JP4851757B2 - Electrolyte membrane and polymer electrolyte fuel cell - Google Patents

Electrolyte membrane and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4851757B2
JP4851757B2 JP2005263491A JP2005263491A JP4851757B2 JP 4851757 B2 JP4851757 B2 JP 4851757B2 JP 2005263491 A JP2005263491 A JP 2005263491A JP 2005263491 A JP2005263491 A JP 2005263491A JP 4851757 B2 JP4851757 B2 JP 4851757B2
Authority
JP
Japan
Prior art keywords
polymer
electrolyte
membrane
weight
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005263491A
Other languages
Japanese (ja)
Other versions
JP2007080558A (en
Inventor
秀之 江守
一成 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2005263491A priority Critical patent/JP4851757B2/en
Publication of JP2007080558A publication Critical patent/JP2007080558A/en
Application granted granted Critical
Publication of JP4851757B2 publication Critical patent/JP4851757B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)

Description

本発明は、ポリオレフィン類などを含有する多孔性基材の細孔内に、プロトン伝導性ポリマーを充填してなる電解質膜、及びそれを用いた固体高分子型燃料電池に関する。   The present invention relates to an electrolyte membrane in which a proton conductive polymer is filled in pores of a porous substrate containing polyolefins, and a polymer electrolyte fuel cell using the electrolyte membrane.

固体高分子型燃料電池(PEFC、Polymer Electrolyte Fuel Cell)は、低温動作、高出力密度、発電反応で水しか生成されないという優れた特徴を有している。純水素によるPEFCは高い出力が得られるため、特に自動車用途に期待されており、水素ステーションなど水素エネルギー環境整備もすすめられつつある。また、メタノール燃料のPEFCは、ガソリンと同様に液体燃料として供給が可能なため、電気自動車用やポータブル機器用電力供給源として有望であると考えられている。   A polymer electrolyte fuel cell (PEFC) has an excellent characteristic that only water is generated by low temperature operation, high power density, and power generation reaction. Since PEFC using pure hydrogen can provide high output, it is expected to be used especially for automobiles, and hydrogen energy environments such as hydrogen stations are being promoted. In addition, methanol fuel PEFC can be supplied as liquid fuel in the same way as gasoline, so it is considered promising as a power supply source for electric vehicles and portable devices.

上記固体高分子型燃料電池は、純水素ガスを用いるタイプ以外に、改質器を用いてメタノールを水素主成分のガスに変換する改質型と、改質器を用いずにメタノールを直接使用する直接型(DMFC、Direct Mathanol Polymer Fuel Cell)の二つのタイプに区分される。改質型では、改質器が必要となるが、出力が大きく適用機器の範囲が広い。一方、直接型は、改質器が不要であるため、小型軽量化が可能である。   In addition to the type using pure hydrogen gas, the above polymer electrolyte fuel cell uses a reformer that converts methanol into hydrogen-based gas using a reformer, and uses methanol directly without a reformer It is divided into two types: direct type (DMFC, Direct Mathanol Polymer Fuel Cell). The reforming type requires a reformer, but has a large output and a wide range of applicable equipment. On the other hand, since the direct type does not require a reformer, it can be reduced in size and weight.

PEFCの電解質膜としては、パーフルオロカーボンスルホン酸重合体からなる電解質膜が、その耐久性の高さから従来用いられてきた。しかし、燃料電池運転時の雰囲気である湿潤状態で電解質が膨潤し寸法安定性が損なわれ電解質と電極の界面が破壊される、水素やメタノールが膜を透過してしまうクロスオーバー現象により起電力が低下してしまう、という問題が指摘されている。また、パーフルオロカーボン膜は一般に非常に高価であるという問題点もある。   As the PEFC electrolyte membrane, an electrolyte membrane made of a perfluorocarbon sulfonic acid polymer has been conventionally used because of its high durability. However, the electromotive force is generated by the crossover phenomenon in which the electrolyte swells in the wet state, which is the atmosphere when the fuel cell is operated, and the dimensional stability is impaired and the interface between the electrolyte and the electrode is broken. It has been pointed out that it will decline. In addition, the perfluorocarbon film is generally very expensive.

このため、固体高分子型燃料電池用隔膜として、芳香族炭化水素系の多孔膜を支持膜として、その空隙中にポリエーテル系の電解質を充填した電解質膜(例えば、特許文献1参照)や、PTFE膜を支持膜としてその空隙中にパーフルオロカーボンスルホン酸を充填した電解質膜(例えば、特許文献2参照)が開示されている。しかし、これらは未延伸の多孔膜を用いており、膜の突き刺し強度や弾性率が低く、また電解質の水やメタノールに対する膨潤の抑制が十分であるとはいえない。   Therefore, as a membrane for a polymer electrolyte fuel cell, an aromatic hydrocarbon porous membrane as a support membrane, and an electrolyte membrane (for example, see Patent Document 1) filled with a polyether electrolyte in the gap, An electrolyte membrane (see, for example, Patent Document 2) in which a PTFE membrane is used as a supporting membrane and perfluorocarbon sulfonic acid is filled in the voids is disclosed. However, these use unstretched porous membranes, the piercing strength and elastic modulus of the membrane are low, and it cannot be said that suppression of swelling of the electrolyte with water or methanol is sufficient.

機械強度の改善については、芳香族ポリアミドによる多孔膜を支持膜として、その空隙中にパーフルオロカーボンスルホン酸を充填した電解質膜が開示されている(例えば、特許文献3参照)。しかし、用いる電解質のプロトン伝導性が低いため、十分なプロトン伝導性が得られないと考えられ、結果として十分な燃料電池出力特性が得られていない。   Regarding improvement of mechanical strength, an electrolyte membrane in which a porous membrane made of aromatic polyamide is used as a support membrane and perfluorocarbon sulfonic acid is filled in the voids is disclosed (for example, see Patent Document 3). However, since the proton conductivity of the electrolyte to be used is low, it is considered that sufficient proton conductivity cannot be obtained, and as a result, sufficient fuel cell output characteristics are not obtained.

また、ポリアラミドからなる支持膜に各種電解質を相互貫入させた電解質膜が知られている(例えば、特許文献4参照)。しかし、支持膜である多孔質膜がポリアラミドを用いたキャスト法で製膜されていることから、十分な強度としなやかさを両立させた電解質膜が得られるとは考えにくい。   Further, an electrolyte membrane in which various electrolytes are interpenetrated into a support membrane made of polyaramid is known (see, for example, Patent Document 4). However, since the porous membrane as the support membrane is formed by a casting method using polyaramid, it is unlikely that an electrolyte membrane having sufficient strength and flexibility can be obtained.

また、重量平均分子量50万以上の高分子量ポリオレフィン系多孔質膜の空孔中に、陽イオン交換樹脂を充填してなる陽イオン交換膜が開示されている(例えば、特許文献5参照)。しかし、イオン交換樹脂としてパーフルオロカーボンスルホン酸を用いているため、膨潤時の形状維持性やメタノール透過性に問題があると考えられる。   Further, a cation exchange membrane is disclosed in which a cation exchange resin is filled in pores of a high molecular weight polyolefin porous membrane having a weight average molecular weight of 500,000 or more (see, for example, Patent Document 5). However, since perfluorocarbon sulfonic acid is used as the ion exchange resin, it is considered that there is a problem in the shape maintenance property and methanol permeability during swelling.

また、酸性電解質成分としてスルホン化ポリエテルエーテルケトン、塩基性電解質成分としてビニルイミダゾールを用いて、電解質膜を得ている例が知られている(例えば、特許文献6参照)。しかし、この場合の塩基性成分は、酸性基−塩基性基の会合による電解質成分の擬似架橋のために用いられており、また製膜を電解質成分のキャスト法により行っているため支持材を用いておらず、適切なハンドリングのための強度は得られない。   In addition, an example in which an electrolyte membrane is obtained using sulfonated polyetheretherketone as an acidic electrolyte component and vinylimidazole as a basic electrolyte component is known (see, for example, Patent Document 6). However, the basic component in this case is used for pseudo-crosslinking of the electrolyte component by the association of acidic group-basic group, and since the film is formed by the casting method of the electrolyte component, a support material is used. The strength for proper handling cannot be obtained.

更に、パーフルオロカーボン膜以外の電解質膜は種々提案されているが、電極のバインダーとしてもパーフルオロカーボンスルホン酸は広く用いられており、電極を直接電解質膜に塗布することで膜−電極間の界面抵抗の増大を改善した例は開示されている(例えば、特許文献7参照)。しかし、炭化水素系電解質膜について、電極のバインダーを別に用いることなく、電極との接合性の低下と、それに伴う膜−電極接合体の膜−電極間の界面抵抗の増大を改善した電解質膜は得られていない。   In addition, various electrolyte membranes other than perfluorocarbon membranes have been proposed, but perfluorocarbon sulfonic acid is widely used as an electrode binder, and the interfacial resistance between the membrane and the electrode can be improved by applying the electrode directly to the electrolyte membrane. An example of improving the increase in the above has been disclosed (see, for example, Patent Document 7). However, with respect to the hydrocarbon-based electrolyte membrane, an electrolyte membrane that has improved the decrease in bondability with the electrode and the accompanying increase in the interfacial resistance between the membrane and the electrode of the membrane-electrode assembly without using an electrode binder separately. Not obtained.

以上のように、PEFCの電解質膜として、1)水素およびメタノールなどの透過阻止性(水素やメタノールが電解質を透過しないこと)、2)耐久性や耐熱性、3)起動・終了によって膜への液湿潤・乾燥に伴う面積変化がないが又は少ないこと。4)プロトン伝導性、5)化学的耐性を満たし、さらに6)電極との接合性を向止させた電解質膜は得られていない。   As described above, PEFC electrolyte membranes are as follows: 1) Permeability of hydrogen and methanol, etc. (hydrogen and methanol must not permeate the electrolyte), 2) Durability and heat resistance, 3) Activation and termination of the membrane There is no or little area change due to liquid wetting and drying. An electrolyte membrane that satisfies 4) proton conductivity, 5) chemical resistance, and 6) prevents bonding with an electrode has not been obtained.

特開2004−143388号公報JP 2004-143388 A 特開平06−029032号公報Japanese Patent Laid-Open No. 06-029032 特開2000−149965号公報JP 2000-149965 A 特表2003−528420号公報Special table 2003-528420 gazette 特開平1−22932号公報JP-A-1-22932 特表2003−535940号公報Special table 2003-535940 gazette 特開2005−11590号公報JP 2005-11590 A

そこで、本発明の目的は、プロトン伝導性とメタノール透過阻止性を良好にしながら、しかも電極との接合性が高く、燃料であるメタノール水溶液を流した場合でも電極から剥離しにくい電解質膜、並びにそれを用いた固体高分子型燃料電池を提供することにある。   Accordingly, an object of the present invention is to provide an electrolyte membrane that has good proton conductivity and methanol permeation-preventing properties, has high bonding properties with the electrode, and does not easily peel off from the electrode even when a methanol aqueous solution is flowed. Another object of the present invention is to provide a polymer electrolyte fuel cell using the above.

本発明者らは、上記目的を達成すべく鋭意研究したところ、反応性の官能基を有する重量平均分子量200万以上の第2ポリマーと、反応性の官能基を有する重量平均分子量200万未満の第4ポリマーとを併用することにより、特に電極との接合性が向上することを見出し、本発明を完成するに至った。   The inventors of the present invention have intensively studied to achieve the above object. As a result, the second polymer having a reactive functional group having a weight average molecular weight of 2 million or more and the weight average molecular weight having a reactive functional group of less than 2 million. By using together with the fourth polymer, it has been found that the bondability with the electrode is improved, and the present invention has been completed.

即ち、本発明の電解質膜は、重量平均分子量50万以上のポリオレフィンを含む第1ポリマーと、二重結合を有する重量平均分子量200万以上の第2ポリマーと、二重結合を有する重量平均分子量200万未満の第4ポリマーとを含有する樹脂組成物を架橋してなる多孔性基材の細孔内に、プロトン伝導性を有する第3ポリマーを充填してあり、前記第3ポリマーと前記第4ポリマーとが結合していることを特徴とする。本発明における各種物性値は、具体的には実施例に記載の測定方法で測定される値である。
That is, the electrolyte membrane of the present invention includes a first polymer containing a polyolefin having a weight average molecular weight of 500,000 or more, a second polymer having a double bond and a weight average molecular weight of 2 million or more, and a weight average molecular weight having a double bond of 200. into the pores of the porous substrate obtained by crosslinking a resin composition comprising a fourth polymer less than one million, tare and filling the third polymer having proton conductivity is, the said third polymer the 4 polymers are bonded to each other . The various physical property values in the present invention are specifically values measured by the measuring methods described in the examples.

本発明の電解質膜によると、ポリオレフィン系の多孔性基材を用い、その細孔内に、プロトン伝導性を有する第3ポリマーを充填してあるため、プロトン伝導性とメタノール透過阻止性が良好になる。しかも、重量平均分子量200万未満の第4ポリマーを第2ポリマーと併用しているため、実施例の結果が示すように、電極と電解質膜との接合性が高くなる。   According to the electrolyte membrane of the present invention, a polyolefin-based porous substrate is used, and the pores are filled with a third polymer having proton conductivity, so that proton conductivity and methanol permeation blocking properties are excellent. Become. In addition, since the fourth polymer having a weight average molecular weight of less than 2 million is used in combination with the second polymer, the bondability between the electrode and the electrolyte membrane is improved as shown in the results of the examples.

上記において、前記第2ポリマーがポリノルボルネンゴムであり、前記第4ポリマーがエチレンとプロピレンとジエンモノマーとの三元共重合体であることが好ましい。このようなポリマーの組合せであると、第4ポリマーが後述する第3モノマーの重合工程において第3ポリマーと結合してプロトン伝導性を得る場合が多く、さらにこの第4ポリマーが高温により流動して電極の表層の隙間に浸透し、アンカー効果により接着性が向上して、電極と電解質膜のプロトン伝導性成分を密着させることができると考えられる。プロトン伝導の部分が密着されることで、電極と電解質膜の間でプロトンが移動しやすくなり、界面抵抗が低減されると考えられる。
できる。
In the above, it is preferable that the second polymer is a polynorbornene rubber and the fourth polymer is a terpolymer of ethylene, propylene and a diene monomer. In such a polymer combination, the fourth polymer often binds to the third polymer in the polymerization step of the third monomer described later to obtain proton conductivity, and the fourth polymer flows due to high temperature. It is thought that it penetrates into the gaps in the surface layer of the electrode, the adhesiveness is improved by the anchor effect, and the proton conductive component of the electrode and the electrolyte membrane can be adhered. It is considered that when the proton conducting part is in close contact, protons easily move between the electrode and the electrolyte membrane, and the interface resistance is reduced.
it can.

また、前記第3ポリマーは、スルホン酸基及びビニル基を含む重合性モノマーが架橋剤により架橋されたものであることが好ましい。第3ポリマーが架橋されていると、使用時の第3ポリマーの溶解や膨潤が抑制され、メタノール透過阻止性をより確実に高めることができる。 Moreover, it is preferable that the said 3rd polymer is what the polymerizable monomer containing a sulfonic acid group and a vinyl group was bridge | crosslinked with the crosslinking agent. When the third polymer is cross-linked, dissolution and swelling of the third polymer at the time of use are suppressed, and the methanol permeation blocking property can be more reliably increased.

その際、前記重合性モノマーがビニルスルホン酸であることが好ましい。ビニルスルホン酸を構成成分とする場合、スルホン基が直鎖状に高密度に配列しやすく、プロトン伝導性を高められ、また、主鎖のパッキングが起こりやすく、より固い重合体となるため、分子鎖間の膨潤変化がより起きにくいものとなる。   At that time, the polymerizable monomer is preferably vinyl sulfonic acid. When vinyl sulfonic acid is used as a constituent component, the sulfone groups are easily arranged in a straight line at a high density, proton conductivity is improved, and the main chain is likely to be packed, resulting in a harder polymer. Changes in swelling between chains are less likely to occur.

一方、本発明の本発明の固体高分子型燃料電池は、上記いずれかに記載の電解質膜を用いてなるものである。このため、本発明の固体高分子型燃料電池は、電解質膜のプロトン伝導性とメタノール透過阻止性を良好にしながら、しかも電極と電解質膜との接合性が高く、燃料であるメタノール水溶液を流した場合でも電解質膜が電極から剥離しにくい固体高分子型燃料電池となる。   On the other hand, the polymer electrolyte fuel cell of the present invention uses any one of the electrolyte membranes described above. For this reason, the polymer electrolyte fuel cell of the present invention has good proton conductivity and methanol permeation-preventing property of the electrolyte membrane, and also has high bonding properties between the electrode and the electrolyte membrane, and a methanol aqueous solution as a fuel is flowed. Even in this case, the polymer electrolyte fuel cell is difficult to peel off from the electrode.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明に用いる多孔性基材は、重量平均分子量50万以上のポリオレフィンを含む第1ポリマーと、反応性の官能基を有する重量平均分子量200万以上の第2ポリマーと、反応性の官能基を有する重量平均分子量200万未満の第4ポリマーとを含有する樹脂組成物を架橋してなるものである。   The porous substrate used in the present invention comprises a first polymer containing a polyolefin having a weight average molecular weight of 500,000 or more, a second polymer having a reactive functional group and a weight average molecular weight of 2 million or more, and a reactive functional group. It is obtained by crosslinking a resin composition containing a fourth polymer having a weight average molecular weight of less than 2 million.

これらのうち、第1のポリマーとして、ポリエチレン類が耐汚染性、耐腐食性、安価などの理由により好ましい。特に、高密度ポリエチレン、低密度ポリエチレン、超高分子量ポリエチレンなどが好ましい。高密度ポリエチレン又は超高分子量ポリエチレンは、得られる多孔性基材の強度の点からより好ましい。これらのなかでも、特に多孔質フィルムの強度を高くできる観点から、重量平均分子量50万以上、特に重量平均分子量100万以上の超高分子量ポリエチレンを用いることが好ましい。またカルボニル基や酸無水物基などがグラフト重合されたポリオレフイン類などを、一種以上混合して使用してもよい。これらのポリオレフィン系樹脂は、単独でまたは2種以上を混合して使用してもよい。   Of these, polyethylenes are preferred as the first polymer for reasons such as contamination resistance, corrosion resistance, and low cost. In particular, high density polyethylene, low density polyethylene, ultra high molecular weight polyethylene and the like are preferable. High-density polyethylene or ultrahigh molecular weight polyethylene is more preferable from the viewpoint of the strength of the porous substrate to be obtained. Among these, it is preferable to use an ultrahigh molecular weight polyethylene having a weight average molecular weight of 500,000 or more, particularly a weight average molecular weight of 1,000,000 or more, particularly from the viewpoint of increasing the strength of the porous film. Further, one or more kinds of polyolefins grafted with a carbonyl group or an acid anhydride group may be used. These polyolefin resins may be used alone or in admixture of two or more.

反応性の官能基を有する第2ポリマーや第4ポリマーとしては、例えば、二重結合を有するポリマーや酸無水物基などがグラフトされたポリマー、エポキシ基を有するポリマーなどが挙げられる。第2ポリマーと第4ポリマーの種類は、同一でも異なっていてもよい。   Examples of the second polymer and the fourth polymer having a reactive functional group include a polymer having a double bond, a polymer grafted with an acid anhydride group, and the like, and a polymer having an epoxy group. The types of the second polymer and the fourth polymer may be the same or different.

ポリマー内に二重結合を有する第2ポリマー等としては、例えば、ポリノルボルネンやエチレン−プロピレン−ターポリマー、ポリブタジエンのうち少なくとも1種の第2ポリマーとを有してなるのがよい。この第2ポリマーとして、ビシクロ[3.2.0]へプト−6−エン、ビシクロ「4.2.0]オクト−7−エン及びこれらの誘導体の開環重合物;ビシクロ[2.2.1]へプト−5−エン(本明細書において、「ノルボルネン」ともいう)、ビシクロ[2.2.1]へプト−5−エン−2,3−ジカルボキシメチルエステル等のノルボルネン誘導体;ビシクロ[2.2.2]オクト−2−エン及びこの誘導体の開環重合物;並びにジシクロペンタジエン、テトラシクロドデセン及びこれらの誘導体の開環重合物、エチレン−プロピレン−ターポリマー、ポリブタジエン、などを挙げることができる。   As a 2nd polymer etc. which have a double bond in a polymer, it is good to have at least 1 sort (s) of 2nd polymer among polynorbornene, an ethylene propylene terpolymer, and polybutadiene, for example. Examples of the second polymer include bicyclo [3.2.0] hept-6-ene, bicyclo [4.2.0] oct-7-ene, and ring-opening polymers of these derivatives; bicyclo [2.2. 1] norbornene derivatives such as hept-5-ene (also referred to herein as “norbornene”), bicyclo [2.2.1] hept-5-ene-2,3-dicarboxymethyl ester; [2.2.2] Ring-opening polymer of oct-2-ene and derivatives thereof; and ring-opening polymer of dicyclopentadiene, tetracyclododecene and derivatives thereof, ethylene-propylene-terpolymer, polybutadiene, etc. Can be mentioned.

前記エチレン−プロピレン−ターポリマーはエチレンとプロピレンおよびジエンモノマーとの三元共重合体からなり、その主鎖にそのジエンモノマー単位に由来する脂肪族環と二重結合とを有する。また該重合体は、その二重結合の一部を水素添加してもよい。前記エチレンとプロピレンおよびジエンモノマーとの三元共重合体中、ジエンモノマーとしてはジシクロペンタジエン、エチリデンノルボルネン、ヘキサジエンなどがあげられる。これらの中では脂肪族環骨格が好ましく、なかでも架橋反応性の点からエチリデンノルボルネンがより好ましい。これらのジエンモノマーを用いてなる三元共重合体は単独でまたは2種以上を混合して用いた重合体であってもよい。   The ethylene-propylene-terpolymer is composed of a terpolymer of ethylene, propylene and a diene monomer, and has an aliphatic ring derived from the diene monomer unit and a double bond in the main chain. The polymer may be hydrogenated at a part of the double bond. In the terpolymer of ethylene, propylene and diene monomer, examples of the diene monomer include dicyclopentadiene, ethylidene norbornene, and hexadiene. Of these, an aliphatic ring skeleton is preferable, and ethylidene norbornene is more preferable from the viewpoint of crosslinking reactivity. The ternary copolymer using these diene monomers may be a polymer used alone or in admixture of two or more.

前記エチレン−プロピレン−ターポリマーはポリオレフィン樹脂組成物として、複雑な分子鎖のからみあい構造をもつことが三次元架橋構造に望ましく、分子量が一定以上の高分子量となるエチレン−プロピレン−ターポリマーが好ましい。   As the polyolefin resin composition, the ethylene-propylene-terpolymer desirably has a complex molecular chain entanglement structure in a three-dimensional crosslinked structure, and an ethylene-propylene-terpolymer having a high molecular weight with a molecular weight of a certain level or more is preferable.

また、ポリブタジエンを用いる場合、該ポリブタジエンには、シス型1,4−ポリブタジエン、トランス型1,4−ポリブタジエン、1,2−ポリブタジエンなどを挙げることができる。シス型1,4−ポリブタジエン骨格を多くするポリブタジエンが、屈曲性構造を取りやすい点、二重結合の反応が進行しやすい点で、好ましい。特に、シス型1,4−ポリブタジエン骨格の割合が30モル%以上有するポリブタジエンが好ましい。   When polybutadiene is used, examples of the polybutadiene include cis-type 1,4-polybutadiene, trans-type 1,4-polybutadiene, and 1,2-polybutadiene. A polybutadiene having a large cis-type 1,4-polybutadiene skeleton is preferable in that it easily takes a flexible structure and a reaction of a double bond easily proceeds. In particular, polybutadiene having a cis-type 1,4-polybutadiene skeleton ratio of 30 mol% or more is preferable.

グラフト化ポリマーとしては、例えば、グラフト重合されたポリオレフィン類−高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、EVA等があげられるが、相溶性などの点から無水マレイン酸グラフトポリエチレンはより好ましく用いることができる。これらポリオレフィン系グラフトポリマーは、第1ポリマーとして併用してもよい。   Examples of the grafted polymer include graft-polymerized polyolefins-high density polyethylene, low density polyethylene, polypropylene, EVA and the like, but maleic anhydride graft polyethylene can be more preferably used from the viewpoint of compatibility. . These polyolefin graft polymers may be used in combination as the first polymer.

これらのうち、反応性の官能基を有する重量平均分子量200万以上の第2ポリマーとしては、高分子量であり、空気中での熱処理による酸化で容易に架橋しうるポリノルボルネンゴムが好ましい。また、反応性の官能基を有する重量平均分子量200万未満の第4ポリマーとしては、重量平均分子量が100万以下であり膜−電極接合体作製時の接合温度程度で流動しやすく、第3モノマーの架橋・重合の際に共重合しうる二重結合を有しているエチレン−プロピレン−ターポリマーが好ましく用いられる。   Among these, as the second polymer having a reactive functional group and a weight average molecular weight of 2 million or more, a polynorbornene rubber having a high molecular weight and capable of being easily cross-linked by oxidation by heat treatment in air is preferable. In addition, the fourth polymer having a reactive functional group and a weight average molecular weight of less than 2 million has a weight average molecular weight of 1 million or less and can easily flow at a bonding temperature at the time of producing a membrane-electrode assembly. An ethylene-propylene-terpolymer having a double bond that can be copolymerized during crosslinking and polymerization is preferably used.

第2ポリマー、第4ポリマーの量は、第1ポリマーと第2ポリマーと第4ポリマーを合わせたものを100重量部とすると、第2ポリマーは1〜30重量部、好ましくは1〜20重量部、より好ましくは1〜15重量部であるのがよい。第4ポリマーは3〜30重量部、より好ましくは3〜20重量部であるのがよい。   The amount of the second polymer and the fourth polymer is 1 to 30 parts by weight, preferably 1 to 20 parts by weight when the total of the first polymer, the second polymer and the fourth polymer is 100 parts by weight. More preferably, it is 1 to 15 parts by weight. The fourth polymer may be 3 to 30 parts by weight, more preferably 3 to 20 parts by weight.

この第4ポリマーを添加した膜を用いた電解質膜が、電極−膜接合体を作製する際に、その接合性を向上させて、電極−膜接合体の界面抵抗を低減させる理由としては、次のように考えられる。すなわち、第4ポリマーが後述する第3モノマーの重合工程において第3ポリマーと結合しプロトン伝導性を得ること、さらに第3モノマーが付加された第4ポリマーが高温により流動して電極の表層の隙間に浸透、アンカー効果により接着性が向上して、電極と電解質膜のプロトン伝導性成分を密着させるためであると考えられる。プロトン伝導の部分が密着されることで、電極と電解質膜の間でプロトンが移動しやすくなり、界面抵抗が低減されると考えられる。   The reason why the electrolyte membrane using the membrane added with the fourth polymer improves the bondability when the electrode-membrane assembly is produced and reduces the interfacial resistance of the electrode-membrane assembly is as follows. It seems like. That is, the fourth polymer is bonded to the third polymer in the polymerization step of the third monomer to be described later to obtain proton conductivity, and the fourth polymer to which the third monomer is added flows at a high temperature to cause a gap between the surface layers of the electrodes. It is considered that the adhesion is improved by the penetration and anchor effect, and the proton conductive components of the electrode and the electrolyte membrane are brought into close contact with each other. It is considered that when the proton conducting part is in close contact, protons easily move between the electrode and the electrolyte membrane, and the interface resistance is reduced.

なお、前記多孔性基材の樹脂組成物中には、必要に応じて、酸化防止剤、紫外線吸収剤、染料、顔料、耐電防止剤、造核剤等の添加物を、本発明の目的を損なわない範囲で添加することができる。   In addition, in the resin composition of the porous substrate, additives such as an antioxidant, an ultraviolet absorber, a dye, a pigment, an antistatic agent, a nucleating agent, and the like are added as necessary for the purpose of the present invention. It can add in the range which does not impair.

次に、本発明に用いる多孔性基材の製造方法について説明する。本発明における多孔性基材の製造には、熱誘起または非溶媒誘起タイプの湿式成膜法、乾式成膜法など公知の方法を利用できる。たとえば、前記樹脂組成物を溶媒と混合し、混練、加熱溶解しながらシート状に成形した後、圧延し、一軸方向以上に延伸し、溶媒を抽出除去することにより製造することができる。   Next, the manufacturing method of the porous base material used for this invention is demonstrated. In the production of the porous substrate in the present invention, a known method such as a heat-induced or non-solvent-induced wet film forming method or a dry film forming method can be used. For example, it can be produced by mixing the resin composition with a solvent, forming into a sheet while kneading and heating and dissolving, rolling, stretching in a uniaxial direction or more, and extracting and removing the solvent.

本発明に用いることのできる溶媒としては、ポリオレフィン樹脂の溶解が可能なものであれば、特に限定されないが、凝固点が−10℃以下のものが好ましく用いられる。このような溶媒の好ましい具体例として、例えば、デカン、デカリン、流動パラフィン等の脂肪族または脂環式炭化水素、沸点がこれらに対応する鉱油留分などが挙げられる。   The solvent that can be used in the present invention is not particularly limited as long as it can dissolve the polyolefin resin, but a solvent having a freezing point of −10 ° C. or lower is preferably used. Preferable specific examples of such a solvent include, for example, aliphatic or alicyclic hydrocarbons such as decane, decalin, and liquid paraffin, and mineral oil fractions having boiling points corresponding to these.

ポリオレフィンおよび溶媒の混合割合は、一概に決定できないが、樹脂濃度が5〜30重量%が好ましい。樹脂濃度がこれ以上の場合には混練不足になりポリマー鎖の十分な絡み合いを得にくくなる。   The mixing ratio of the polyolefin and the solvent cannot be generally determined, but the resin concentration is preferably 5 to 30% by weight. When the resin concentration is higher than this, kneading is insufficient and it becomes difficult to obtain sufficient entanglement of polymer chains.

このようにして得られた多孔性基材の空孔率は、10〜70%、好ましくは15〜60%であるのがよい。また、基材の厚さは100μm以下、好ましくは1〜80μm、より好ましくは5〜70μmであるのがよい。   The porosity of the porous substrate thus obtained is 10 to 70%, preferably 15 to 60%. Moreover, the thickness of a base material is 100 micrometers or less, Preferably it is 1-80 micrometers, More preferably, it is good that it is 5-70 micrometers.

なお、熱を用いて架橋処理を行う場合、一回で熱処理する一段式熱処理法、最初に低温で行いその後にさらに高温で行う多段熱処理法、又は昇温しながら行う昇温式熱処理法など、種々の方法を用いることができる。但し、基材に存在する充填ポリマーまたはモノマーの反応性など考慮して、本発明の基材膜および内部充填膜の諸特性を損なうことなく処理するのが望ましい。熱処理温度は、40〜140℃、好ましくは90〜140℃であるのがよい。処理時間は、0.5〜14時間程度であるのがよい。これらは充填される第3ポリマーまたはモノマーの性質によって適宜反応温度・時間を変えることにより、より最適化できる。   In addition, when performing a crosslinking treatment using heat, a one-stage heat treatment method in which heat treatment is performed once, a multistage heat treatment method in which the heat treatment is performed first at a low temperature and then at a higher temperature, or a temperature rise heat treatment method in which the temperature is increased, Various methods can be used. However, in consideration of the reactivity of the filled polymer or monomer present in the substrate, it is desirable to perform the treatment without impairing various properties of the substrate film and the inner filling film of the present invention. The heat treatment temperature is 40 to 140 ° C, preferably 90 to 140 ° C. The treatment time is preferably about 0.5 to 14 hours. These can be further optimized by appropriately changing the reaction temperature and time depending on the properties of the third polymer or monomer to be filled.

本発明の電解質膜は、前記多孔性材料からなる基材の表面、特に細孔内表面に、プロトン伝導性を有する第3ポリマーを充填したものであるが、プロトン伝導性を有した重合性モノマーである第3モノマーをその細孔内に充填し、架橋反応または重合反応により共重合せしめて一体化してなることが好ましい。このとき、特に、第3モノマーと第4ポリマーとの共重合が生じて、第4ポリマーにプロトン伝導性が付与されることが好ましい。これによって、電極との接合性と共に、電極に対するプロトン伝導性を良好にすることができる(抵抗値の低下)。   The electrolyte membrane of the present invention is obtained by filling the surface of a substrate made of the porous material, particularly the pore inner surface with a third polymer having proton conductivity, but having a proton conductivity. It is preferable that the third monomer is filled into the pores and copolymerized by a crosslinking reaction or a polymerization reaction to be integrated. At this time, in particular, it is preferable that the third monomer and the fourth polymer are copolymerized to impart proton conductivity to the fourth polymer. Thereby, the proton conductivity with respect to the electrode can be improved as well as the bonding property with the electrode (decrease in the resistance value).

この第3ポリマーとしては、プロトン伝導性を有した酸性官能基として、例えば−SOH基由来の−SO など、プロトンを保持し且つ遊離しやすい酸性の官能基を有しており、且つビニル基などの重合性の官能基を有しているものが好ましい。つまり、重合後に酸性官能基を側鎖として有する化合物が好ましい。 As the third polymer, as acidic functional groups having proton conductivity, for example, -SO 3 H group derived from -SO 3 -, etc., has a functional group of the held and released easily acidic proton, Those having a polymerizable functional group such as a vinyl group are preferred. That is, a compound having an acidic functional group as a side chain after polymerization is preferred.

第3モノマーとして使用可能なモノマーは、ビニルスルホン酸(VSA)、アリルスルホン酸ナトリウム(SAS)、メタクリルスルホン酸ナトリウム(SMS)、p−スチレンスルホン酸ナトリウム(SSS)、アクリル酸(AA)などが挙げられる。しかしながら、本発明に使用可能なモノマーは、上記に限定されるものではなく、アリルアミン、アリルスルホン酸、アリルホスホン酸、メタリルスルホン酸、メタリルホスホン酸、ビニルホスホン酸、スチレンスルホン酸、スチレンホスホン酸、アクリルアミドのスルホン酸またはホスホン酸誘導体、メタクリル酸など、構造中にビニル基およびスルホン酸、ホスホン酸などの強酸基、カルボキシル基などの弱酸基であってもよい。特に好適にはビニルスルホン酸あるいは塩タイプであるビニルスルホン酸ナトリウムがよい。   Examples of monomers that can be used as the third monomer include vinyl sulfonic acid (VSA), sodium allyl sulfonate (SAS), sodium methacryl sulfonate (SMS), sodium p-styrene sulfonate (SSS), and acrylic acid (AA). Can be mentioned. However, the monomers that can be used in the present invention are not limited to the above, and are allylamine, allylsulfonic acid, allylphosphonic acid, methallylsulfonic acid, methallylphosphonic acid, vinylphosphonic acid, styrenesulfonic acid, styrenephosphonic acid. The structure may be a vinyl group, a strong acid group such as sulfonic acid or phosphonic acid, or a weak acid group such as a carboxyl group, such as an acid, a sulfonic acid or phosphonic acid derivative of acrylamide, or methacrylic acid. Particularly preferred is vinyl sulfonic acid or sodium vinyl sulfonate which is a salt type.

モノマーとしてナトリウム塩などの塩のタイプを用いた場合、ポリマーとした後に、それらの塩をプロトン型などにするのがよい。また、用いるビニルスルホン酸は高純度であることが好ましく、架橋重合が促進され、繊密な重合体が得られやすい。このビニルスルホン酸の純度は90%以上が好ましく、より好ましくは95%以上である。   When a salt type such as a sodium salt is used as a monomer, it is preferable to make the salt into a proton type after forming a polymer. Moreover, it is preferable that the vinyl sulfonic acid to be used is highly pure, a crosslinking polymerization is accelerated | stimulated and a delicate polymer is easy to be obtained. The purity of this vinyl sulfonic acid is preferably 90% or more, more preferably 95% or more.

ビニルスルホン酸を用いた重合体が特に好ましい理由は必ずしも明らかではないが、スルホン基が直鎖状に高密度に配列しやすく、プロトン伝導性を高められること。主鎖のパッキングが起こりやすく、より固い重合体となるため、分子鎖間の膨潤変化が起きにくいことなどがあげられる。   The reason why a polymer using vinyl sulfonic acid is particularly preferable is not clear, but the sulfone groups are easily arranged in a straight chain at a high density, and proton conductivity can be improved. For example, main chain packing is likely to occur, and the polymer becomes harder, so that swelling changes between molecular chains are less likely to occur.

上記のモノマーのみ用いて線状ポリマーを形成してもよいが、架橋構造を導入することで、燃料電池に用いられる際に浸透される水、メタノールなどに対して不溶性の架橋ポリマーとすることが望ましい。   A linear polymer may be formed using only the above-mentioned monomers, but by introducing a cross-linked structure, it is possible to form a cross-linked polymer that is insoluble in water, methanol, etc. that are permeated when used in a fuel cell. desirable.

ポリマーに架橋構造を導入する方法としては特に限定されないで、公知の方法を用いることができる。例えば2個以上の二重結合を有する重合性の架橋剤を用いて重合反応を行う方法、また重合時に水素の引き抜きによる自己架橋を行う方法などあるが、2個以上の二重結合を有する重合性の架橋剤を用いて重合反応を行う方がより容易で好ましい。   The method for introducing a crosslinked structure into the polymer is not particularly limited, and a known method can be used. For example, there are a method of performing a polymerization reaction using a polymerizable crosslinking agent having two or more double bonds, and a method of performing self-crosslinking by drawing hydrogen during polymerization, but a polymerization having two or more double bonds It is easier and more preferable to perform the polymerization reaction using a functional crosslinking agent.

第3ポリマーを構成するモノマーを架橋反応せしめる架橋剤としては、例えばN,N−メチレンビス(メタ)アクリルアミド、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、オリゴエチレンオキシドジアリルエーテル、ジビニルベンゼン、ビス(ビニルフェニル)メタン、トリアリルアミン、ビニルスルフオン、1,3,5−トリアクロイル−へキサヒドロ−s−トリアジンなどがあげられる。これらの架橋剤は単独使用することも、必要に応じて2種類以上を併用することもできる。   Examples of the crosslinking agent that causes the crosslinking reaction of the monomer constituting the third polymer include N, N-methylenebis (meth) acrylamide, trimethylolpropane diallyl ether, pentaerythritol triallyl ether, oligoethylene oxide diallyl ether, divinylbenzene, and bis (vinyl). Phenyl) methane, triallylamine, vinylsulfone, 1,3,5-triacroyl-hexahydro-s-triazine and the like. These crosslinking agents can be used alone or in combination of two or more as required.

上記架橋剤の使用量は、充填用モノマー溶液中の架橋剤濃度が4〜40重量%が好ましく、4〜25重量%がより好ましい。架橋剤量は少なすぎると未架橋のポリマーが溶出し易く、多すぎると架橋剤成分が相溶しにくく均一な架橋重合体が得られず、またプロトン伝導性成分の相対的な量が低下するため、プロトン伝導の効率が低下してしまう。   The amount of the crosslinking agent used is preferably 4 to 40% by weight, more preferably 4 to 25% by weight, in the monomer solution for filling. If the amount of the cross-linking agent is too small, the uncrosslinked polymer is likely to be eluted, and if it is too large, the cross-linking agent component is hardly compatible and a uniform cross-linked polymer cannot be obtained, and the relative amount of the proton conductive component is reduced. For this reason, the efficiency of proton conduction decreases.

本発明においては、前述の第3モノマー及び架橋剤、重合開始剤などを混合・溶解して、電解質モノマー溶液とする。この際には、高濃度の電解質モノマー溶液とすることにより、これまで重合困難であった架橋重合が促進され、繊密な重合体が得られる。この第3モノマーを含有する電解質濃度中、第3モノマーの溶液中濃度は30〜95%が好ましく、50〜90重量%がより好ましい。ビニルスルホン酸の溶液中の濃度が低すぎると多孔膜への充填が不十分となり電解質膜の均一性やプロトン伝導性に劣る。また、溶液中濃度が高すぎると、充填用モノマー溶液の粘度が高すぎて、多孔性基材への浸透が困難になり、また気泡の生成などの問題があり、さらには得られる電解質膜の柔軟性が失われてしまう。   In the present invention, the above-mentioned third monomer, crosslinking agent, polymerization initiator and the like are mixed and dissolved to obtain an electrolyte monomer solution. In this case, by using a high concentration electrolyte monomer solution, cross-linking polymerization, which has been difficult to polymerize so far, is promoted, and a fine polymer is obtained. In the concentration of the electrolyte containing the third monomer, the concentration of the third monomer in the solution is preferably 30 to 95%, and more preferably 50 to 90% by weight. If the concentration of the vinyl sulfonic acid in the solution is too low, the porous membrane is not sufficiently filled, resulting in poor electrolyte membrane uniformity and proton conductivity. On the other hand, if the concentration in the solution is too high, the viscosity of the monomer solution for filling will be too high, making it difficult to penetrate into the porous substrate, and there will be problems such as the formation of bubbles. Flexibility is lost.

また、前述の電解質モノマー溶液については、水溶液とするのが望ましいが、使用する成分の溶解性によっては、一部あるいは全部に有機溶剤を用いて、重合後に除去してもよい。多孔性基材にこの電解質モノマー溶液を含浸する際には、多孔性基材と電解質モノマー溶液の親和性によっては、界面活性剤水溶液などにより多孔性基材を予め親水化しておくなど、基材の孔内に電解質モノマー溶液を十分に浸透せる必要がある。また、電解質モノマー溶液に界面活性剤を添加する、基材をモノマー溶液に含浸する際に減圧脱気あるいは超音波処理を行ってもよい。多孔性基材を電解質モノマー溶液に含浸する際には、基材を電解質モノマー溶液に浸漬する方法や、スプレーや塗工機を用いて塗布する方法など、公知の方法を適宜選択する。   The electrolyte monomer solution described above is preferably an aqueous solution, but depending on the solubility of the components used, it may be removed after polymerization using an organic solvent in part or in whole. When impregnating the porous substrate with this electrolyte monomer solution, depending on the affinity between the porous substrate and the electrolyte monomer solution, the porous substrate may be hydrophilized beforehand with an aqueous surfactant solution, etc. It is necessary to sufficiently penetrate the electrolyte monomer solution into the pores. Further, when a surfactant is added to the electrolyte monomer solution, or when the substrate is impregnated with the monomer solution, vacuum degassing or ultrasonic treatment may be performed. When impregnating the porous substrate with the electrolyte monomer solution, a known method such as a method of immersing the substrate in the electrolyte monomer solution or a method of applying using a spray or a coating machine is appropriately selected.

重合開始剤としては、水溶性のアゾ系開始剤、過酸化物系開始剤等のラジカル重合開始剤が好ましく、具体的には2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロライド、2,2’−アゾビス[2−[N−(2−カルボキシエチル)アミノ]プロパン]n−ハイドレートなどが挙げられる。   As the polymerization initiator, radical polymerization initiators such as water-soluble azo initiators and peroxide initiators are preferable. Specifically, 2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2 , 2′-azobis [2- [N- (2-carboxyethyl) amino] propane] n-hydrate and the like.

本発明においては、多孔性基材にモノマー溶液を含浸後、重合処理を行う際には、熱、紫外線、可視光線及び電子線よりなる群から選ばれる、公知の方法を1種以上用いることができる。その際には、モノマー溶液の溶剤が揮発しないよう、またラジカル重合を阻害する酸素が系内に入らないように、ガラス板やポリイミド、ポリエステル、PET、PTFEなどのフィルムにモノマー溶液が含浸された基材を挟み込み、より好ましくは窒素雰囲気下で、上述の重合処理を行う。重合処理条件については、モノマーや架橋剤、開始剤などに応じて適宜選択する。第1、第2、第3ポリマーは、その一部又はその全てが架橋されている方が、耐熱性、膜強度の面で好ましい。なお、架橋は、熱、紫外線、可視光線及び電子線よりなる群から選ばれる、公知の方法を1種以上用いることができる。   In the present invention, when the polymerization treatment is performed after impregnating the porous substrate with the monomer solution, one or more known methods selected from the group consisting of heat, ultraviolet rays, visible rays, and electron beams may be used. it can. At that time, a glass plate, polyimide, polyester, PET, PTFE, or other film was impregnated with the monomer solution so that the solvent of the monomer solution would not volatilize and oxygen that would inhibit radical polymerization would not enter the system. The base material is sandwiched, and the above-described polymerization treatment is preferably performed in a nitrogen atmosphere. The polymerization treatment conditions are appropriately selected according to the monomer, the crosslinking agent, the initiator and the like. The first, second, and third polymers are preferably partially or wholly crosslinked in terms of heat resistance and film strength. In addition, 1 or more types of well-known methods chosen from the group which consists of a heat | fever, an ultraviolet-ray, visible light, and an electron beam can be used for bridge | crosslinking.

こうして多孔性基材に電解質を充填、重合した際に、元の多孔性基材の重量に対して、充填、重合後の重量の増加率が60%以上、より好ましくは80%以上であるのがよい。この重量増加率は多孔性基材の細孔内への電解質の充填の度合いを示すものであり、これが低すぎると、電解質に含まれるイオン交換基の密度が低くなってしまい、十分なプロトン伝導性が得られない。   Thus, when the porous substrate is filled with the electrolyte and polymerized, the weight increase rate after filling and polymerization is 60% or more, more preferably 80% or more, based on the weight of the original porous substrate. Is good. This rate of weight increase indicates the degree of electrolyte filling in the pores of the porous substrate. If this is too low, the density of ion exchange groups contained in the electrolyte will be low, and sufficient proton conduction will occur. Sex cannot be obtained.

本発明の電解質膜は、固体高分子燃料電池、すなわち、直接型メタノール固体高分子燃料電池又は改質型メタノール固体高分子燃料電池を含むメタノール燃料電池や水素ガスを用いた純水素ガス型燃料電池に用いるのが好ましい。   The electrolyte membrane of the present invention is a solid polymer fuel cell, that is, a methanol fuel cell including a direct methanol solid polymer fuel cell or a reformed methanol solid polymer fuel cell, or a pure hydrogen gas fuel cell using hydrogen gas. It is preferable to use for.

ここで、固体高分子燃料電池の構成を、簡単に説明する。固体高分子燃料電池は、カソード極、アノード極、及び該両極に挟まれた電解質膜を有してなる。燃料電池は、改質器をアノード電極側に有して、改質型メタノール燃料電池としてもよい。   Here, the configuration of the solid polymer fuel cell will be briefly described. The solid polymer fuel cell includes a cathode electrode, an anode electrode, and an electrolyte membrane sandwiched between the electrodes. The fuel cell may be a reforming methanol fuel cell having a reformer on the anode electrode side.

カソード極は、従来より公知の構成とすることができ、例えば電解質側から順に触媒層及び該触媒層を支持する支持体層を有してなることができる。また、アノード電極も、従来より公知の構成とすることができ、例えば電解質側から順に触媒層及び該触媒層を支持する支持体層を有してなることができる。   The cathode electrode may have a conventionally known configuration, and may include, for example, a catalyst layer and a support layer that supports the catalyst layer in order from the electrolyte side. The anode electrode can also have a conventionally known configuration, and for example, can have a catalyst layer and a support layer that supports the catalyst layer in order from the electrolyte side.

以下に実施例および比較例をあげて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例における試験方法は次の通りである。   The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, the test method in an Example is as follows.

(重量平均分子量)
ゲルパーミエーションクロマトグラフィ(GPC)装置を用いて、カラム温度140℃、溶離液o−ジクロロベンゼンの条件で分子量分布を測定した。
(Weight average molecular weight)
Using a gel permeation chromatography (GPC) apparatus, the molecular weight distribution was measured under the conditions of a column temperature of 140 ° C. and an eluent of o-dichlorobenzene.

(フィルム厚)
1/10000 直読ダイヤル式膜厚測定器により測定した。
(Film thickness)
1 / 10,000 Measured with a direct reading dial type film thickness measuring instrument.

(空孔率)
1/10000 直読ダイヤル式膜厚測定器により測定した厚みを用い、フィルムの単位面積S(cm)あたりの重さW(g)、平均厚みt(μm)、密度d(g/cm)から下式Aにより算出した値を使用した。
空孔率(%)=(1−(10×W/S/t/d))×100 式A
(Porosity)
1/10000 Using thickness measured by a direct-reading dial type film thickness measuring device, weight W (g) per unit area S (cm 2 ), average thickness t (μm), density d (g / cm 3 ) The value calculated from the following equation A was used.
Porosity (%) = (1- (10 4 × W / S / t / d)) × 100 Formula A

(重量増加率)
充填時の重量増加率αは、電解質を充填する前の多孔性基材の乾燥重量をma、充填重合後の乾燥重量をmbとしたとき、次式Bにより算出した。
α=(mb−ma)/ma×100 式B
(Weight increase rate)
The weight increase rate α at the time of filling was calculated by the following formula B, where the dry weight of the porous substrate before filling the electrolyte was ma and the dry weight after filling polymerization was mb.
α = (mb−ma) / ma × 100 Formula B

(プロトン伝導率測定)
膜を水(温度:25℃)中で膨潤させ、その後2枚の白金箔電極で膜を挟んでプロトン伝導性測定用試料を作製し、ヒューレット・パッカード社製HP4192Aによりインピーダンス測定を行った。測定周波数範囲は10kHz〜1MHzとした。得られたインピーダンスの実数部分を横軸に、虚数部分を縦軸にしてプロットし、極小値の実数部分の値を膜抵抗R(Ω)とした。膨潤させたときの膜の厚みをt(μm)とすると、プロトン伝導率σ(S/cm)は式Cから求めることができる。
σ=10−4×t/R 式C
(Proton conductivity measurement)
The membrane was swollen in water (temperature: 25 ° C.), and then a membrane for proton conductivity measurement was prepared by sandwiching the membrane between two platinum foil electrodes, and impedance measurement was performed using HP4192A manufactured by Hewlett-Packard Company. The measurement frequency range was 10 kHz to 1 MHz. The obtained impedance was plotted with the real part on the horizontal axis and the imaginary part on the vertical axis, and the value of the real part of the minimum value was taken as the membrane resistance R (Ω). The proton conductivity σ (S / cm) can be obtained from the formula C, where t (μm) is the thickness of the membrane when swollen.
σ = 10 −4 × t / R Formula C

(メタノール透過性評価試験)
25℃におけるメタノール透過性能をチャンバー拡散セルを用いた拡散実験により求めた。供給液は水140gと、水200gを、膜を挟み込んだL字型セル(透過膜面積8.04E−4m)両端それぞれに入れ、膜面をなじませ、撹拌しながら25℃に安定させた。ついで60gのメタノールを水140gを入れたセルに素早く加え、投入時間を0として一定時間ごとにサンプルをサンプリングした(1mlサンプリングして、1ml水を加えて希釈による濃度補正を後で行った)。サンプリングした溶液をYanaco製ガスクロマトグラフィにて評価して各メタノール濃度を求めた。単位膜面積、単位時間あたりのメタノール重量濃度変化をメタノール透過流速として算出した。
(Methanol permeability evaluation test)
Methanol permeation performance at 25 ° C. was determined by a diffusion experiment using a chamber diffusion cell. The feed liquid was 140 g of water and 200 g of water placed in both ends of an L-shaped cell (permeable membrane area 8.04E-4m 2 ) sandwiching the membrane, and the membrane surface was blended and stabilized at 25 ° C. with stirring. . Next, 60 g of methanol was quickly added to a cell containing 140 g of water, and the sample was sampled at regular intervals with the addition time set to 0 (1 ml was sampled, and 1 ml of water was added to correct the concentration by dilution later). The sampled solution was evaluated by Yanaco gas chromatography to determine each methanol concentration. The change in methanol weight concentration per unit membrane area and unit time was calculated as the methanol permeation flow rate.

(MEA作製)
酸素極用に白金担持カーボン(田中貴金属工業(株)製:TEC10E50E)および燃料極用に白金ルテニウム合金担持カーボン(田中貴金属工業(株)製:TEC61E54)をそれぞれ用い、これらの触媒粉末に高分子電解質溶液(デュポン社製:ナフィオン 5%溶液)とポリテトラフルオロエチレンディスパージョンを配合し、水を適宜加えて撹拝して反応層用塗料を得た。これをスクリーン印刷でカーボンペーパー(東レ(株)製:TGP−H−060)の片面に印刷し乾燥して電極とした。その際酸素極側は白金量が 1mg/cm、燃料極側は白金とルテニウムの総量が3mg/cmとした。これらを電解質膜の中央部に塗料面を内側にして重ね合せ、135℃、0.25MPaで5分間加熱プレスし燃料電池用膜−電極接合体(MEA)を作成した。
(MEA production)
Platinum-supported carbon (Tanaka Kikinzoku Kogyo Co., Ltd .: TEC10E50E) is used for the oxygen electrode and platinum ruthenium alloy-supported carbon (Tanaka Kikinzoku Kogyo Co., Ltd .: TEC61E54) is used for the fuel electrode. An electrolyte solution (manufactured by DuPont: Nafion 5% solution) and polytetrafluoroethylene dispersion were blended, and water was added as appropriate to stir to obtain a reaction layer coating material. This was printed on one side of a carbon paper (manufactured by Toray Industries, Inc .: TGP-H-060) by screen printing and dried to obtain an electrode. At that time, the platinum amount on the oxygen electrode side was 1 mg / cm 2 , and the total amount of platinum and ruthenium on the fuel electrode side was 3 mg / cm 2 . These were superposed on the center of the electrolyte membrane with the paint surface facing inward, and heated and pressed at 135 ° C. and 0.25 MPa for 5 minutes to prepare a fuel cell membrane-electrode assembly (MEA).

(メタノールを燃料として用いた燃料電池試験)
実施例および比較例で作成したMEAを直接メタノール形燃料電池単セルに組み込んだ際の運転条件については、燃料を5mol%メタノール水溶液、酸化剤を空気とした。セル温度は70℃とした。電子負荷器により0.1A/cmの電流密度で運転を行い電圧および出力特性を測定した。
(Fuel cell test using methanol as fuel)
Regarding the operating conditions when the MEA prepared in Examples and Comparative Examples was directly incorporated into a single methanol fuel cell, the fuel was a 5 mol% methanol aqueous solution and the oxidant was air. The cell temperature was 70 ° C. The voltage and output characteristics were measured by operating with an electronic loader at a current density of 0.1 A / cm 2 .

(膜−電極接合体剥離性試験)
膜−電極接合体を、30%メタノール水溶液に浸漬し、2時間後に取り出した。その際に、膜と電極の接合・剥離の状態を、次の3段階で評価した。○:膜と電極が接合状態を保っている、△:容易に剥離する、×:完全に剥離する。
(Membrane-electrode assembly peelability test)
The membrane-electrode assembly was immersed in a 30% aqueous methanol solution and taken out after 2 hours. At that time, the bonding / peeling state of the membrane and the electrode was evaluated in the following three stages. ◯: The film and the electrode are kept in a bonded state, Δ: Easily peeled, X: Completely peeled.

[実施例1]
ノルボルネンの開環重合体の粉末(ノーソレックスNB、重量平均分子量200万以上)20重量%、EPDMゴム(住友化学製EPDM553、重量平均分子量約100万)10重量%、重量平均分子量150万の超高分子量ポリエチレン70重量%からなる重合体組成物15重量部と流動パラフィン85重量部とをスラリー状に均一に混合し、160℃の温度で小型ニーダーを用い約60分溶解混練りした。その後これらの混練物を0℃に冷却されたロールまたは金属板に挟み込みシート状に急冷した。これらの急冷シート状樹脂を、115℃の温度でシート厚が0.5mmになるまでヒートプレスし、115℃の温度で同時に縦横4.5×4.5倍に二軸延伸し、へプタンを使用して脱溶媒処理を行った。その後、得られた微多孔フィルムを空気中にて85℃で6時間熱処理し、ついで116℃で2時間熱処理して、本発明による多孔性基材A−1を得た。
[Example 1]
More than 20% by weight of norbornene ring-opening polymer powder (norsolex NB, weight average molecular weight of 2 million or more), 10% by weight of EPDM rubber (EPDM553 manufactured by Sumitomo Chemical Co., Ltd., weight average molecular weight of about 1 million), and a weight average molecular weight of over 1.5 million 15 parts by weight of a polymer composition composed of 70% by weight of high molecular weight polyethylene and 85 parts by weight of liquid paraffin were uniformly mixed in a slurry state and dissolved and kneaded at a temperature of 160 ° C. using a small kneader for about 60 minutes. Thereafter, these kneaded materials were sandwiched between rolls or metal plates cooled to 0 ° C. and rapidly cooled into a sheet shape. These quenched resin sheets are heat-pressed at a temperature of 115 ° C. until the sheet thickness reaches 0.5 mm, and simultaneously biaxially stretched 4.5 × 4.5 times in length and width at a temperature of 115 ° C. Used to remove the solvent. Then, the obtained microporous film was heat-treated in air at 85 ° C. for 6 hours, and then heat-treated at 116 ° C. for 2 hours to obtain a porous substrate A-1 according to the present invention.

多孔性基材A−1の重量を秤量後、0.5wt%ドデシルベンゼンスルホン酸ナトリウム水溶液に含浸し、超音波処理及び減圧脱気処理を行い、基材膜の親水化を行った。0.5wt%ドデシルベンゼンスルホン酸ナトリウム水溶液を20℃以下に保ちながら、ビニルスルホン酸(以下、「VSA」と略記する、純度98%)70.0wt%、架橋剤:N,N’−メチレン−ビスアクリルアミド(以下「MBA」と略記する)10wt%になるようにそれぞれを混合した後、VSA、VP及びMBAの合計量100mol%に対して、水溶性アゾ系開始剤V−50(和光純薬工業製)が1mol%になるよう添加して、充填用電解質モノマー溶液を調製した。このモノマー溶液を20℃以下に保ちながら減圧操作を行い、脱気処理をした。この液に膜基材A−1を浸漬し、さらに減圧操作により脱気処理を行って、7分間可視光を照射した後、80℃のオーブン中で1時間加熱して、電解質モノマーの重合を行った。この膜基材のモノマー溶液への浸漬、減圧操作による脱気、加熱による重合処理を2回繰の返し行った。   The porous substrate A-1 was weighed and then impregnated with a 0.5 wt% sodium dodecylbenzenesulfonate aqueous solution, subjected to ultrasonic treatment and vacuum degassing treatment, and the substrate membrane was hydrophilized. While maintaining a 0.5 wt% sodium dodecylbenzenesulfonate aqueous solution at 20 ° C. or lower, vinyl sulfonic acid (hereinafter abbreviated as “VSA”, purity 98%) 70.0 wt%, cross-linking agent: N, N′-methylene- After mixing each so that it may become 10 wt% of bisacrylamide (it abbreviates as "MBA" hereafter), water-soluble azo initiator V-50 (Wako Pure Chemical Industries) with respect to the total amount of 100 mol% of VSA, VP, and MBA. An electrolyte monomer solution for filling was prepared by adding 1 mol% of Kogyo Kogyo). While maintaining this monomer solution at 20 ° C. or lower, a depressurization operation was performed to perform deaeration treatment. The membrane substrate A-1 is immersed in this liquid, further degassed by depressurization, irradiated with visible light for 7 minutes, and then heated in an oven at 80 ° C. for 1 hour to polymerize the electrolyte monomer. went. This film substrate was immersed twice in the monomer solution, degassed by a decompression operation, and polymerized by heating.

その後、得られた電解質膜を1N塩酸水溶液に浸漬し、超音波2分間かけてイオン交換を行った。最後に超純水を用いて、余分の塩酸を除去し、50℃×5時間真空乾燥した後、プロトン交換膜B―1を得た。この膜の重量増加率を算出し、プロトン伝導度、メタノール透過速度、膜−電極接合体剥離性を評価した。   Then, the obtained electrolyte membrane was immersed in 1N hydrochloric acid aqueous solution, and ion exchange was performed over 2 minutes of ultrasonic waves. Finally, excess hydrochloric acid was removed using ultrapure water, and after vacuum drying at 50 ° C. for 5 hours, a proton exchange membrane B-1 was obtained. The weight increase rate of this membrane was calculated, and proton conductivity, methanol permeation rate, and membrane-electrode assembly peelability were evaluated.

[実施例2]
ノルボルネンの開環重合体の粉末(ノーソレックスNB、重量平均分子量200万以上)10重量%、EPDMゴム(住友化学製、EPDM553、重量平均分子量約100万)20重量%、重量平均分子量150万の超高分子量ポリエチレン70重量%からなる重合体組成物15重量部と流動パラフィン85重量部を用いてスラリーを得たこと、得られた微多孔フィルムを空気中にて85℃で6時間熱処理し、ついで118℃で2時間熱処理したこと以外は、実施例1と同様にして作製し、本発明による多孔性基材A−2を得た。 この多孔性基材A−2の重量を秤量後、実施例1と同様にして電解質モノマー溶液の充填・重合を行い、プロトン交換膜B−2を得た。この膜の重量増加率を算出し、プロトン伝導度、メタノール透過速度、膜−電極接合体剥離性を評価した。
[Example 2]
10% by weight of norbornene ring-opening polymer powder (norsolex NB, weight average molecular weight of 2,000,000 or more), 20% by weight of EPDM rubber (Sumitomo Chemical, EPDM553, weight average molecular weight of about 1,000,000), weight average molecular weight of 1,500,000 A slurry was obtained using 15 parts by weight of a polymer composition composed of 70% by weight of ultrahigh molecular weight polyethylene and 85 parts by weight of liquid paraffin, and the obtained microporous film was heat-treated in air at 85 ° C. for 6 hours. Subsequently, it produced like Example 1 except having heat-processed at 118 degreeC for 2 hours, and obtained porous base material A-2 by this invention. After weighing the porous substrate A-2, the electrolyte monomer solution was charged and polymerized in the same manner as in Example 1 to obtain a proton exchange membrane B-2. The weight increase rate of this membrane was calculated, and proton conductivity, methanol permeation rate, and membrane-electrode assembly peelability were evaluated.

[比較例1]
ノルボルネンの開環重合体の粉末(ノーソレックスNB、重量平均分子量200万以上)20重量%、重量平均分子量150万の超高分子量ポリエチレン70重量%からなる重合体組成物15重量部と流動パラフィン85重量部を用いてスラリーを得たこと、得られた微多孔フィルムを空気中にて85℃で6時間熱処理し、ついで124℃で2時間熱処理したこと以外は、実施例1と同様にして作製し、本発明による多孔性基材C−1を得た。この多孔性基材C−1の重量を秤量後、実施例1と同様にして電解質モノマー溶液の充填・重合を行い、プロトン交換膜D−1を得た。この膜の重量増加率を算出し、プロトン伝導度、メタノール透過速度、膜−電極接合体剥離性を評価した。
[Comparative Example 1]
Norbornene ring-opening polymer powder (Norsolex NB, weight average molecular weight of 2,000,000 or more) 20% by weight, polymer composition comprising 70% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,500,000 and liquid paraffin 85 Prepared in the same manner as in Example 1 except that the slurry was obtained using parts by weight, and the obtained microporous film was heat-treated in air at 85 ° C. for 6 hours and then heat-treated at 124 ° C. for 2 hours. As a result, a porous substrate C-1 according to the present invention was obtained. After weighing the porous substrate C-1, the electrolyte monomer solution was charged and polymerized in the same manner as in Example 1 to obtain a proton exchange membrane D-1. The weight increase rate of this membrane was calculated, and proton conductivity, methanol permeation rate, and membrane-electrode assembly peelability were evaluated.

以上で得られた結果を表1に示す。   The results obtained above are shown in Table 1.

Figure 0004851757
Figure 0004851757

表1に示されるように、実施例1〜2の電解質膜は、比較例と同等の高い電解質膜特性を有しており、且つ電極との接合性に優れている炭化水素系電解質膜である。このため、この電解質膜を有する燃料電池、特に固体高分子型燃料電池を作製した際、高い出力特性を有する、優れた燃料電池を安価に提供することができる。   As shown in Table 1, the electrolyte membranes of Examples 1 and 2 are hydrocarbon electrolyte membranes having high electrolyte membrane characteristics equivalent to those of the comparative example and excellent in bondability with electrodes. . For this reason, when a fuel cell having this electrolyte membrane, particularly a polymer electrolyte fuel cell, is produced, an excellent fuel cell having high output characteristics can be provided at a low cost.

Claims (5)

重量平均分子量50万以上のポリオレフィンを含む第1ポリマーと、二重結合を有する重量平均分子量200万以上の第2ポリマーと、二重結合を有する重量平均分子量200万未満の第4ポリマーとを含有する樹脂組成物を架橋してなる多孔性基材の細孔内に、プロトン伝導性を有する第3ポリマーを充填してあり、前記第3ポリマーと前記第4ポリマーとが結合している電解質膜。 Contains a first polymer containing a polyolefin having a weight average molecular weight of 500,000 or more, a second polymer having a double bond and a weight average molecular weight of 2 million or more, and a fourth polymer having a double bond and a weight average molecular weight of less than 2 million to the pores of the resin composition obtained by crosslinking a porous substrate, tare and filling the third polymer having proton conductivity is, electrolyte and said third polymer with said fourth polymer is attached film. 前記第2ポリマーがポリノルボルネンゴムであり、前記第4ポリマーがエチレンとプロピレンとジエンモノマーとの三元共重合体である請求項1記載の電解質膜。   The electrolyte membrane according to claim 1, wherein the second polymer is polynorbornene rubber, and the fourth polymer is a terpolymer of ethylene, propylene, and a diene monomer. 前記第3ポリマーは、スルホン酸基及びビニル基を含む重合性モノマーが架橋剤により架橋されたものである請求項1又は2に記載の電解質膜。 The electrolyte membrane according to claim 1 or 2, wherein the third polymer is obtained by crosslinking a polymerizable monomer containing a sulfonic acid group and a vinyl group with a crosslinking agent. 前記重合性モノマーがビニルスルホン酸である請求項3記載の電解質膜。   The electrolyte membrane according to claim 3, wherein the polymerizable monomer is vinyl sulfonic acid. 請求項1〜4いずれかに記載の電解質膜を用いてなる固体高分子型燃料電池。
A polymer electrolyte fuel cell comprising the electrolyte membrane according to claim 1.
JP2005263491A 2005-09-12 2005-09-12 Electrolyte membrane and polymer electrolyte fuel cell Expired - Fee Related JP4851757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263491A JP4851757B2 (en) 2005-09-12 2005-09-12 Electrolyte membrane and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263491A JP4851757B2 (en) 2005-09-12 2005-09-12 Electrolyte membrane and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2007080558A JP2007080558A (en) 2007-03-29
JP4851757B2 true JP4851757B2 (en) 2012-01-11

Family

ID=37940653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263491A Expired - Fee Related JP4851757B2 (en) 2005-09-12 2005-09-12 Electrolyte membrane and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4851757B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979824B1 (en) * 2011-03-29 2012-07-18 株式会社アストム Ion exchange membrane
JP4979825B1 (en) * 2011-04-18 2012-07-18 株式会社アストム Production method of ion exchange membrane
CN111978447B (en) * 2019-05-21 2023-04-11 中国石油化工股份有限公司 Low cis-polybutadiene rubber, preparation method and application thereof, aromatic vinyl resin and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824820B2 (en) * 2002-03-07 2010-11-02 Nitto Denko Corporation Electrolyte film and solid polymer fuel cell using the same
JP4201255B2 (en) * 2003-04-09 2008-12-24 日東電工株式会社 Porous film
JP2005232289A (en) * 2004-02-19 2005-09-02 Nitto Denko Corp Porous film

Also Published As

Publication number Publication date
JP2007080558A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US7785751B2 (en) Production method of electrolyte membrane, electrolyte membrane and solid polymer fuel cell using same
JP5089917B2 (en) Electrolyte membrane and polymer electrolyte fuel cell
US7824820B2 (en) Electrolyte film and solid polymer fuel cell using the same
TW200915645A (en) Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
JPWO2006004098A1 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
JP2006216531A (en) Electrolyte membrane and solid polymer fuel cell using the same
JPWO2005076396A1 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
JP4851757B2 (en) Electrolyte membrane and polymer electrolyte fuel cell
JPWO2006092914A1 (en) Membrane electrode assembly, method for producing the same, and direct methanol fuel cell
KR20090119675A (en) Method for producing electrolyte membrane for fuel cell and method for producing electrolyte membrane-electrode assembly for fuel cell
JP5164149B2 (en) Cation exchange membrane and method for producing the same
JP4993332B2 (en) Electrolyte membrane and method for producing the same
JP5326288B2 (en) Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
JP4379025B2 (en) Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point
JP2004253336A (en) Electrolyte film and fuel cell using it
JP4561214B2 (en) Electrolyte membrane
JP2010047724A (en) Electrolyte polymer having improved humidity retention property, and method of manufacturing the same
JP2007109432A (en) Electrolyte membrane and polymer electrolyte fuel cell
JP4428699B2 (en) Electrolyte membrane and polymer electrolyte fuel cell
JP2007115535A (en) Electrolyte film and its manufacturing method
JP2007066852A (en) Polymer electrolyte film for fuel cell, and fuel cell
JP4683524B2 (en) Electrolyte membrane and method for producing the same
JP4827224B2 (en) Electrolyte membrane and polymer electrolyte fuel cell
EP2202832B1 (en) Solid polymer electrolyte membrane, method for producing the same, membrane-electrode assembly for fuel cell, and fuel cell
JP2009218154A (en) Manufacturing method of membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees