JPWO2006004098A1 - Electrolyte membrane and fuel cell using the electrolyte membrane - Google Patents

Electrolyte membrane and fuel cell using the electrolyte membrane Download PDF

Info

Publication number
JPWO2006004098A1
JPWO2006004098A1 JP2006528895A JP2006528895A JPWO2006004098A1 JP WO2006004098 A1 JPWO2006004098 A1 JP WO2006004098A1 JP 2006528895 A JP2006528895 A JP 2006528895A JP 2006528895 A JP2006528895 A JP 2006528895A JP WO2006004098 A1 JPWO2006004098 A1 JP WO2006004098A1
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrolyte
polymer
monomer
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006528895A
Other languages
Japanese (ja)
Other versions
JP4656060B2 (en
Inventor
窪田 耕三
耕三 窪田
平岡 秀樹
秀樹 平岡
芳範 山田
芳範 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Publication of JPWO2006004098A1 publication Critical patent/JPWO2006004098A1/en
Application granted granted Critical
Publication of JP4656060B2 publication Critical patent/JP4656060B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • C08F220/585Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】 固体高分子形燃料電池等の電気化学装置用途に利用できる、プロトン伝導性が高く、DMFCとして用いた場合にメタノールの透過阻止性能に優れ、かつ燃料電池として運転した場合の耐久性に優れる安価な電解質膜の提供。【解決手段】 (a)1分子中に重合可能な炭素炭素二重結合およびスルホン酸基を有する化合物またはこれらの塩、並びに(b)特定の構造式で表わされる(メタ)アクリルアミド誘導体を、必須構成モノマーとする架橋電解質ポリマーを含有することを特徴とする電解質膜。PROBLEM TO BE SOLVED: To be used for electrochemical device applications such as a polymer electrolyte fuel cell, having high proton conductivity, excellent in permeation-preventing performance of methanol when used as a DMFC, and durable when operated as a fuel cell. Providing excellent and inexpensive electrolyte membranes. SOLUTION: (a) A compound having a carbon-carbon double bond and a sulfonic acid group polymerizable in one molecule or a salt thereof, and (b) a (meth) acrylamide derivative represented by a specific structural formula are essential. An electrolyte membrane comprising a crosslinked electrolyte polymer as a constituent monomer.

Description

本発明は電解質膜に関するもので、当該電解質膜は電気化学装置、特に燃料電池、さらに詳細には直接アルコール形燃料電池用途に優れたものである。   The present invention relates to an electrolyte membrane, and the electrolyte membrane is excellent for electrochemical devices, particularly for fuel cells, and more specifically for direct alcohol fuel cells.

地球的な環境保護の動きが活発化するにつれて、いわゆる温暖化ガスやNOxの排出防止が強く叫ばれている。これらのガスの総排出量を削減するために、自動車用の燃料電池システムの実用化が非常に有効と考えられている。   As global environmental protection activities become more active, so-called greenhouse gas and NOx emission prevention is strongly screamed. In order to reduce the total emission amount of these gases, it is considered that practical application of a fuel cell system for automobiles is very effective.

高分子電解質膜を用いた電気化学装置の一種である固体高分子形燃料電池(PEFC、Polymer Electrolyte Fuel Cell)は、低温動作、高出力密度、環境負荷が少ないという優れた特長を有している。中でも、メタノール燃料のPEFCは、ガソリンと同様に液体燃料として供給が可能なため、電気自動車用動力や携帯機器用電源として有望であると考えられている。   A polymer electrolyte fuel cell (PEFC), which is a type of electrochemical device using a polymer electrolyte membrane, has excellent features such as low temperature operation, high output density, and low environmental impact. . Among them, PEFC, which is a methanol fuel, can be supplied as a liquid fuel in the same way as gasoline, and thus is considered promising as a power source for electric vehicles and a power source for portable devices.

燃料としてメタノールを用いる場合のPEFCは、改質器を用いてメタノールを水素主成分のガスに変換する改質メタノール形と、改質器を用いずにメタノールを直接使用する直接メタノール形(DMFC、Direct Methanol Polymer Fuel Cell)の二つのタイプに区分される。DMFCは、改質器が不要であるため、軽量化が可能である等の大きな利点があり、その実用化が期待されている。   When using methanol as a fuel, PEFC is divided into a reformed methanol type that uses a reformer to convert methanol into a hydrogen-based gas, and a direct methanol type that uses methanol directly without using a reformer (DMFC, It is divided into two types, Direct Methanol Polymer Fuel Cell). Since DMFC does not require a reformer, it has great advantages such as being able to reduce weight, and its practical use is expected.

しかし、DMFC用の電解質膜として、在来の水素を燃料とするPEFC用の電解質膜であるパーフルオロアルキルスルホン酸膜、例えばDu Pont社のNafion(登録商標)膜等を用いた場合には、メタノールが膜を透過してしまうため、起電力が低下するという問題がある。さらに、これらの電解質膜は非常に高価であるという経済上の問題も有している。   However, when an electrolyte membrane for DMFC is a perfluoroalkylsulfonic acid membrane that is an electrolyte membrane for PEFC using conventional hydrogen as a fuel, such as a Nafion (registered trademark) membrane manufactured by Du Pont, Since methanol permeates the membrane, there is a problem that the electromotive force decreases. Furthermore, these electrolyte membranes also have an economic problem that they are very expensive.

上記の問題を解決する手段として、特許文献1には、ポリイミド、架橋ポリエチレン等、安価で外力に対して変形し難い多孔性基材にプロトン伝導性を有するポリマーを充填してなる電解質膜の提案がなされている。しかしながら前記電解質膜は、基材をプラズマ照射して前記ポリマーをグラフト重合させる工程を含むため、製造設備コストの上昇という問題がある。また燃料電池として連続運転した場合の耐久性も充分とはいえなかった。   As means for solving the above problem, Patent Document 1 proposes an electrolyte membrane in which a porous base material such as polyimide, crosslinked polyethylene, etc., which is inexpensive and hardly deformed by external force, is filled with a polymer having proton conductivity. Has been made. However, since the electrolyte membrane includes a step of subjecting the base material to plasma irradiation and graft polymerization of the polymer, there is a problem of an increase in manufacturing equipment cost. In addition, the durability when continuously operating as a fuel cell was not sufficient.

さらに、特許文献2には、メタノールを含む有機溶媒および水に対して実質的に膨潤しない多孔性基材の細孔内に、プロトン導電性を有する第1ポリマーを充填してなる電解質膜であって、前記第1ポリマーが2−アクリルアミド−2−メチルプロパン酸由来のポリマーであることを特徴とする電解質膜の提案がなされている。しかしながらこの特許文献記載の電解質膜の耐久性も、未だ不充分なものであった。
特開2002−83612公報(第1−7頁、9頁) 国際公開第03/075385号パンフレット
Furthermore, Patent Document 2 discloses an electrolyte membrane in which a first polymer having proton conductivity is filled in pores of a porous base material that does not substantially swell with an organic solvent containing methanol and water. An electrolyte membrane has been proposed in which the first polymer is a polymer derived from 2-acrylamido-2-methylpropanoic acid. However, the durability of the electrolyte membrane described in this patent document is still insufficient.
JP 2002-83612 A (pages 1-7, 9) International Publication No. 03/075385 Pamphlet

本発明の目的はこれらの問題を解決すること、すなわち固体高分子形燃料電池等の電気化学装置用途に利用できる、プロトン伝導性が高く、DMFCとして用いた場合にメタノールの透過阻止性能に優れ、かつ燃料電池として運転した場合の耐久性に優れる安価な電解質膜を提供することにある。   The object of the present invention is to solve these problems, that is, it can be used for electrochemical device applications such as polymer electrolyte fuel cells, has high proton conductivity, and has excellent methanol permeation blocking performance when used as a DMFC, Another object is to provide an inexpensive electrolyte membrane that is excellent in durability when operated as a fuel cell.

本発明者等は、鋭意検討の結果、2−アクリルアミド−2−メチルプロパンスルホン酸および/または2−メタクリルアミド−2−メチルプロパンスルホン酸(以下、「アクリルおよび/またはメタクリル」を「(メタ)アクリル」と称する。)等のスルホン酸基を有するモノマーまたはこれらの塩を主成分として重合した架橋電解質ポリマーを含む電解質膜に関して、その架橋構造の導入方法としてN,N’−エチレンビス(メタ)アクリルアミド、N,N’−プロピレンビス(メタ)アクリルアミド、N,N’−ブチレンビス(メタ)アクリルアミド、1,3,5−トリアクリロイルヘキサヒドロ−1,3,5−トリアジンおよびビスアクリロイルピペラジン等の特定構造の(メタ)アクリルアミド誘導体の中から選択される1以上のモノマーを共重合させた場合に、電解質膜がプロトン伝導性、メタノールの透過阻止性能に優れ、且つ耐久性も良好であることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have identified 2-acrylamido-2-methylpropanesulfonic acid and / or 2-methacrylamideamido-2-methylpropanesulfonic acid (hereinafter “acrylic and / or methacrylic” as “(meth)”. As an introduction method of the crosslinked structure, N, N′-ethylenebis (meth) is used as an electrolyte membrane containing a crosslinked electrolyte polymer obtained by polymerizing a monomer having a sulfonic acid group or a salt thereof as a main component. Identification of acrylamide, N, N′-propylene bis (meth) acrylamide, N, N′-butylene bis (meth) acrylamide, 1,3,5-triacryloylhexahydro-1,3,5-triazine, bisacryloylpiperazine, etc. One or more models selected from among (meth) acrylamide derivatives of structure When obtained by copolymerizing mer, proton conductive electrolyte membrane is excellent in permeation preventing performance of methanol, and found that durability is good, and have completed the present invention.

