回線と、前記伝送路側の光回線及び前記クライアント側の光回線が接続され、前記両光回線のクロスコネクトを行う光通信装置とを有し、前記光通信装置は、前記伝送路側の光回線に接続される第1の機能ブロックと、前記クライアント側の光回線に接続される第2の機能ブロックと、を有し、前記第1の機能ブロックは、前記伝送路側の光回線に接続され光信号と電気信号との間の変換を行う第1の光トランシーバモジュールと、この第1の光トランシーバモジュール及び前記第2の機能ブロックに接続された電気的な空間スイッチと、を有し、前記第1の光トランシーバモジュール及び前記空間スイッチは、5Gb/s以下のマルチレートで動作するものであり、
    前記伝送路側の光回線において、光信号が複数の分離信号に分離され複数の波長チャンネルに割り当てられて伝送されており、少なくとも1ヶ所の前記ノードにおいて、入力された光信号の各分離信号に割り当てられた波長チャンネルの波長の順番を、逆になるように入れ替えて出力し、割り当てられた波長チャンネル間のスキュー量が、回線を終端するノードを含む複数のノードにおいて所定の値以下となるように、1又は複数のノードにおいて前記波長チャンネルの入れ替えを行うことを特徴とする光通信システム。
  11. 複数ヶ所のノードと、このノード間において光信号を伝送する伝送路側の光回線と、少なくとも1ヶ所の前記ノードに接続されたクライアント側の光回線と、前記伝送路側の光回線及び前記クライアント側の光回線が接続され、前記両光回線のクロスコネクトを行う光通信装置とを有し、前記光通信装置は、前記伝送路側の光回線に接続される第1の機能ブロックと、前記クライアント側の光回線に接続される第2の機能ブロックと、を有し、前記第1の機能ブロックは、前記伝送路側の光回線に接続され光信号と電気信号との間の変換を行う第1の光トランシーバモジュールと、この第1の光トランシーバモジュール及び前記第2の機能ブロックに接続された電気的な空間スイッチと、を有し、前記第1の光トランシーバモジュール及び前記空間スイッチは、5Gb/s以下のマルチレートで動作するものであり、
    前記伝送路側の光回線において、光信号が複数の分離信号に分離され複数の波長チャンネルに割り当てられて伝送されており、少なくとも1ヶ所の前記ノードにおいて、入力された光信号の各分離信号に割り当てられた波長チャンネルの波長の順番を、逆になるように入れ替えて出力し、割り当てられた波長チャンネル間のスキュー量が、回線を終端するノードにおいて所定の値以下となるように、1ヶ所のノードにおいて前記波長チャンネルの入れ替えを行うことを特徴とする光通信システム。
  12. 前記第1の光トランシーバモジュールがプラガブルであることを特徴とする請求項10又11に記載の光通信システム。
  13. 前記第1の光トランシーバモジュールの個数がN個(Nは自然数)であるとき、前記空間スイッチの受信ポート数が3N個以上であり、前記空間スイッチの送信ポート数が3N個以上であることを特徴とする請求項10又11に記載の光通信システム。
  14. 前記第1の機能ブロックは、前記第2の機能ブロックが接続されたバックプレーンポートを有し、このバックプレーンポートは、前記空間スイッチの2N個以上の前記受信ポート及び2N個以上の前記送信ポートに、5Gb/s以下の電気シリアル回線によって接続されていることを特徴とする請求項13に記載の光通信装置。
  15. 前記第2の機能ブロックは、前記クライアント側の光回線に接続され光信号と電気信号との間の変換を行う第2の光トランシーバモジュールと、この第2の光トランシーバモジュールから出力された電気信号に対してフレーム処理を行い5Gb/s以下のシリアル信号として前記空間スイッチに対して出力するプロトコルチップと、を有することを特徴とする請求項10又11に記載の光通信システム。
  16. 前記第1の光トランジスタモジュールの数がN個(Nは自然数)であるとき、前記第1の機能ブロックは、前記伝送路側の光回線と前記第1の光トランジスタモジュールとの間に接続されN個のシリアル信号を多重化して1つの多重化信号とする多重フィルタと、前記伝送路側の光回線と前記第1の光トランジスタモジュールとの間に接続され1つの多重化信号をN個のシリアル信号に分離する分離フィルタと、を有することを特徴とする請求項10又11に記載の光通信システム。
  17. 前記第1の光トランジスタモジュールの数がN個(Nは自然数)であるとき、前記第1の機能ブロックは、前記伝送路側の光回線と前記第1の光トランジスタモジュールとの間に接続され(N/2)個のシリアル信号を多重化して1つの多重化信号とする2つの多重フィルタと、前記伝送路側の光回線と前記第1の光トランジスタモジュールとの間に接続され1つの多重化信号を(N/2)個のシリアル信号に分離する2つの分離フィルタと、を有することを特徴とする請求項10又11に記載の光通信システム。
  18. 前記第1の光トランジスタモジュールの数がN個(Nは自然数)であるとき、前記第1の機能ブロックは、一芯双方向伝送に使用し2N個の波長チャンネルを収容する波長合分波用フィルタを有することを特徴とする請求項10又11に記載の光通信システム。
  19. 前記空間スイッチがクロスポイントスイッチであることを特徴とする請求項10又11に記載の光通信システム。
  20. 前記第1の機能ブロックは、前記第1の光トランジスタモジュールと前記空間スイッチの間に接続され電気信号のリタイミングを行うCRDチップを有することを特徴とする請求項10又11に記載の光通信システム。
  21. 前記第2の機能ブロックは、1Gb/s以下の回線を収容し、5Gb/s以下の信号に多重化して前記第1の機能ブロックに対して出力するものであることを特徴とする請求項10又11に記載の光通信システム。
  22. 前記第2の機能ブロックは、5Gb/s以下の回線を収容し、そのままトランスペアレントに前記第1の機能ブロックに対して出力するものであることを特徴とする請求項10又11に記載の光通信システム。
  23. 前記第2の機能ブロックは、10Gb/sの回線を収容し、5Gb/s以下の信号に多重化して前記第1の機能ブロックに対して出力するものであることを特徴とする請求項10又11に記載の光通信システム。
  24. 前記第2の機能ブロックは、40Gb/sの回線を収容し、5Gb/s以下の信号に多重化して前記第1の機能ブロックに対して出力するものであることを特徴とする請求項10又11に記載の光通信システム。
  25. 前記第2の機能ブロックは、10ギガビットイーサネットの回線を収容し、4個の3.125Gb/sのシリアル信号からなるXAUIに分離して前記第1の機能ブロックに対して出力するものであることを特徴とする請求項10又11に記載の光通信システム。
  26. 前記第2の機能ブロックは、収容した回線を複数本のSONET/SDHのOC−48/STM−16にてフレーミングするものであることを特徴とする請求項10又11に記載の光通信システム。
  27. 前記第2の機能ブロックは、入力された信号の順方向誤り訂正を行うものであることを特徴とする請求項10又11に記載の光通信システム。
  28. 前記第1の機能ブロックと前記第2の機能ブロックとの間に接続された光ファイバを有し、前記第1及び第2の機能ブロックは夫々、前記光ファイバに接続され電気信号と光信号との間の変換を行うパラレルの光トランシーバモジュールを有することを特徴とする請求項10又11に記載の光通信システム。
  29. 前記第1の機能ブロック及び前記第2の機能ブロックを搭載し電気的なバックプレーンを備えたシャーシを有することを特徴とする請求項10又11に記載の光通信システム。
  30. 前記第1の機能ブロック及び前記第2の機能ブロックを収納する単一の筐体を有することを特徴とする請求項10又11に記載の光通信システム。
  31. 前記第1の機能ブロックと前記伝送路側の光回線との間に接続され入力された光信号を増幅して出力する光増幅ユニットを有することを特徴とする請求項10又11に記載の光通信システム。
  32. 前記第1の機能ブロックと前記伝送路側の入力回線との間に接続され前記入力回線から入力された光信号を増幅して前記第1の機能ブロックに対して出力する光増幅ユニットと、前記第1の機能ブロックと前記伝送路側の出力回線との間に接続され前記第1の機能ブロックから出力された光信号のパワーを低減して前記出力回線に対して出力する可変アッテネータと、を有することを特徴とする請求項10又11に記載の光通信システム。
  33. 前記第1の機能ブロックに入出力する光信号を構成する各波長チャンネルの波長を監視する波長モニタリングユニットを有することを特徴とする請求項10又11に記載の光通信システム。
  34. 前記波長モニタリングユニットは、前記伝送路側の光回線に介在してこの光回線中を流れる信号を分岐する複数のタップカプラと、この複数のタップカプラにより分岐された信号のうち1つの信号を選択する光スイッチと、この選択された信号を監視するスペクトルモニタリングデバイスと、を有することを特徴とする請求項33に記載の光通信システム。
  35. 前記波長モニタリングユニットは、監視結果を前記第1の機能ブロックに対して出力するものであり、前記第1の機能ブロックは、前記監視結果に基づいて前記第1の光トランシーバモジュールの光波長を制御するものであることを特徴とする請求項33又は34に記載の光通信システム。
  36. 複数ヶ所のノード間で光回線を介して光信号を伝送する光通信方法において、前記ノードを構成する光通信装置において、この光通信装置の一方の側に接続された前記光回線から入力された光信号を、5Gb/s以下のマルチレートで動作する光トランシーバモジュールによって電気信号に変換し、5Gb/s以下のマルチレートで動作する空間スイッチによって前記電気信号の伝送先を切り替えて、5Gb/s以下のマルチレートで動作する光トランシーバモジュールによって光信号に変換し、前記光通信装置の他方の側に接続された前記光回線に対して出力し、
    前記伝送路側の光回線において、光信号が複数の分離信号に分離され複数の波長チャンネルに割り当てられて伝送されており、少なくとも1ヶ所の前記ノードにおいて、入力された光信号の各分離信号に割り当てられた波長チャンネルの波長の順番を、逆になるように入れ替えて出力し、
    割り当てられた波長チャンネル間のスキュー量が、回線を終端するノードを含む複数のノードにおいて所定の値以下となるように、1又は複数のノードにおいて前記波長チャンネルの入れ替えを行うことを特徴とする光通信方法。
  37. 複数ヶ所のノード間で光回線を介して光信号を伝送する光通信方法において、前記ノードを構成する光通信装置において、この光通信装置の一方の側に接続された前記光回線から入力された光信号を、5Gb/s以下のマルチレートで動作する光トランシーバモジュールによって電気信号に変換し、5Gb/s以下のマルチレートで動作する空間スイッチによって前記電気信号の伝送先を切り替えて、5Gb/s以下のマルチレートで動作する光トランシーバモジュールによって光信号に変換し、前記光通信装置の他方の側に接続された前記光回線に対して出力し、
    前記伝送路側の光回線において、光信号が複数の分離信号に分離され複数の波長チャンネルに割り当てられて伝送されており、少なくとも1ヶ所の前記ノードにおいて、入力された光信号の各分離信号に割り当てられた波長チャンネルの波長の順番を、逆になるように入れ替えて出力し、
    割り当てられた波長チャンネル間のスキュー量が、回線を終端するノードにおいて所定の値以下となるように、1ヶ所のノードにおいて前記波長チャンネルの入れ替えを行うことを特徴とする光通信方法。
JP2007511205A 2005-03-31 2006-03-31 光通信方法、光通信装置、及び光通信システム Active JP4844558B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007511205A JP4844558B2 (ja) 2005-03-31 2006-03-31 光通信方法、光通信装置、及び光通信システム

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005104391 2005-03-31
JP2005104391 2005-03-31
JP2005140998 2005-05-13
JP2005140998 2005-05-13
JP2007511205A JP4844558B2 (ja) 2005-03-31 2006-03-31 光通信方法、光通信装置、及び光通信システム
PCT/JP2006/306945 WO2006106973A1 (ja) 2005-03-31 2006-03-31 光通信方法、光通信装置、及び光通信システム

Publications (2)

Publication Number Publication Date
JPWO2006106973A1 true JPWO2006106973A1 (ja) 2008-09-25
JP4844558B2 JP4844558B2 (ja) 2011-12-28

Family

ID=37073523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007511205A Active JP4844558B2 (ja) 2005-03-31 2006-03-31 光通信方法、光通信装置、及び光通信システム

Country Status (3)

Country Link
US (1) US8027585B2 (ja)
JP (1) JP4844558B2 (ja)
WO (1) WO2006106973A1 (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090034965A1 (en) * 2004-02-23 2009-02-05 Look Christopher M Method and an apparatus to automatically verify connectivity within an optical network node
US7848644B2 (en) * 2004-02-23 2010-12-07 Dynamic Method Enterprises Limited Method and an apparatus to provide optical equipment protection
JP4676531B2 (ja) * 2006-05-25 2011-04-27 富士通株式会社 光アクセスネットワークシステム
US7983559B2 (en) * 2006-11-10 2011-07-19 Infinera Corporation Configurable multi-rate optical network port and processing modules
US8660020B2 (en) 2007-01-19 2014-02-25 Infinera Corporation Communication network with skew compensation
JP4774391B2 (ja) * 2007-08-24 2011-09-14 株式会社日立製作所 光伝送システムおよび信号速度変換装置
US7889642B2 (en) 2007-09-06 2011-02-15 Infinera Corporation GMPLS fast re-route for OADM and AUX 10Mbps support
EP2260591A4 (en) * 2008-02-22 2013-10-23 Vello Systems Inc SPECTRALLY EFFICIENT PARALLEL OPTICAL WDM CHANNELS FOR METROPOLITAN AND LONG DISTANCE METROPOLITAN OPTICAL NETWORKS
US8175113B2 (en) 2008-06-30 2012-05-08 Infinera Corporation Communication network with node bypassed co-routed multi-channel traffic
JP5001926B2 (ja) * 2008-10-16 2012-08-15 日本電信電話株式会社 導通確認方法、導通確認プログラム、通信装置および導通確認システム
JP5381305B2 (ja) * 2009-05-08 2014-01-08 富士通株式会社 受信装置、送受信装置、及び伝送システム
JP5419534B2 (ja) * 2009-05-11 2014-02-19 三菱電機株式会社 Fecフレーム構成装置および方法
US8433190B2 (en) * 2009-11-13 2013-04-30 Verizon Patent And Licensing Inc. Hot-swapping in-line optical amplifiers in an optical network
US8391707B2 (en) * 2009-11-13 2013-03-05 Verizon Patent And Licensing Inc. Maintenance friendly optical fiber switching system
JP5446944B2 (ja) * 2010-01-29 2014-03-19 富士通株式会社 光ネットワークおよびその制御方法
JP5523201B2 (ja) * 2010-05-21 2014-06-18 三菱電機株式会社 デスキュー装置およびデスキュー処理方法
US8358932B2 (en) * 2010-07-06 2013-01-22 Prasanna Adhikari All-optical data center network
CN101908931B (zh) * 2010-08-17 2015-08-12 中兴通讯股份有限公司 光传输设备保护倒换的方法及系统
US20120189303A1 (en) * 2011-01-24 2012-07-26 Winzer Peter J Optical transport multiplexing client traffic onto parallel line system paths
WO2012177769A1 (en) 2011-06-20 2012-12-27 Plexxi Inc. Optical architecture and channel plan employing multi-fiber configurations for data center network switching
US9204207B2 (en) 2011-11-01 2015-12-01 Plexxi Inc. Hierarchy of control in a data center network
US9288555B2 (en) 2011-11-01 2016-03-15 Plexxi Inc. Data center network architecture
US9301026B2 (en) 2011-11-01 2016-03-29 Plexxi Inc. Affinity modeling in a data center network
US9337931B2 (en) 2011-11-01 2016-05-10 Plexxi Inc. Control and provisioning in a data center network with at least one central controller
WO2013147754A1 (en) * 2012-03-27 2013-10-03 Intel Corporation Optical link handshake techniques and configurations
JP6003356B2 (ja) * 2012-07-31 2016-10-05 日本電気株式会社 逆多重光送信装置及び逆多重光受信装置並びにこれらを用いた波長分割多重システム
CN103023568B (zh) * 2012-12-17 2017-09-19 华为技术有限公司 线卡、光模块及光网络设备
KR20140094350A (ko) * 2013-01-22 2014-07-30 한국전자통신연구원 측정 장치 및 그것의 신호 전송 시간차 측정 방법
US10373998B1 (en) * 2013-03-14 2019-08-06 Wavefront Research, Inc. Compact annular field imager optical interconnect
US9450815B2 (en) 2013-07-11 2016-09-20 Plexxi Inc. Network node connection configuration
KR101819254B1 (ko) * 2013-09-13 2018-01-17 한국전자통신연구원 대용량 광 트랜시버 모듈
US10078612B2 (en) * 2014-07-28 2018-09-18 Intel Corporation Mode selective balanced encoded interconnect
WO2016088214A1 (ja) * 2014-12-03 2016-06-09 富士機械製造株式会社 多重化通信システム及び作業機
US10771151B2 (en) * 2017-07-31 2020-09-08 Level 3 Communications, Llc Outside plant fiber health monitoring system
WO2021010116A1 (ja) * 2019-07-16 2021-01-21 住友電気工業株式会社 光ネットワークシステム及び自動運転システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218314A (ja) * 1996-02-13 1997-08-19 Fujitsu Ltd 光通信における受信端局の最適分散補償装置
US6031847A (en) * 1997-07-01 2000-02-29 Silicon Graphics, Inc Method and system for deskewing parallel bus channels
JPH1188260A (ja) * 1997-09-09 1999-03-30 Fujitsu Ltd 光伝送路の分散補償装置
US20020114034A1 (en) * 2000-05-22 2002-08-22 Winston Way Split wave method and apparatus for transmitting data in long-haul optical fiber systems
JP4046462B2 (ja) * 2000-07-12 2008-02-13 沖電気工業株式会社 波長多重伝送システム
JP4135312B2 (ja) 2000-10-30 2008-08-20 沖電気工業株式会社 逆多重伝送システム
JP2003061171A (ja) * 2001-08-21 2003-02-28 Mitsubishi Electric Corp クロスコネクト装置
US6961317B2 (en) * 2001-09-28 2005-11-01 Agilent Technologies, Inc. Identifying and synchronizing permuted channels in a parallel channel bit error rate tester
JP2003169355A (ja) 2001-12-03 2003-06-13 Hitachi Ltd 光クロスコネクト装置及び光ネットワーク
JP4520097B2 (ja) 2003-03-06 2010-08-04 ソフトバンクテレコム株式会社 動的な制御を行う光通信路の分散補償方法

Also Published As

Publication number Publication date
WO2006106973A1 (ja) 2006-10-12
JP4844558B2 (ja) 2011-12-28
US8027585B2 (en) 2011-09-27
US20090080881A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP4844558B2 (ja) 光通信方法、光通信装置、及び光通信システム
US8442040B2 (en) Modular adaptation and configuration of a network node architecture
JP3770767B2 (ja) トランスポンダ、波長多重伝送装置、波長多重伝送システムおよび情報通信装置
JP5919435B2 (ja) 光データ伝送システム
US7123806B2 (en) Intelligent optical network element
EP2464039B1 (en) Transponder and related network node for an optical transmission network
JP5132778B2 (ja) 光ネットワークシステム、光冗長切替え装置およびwdm装置
US7072584B1 (en) Network hub employing 1:N optical protection
KR101396954B1 (ko) 광 전송 장치 및 광 전송 시스템
US7877011B2 (en) Optical switch and optical crossconnect apparatus
US8861402B2 (en) Optical transport switching node with framer
JP6844229B2 (ja) ホスト基板、光受信器、光送信器、光トランシーバ、およびホスト基板への光トランシーバの実装方法
JP5681394B2 (ja) 光電気ハイブリッドノード
JP5473529B2 (ja) ノード装置および光伝送システム
US6980743B1 (en) Transparent wavelength division multiplexing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150