すなわち本発明は、(a)1分子中に重合可能な炭素炭素二重結合およびスルホン酸基を有する化合物またはこれらの塩、並びに
(b)下記の構造式(1)で表わされる(メタ)アクリルアミド誘導体

Figure 2006004098
R1、R3 は、水素またはメチル基
R2は、鎖状または環構造の一部を構成するアルキレン基であって、鎖状の場合は炭素数が2以上で、環構造の一部の場合は炭素数が1以上である。
R4、R5 は、水素、アルキル基または環構造の一部を構成するアルキレン基
を、必須構成モノマーとする架橋電解質ポリマーを含有することを特徴とする電解質膜である。That is, the present invention relates to (a) a compound having a carbon-carbon double bond polymerizable in one molecule and a sulfonic acid group or a salt thereof, and (b) (meth) acrylamide represented by the following structural formula (1). Derivative
Figure 2006004098
R 1 and R 3 are hydrogen or methyl group
R 2 is an alkylene group constituting a part of a chain or ring structure, and in the case of a chain, has 2 or more carbon atoms, and in the case of a part of the ring structure, R 2 has 1 or more carbon atoms.
R 4 and R 5 are electrolyte membranes containing a crosslinked electrolyte polymer having hydrogen, an alkyl group or an alkylene group constituting a part of the ring structure as an essential constituent monomer.

また、モノマー(b)として、N,N’−エチレンビス(メタ)アクリルアミド、N,N’−プロピレンビス(メタ)アクリルアミド、N,N’−ブチレンビス(メタ)アクリルアミド、1,3,5−トリアクリロイルヘキサヒドロ−1,3,5−トリアジンおよび/または1,3,5−トリメタクリロイルヘキサヒドロ−1,3,5−トリアジン(以下、「アクリロイルおよび/またはメタクロイル」を、「(メタ)アクリロイル」と称する。)、並びにビス(メタ)アクリロイルピペラジンの中から選択される1以上の化合物を用いるものである。
また、モノマー(a)として2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸またはこれらの塩を用いるものであり、さらに、架橋電解質ポリマーを構成する全モノマーに対するモノマー(a)、(b)の割合が、それぞれ25〜99.9質量%、0.1〜75質量%であることを特徴とする電解質膜である。
また、本発明は、前記架橋電解質ポリマーが多孔性基材の細孔内に充填されていることを特徴とする電解質膜であり、さらには、当該電解質膜が、(1)架橋電解質ポリマーを構成するモノマーまたはその溶液若しくは分散液を多孔性基材の細孔内に充填する工程、(2)充填したモノマーを重合および架橋する工程を含む製造方法により得られたものである。
また、本発明は、上記の電解質膜を組み込んでなる燃料電池に係るものである。
Further, as monomer (b), N, N′-ethylenebis (meth) acrylamide, N, N′-propylenebis (meth) acrylamide, N, N′-butylenebis (meth) acrylamide, 1,3,5-tri Acryloylhexahydro-1,3,5-triazine and / or 1,3,5-trimethacryloylhexahydro-1,3,5-triazine (hereinafter referred to as “acryloyl and / or methacryloyl”, “(meth) acryloyl”) And one or more compounds selected from bis (meth) acryloylpiperazine.
Further, 2- (meth) acrylamido-2-methylpropanesulfonic acid or a salt thereof is used as the monomer (a), and the monomers (a) and (b) of all monomers constituting the crosslinked electrolyte polymer are used. The electrolyte membrane is characterized in that the ratio is 25 to 99.9% by mass and 0.1 to 75% by mass, respectively.
Further, the present invention is an electrolyte membrane characterized in that the crosslinked electrolyte polymer is filled in pores of a porous substrate, and further, the electrolyte membrane constitutes (1) a crosslinked electrolyte polymer And a solution or dispersion thereof filled in the pores of the porous substrate, and (2) a production method comprising a step of polymerizing and crosslinking the filled monomer.
The present invention also relates to a fuel cell incorporating the above electrolyte membrane.

本発明の電解質膜は、特定組成の架橋電解質ポリマーを含有することにより、耐久性を向上させたものである。さらにプロトン伝導性、メタノール透過阻止性能にも優れる電解質膜であることから、固体高分子形燃料電池、特に直接メタノール形固体高分子形燃料電池用の電解質として好適に利用できる。   The electrolyte membrane of the present invention has improved durability by containing a crosslinked electrolyte polymer having a specific composition. Further, since it is an electrolyte membrane excellent in proton conductivity and methanol permeation blocking performance, it can be suitably used as an electrolyte for a polymer electrolyte fuel cell, particularly a direct methanol polymer electrolyte fuel cell.

以下、本発明を詳細に説明する。
本発明の電解質膜は、(a)1分子中に重合可能な炭素炭素二重結合およびスルホン酸基を有する化合物またはこれらの塩、並びに(b)前記式(1)で表わされる(メタ)アクリルアミド誘導体を必須構成モノマーとするモノマー混合物(以下「ポリマー前駆体」と称する。)を共重合してなる架橋電解質ポリマーを含有することを特徴とする。
Hereinafter, the present invention will be described in detail.
The electrolyte membrane of the present invention comprises (a) a compound having a carbon-carbon double bond polymerizable in one molecule and a sulfonic acid group or a salt thereof, and (b) (meth) acrylamide represented by the formula (1). It contains a crosslinked electrolyte polymer obtained by copolymerizing a monomer mixture having a derivative as an essential constituent monomer (hereinafter referred to as “polymer precursor”).

ここで、架橋電解質ポリマーを構成する全モノマーに対する、前記の必須構成モノマー(a)、(b)の割合は、それぞれ25〜99.9質量%、0.1〜75質量%であることが好ましい。モノマー(a)が前記範囲の下限値よりも低くなると、得られる電解質膜のプロトン伝導性が低くなり易く、さらに得られる電解質膜の面積当たりの出力が下がり易く、組み込んだ燃料電池が大型化する。一方、前記範囲の上限値よりも高くなるとメタノール透過阻止性、耐久性が低くなり易いためいずれも好ましくない。
モノマー(b)が前記範囲の下限値よりも低くなると、得られる電解質膜メタノール透過阻止性、耐久性が低くなり易く、一方、前記範囲の上限値よりも高くなると、プロトン伝導性が低くなり易いためいずれも好ましくない。
さらに好ましい範囲は、モノマー(a)が40〜90質量%、モノマー(b)が10〜60質量%である。
Here, the ratio of the essential constituent monomers (a) and (b) to the total monomers constituting the crosslinked electrolyte polymer is preferably 25 to 99.9 mass% and 0.1 to 75 mass%, respectively. . When the monomer (a) is lower than the lower limit of the above range, the proton conductivity of the obtained electrolyte membrane tends to be low, the output per area of the obtained electrolyte membrane tends to be low, and the incorporated fuel cell becomes large. . On the other hand, if it is higher than the upper limit of the above range, neither methanol permeation-preventing property nor durability is likely to be lowered, which is not preferable.
When the monomer (b) is lower than the lower limit of the range, the resulting electrolyte membrane methanol permeation-preventing property and durability are likely to be lowered, whereas when it is higher than the upper limit of the range, the proton conductivity is likely to be lowered. Therefore, neither is preferable.
More preferable ranges are 40 to 90% by mass of monomer (a) and 10 to 60% by mass of monomer (b).

本発明の電解質膜に用いられる架橋電解質ポリマーを構成するモノマー(a)は1分子中に重合性の炭素炭素二重結合およびスルホン酸基を有する化合物またはこれらの塩であり、特に限定されないが、2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、スチレンスルホン酸、アリルスルホン酸および/またはメタリルスルホン酸(以下「アリルおよび/またはメタリル」を「(メタ)アリル」と称する。)、ビニルスルホン等のモノマーまたはこれらの塩を具体的に挙げることができる。これらは単独で用いても共重合して用いても良いが、重合性が良好な点で2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸またはその塩が特に好ましい。また、ビニルスルホン酸は分子量あたりのスルホン酸含有量が最も高いため、共重合成分として用いると電解質膜のプロトン伝導性が向上し、好ましい。     The monomer (a) constituting the crosslinked electrolyte polymer used in the electrolyte membrane of the present invention is a compound having a polymerizable carbon-carbon double bond and a sulfonic acid group in one molecule or a salt thereof, and is not particularly limited. 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, styrenesulfonic acid, allylsulfonic acid and / or methallylsulfonic acid “Allyl and / or methallyl” is referred to as “(meth) allyl”.), Monomers such as vinyl sulfone, or salts thereof. These may be used alone or copolymerized, but 2- (meth) acrylamido-2-methylpropanesulfonic acid or a salt thereof is particularly preferable in terms of good polymerizability. Moreover, since vinyl sulfonic acid has the highest sulfonic acid content per molecular weight, it is preferable to use it as a copolymerization component because proton conductivity of the electrolyte membrane is improved.

本発明の電解質膜に用いられる架橋電解質ポリマーを構成するモノマー(b)は、前記式(1)で表わされる(メタ)アクリルアミド誘導体であって、具体的な好ましい化合物としては、N,N’−エチレンビス(メタ)アクリルアミド、N,N’−プロピレンビス(メタ)アクリルアミド、N,N’−ブチレンビス(メタ)アクリルアミド、1,3,5−トリ(メタ)アクリロイルヘキサヒドロ−1,3,5−トリアジンおよびビス(メタ)アクリロイルピペラジンの中から選択される化合物であり、これらは単独で用いても、共重合して用いてもよいが、水への溶解性が高い点や、より耐久性が向上する点でN,N’−エチレンビス(メタ)アクリルアミドが特に好ましい。   The monomer (b) constituting the crosslinked electrolyte polymer used in the electrolyte membrane of the present invention is a (meth) acrylamide derivative represented by the above formula (1), and specific preferred compounds include N, N′— Ethylene bis (meth) acrylamide, N, N′-propylene bis (meth) acrylamide, N, N′-butylene bis (meth) acrylamide, 1,3,5-tri (meth) acryloylhexahydro-1,3,5- It is a compound selected from triazine and bis (meth) acryloylpiperazine, and these may be used alone or copolymerized, but they are highly soluble in water and more durable. N, N′-ethylenebis (meth) acrylamide is particularly preferable in terms of improvement.

本発明の電解質膜に用いられる架橋電解質ポリマーを構成するモノマーは、モノマー(a)および(b)を必須成分とするものであるが、必要に応じて、それ以外のモノマーを併用することができる。
当該モノマーとしては、前記モノマー(a)および(b)と共重合可能であれば特に限定されるものではなく、例えば水溶性モノマーとして、(メタ)アクリル酸、(無水)マレイン酸、フマル酸、クロトン酸、イタコン酸、ビニルホスホン酸、酸性リン酸基含有(メタ)アクリレート等の酸性モノマーやその塩;(メタ)アクリルアミド、N−置換(メタ)アクリルアミド、2−ヒドロキシエチルアクリレートおよび/または2−ヒドロキシエチルメタクリレート(以下、「アクリレートおよび/またはメタクリレート」を「(メタ)アクリレート」と称する。)、2−ヒドロキシプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、N−ビニルピロリドン、N−ビニルアセトアミド等のモノマー;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミド等の塩基性モノマーやそれらの4級化物等を具体的に挙げることができる。
また、細孔内に充填されたポリマーの吸水性を調整する等の目的でメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のアクリル酸エステル類や酢酸ビニル、プロピオン酸ビニル等の疎水性モノマーを使用することもできる。
The monomer constituting the crosslinked electrolyte polymer used in the electrolyte membrane of the present invention contains monomers (a) and (b) as essential components, but other monomers can be used in combination as necessary. .
The monomer is not particularly limited as long as it is copolymerizable with the monomers (a) and (b). For example, as a water-soluble monomer, (meth) acrylic acid, (anhydrous) maleic acid, fumaric acid, Acidic monomers such as crotonic acid, itaconic acid, vinylphosphonic acid, acidic phosphoric acid group-containing (meth) acrylate and salts thereof; (meth) acrylamide, N-substituted (meth) acrylamide, 2-hydroxyethyl acrylate and / or 2- Hydroxyethyl methacrylate (hereinafter, “acrylate and / or methacrylate” is referred to as “(meth) acrylate”), 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, N -Vinyl pylori Monomers such as N, N-vinylacetamide; basic monomers such as N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide And quaternized compounds thereof can be specifically mentioned.
Acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate, vinyl acetate, and vinyl propionate are also used to adjust the water absorption of the polymer filled in the pores. Hydrophobic monomers such as can also be used.

本発明の電解質膜に用いられる架橋電解質ポリマーにおいて、架橋構造を導入する方法としては、必須構成モノマー(b)由来の架橋構造を有することが好ましい。
モノマー(b)由来の架橋構造を導入する方法としては、ポリマー前駆体を多孔性基材の細孔に充填した後、重合反応させると同時に、若しくは重合反応させてポリマーとした後に、モノマー(b)で架橋反応させる方法、または予めポリマー前駆体を重合させておき、そのポリマー溶液を多孔性基材の細孔に充填した後に架橋反応をさせる方法が挙げられる。これらの方法の内、先にポリマーを作成した後に充填する方法では、重合時にゲル化を起こして充填不可能になり易く歩留まりが悪い点や、ポリマーの粘度がポリマー前駆体溶液より高くなるために細孔内への充填に時間がかかったり、充填が不十分となり易いため、予めポリマー前駆体を充填した後に重合、架橋を行う方法が好ましい。
当該架橋は加熱もしくは紫外線、電子線、ガンマ線等の活性エネルギー線により促進することが好ましく、その条件としては、加熱の場合は50〜150℃で1〜120分が好ましく、紫外線照射の場合は10〜5000mJ/cm2が望ましい。
In the crosslinked electrolyte polymer used in the electrolyte membrane of the present invention, as a method for introducing a crosslinked structure, it is preferable to have a crosslinked structure derived from the essential constituent monomer (b).
As a method for introducing a crosslinked structure derived from the monomer (b), the polymer precursor is filled into the pores of the porous substrate and then subjected to a polymerization reaction, or simultaneously with the polymerization reaction to obtain a polymer, the monomer (b ) Or a method of polymerizing a polymer precursor in advance and filling the polymer solution into the pores of the porous substrate, followed by a crosslinking reaction. Among these methods, in the method of filling after the polymer is first prepared, gelation occurs at the time of polymerization, which makes it impossible to fill, and the yield is poor, and the viscosity of the polymer is higher than the polymer precursor solution. Since it takes time to fill the pores or the filling tends to be insufficient, a method of polymerizing and cross-linking after pre-filling the polymer precursor is preferable.
The crosslinking is preferably promoted by heating or active energy rays such as ultraviolet rays, electron beams, and gamma rays. The conditions are preferably 50 to 150 ° C. for 1 to 120 minutes in the case of heating, and 10 in the case of ultraviolet irradiation. ˜5000 mJ / cm 2 is desirable.

また本発明の電解質膜に用いられる架橋電解質ポリマーにおいては、多官能モノマーである必須構成モノマー(b)に由来する架橋構造以外の架橋構造を導入しても良く、その方法は特に限定されず公知の方法を用いることができる。
具体的には、2個以上の重合性二重結合を有する架橋剤を併用して重合反応を行う方法、架橋構造を形成し得る官能基を有するモノマーを共重合する方法、ポリマー中の官能基と反応する基を分子内に2個以上有する架橋剤を用いる方法、重合時の水素引き抜き反応による自己架橋を利用する方法、重合後のポリマーに紫外線、電子線、ガンマ線等の活性エネルギー線を照射する方法等が挙げられる。
これらの方法のうち、架橋構造導入の簡便さから、2個以上の重合性二重結合を有する架橋剤を併用して重合反応を行う方法が好ましい。該架橋剤としては、例えばN,N−メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ジビニルベンゼン、ビスフェノールジアクリレート、イソシアヌル酸ジアクリレート、テトラアリルオキシエタン、トリアリルアミン、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルオキシ酢酸塩等が挙げられる。また架橋密度を高くし易い点から、架橋構造を形成し得る官能基を有する水溶性モノマーを共重合する方法も好ましい。このような化合物としてはN−メチロールアクリルアミド、N−メトキシメチルアクリルアミド、N−ブトキシメチルアクリルアミドなどが挙げられ、重合性二重結合のラジカル重合を行った後で加熱して縮合反応などを起こさせて架橋するか、ラジカル重合と同時に加熱を行って同様の架橋反応を起こさせることができる。これらの架橋剤は単独で使用することも、必要に応じて2種類以上を併用することも可能である。
上記共重合性架橋剤の使用量は、ポリマー前駆体中の不飽和モノマーの総質量に対して0.01〜20質量%、好ましくは0.1〜20質量%、より好ましくは0.1〜10質量%である。架橋剤量は少なすぎると未架橋のポリマーが溶出し易く、燃料電池として運転したとき短時間の内に出力が低下する等の問題があり、多すぎると架橋剤成分が相溶し難いためプロトン伝導を妨げ電池性能を低下させる問題があるため何れも好ましくない。
In the crosslinked electrolyte polymer used in the electrolyte membrane of the present invention, a crosslinked structure other than the crosslinked structure derived from the essential constituent monomer (b) that is a polyfunctional monomer may be introduced, and the method is not particularly limited and is publicly known. This method can be used.
Specifically, a method of performing a polymerization reaction in combination with a crosslinking agent having two or more polymerizable double bonds, a method of copolymerizing a monomer having a functional group capable of forming a crosslinked structure, a functional group in the polymer A method using a cross-linking agent that has two or more groups in the molecule to react with, a method using self-crosslinking by hydrogen abstraction reaction during polymerization, and irradiating the polymer after polymerization with active energy rays such as ultraviolet rays, electron beams and gamma rays And the like.
Among these methods, a method in which a polymerization reaction is carried out using a crosslinking agent having two or more polymerizable double bonds in combination is preferable because of the ease of introduction of a crosslinked structure. Examples of the crosslinking agent include N, N-methylenebisacrylamide, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and trimethylolpropane. Di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane diallyl ether, pentaerythritol triallyl ether , Divinylbenzene, bisphenol diacrylate, isocyanuric acid diacrylate, tetraallyloxyethane, triallyl Min, triallyl cyanurate, triallyl isocyanurate, include diallyloxyacetic acetates. A method of copolymerizing a water-soluble monomer having a functional group capable of forming a crosslinked structure is also preferred from the viewpoint of easily increasing the crosslinking density. Examples of such compounds include N-methylol acrylamide, N-methoxymethyl acrylamide, N-butoxymethyl acrylamide, and the like. After radical polymerization of a polymerizable double bond, heating is performed to cause a condensation reaction. It is possible to cause the same crosslinking reaction by crosslinking or heating simultaneously with radical polymerization. These cross-linking agents can be used alone or in combination of two or more as required.
The amount of the copolymerizable crosslinking agent used is 0.01 to 20% by mass, preferably 0.1 to 20% by mass, more preferably 0.1 to 20% by mass with respect to the total mass of unsaturated monomers in the polymer precursor. 10% by mass. If the amount of the crosslinking agent is too small, the uncrosslinked polymer tends to be eluted, and there is a problem that the output decreases within a short time when operated as a fuel cell. If the amount is too large, the crosslinking agent component is difficult to be compatible. Neither is preferred because there is a problem of hindering conduction and reducing battery performance.

本発明の電解質膜に用いられるポリマー前駆体を共重合して架橋電解質ポリマーを得る方法としては、公知の水溶液ラジカル重合法の技術を使用することができる。具体例としては、レドックス開始重合、熱開始重合、電子線開始重合、紫外線等の光開始重合等が挙げられる。
熱開始重合、レドックス開始重合のラジカル重合開始剤としては、次のようなものが挙げられる。2,2’−アゾビス(2−アミジノプロパン)二塩酸塩等のアゾ化合物;過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、過酸化水素、過酸化ベンゾイル、クメンヒドロパーオキサイド、ジ−t−ブチルパーオキサイド等の過酸化物;上記過酸化物と、亜硫酸塩、重亜硫酸塩、チオ硫酸塩、ホルムアミジンスルフィン酸、アスコルビン酸等の還元剤とを組み合わせたレドックス開始剤;または2,2’−アゾビス−(2−アミジノプロパン)二塩酸塩、アゾビスシアノ吉草酸等のアゾ系ラジカル重合開始剤等。 これらラジカル重合開始剤は、単独で用いてもよく、また、二種類以上を併用してもよい。
これらの内、過酸化物系ラジカル重合開始剤は炭素水素結合から水素を引き抜くことによってラジカルを発生することができるため多孔性基材としてポリオレフィン等の有機材料と併用すると、基材表面と充填ポリマーとの間に化学結合を形成することができるので好ましい。
As a method for obtaining a crosslinked electrolyte polymer by copolymerizing the polymer precursor used in the electrolyte membrane of the present invention, a known aqueous solution radical polymerization technique can be used. Specific examples include redox-initiated polymerization, heat-initiated polymerization, electron beam-initiated polymerization, and photoinitiated polymerization such as ultraviolet rays.
Examples of the radical polymerization initiator for heat-initiated polymerization and redox-initiated polymerization include the following. Azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride; ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, benzoyl peroxide, cumene hydroperoxide, di-t-butylperoxide A peroxide such as oxide; a redox initiator in which the above-mentioned peroxide is combined with a reducing agent such as sulfite, bisulfite, thiosulfate, formamidinesulfinic acid, ascorbic acid; or 2,2′-azobis -Azo radical polymerization initiators such as (2-amidinopropane) dihydrochloride and azobiscyanovaleric acid. These radical polymerization initiators may be used alone or in combination of two or more.
Among these, the peroxide radical polymerization initiator can generate radicals by extracting hydrogen from carbon-hydrogen bonds, so when used in combination with an organic material such as polyolefin as a porous substrate, the surface of the substrate and the filled polymer It is preferable because a chemical bond can be formed between the two.

上記ラジカル重合開始手段の中では、重合反応の制御がし易く、比較的簡便なプロセスで生産性良く所望の電解質膜が得られる点で、紫外線による光開始重合が望ましい。さらに光開始重合させる場合には、ラジカル系光重合開始剤を、ポリマー前駆体、その溶液または分散液中に予め溶解若しくは分散させておくことがより好ましい。
ラジカル系光重合開始剤としては、一般に紫外線重合に利用されているベンゾイン、ベンジル、アセトフェノン、ベンゾフェノン、キノン、チオキサントン、チオアクリドンおよびこれらの誘導体等が挙げられる。当該誘導体の例としては、ベンゾイン系として、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル;アセトフェノン系として、ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モンフォリノプロパン−1、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−(2−ヒドロキシエトキシ)−フェニル)−2−ヒドロキシジ−2−メチル−1−プロパン−1−オン;ベンゾフェノン系として、o−ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6−トリメチルベンゾフェノン、4−ベンゾイル−N,N−ジメチル−N−[2−(1−オキシ−2−プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4−ベンゾイルベンジル)トリメチルアンモニウムクロリド、4,4’−ジメチルアミノベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン等が挙げられる。
Among the radical polymerization initiating means, photoinitiated polymerization by ultraviolet rays is desirable in that the polymerization reaction is easily controlled and a desired electrolyte membrane can be obtained with a relatively simple process and high productivity. In the case of further photoinitiating polymerization, the radical photopolymerization initiator is more preferably dissolved or dispersed in advance in the polymer precursor, a solution or dispersion thereof.
Examples of the radical photopolymerization initiator include benzoin, benzyl, acetophenone, benzophenone, quinone, thioxanthone, thioacridone, and derivatives thereof that are generally used for ultraviolet polymerization. Examples of the derivatives include benzoin-based benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; acetophenone-based diethoxyacetophenone, 2,2-dimethoxy-1,2-diphenylethane-1- ON, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-montolinopropane-1, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) Butanone-1,2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-hydroxydi-2-methyl-1-propane- 1-one; as benzophenone, o-benzoy Methyl benzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4-Benzoyl-N, N-dimethyl-N- [2- (1-oxy-2-propenyloxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride, 4,4′-dimethylamino Examples include benzophenone and 4,4′-diethylaminobenzophenone.

これら光重合開始剤の使用量は、ポリマー前駆体中の不飽和モノマーの総質量に対して0.001〜1質量%が好ましく、さらに好ましくは0.001〜0.5質量%、特に好ましくは0.01〜0.5質量%である。開始剤量は少なすぎると未反応モノマーが多くなる等の問題があり、多すぎると生成するポリマーの架橋密度が低くなりすぎ、燃料電池をして運転したときの耐久性が低くなる問題があるため何れも好ましくない。
またこれらの内、ベンゾフェノン、チオキサントン、キノン、チオアクリドン等の芳香族ケトン系ラジカル重合開始剤は炭素水素結合から水素を引き抜くことによってラジカルを発生することができるため多孔性基材としてポリオレフィン等の有機材料と併用すると基材表面と充填ポリマーとの間に化学結合を形成することができ好ましい。
本発明の電解質膜は、多孔質基材の細孔内部に架橋電解質ポリマーが充填された構造であることが好ましい。
The amount of these photopolymerization initiators used is preferably 0.001 to 1% by mass, more preferably 0.001 to 0.5% by mass, particularly preferably the total mass of unsaturated monomers in the polymer precursor. 0.01 to 0.5% by mass. If the amount of the initiator is too small, there is a problem that the amount of unreacted monomers increases. If the amount is too large, the crosslinking density of the polymer to be formed becomes too low, and the durability when the fuel cell is operated is lowered. Therefore, neither is preferable.
Of these, aromatic ketone radical polymerization initiators such as benzophenone, thioxanthone, quinone, and thioacridone can generate radicals by extracting hydrogen from carbon-hydrogen bonds. When used together, a chemical bond can be formed between the substrate surface and the filled polymer, which is preferable.
The electrolyte membrane of the present invention preferably has a structure in which a crosslinked electrolyte polymer is filled in the pores of the porous substrate.

本発明で用いる多孔性基材は、メタノールおよび水に対して実質的に膨潤しない材料であることが好ましく、特に乾燥時に比べて水による湿潤時の面積変化が少ないか、ほとんどないことが望ましい。
面積増加率は、浸漬時間や温度によって変化するが、本発明では25℃における純水に1時間浸漬したときの面積増加率が、乾燥時に比較して最大でも20%以下であることが好ましい。
The porous substrate used in the present invention is preferably a material that does not substantially swell with respect to methanol and water, and it is desirable that there is little or almost no change in area when wetted with water, especially when dry.
Although the area increase rate varies depending on the immersion time and temperature, in the present invention, the area increase rate when immersed in pure water at 25 ° C. for 1 hour is preferably 20% or less at the maximum compared to the time of drying.

また本発明で用いる多孔性基材は、引張り弾性率が500〜5000MPaであるものが好ましく、さらに好ましくは1000〜5000MPaであり、また破断強度が50〜500MPaを有するのが好ましく、さらに好ましくは100〜500MPaである。
これらの範囲を低い方に外れると充填したポリマーのメタノールや水により膨潤しようとする力によって膜が変形し易くなり、高い方に外れると基材が脆くなり過ぎて電極接合時のプレス成形や電池に組み込む際の締付け等によって膜がひび割れたりし易い。
The porous substrate used in the present invention preferably has a tensile modulus of 500 to 5000 MPa, more preferably 1000 to 5000 MPa, and preferably has a breaking strength of 50 to 500 MPa, more preferably 100. ~ 500 MPa.
If these ranges are deviated to the lower side, the membrane tends to be deformed by the force of swelling of the filled polymer with methanol or water, and if it deviates to the higher side, the base material becomes too brittle and press molding and battery for electrode joining are performed. The film is liable to crack due to tightening during assembly.

また、多孔性基材は燃料電池を運転する際の温度に対して耐熱性を有するものがよく、外力が加えられても容易に延びないものがよい。
そのような性質を持つ材料として、無機材料ではガラスまたはアルミナ若しくはシリカ等のセラミックス等が挙げられる。また、有機材料では芳香族ポリイミド等のエンジニアリングプラスチック、ポリオレフィンを放射線の照射や架橋剤を加えて架橋したり延伸する等の方法で、外力に対して延び等の変形をし難くしたもの等が挙げられる。これらの材料は単独で用いても2種以上を積層する等により複合化して用いてもよい。
Further, the porous substrate is preferably one having heat resistance against the temperature at which the fuel cell is operated, and one that does not easily extend even when an external force is applied.
Examples of the material having such a property include inorganic materials such as glass or ceramics such as alumina or silica. Examples of organic materials include engineering plastics such as aromatic polyimides, polyolefins that have been made difficult to be deformed such as being stretched against external forces by methods such as radiation irradiation and crosslinking or stretching by adding a crosslinking agent. It is done. These materials may be used alone or in combination by stacking two or more of them.

これらの多孔性基材の中では、延伸ポリオレフィン、架橋ポリオレフィン、延伸後架橋されたポリオレフィン、ポリイミド類からなるものが充填工程の作業性が良く、基材の入手し易さの点からも好ましい。   Among these porous base materials, those made of stretched polyolefin, cross-linked polyolefin, cross-linked polyolefin after stretching, and polyimides are preferable from the viewpoint of good workability in the filling step and easy availability of the base material.

本発明で用いる多孔性基材の空孔率は、5〜95%が好ましく、さらに好ましくは5〜90%、特に好ましくは20〜80%である。また平均孔径は0.001〜100μmの範囲にあることが好ましく、さらに好ましくは0.01〜1μmの範囲である。空孔率が小さすぎると面積当たりのプロトン伝導性基であるプロトン酸性基が少なすぎて燃料電池
としては出力が低くなり、大きすぎると膜強度が低下し好ましくない。
さらに基材の厚さは200μm以下が好ましい。より好ましくは1〜150μm、さらに好ましくは5〜100μm、特に好ましくは5〜50μmである。膜厚が薄すぎると膜強度が低下しメタノールの透過量も増え、厚すぎると膜抵抗が大きくなりすぎ燃料電池の出力が低いため何れも好ましくない。
The porosity of the porous substrate used in the present invention is preferably 5 to 95%, more preferably 5 to 90%, and particularly preferably 20 to 80%. Moreover, it is preferable that an average hole diameter exists in the range of 0.001-100 micrometers, More preferably, it is the range of 0.01-1 micrometer. If the porosity is too small, there are too few proton acidic groups, which are proton conductive groups per area, and the output of the fuel cell will be low.
Furthermore, the thickness of the substrate is preferably 200 μm or less. More preferably, it is 1-150 micrometers, More preferably, it is 5-100 micrometers, Most preferably, it is 5-50 micrometers. If the film thickness is too thin, the film strength decreases and the amount of permeated methanol also increases.

多孔性基材の細孔内に架橋電解質ポリマーを充填する方法に関して特に制限はなく公知の方法が利用できる。例えばポリマー前駆体またはその溶液若しくは分散液を多孔性基材に含浸させ、その後にポリマー前駆体を重合および架橋させる方法が挙げられる。その際、充填する混合液には必要に応じて架橋剤、重合開始剤、触媒、硬化剤、界面活性剤等を含んでいてもよい。   There is no particular limitation on the method of filling the crosslinked electrolyte polymer in the pores of the porous substrate, and a known method can be used. For example, a method of impregnating a porous substrate with a polymer precursor or a solution or dispersion thereof, and then polymerizing and crosslinking the polymer precursor can be mentioned. At that time, the mixed liquid to be filled may contain a crosslinking agent, a polymerization initiator, a catalyst, a curing agent, a surfactant and the like, if necessary.

多孔性基材の細孔に充填するポリマー前駆体が低粘度の場合は、そのまま含浸に用いることができるが、そうでない場合は溶液または分散液とすることが好ましい。特に、濃度を10〜90質量%の溶液とするのが好ましく、20〜70質量%の溶液とするのがさらに好ましい。
また使用する成分に水に難溶のものが含まれる場合は水の一部または全部を有機溶剤に置き換えてもよいが、有機溶剤を使用する場合は電極を接合する前に有機溶剤を全て取り除く必要があるため水溶液の方が好ましい。このように溶液状にして含浸する理由は、水または溶剤に溶解して含浸に用いることにより細孔を有する多孔性基材への含浸が行い易くなることと、予め膨潤したゲルを細孔内に作ることによって、製造した電解質膜を燃料電池にした場合に水またはメタノールが細孔内のポリマーを膨潤させすぎてポリマーが抜け落ちるのを防止する効果があるためである。
また含浸作業をより行い易くする目的で、多孔性基材の親水化処理、ポリマー前駆体溶液への界面活性剤の添加、または含浸中における超音波の照射も行うことができる。
When the polymer precursor filled in the pores of the porous substrate has a low viscosity, it can be used for impregnation as it is, but otherwise it is preferably a solution or a dispersion. In particular, a solution with a concentration of 10 to 90% by mass is preferable, and a solution with a concentration of 20 to 70% by mass is more preferable.
In addition, if the components used are insoluble in water, some or all of the water may be replaced with an organic solvent, but when using an organic solvent, remove all the organic solvent before joining the electrodes. An aqueous solution is preferred because it is necessary. The reason for impregnation in the form of a solution in this way is that it is easy to impregnate a porous substrate having pores by dissolving in water or a solvent and using it for impregnation, and that a pre-swelled gel is contained in the pores. This is because when the manufactured electrolyte membrane is made into a fuel cell, water or methanol has an effect of preventing the polymer in the pores from swelling too much and the polymer from falling off.
Further, for the purpose of facilitating the impregnation operation, hydrophilic treatment of the porous substrate, addition of a surfactant to the polymer precursor solution, or ultrasonic irradiation during the impregnation can be performed.

また多孔性基材の表面、特に細孔内表面にプロトン伝導性を有する架橋電解質ポリマーが化学的に結合されているのが好ましく、その結合を形成する手段としては、充填するポリマー前駆体がラジカル重合性物質である場合は予め基材にプラズマ、紫外線、電子線、ガンマ線、コロナ放電等を照射して表面にラジカルを発生させ、充填したポリマー前駆体を重合させる際に基材表面へのグラフト重合が同時に起こるようにする方法、基材にポリマー前駆体を充填した後に電子線を照射することによって基材表面へのグラフト重合とポリマー前駆体の重合を同時に起こす方法、水素引き抜き型のラジカル重合開始剤をポリマー前駆体に配合して充填して加熱または紫外線の照射を行って基材表面へのグラフト重合とポリマー前駆体の重合を同時に起こす方法、カップリング剤を用いる方法等が挙げられる。これらは単独で行っても複数の方法を併用してもよい。   In addition, it is preferable that a crosslinked electrolyte polymer having proton conductivity is chemically bonded to the surface of the porous substrate, particularly the surface inside the pores. As a means for forming the bond, the polymer precursor to be filled is a radical. In the case of a polymerizable substance, the substrate is preliminarily irradiated with plasma, ultraviolet rays, electron beams, gamma rays, corona discharge, etc. to generate radicals on the surface, and when the filled polymer precursor is polymerized, it is grafted onto the substrate surface. A method that allows polymerization to occur simultaneously, a method that causes graft polymerization to the surface of the substrate and polymerization of the polymer precursor simultaneously by irradiating an electron beam after filling the polymer precursor to the substrate, radical extraction polymerization of hydrogen abstraction type Initiator is blended with polymer precursor, heated, or irradiated with ultraviolet rays to simultaneously graft onto the substrate surface and polymer precursor polymerization The method of causing, methods and the like using a coupling agent. These may be performed alone or a plurality of methods may be used in combination.

本発明による電解質膜は、スルホン酸基を持つ架橋電解質ポリマーを含有することにより優れたプロトン伝導性を持つことができる。さらにその架橋電解質ポリマーがN,N’−エチレンビス(メタ)アクリルアミド、N,N’−プロピレンビス(メタ)アクリルアミド、N,N’−ブチレンビス(メタ)アクリルアミド、1,3,5−トリ(メタ)アクリロイルヘキサヒドロ−1,3,5−トリアジンおよびビス(メタ)アクリロイルピペラジンの中から選択される多官能モノマーを架橋剤として用いているため、メタノール透過性を抑えたものになり、また加水分解に対して安定な電解質ポリマーとなる。その結果、本電解質膜は耐久性に優れたものとなる。   The electrolyte membrane according to the present invention can have excellent proton conductivity by containing a crosslinked electrolyte polymer having a sulfonic acid group. Further, the crosslinked electrolyte polymer is N, N′-ethylenebis (meth) acrylamide, N, N′-propylenebis (meth) acrylamide, N, N′-butylenebis (meth) acrylamide, 1,3,5-tri (meth) ) Since a polyfunctional monomer selected from acryloylhexahydro-1,3,5-triazine and bis (meth) acryloylpiperazine is used as a cross-linking agent, methanol permeability is suppressed, and hydrolysis is performed. It becomes a stable electrolyte polymer. As a result, the electrolyte membrane has excellent durability.

以下、本発明を実施例および比較例によりさらに詳しく説明するが、本発明の範囲がこれらの例により限定されるものではない。また実施例および比較例中の部は特に断りの無い限り質量部を意味するものとする。得られた電解質膜のプロトン伝導性およびメタノール透過性、耐久性(強制劣化試験)は以下のように評価した。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, the scope of the present invention is not limited by these examples. Moreover, the part in an Example and a comparative example shall mean a mass part unless there is particular notice. The proton conductivity, methanol permeability, and durability (forced deterioration test) of the obtained electrolyte membrane were evaluated as follows.

<プロトン伝導性> 25℃における膨潤試料の伝導度測定を行った。純水に1時間浸して膨潤させた電解質膜を2枚の白金板で挟み込み測定用試料とした。その後、100Hzから40MHzの交流インピーダンス測定を実施して、伝導率を測定した。伝導率が高いほど、電解質膜中をプロトンが移動し易く、燃料電池用途に優れていることを示す。   <Proton conductivity> The conductivity of the swollen sample at 25 ° C was measured. An electrolyte membrane that was swollen by being immersed in pure water for 1 hour was sandwiched between two platinum plates to obtain a measurement sample. Thereafter, AC impedance measurement from 100 Hz to 40 MHz was performed to measure the conductivity. The higher the conductivity, the easier the protons move in the electrolyte membrane, indicating that the fuel cell is excellent.

<メタノール透過性> 25℃における浸透実験を以下のように行った。電解質膜をガラス製セルに挟み、一方のセルに10質量%メタノール水溶液を入れ、もう一方のセルに純水を入れた。純水側に浸透するメタノール量をガスクロマトグラフ分析により経時的に測定し、定常状態になった時の透過係数を測定した。透過係数が低いほど、電解質膜中をメタノールが透過し難く、燃料電池用途に適していることを示す。   <Methanol Permeability> A permeation experiment at 25 ° C. was performed as follows. The electrolyte membrane was sandwiched between glass cells, 10% by mass aqueous methanol solution was placed in one cell, and pure water was placed in the other cell. The amount of methanol penetrating the pure water side was measured over time by gas chromatographic analysis, and the permeation coefficient when it reached a steady state was measured. A lower permeation coefficient indicates that methanol is less likely to pass through the electrolyte membrane and is suitable for fuel cell applications.

<耐久性(強制劣化試験)> 電池内での加水分解によるポリマーの劣化現象を確認する代わりに強制劣化により耐久性を評価した。純水に浸した電解質膜を121℃、2気圧の条件下に6時間放置した。試験前後の重量変化から電解質膜中の充填ポリマーの溶出率を求めた。溶出率が大きいほど、電池として運転した時の劣化が早く、小さいほど劣化し難いことを示す。   <Durability (Forced Degradation Test)> Durability was evaluated by forced degradation instead of confirming the polymer degradation phenomenon due to hydrolysis in the battery. The electrolyte membrane immersed in pure water was allowed to stand for 6 hours at 121 ° C. and 2 atmospheres. The elution rate of the filled polymer in the electrolyte membrane was determined from the weight change before and after the test. The larger the elution rate, the faster the deterioration when operated as a battery.

(実施例1)
多孔性基材として架橋ポリエチレン膜(厚さ16μm、空孔率38%)を用いた。2−アクリルアミド−2−メチルプロパンスルホン酸45部、N,N’−エチレンビスアクリルアミド5部、ノニオン性界面活性剤0.5部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン0.05部、水50部からなるモノマー水溶液に、当該多孔性基材を浸漬させ、当該水溶液を多孔性基材に充填させた。次いで、多孔性基材を溶液から引き上げた後、高圧水銀ランプにて紫外線を2分間照射して細孔内部のモノマーを重合させて電解質膜を得た。得られた膜の評価結果を表1に示す。
(Example 1)
A cross-linked polyethylene film (thickness 16 μm, porosity 38%) was used as the porous substrate. 2-acrylamido-2-methylpropanesulfonic acid 45 parts, N, N′-ethylenebisacrylamide 5 parts, nonionic surfactant 0.5 part, 2-hydroxy-2-methyl-1-phenylpropane-1-one The porous substrate was immersed in an aqueous monomer solution composed of 0.05 part and 50 parts of water, and the aqueous solution was filled into the porous substrate. Next, after pulling up the porous substrate from the solution, ultraviolet rays were irradiated for 2 minutes with a high-pressure mercury lamp to polymerize the monomers inside the pores to obtain an electrolyte membrane. Table 1 shows the evaluation results of the obtained film.

(合成例1)
アセトニトリル150g、アクリル酸クロライド5gの混合液を4つ口フラスコに仕込み、氷浴で5℃以下に保ちながら攪拌した。ここへアセトニトリル100g、プロピレンジアミン3.7gの混合物をフラスコ内の混合液を5℃以下に保ちながら少しずつ滴下した。滴下終了後氷浴をはずし室温のまま5時間攪拌した。反応液中に生じた沈殿をろ過して除去し、ろ液を濃縮すると結晶が析出し、これをろ過、乾燥してN,N’−プロピレンビスアクリルアミドを得た。
(Synthesis Example 1)
A mixed solution of 150 g of acetonitrile and 5 g of acrylic acid chloride was charged into a four-necked flask and stirred while keeping the temperature at 5 ° C. or lower in an ice bath. To this, a mixture of 100 g of acetonitrile and 3.7 g of propylenediamine was added dropwise little by little while keeping the mixture in the flask at 5 ° C. or lower. After completion of dropping, the ice bath was removed and the mixture was stirred at room temperature for 5 hours. The precipitate produced in the reaction solution was removed by filtration, and the filtrate was concentrated to give crystals, which were filtered and dried to obtain N, N′-propylenebisacrylamide.

(実施例2)
実施例1においてN,N’−エチレンビスアクリルアミドの代わりに合成例1で得たN,N’−プロピレンビスアクリルアミドを用い実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Example 2)
An electrolyte membrane was obtained in the same manner as in Example 1 except that N, N′-ethylenebisacrylamide obtained in Synthesis Example 1 was used instead of N, N′-ethylenebisacrylamide in Example 1. Table 1 shows the evaluation results of the obtained film.

(合成例2)
アセトニトリル150g、アクリル酸クロライド5gの混合液を4つ口フラスコに仕込み、氷浴で5℃以下に保ちながら攪拌した。ここへアセトニトリル100g、ブチレンジアミン4.4gの混合物をフラスコ内の混合液を5℃以下に保ちながら少しずつ滴下した。滴下終了後氷浴をはずし室温のまま5時間攪拌した。反応液中に生じた沈殿をろ過して除去し、ろ液を濃縮すると結晶が析出し、これをろ過、乾燥してN,N’−ブチレンビスアクリルアミドを得た。
(Synthesis Example 2)
A mixed solution of 150 g of acetonitrile and 5 g of acrylic acid chloride was charged into a four-necked flask and stirred while keeping the temperature at 5 ° C. or lower in an ice bath. A mixture of 100 g of acetonitrile and 4.4 g of butylene diamine was added dropwise thereto while keeping the mixture in the flask at 5 ° C. or lower. After completion of dropping, the ice bath was removed and the mixture was stirred at room temperature for 5 hours. The precipitate produced in the reaction solution was removed by filtration, and the filtrate was concentrated to give crystals, which were filtered and dried to obtain N, N′-butylenebisacrylamide.

(実施例3)
実施例1においてN,N’−エチレンビスアクリルアミドの代わりに合成例2で得たN,N’−ブチレンビスアクリルアミドを用い、実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Example 3)
An electrolyte membrane was obtained in the same manner as in Example 1 except that N, N′-butylene bisacrylamide obtained in Synthesis Example 2 was used instead of N, N′-ethylenebisacrylamide in Example 1. Table 1 shows the evaluation results of the obtained film.

(実施例4)
実施例1においてN,N’−エチレンビスアクリルアミドの代わりにビスアクリロイルピペラジンを用い、さらに水50部を35部とし、新たにジメチルスルホキシド15部を追加する以外は、実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
Example 4
In Example 1, electrolyte was used in the same manner as in Example 1 except that bisacryloylpiperazine was used in place of N, N′-ethylenebisacrylamide, 35 parts of water was added to 35 parts, and 15 parts of dimethyl sulfoxide was newly added. A membrane was obtained. Table 1 shows the evaluation results of the obtained film.

(実施例5)
実施例1においてN,N’−エチレンビスアクリルアミドの代わりに1,3,5−トリアクリロイルヘキサヒドロ−1,3,5−トリアジンを用い、2−アクリルアミド−2−メチルプロパンスルホン酸45部を35部、新たにアクリル酸10部を追加する以外は、実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Example 5)
In Example 1, 1,3,5-triacryloylhexahydro-1,3,5-triazine was used instead of N, N′-ethylenebisacrylamide, and 45 parts of 2-acrylamido-2-methylpropanesulfonic acid was added to 35 parts. An electrolyte membrane was obtained in the same manner as in Example 1 except that 10 parts of acrylic acid was newly added. Table 1 shows the evaluation results of the obtained film.

(実施例6)
実施例1において2−アクリルアミド−2−メチルプロパンスルホン酸45部を40部、N,N’−エチレンビスアクリルアミド5部を10部にする以外は、実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Example 6)
An electrolyte membrane was obtained in the same manner as in Example 1 except that 45 parts of 2-acrylamido-2-methylpropanesulfonic acid and 10 parts of N, N′-ethylenebisacrylamide were changed to 10 parts in Example 1. . Table 1 shows the evaluation results of the obtained film.

(実施例7)
実施例5において2−アクリルアミド−2−メチルプロパンスルホン酸35部を25部、1,3,5−トリアクリロイルヘキサヒドロ−1,3,5−トリアジン5部を10部、アクリル酸10部を15部にする以外は、実施例3と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Example 7)
In Example 5, 25 parts 2-acrylamido-2-methylpropanesulfonic acid, 25 parts, 10 parts 1,3,5-triacryloylhexahydro-1,3,5-triazine, 10 parts, 15 parts acrylic acid, 15 parts An electrolyte membrane was obtained in the same manner as in Example 3 except that the content of the electrolyte membrane was changed. Table 1 shows the evaluation results of the obtained film.

(比較例1)
実施例1においてN,N’−エチレンビスアクリルアミドの代わりにN,N’−メチレンビスアクリルアミドを用いる以外は、実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Comparative Example 1)
An electrolyte membrane was obtained in the same manner as in Example 1 except that N, N′-methylenebisacrylamide was used instead of N, N′-ethylenebisacrylamide in Example 1. Table 1 shows the evaluation results of the obtained film.

(比較例2)
実施例6においてN,N’−エチレンビスアクリルアミドの代わりにN,N’−メチレンビスアクリルアミドを用いる以外は、実施例4と同様にして同様にして実験を行なったところ、モノマー溶液中に未溶解のN,N’−メチレンビスアクリルアミドが大量に残り、モノマー液の多孔質基材への充填が困難となり、電解質膜が得られなかった。
(Comparative Example 2)
An experiment was carried out in the same manner as in Example 4 except that N, N′-methylenebisacrylamide was used instead of N, N′-ethylenebisacrylamide in Example 6, and it was not dissolved in the monomer solution. A large amount of N, N′-methylenebisacrylamide remained, making it difficult to fill the monomer substrate with the porous substrate, and an electrolyte membrane could not be obtained.

(比較例3)
実施例5において1,3,5−トリアクリロイルヘキサヒドロ−1,3,5−トリアジンの代わりにN,N’−メチレンビスアクリルアミドを用いる以外は、実施例3と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Comparative Example 3)
An electrolyte membrane was obtained in the same manner as in Example 3 except that N, N′-methylenebisacrylamide was used instead of 1,3,5-triacryloylhexahydro-1,3,5-triazine in Example 5. . Table 1 shows the evaluation results of the obtained film.

(比較例4)
実施例7において1,3,5−トリアクリロイルヘキサヒドロ−1,3,5−トリアジンの代わりにN,N’−メチレンビスアクリルアミドを用いる以外は、実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Comparative Example 4)
An electrolyte membrane was obtained in the same manner as in Example 1 except that N, N′-methylenebisacrylamide was used instead of 1,3,5-triacryloylhexahydro-1,3,5-triazine in Example 7. . Table 1 shows the evaluation results of the obtained film.

(比較例5)
実施例6においてN,N’−エチレンビスアクリルアミドの代わりにN,N’−メチレ
ンビスアクリルアミド2部、N−メチロールアクリルアミド8部とし、実施例1と同様にして紫外線重合を行った後、120℃で30分加熱してN−メチロールアクリルアミド残基のメチロール部位の架橋反応を行って電解質膜を得た。得られた膜の評価結果を表1に示す。
(Comparative Example 5)
In Example 6, instead of N, N′-ethylenebisacrylamide, 2 parts of N, N′-methylenebisacrylamide and 8 parts of N-methylolacrylamide were used, and after UV polymerization in the same manner as in Example 1, 120 ° C. And heated for 30 minutes to cross-link the methylol site of the N-methylolacrylamide residue to obtain an electrolyte membrane. Table 1 shows the evaluation results of the obtained film.

(実施例8)
得られた膜が燃料電池として機能することを確認するため実施例1で作成した膜をDMFCセルに組み込んで評価を行った。
酸素極用に白金担持カーボン(田中貴金属工業(株)製:TEC10E50E)、および燃料極用に白金ルテニウム合金担持カーボン(田中貴金属工業(株)製:TEC61E54)をそれぞれ用い、これらの触媒粉末に高分子電解質溶液(デュポン社製:ナフィオン5%溶液)とポリテトラフルオロエチレンディスパージョンを配合し、水を適宜加えて攪拌して反応層用塗料を得た。これをスクリーン印刷法でカーボンペーパー(東レ(株)製:TGP−H−060)の片面に印刷し乾燥して電極とした。その際酸素極側は白金量が1mg/cm2、燃料極側は白金とルテニウムの総量が3mg/cm2とした。これらを実施例1で得られた電解質膜の中央部に塗料面を内側にして重ね合せ、120℃で加熱プレスし燃料電池用膜電極接合体(MEA)を作成した。これをDMFC単セルに組み込んで運転し、性能を確認した。DMFC運転条件はセル温度を50℃とし、燃料極へ濃度3mol/リットルのメタノール水溶液を10ml/分で供給し、酸素極には純空気を0.3リットル/分で供給した。電流値を上げながら電圧を読み取り、図1の電流密度−電圧曲線を得た。
(Example 8)
In order to confirm that the obtained membrane functions as a fuel cell, the membrane prepared in Example 1 was incorporated into a DMFC cell and evaluated.
Platinum-supported carbon (Tanaka Kikinzoku Co., Ltd .: TEC10E50E) is used for the oxygen electrode, and platinum ruthenium alloy-supported carbon (Tanaka Kikinzoku Kogyo Co., Ltd .: TEC61E54) is used for the fuel electrode. A molecular electrolyte solution (manufactured by DuPont: Nafion 5% solution) and polytetrafluoroethylene dispersion were blended, and water was appropriately added and stirred to obtain a reaction layer coating material. This was printed on one side of carbon paper (manufactured by Toray Industries, Inc .: TGP-H-060) by screen printing and dried to obtain an electrode. At that time, the platinum amount on the oxygen electrode side was 1 mg / cm 2 , and the total amount of platinum and ruthenium on the fuel electrode side was 3 mg / cm 2 . These were superposed on the center of the electrolyte membrane obtained in Example 1 with the paint surface inside, and heated and pressed at 120 ° C. to prepare a membrane electrode assembly (MEA) for fuel cells. This was installed in a DMFC single cell and operated to confirm the performance. The DMFC operating conditions were such that the cell temperature was 50 ° C., a methanol aqueous solution having a concentration of 3 mol / liter was supplied to the fuel electrode at 10 ml / min, and pure air was supplied to the oxygen electrode at 0.3 liter / min. The voltage was read while increasing the current value, and the current density-voltage curve of FIG. 1 was obtained.

Figure 2006004098
Figure 2006004098

表1から明らかなように、実施例は、比較例よりも、耐久性試験において優れた性能を示した。   As can be seen from Table 1, the Examples exhibited better performance in the durability test than the Comparative Examples.

本発明の電解質膜は、燃料電池のみならず、各種センサー等の電気化学デバイス素子や、電気分解用の分離膜の用途にも適用できる。   The electrolyte membrane of the present invention can be applied not only to fuel cells, but also to electrochemical device elements such as various sensors and separation membranes for electrolysis.

実施例8の燃料電池における電流密度−電圧曲線を示したグラフである。10 is a graph showing a current density-voltage curve in the fuel cell of Example 8.

Claims (10)

(a)1分子中に重合可能な炭素炭素二重結合およびスルホン酸基を有する化合物またはこれらの塩、並びに
(b)下記の構造式(1)で表わされるアクリルアミド誘導体および/またはメタクリルアミド誘導体
Figure 2006004098
R1、R3 は、水素またはメチル基
R2は、鎖状または環構造の一部を構成するアルキレン基であって、鎖状の場合は炭素数が2以上で、環構造の一部の場合は炭素数が1以上である。
R4、R5は、水素、アルキル基または環構造の一部を構成するアルキレン基
を必須構成モノマーとする架橋電解質ポリマーを含有することを特徴とする電解質膜。
(A) a compound having a carbon-carbon double bond polymerizable in one molecule and a sulfonic acid group or a salt thereof, and (b) an acrylamide derivative and / or a methacrylamide derivative represented by the following structural formula (1)
Figure 2006004098
R 1 and R 3 are hydrogen or methyl group
R 2 is an alkylene group constituting a part of a chain or ring structure, and in the case of a chain, has 2 or more carbon atoms, and in the case of a part of the ring structure, R 2 has 1 or more carbon atoms.
R 4 and R 5 each contain a crosslinked electrolyte polymer containing hydrogen, an alkyl group, or an alkylene group constituting a part of a ring structure as an essential constituent monomer.
モノマー(b)が、N,N’−エチレンビスアクリルアミド、N,N’−エチレンビスメタクリルアミド、N,N’−プロピレンビスアクリルアミド、N,N’−プロピレンビスメタクリルアミド、N,N’−ブチレンビスアクリルアミド、N,N’−ブチレンビスメタクリルアミド、1,3,5−トリアクリロイルヘキサヒドロ−1,3,5−トリアジン、1,3,5−トリメタクリロイルヘキサヒドロ−1,3,5−トリアジン、ビスアクリロイルピペラジンおよびビスメタクリロイルピペラジンの中から選択される1以上の化合物であることを特徴とする請求項1に記載の電解質膜。 Monomer (b) is N, N′-ethylenebisacrylamide, N, N′-ethylenebismethacrylamide, N, N′-propylenebisacrylamide, N, N′-propylenebismethacrylamide, N, N′-butylene Bisacrylamide, N, N′-butylenebismethacrylamide, 1,3,5-triacryloylhexahydro-1,3,5-triazine, 1,3,5-trimethacryloylhexahydro-1,3,5-triazine The electrolyte membrane according to claim 1, wherein the electrolyte membrane is one or more compounds selected from bisacryloylpiperazine and bismethacryloylpiperazine. モノマー(b)が、N,N’−エチレンビスアクリルアミドおよび/またはN,N’−エチレンビスメタクリルアミドであることを特徴とする請求項1に記載の電解質膜。 2. The electrolyte membrane according to claim 1, wherein the monomer (b) is N, N'-ethylenebisacrylamide and / or N, N'-ethylenebismethacrylamide. モノマー(a)が2−アクリルアミド−2−メチルプロパンスルホン酸および/または2−メタクリルアミド−2−メチルプロパンスルホン酸、或いはこれらの塩であることを特徴とする請求項1ないし3に記載の電解質膜。 4. The electrolyte according to claim 1, wherein the monomer (a) is 2-acrylamido-2-methylpropanesulfonic acid and / or 2-methacrylamide-2-methylpropanesulfonic acid, or a salt thereof. film. 架橋電解質ポリマーを構成する全モノマーに対するモノマー(a)、(b)の割合が、それぞれ25〜99.9質量%、0.1〜75質量%であることを特徴とする請求項1ないし4に記載の電解質膜。 The ratio of the monomers (a) and (b) to the total monomers constituting the crosslinked electrolyte polymer is 25 to 99.9% by mass and 0.1 to 75% by mass, respectively. The electrolyte membrane described. 架橋電解質ポリマーを構成する全モノマーに対するモノマー(a)、(b)の割合が、それぞれ40〜90質量%、10〜60質量%であることを特徴とする請求項1ないし4に記載の電解質膜。 5. The electrolyte membrane according to claim 1, wherein the ratios of the monomers (a) and (b) to the total monomers constituting the crosslinked electrolyte polymer are 40 to 90 mass% and 10 to 60 mass%, respectively. . 架橋電解質ポリマーが多孔性基材の細孔内に充填されていることを特徴とする請求項1ないし6に記載の電解質膜。 7. The electrolyte membrane according to claim 1, wherein the crosslinked electrolyte polymer is filled in pores of the porous substrate. 下記の工程を含む製造方法により得られたことを特徴とする請求項1ないし7に記載の電解質膜。
(1)架橋電解質ポリマーを構成するモノマーまたはその溶液若しくは分散液を多孔性基材の細孔内に充填する工程。
(2)充填したモノマーを重合および架橋する工程。
The electrolyte membrane according to claim 1, which is obtained by a production method including the following steps.
(1) A step of filling a monomer constituting the crosslinked electrolyte polymer or a solution or dispersion thereof into the pores of the porous substrate.
(2) A step of polymerizing and crosslinking the filled monomer.
充填したモノマーを重合および架橋する工程が、紫外線照射によるものであることを特徴とする請求項8に記載の電解質膜。 9. The electrolyte membrane according to claim 8, wherein the step of polymerizing and crosslinking the filled monomer is performed by ultraviolet irradiation. 請求項1ないし9に記載の電解質膜を組み込んでなる燃料電池。
A fuel cell incorporating the electrolyte membrane according to claim 1.
JP2006528895A 2004-07-06 2005-07-05 Electrolyte membrane and fuel cell using the electrolyte membrane Expired - Fee Related JP4656060B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004198890 2004-07-06
JP2004198890 2004-07-06
PCT/JP2005/012361 WO2006004098A1 (en) 2004-07-06 2005-07-05 Electrolyte membrane and fuel cell utilizing the electrolyte membrane

Publications (2)

Publication Number Publication Date
JPWO2006004098A1 true JPWO2006004098A1 (en) 2008-04-24
JP4656060B2 JP4656060B2 (en) 2011-03-23

Family

ID=35782898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006528895A Expired - Fee Related JP4656060B2 (en) 2004-07-06 2005-07-05 Electrolyte membrane and fuel cell using the electrolyte membrane

Country Status (7)

Country Link
US (1) US20080286627A1 (en)
EP (1) EP1786054A4 (en)
JP (1) JP4656060B2 (en)
KR (1) KR20070027722A (en)
CN (1) CN100499231C (en)
CA (1) CA2573250A1 (en)
WO (1) WO2006004098A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051887A1 (en) * 2005-10-29 2007-05-03 Pemeas Gmbh Membrane for fuel cells containing polymers comprising phosphonic acid and / or sulfonic acid groups, membrane-electrode assembly and their application in fuel cells
JP4979236B2 (en) * 2006-01-18 2012-07-18 旭化成イーマテリアルズ株式会社 Cross-linked electrolyte membrane and method for producing the same
KR101255538B1 (en) 2006-02-22 2013-04-16 삼성에스디아이 주식회사 Sulfonated copolymer comprising crosslinkable functional group and fuel cell comprising polymerization product of the same
JP2007280653A (en) * 2006-04-04 2007-10-25 Asahi Kasei Chemicals Corp Composite electrolyte membrane
SE530389C2 (en) * 2006-10-06 2008-05-20 Morphic Technologies Ab Publ Proton Conductive Membrane for a Fuel Cell or a Fuel Cell Technology Reactor and Process for Preparing the Membrane
WO2009104470A1 (en) * 2008-02-18 2009-08-27 東亞合成株式会社 Method for producing electrolyte membrane, and electrolyte membrane
GB0921951D0 (en) * 2009-12-16 2010-02-03 Fujifilm Mfg Europe Bv Curable compositions and membranes
GB0921949D0 (en) 2009-12-16 2010-02-03 Fujifilm Mfg Europe Bv Curable compositions and membranes
TWI511352B (en) * 2012-06-04 2015-12-01 Ion polymer film material and its preparation method and lithium secondary battery
CN103570873B (en) * 2013-10-23 2016-04-13 深圳新宙邦科技股份有限公司 A kind of composition for gel polymer electrolyte, gel polymer electrolyte and electrochemical appliance
JP6478175B2 (en) 2014-10-28 2019-03-06 エルジー・ケム・リミテッド Polymer polymerization composition, polymer using the same, polymer electrolyte membrane using the same
CN108484836B (en) * 2018-03-02 2020-11-27 西安工业大学 In-situ self-forming preparation method of composite polymer solid electrolyte membrane
KR102009256B1 (en) * 2018-06-05 2019-08-09 한국에너지기술연구원 Method for preparing photocurable solution and method for preparing cation exchange membrane including the same
US20230231142A1 (en) * 2020-05-30 2023-07-20 Cornell University Functionalized cross-linked polymer networks, methods of making same, and uses thereof
CN112467182B (en) * 2020-11-30 2022-03-15 山东东岳未来氢能材料股份有限公司 High-tolerance enhanced perfluorinated proton membrane and preparation method thereof
US11891468B1 (en) 2022-07-29 2024-02-06 Dioxycle Polymers and membranes with acrylamide moiety
KR102654578B1 (en) * 2023-04-19 2024-04-04 국립군산대학교산학협력단 Solid polymer electrolyte composition comprising polymer crosslinked with an ionic crosslinker and electronic component comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127595A (en) * 2002-09-30 2004-04-22 Sumitomo Bakelite Co Ltd Lithium ion conductive gel electrolyte
JP2004146279A (en) * 2002-10-25 2004-05-20 Toagosei Co Ltd Electrolyte membrane and fuel cell using the electrolyte membrane
JP2004171994A (en) * 2002-11-21 2004-06-17 Ube Ind Ltd Manufacturing method of hybrid material using porous membrane as base material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864927B1 (en) * 1997-03-11 2000-12-27 JSR Corporation Water-developable photosensitive resin composition
US6358651B1 (en) * 1999-02-26 2002-03-19 Reveo, Inc. Solid gel membrane separator in rechargeable electrochemical cells
US6849702B2 (en) * 1999-02-26 2005-02-01 Robert W. Callahan Polymer matrix material
JP4564147B2 (en) * 2000-08-31 2010-10-20 日東電工株式会社 Proton conductive membrane and proton conductive film obtained therefrom
JP4014422B2 (en) * 2002-03-04 2007-11-28 日東電工株式会社 Proton conducting membrane or film and fuel cell using them
JP2003263998A (en) * 2002-03-07 2003-09-19 Japan Science & Technology Corp Electrolyte membrane and solid polymer fuel cell using the same
JP3838933B2 (en) * 2002-03-19 2006-10-25 積水化成品工業株式会社 Polymer hydrogel electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127595A (en) * 2002-09-30 2004-04-22 Sumitomo Bakelite Co Ltd Lithium ion conductive gel electrolyte
JP2004146279A (en) * 2002-10-25 2004-05-20 Toagosei Co Ltd Electrolyte membrane and fuel cell using the electrolyte membrane
JP2004171994A (en) * 2002-11-21 2004-06-17 Ube Ind Ltd Manufacturing method of hybrid material using porous membrane as base material

Also Published As

Publication number Publication date
KR20070027722A (en) 2007-03-09
EP1786054A4 (en) 2009-12-30
US20080286627A1 (en) 2008-11-20
CN100499231C (en) 2009-06-10
CA2573250A1 (en) 2006-01-12
WO2006004098A1 (en) 2006-01-12
EP1786054A1 (en) 2007-05-16
JP4656060B2 (en) 2011-03-23
CN1981401A (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP4656060B2 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
JP5702093B2 (en) Polymer membrane composition for fuel cell, polymer membrane produced using the same, membrane-electrode assembly containing the same, and fuel cell
JP4284463B2 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
JPWO2005098875A1 (en) Manufacturing method of electrolyte membrane and membrane electrode assembly, and fuel cell
JPWO2005076396A1 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
JP2007035599A (en) Polyelectrolyte for fuel cell, electrolyte membrane, and fuel cell
JP4247571B2 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
US20080020255A1 (en) Electrolyte Membrane and Fuel Cell
JP2007265955A (en) Polymer electrolyte membrane, process for production thereof, polymer electrolyte, electrolyte composition, membrane-electrode assembly, and fuel cell
JP4561214B2 (en) Electrolyte membrane
JPWO2009104470A1 (en) Electrolyte membrane manufacturing method and electrolyte membrane
JP2004253336A (en) Electrolyte film and fuel cell using it
JP4979236B2 (en) Cross-linked electrolyte membrane and method for producing the same
JPWO2006092914A1 (en) Membrane electrode assembly, method for producing the same, and direct methanol fuel cell
JP2007048543A (en) Electrolyte film and direct liquid fuel type fuel cell
JP4851757B2 (en) Electrolyte membrane and polymer electrolyte fuel cell
JP2009093919A (en) Manufacturing method for aromatic polyether electrolyte membrane
JP2010047724A (en) Electrolyte polymer having improved humidity retention property, and method of manufacturing the same
JP2009193725A (en) Composite membrane and method of manufacturing the same
JP2004253183A (en) Manufacturing method of electrolyte membrane, and fuel cell
JP2005063690A (en) Electrolyte membrane and fuel cell using same
JP4993332B2 (en) Electrolyte membrane and method for producing the same
JP2005268032A (en) Polymer electrolyte membrane, its evaluation method, and fuel cell
JP2009218154A (en) Manufacturing method of membrane electrode assembly
JP2007048551A (en) Electrolyte membrane for direct liquid fuel type fuel cell, and direct liquid fuel type fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees