JPWO2005076396A1 - Electrolyte membrane and fuel cell using the electrolyte membrane - Google Patents

Electrolyte membrane and fuel cell using the electrolyte membrane Download PDF

Info

Publication number
JPWO2005076396A1
JPWO2005076396A1 JP2005517670A JP2005517670A JPWO2005076396A1 JP WO2005076396 A1 JPWO2005076396 A1 JP WO2005076396A1 JP 2005517670 A JP2005517670 A JP 2005517670A JP 2005517670 A JP2005517670 A JP 2005517670A JP WO2005076396 A1 JPWO2005076396 A1 JP WO2005076396A1
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrolyte
polymer
water
membrane according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005517670A
Other languages
Japanese (ja)
Inventor
窪田 耕三
耕三 窪田
平岡 秀樹
秀樹 平岡
山口 猛央
猛央 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Publication of JPWO2005076396A1 publication Critical patent/JPWO2005076396A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

固体高分子形燃料電池等の電気化学装置用途に利用できる、プロトン伝導性が高く、DMFCとして用いた場合にメタノールの透過阻止性能に優れ、かつ燃料電池として運転した場合の耐久性に優れる安価な電解質膜を提供する。メタノールを含む有機溶媒および水に対して実質的に膨潤しない多孔性基材の細孔内に、プロトン伝導性を有する電解質ポリマーを充填してなる電解質膜であって、当該膜は25℃で1時間水に浸漬させた時の下記式(a)で表わされる水膨潤率が、0.1〜2.0であることを特徴とする電解質膜。水膨潤率=(A—B)/(B−C)‥(a)但し、Aは水に浸漬後の電解質膜質量、Bは乾燥時の電解質膜質量、Cは多孔性基材の質量を示す。It can be used for electrochemical device applications such as polymer electrolyte fuel cells, has high proton conductivity, has excellent methanol permeation prevention performance when used as a DMFC, and has excellent durability when operated as a fuel cell. An electrolyte membrane is provided. An electrolyte membrane obtained by filling an electrolyte polymer having proton conductivity into pores of a porous base material that does not substantially swell with an organic solvent containing methanol and water, and the membrane is 1 at 25 ° C. An electrolyte membrane, wherein a water swelling ratio represented by the following formula (a) when immersed in water for a period of time is 0.1 to 2.0. Water swelling ratio = (AB) / (BC) (a) where A is the weight of the electrolyte membrane after being immersed in water, B is the weight of the electrolyte membrane when dried, and C is the weight of the porous substrate. Show.

Description

本発明は電解質膜に関するもので、当該電解質膜は電気化学装置、特に燃料電池、さらに詳細には直接アルコール形燃料電池用途に優れたものである。   The present invention relates to an electrolyte membrane, and the electrolyte membrane is excellent for electrochemical devices, particularly for fuel cells, and more specifically for direct alcohol fuel cells.

地球的な環境保護の動きが活発化するにつれて、いわゆる温暖化ガスやNOxの排出防止が強く叫ばれている。これらのガスの総排出量を削減するために、自動車用の燃料電池システムの実用化が非常に有効と考えられている。   As global environmental protection activities become more active, so-called greenhouse gas and NOx emission prevention is strongly screamed. In order to reduce the total emission amount of these gases, it is considered that practical application of a fuel cell system for automobiles is very effective.

高分子電解質膜を用いた電気化学装置の一種である固体高分子形燃料電池(PEFC、Polymer Electrolyte Fuel Cell)は、低温動作、高出力密度、環境負荷が少ないという優れた特長を有している。中でも、メタノール燃料のPEFCは、ガソリンと同様に液体燃料として供給が可能なため、電気自動車用動力や携帯機器用電源として有望であると考えられている。   A polymer electrolyte fuel cell (PEFC), which is a type of electrochemical device using a polymer electrolyte membrane, has excellent features such as low temperature operation, high output density, and low environmental impact. . Among them, PEFC, which is a methanol fuel, can be supplied as a liquid fuel in the same manner as gasoline, and thus is considered promising as a power source for electric vehicles and a power source for portable devices.

燃料としてメタノールを用いる場合のPEFCは、改質器を用いてメタノールを水素主成分のガスに変換する改質メタノール形と、改質器を用いずにメタノールを直接使用する直接メタノール形(DMFC、Direct Methanol Polymer Fuel Cell)の二つのタイプに区分される。DMFCは、改質器が不要であるため、軽量化が可能である等の大きな利点があり、その実用化が期待されている。   When using methanol as a fuel, PEFC is divided into a reformed methanol type that uses a reformer to convert methanol into a hydrogen-based gas, and a direct methanol type that uses methanol directly without using a reformer (DMFC, It is divided into two types, Direct Methanol Polymer Fuel Cell). Since DMFC does not require a reformer, it has great advantages such as being able to reduce weight, and its practical use is expected.

しかし、DMFC用の電解質膜として、在来の水素を燃料とするPEFC用の電解質膜であるパーフルオロアルキルスルホン酸膜、例えばDu Pont社のNafion(登録商標)膜等を用いた場合には、メタノールが膜を透過してしまうため、起電力が低下するという問題がある。さらに、これらの電解質膜は非常に高価であるという経済上の問題も有している。   However, when an electrolyte membrane for DMFC is a perfluoroalkylsulfonic acid membrane that is an electrolyte membrane for PEFC using conventional hydrogen as a fuel, such as a Nafion (registered trademark) membrane manufactured by Du Pont, Since methanol permeates the membrane, there is a problem that the electromotive force decreases. Furthermore, these electrolyte membranes also have an economic problem that they are very expensive.

上記の問題を解決する手段として、特許文献1には、ポリイミド、架橋ポリエチレン等、安価で外力に対して変形し難い多孔性基材にプロトン伝導性を有するポリマーを充填してなる電解質膜の提案がなされている。しかしながら前記電解質膜は、基材をプラズマ照射して前記ポリマーをグラフト重合させる工程を含むため、製造設備コストの上昇という問題がある。また燃料電池として連続運転した場合の耐久性も充分とはいえなかった。   As means for solving the above problem, Patent Document 1 proposes an electrolyte membrane in which a porous base material such as polyimide, crosslinked polyethylene, etc., which is inexpensive and hardly deformed by external force, is filled with a polymer having proton conductivity. Has been made. However, since the electrolyte membrane includes a step of subjecting the base material to plasma irradiation and graft polymerization of the polymer, there is a problem of an increase in manufacturing equipment cost. In addition, the durability when continuously operating as a fuel cell was not sufficient.

さらに、特許文献2には、メタノールを含む有機溶媒および水に対して実質的に膨潤しない多孔性基材の細孔内に、プロトン導電性を有する第1ポリマーを充填してなる電解質膜であって、前記第1ポリマーが2−アクリルアミド−2−メチルプロパン酸由来のポリマーであることを特徴とする電解質膜の提案がなされている。しかしながらこの特許文献は、電解質膜に充填した電解質ポリマーの水膨潤率については全く言及していないものであり、また当該電解質膜の耐久性は、未だ不充分なものであった。
特開2002−83612公報(第1−7頁、9頁) 国際公開第03/075385号パンフレット
Furthermore, Patent Document 2 discloses an electrolyte membrane in which a first polymer having proton conductivity is filled in pores of a porous base material that does not substantially swell with an organic solvent containing methanol and water. An electrolyte membrane has been proposed in which the first polymer is a polymer derived from 2-acrylamido-2-methylpropanoic acid. However, this patent document does not mention at all the water swelling rate of the electrolyte polymer filled in the electrolyte membrane, and the durability of the electrolyte membrane is still insufficient.
JP 2002-83612 A (pages 1-7, 9) International Publication No. 03/075385 Pamphlet

本発明の目的はこれらの問題を解決すること、すなわち固体高分子形燃料電池等の電気化学装置用途に利用できる、プロトン伝導性が高く、DMFCとして用いた場合にメタノールの透過阻止性能に優れ、かつ燃料電池として運転した場合の耐久性に優れる安価な電解質膜を提供することにある。   The object of the present invention is to solve these problems, that is, it can be used for electrochemical device applications such as polymer electrolyte fuel cells, has high proton conductivity, and has excellent methanol permeation blocking performance when used as a DMFC, Another object is to provide an inexpensive electrolyte membrane that is excellent in durability when operated as a fuel cell.

本発明者等は、鋭意検討の結果、プロトン伝導性を有する電解質ポリマーを多孔性基材の細孔内に充填してなる電解質膜において、この膜を25℃で1時間水に浸漬させた時の膜中の水分量と充填電解質ポリマーとの質量比率が特定の範囲である場合に、当該膜はプロトン伝導性、メタノール透過阻止性に優れ、かつ耐久性が向上することを見出し、本発明を完成するに至った。   As a result of diligent study, the inventors of the present invention, in an electrolyte membrane formed by filling an electrolyte polymer having proton conductivity in the pores of a porous substrate, were immersed in water at 25 ° C. for 1 hour. When the mass ratio between the amount of water in the membrane and the filled electrolyte polymer is in a specific range, the membrane is found to be excellent in proton conductivity, methanol permeation-preventing property, and improved in durability. It came to be completed.

すなわち本発明は、メタノールを含む有機溶媒および水に対して実質的に膨潤しない多孔性基材の細孔内に、プロトン伝導性を有する電解質ポリマーを充填してなる電解質膜であって、当該膜は25℃で1時間水に浸漬させた時の下記式(a)で表わされる水膨潤率(以下「式(a)で表わされる水膨潤率」と称する。)が、0.1〜2.0であることを特徴とする電解質膜である。
水膨潤率=(A―B)/(B−C)‥(a)
但し、Aは水に浸漬後の電解質膜質量、Bは乾燥時の電解質膜質量、Cは多孔性基材の質量を示す。
また、交流インピーダンス法により求めたプロトン伝導率が5mS/cm以上で、かつ透析法により求めた25℃におけるメタノール透過係数が50(μm・kg)/(m2・h)以下となるものである。
また、電解質ポリマーがスルホン酸基を含有するポリマーであり、さらには1分子中に重合可能な炭素炭素二重結合およびスルホン酸基を含有する化合物またはこれらの塩を必須構成モノマーとする架橋電解質ポリマーであることを特徴とする電解質膜であり、前記モノマーとして2−アクリルアミド−2−メチルプロパンスルホン酸および/または2−メタクリルアミド−2−メチルプロパンスルホン酸(以下、「2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸」と称する。)或いはこれらの塩を用いるものである。
また、本発明は当該電解質膜が、(1)電解質ポリマーを構成するモノマーまたはその溶液若しくは分散液を多孔性基材の細孔内に充填する工程、(2)充填したモノマーを重合する工程を含む製造方法により得られたものであることを特徴とし、さらに本発明は、上記の電解質膜を組み込んでなる燃料電池に係るものである。
That is, the present invention is an electrolyte membrane in which an electrolyte polymer having proton conductivity is filled in pores of a porous substrate that does not substantially swell with an organic solvent containing methanol and water, Has a water swell ratio represented by the following formula (a) (hereinafter referred to as “water swell ratio represented by formula (a)”) when immersed in water at 25 ° C. for 1 hour: 0.1-2. An electrolyte membrane characterized by zero.
Water swelling rate = (AB) / (BC) (a)
However, A represents the mass of the electrolyte membrane after being immersed in water, B represents the mass of the electrolyte membrane during drying, and C represents the mass of the porous substrate.
Further, the proton conductivity determined by the alternating current impedance method is 5 mS / cm or more, and the methanol permeability coefficient at 25 ° C. determined by the dialysis method is 50 (μm · kg) / (m 2 · h) or less. .
In addition, the electrolyte polymer is a polymer containing a sulfonic acid group, and further, a crosslinked electrolyte polymer having a carbon-carbon double bond polymerizable in one molecule and a sulfonic acid group or a salt thereof as an essential constituent monomer An electrolyte membrane characterized in that 2-acrylamido-2-methylpropanesulfonic acid and / or 2-methacrylamide-2-methylpropanesulfonic acid (hereinafter referred to as “2- (meth) acrylamide— It is referred to as “2-methylpropanesulfonic acid”) or a salt thereof.
In the present invention, the electrolyte membrane includes (1) a step of filling a monomer constituting the electrolyte polymer or a solution or dispersion thereof in the pores of the porous substrate, and (2) a step of polymerizing the filled monomer. Further, the present invention relates to a fuel cell in which the above electrolyte membrane is incorporated.

本発明の電解質膜は、水に浸漬させた時の充填電解質量の膨潤率を特定範囲内と特定することにより、耐久性を向上させたものである。さらにプロトン伝導性、メタノール透過阻止性能にも優れる電解質膜であることから、固体高分子形燃料電池、特に直接メタノール形固体高分子形燃料電池用の電解質膜として好適に利用できる。   The electrolyte membrane of the present invention has improved durability by specifying the swelling ratio of the filled electrolytic mass when immersed in water within a specific range. Further, since it is an electrolyte membrane excellent in proton conductivity and methanol permeation blocking performance, it can be suitably used as an electrolyte membrane for a polymer electrolyte fuel cell, particularly a direct methanol polymer electrolyte fuel cell.

実施例6の燃料電池における電流密度−電圧曲線を示したグラフである。10 is a graph showing a current density-voltage curve in the fuel cell of Example 6.

以下、本発明を詳細に説明する。
本発明の電解質膜は、メタノールを含む有機溶媒および水に対して実質的に膨潤しない多孔性基材の細孔内に、プロトン伝導性を有する電解質ポリマーを充填しており、このようなプロトン伝導性電解質膜の耐久性を向上させるものである。
Hereinafter, the present invention will be described in detail.
In the electrolyte membrane of the present invention, an electrolyte polymer having proton conductivity is filled in the pores of a porous base material that does not substantially swell with an organic solvent containing methanol and water. This improves the durability of the conductive electrolyte membrane.

本発明の電解質膜に用いられるプロトン伝導性を有する電解質ポリマーは特に限定はされないが、プロトン伝導性が高い点からスルホン酸基を含有することが好ましい。このような電解質ポリマーとしては、スルホン化ポリエーテルエーテルケトン、スルホン化ポリフェニレン、スルホン化ポリエーテルスルホン、スルホン化ポリイミド、アルキルスルホン化ポリベンズイミダゾール等が挙げられるが、低温でも重合性が良く工程が簡単になることから、1分子中に重合可能な炭素炭素二重結合およびスルホン酸基を有する化合物またはこれらの塩を必須構成モノマーとする架橋電解質ポリマーであることが好ましい。そのようなモノマーの具体例として、2−(メタ)アクリロイルエタンスルホン酸、2−(メタ)アクリロイルプロパンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸、ビニルスルホン等のモノマーまたはこれらの塩を挙げることができる。これらは単独で用いても共重合して用いても良いが、重合性が良好な点で2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸またはその塩が特に好ましい。また、ビニルスルホン酸は分子量当りのスルホン酸含有量が最も高いため、共重合成分として用いると電解質膜のプロトン伝導性が向上するので好ましい。なお、「(メタ)アクリロイル」とは、「アクリロイルおよび/またはメタクロイル」を、「(メタ)アクリル」とは、「アクリルおよび/またはメタクリル」を表わす。   The electrolyte polymer having proton conductivity used for the electrolyte membrane of the present invention is not particularly limited, but preferably contains a sulfonic acid group from the viewpoint of high proton conductivity. Examples of such electrolyte polymers include sulfonated polyetheretherketone, sulfonated polyphenylene, sulfonated polyethersulfone, sulfonated polyimide, and alkylsulfonated polybenzimidazole. Therefore, a cross-linked electrolyte polymer having a compound having a carbon-carbon double bond and a sulfonic acid group polymerizable in one molecule or a salt thereof as an essential constituent monomer is preferable. Specific examples of such monomers include 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid, styrenesulfonic acid, (meth) Examples thereof include monomers such as allyl sulfonic acid and vinyl sulfone, and salts thereof. These may be used alone or copolymerized, but 2- (meth) acrylamido-2-methylpropanesulfonic acid or a salt thereof is particularly preferable in terms of good polymerizability. Also, vinyl sulfonic acid has the highest sulfonic acid content per molecular weight, so it is preferable to use it as a copolymerization component because proton conductivity of the electrolyte membrane is improved. “(Meth) acryloyl” means “acryloyl and / or methacryloyl”, and “(meth) acryl” means “acryl and / or methacryl”.

本発明に用いられる電解質ポリマーを構成するモノマーは、1分子中に重合可能な炭素炭素二重結合およびスルホン酸基を有する化合物またはこれらの塩を必須成分とすることが好ましいが、さらに必要に応じて、それ以外のモノマーを併用することができる。当該モノマーとしては、前記モノマーと共重合可能であれば特に限定されるものではなく、例えば水溶性モノマーとして、(メタ)アクリル酸、(無水)マレイン酸、フマル酸、クロトン酸、イタコン酸、ビニルホスホン酸、酸性リン酸基含有(メタ)アクリレート等の酸性モノマーやその塩;(メタ)アクリルアミド、N−置換(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、N−ビニルピロリドン、N−ビニルアセトアミド等のモノマー;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミド等の塩基性モノマーやそれらの4級化物等を具体的に挙げることができる。
また、細孔内に充填されたポリマーの吸水性を調整する等の目的でメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のアクリル酸エステル類や酢酸ビニル、プロピオン酸ビニル等の疎水性モノマーを使用することもできる。
なお、「(メタ)アリル」とは「アリルおよび/またはメタリル」を、「(メタ)アクリレート」とは、「アクリレートおよび/またはメタクリレート」をそれぞれ表わす。
The monomer constituting the electrolyte polymer used in the present invention preferably contains a compound having a carbon-carbon double bond polymerizable in one molecule and a sulfonic acid group or a salt thereof as essential components, but if necessary, further. Thus, other monomers can be used in combination. The monomer is not particularly limited as long as it is copolymerizable with the monomer. For example, as a water-soluble monomer, (meth) acrylic acid, (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, vinyl Acidic monomers such as phosphonic acid and acidic phosphoric acid group-containing (meth) acrylate and salts thereof; (meth) acrylamide, N-substituted (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate , Monomers such as methoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, N-vinylpyrrolidone, N-vinylacetamide; N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meta ) Acrylate, N, - and dimethyl amino propyl (meth) quaternized product basic monomers and their acrylamide such specifically.
Acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate, vinyl acetate, and vinyl propionate are also used to adjust the water absorption of the polymer filled in the pores. Hydrophobic monomers such as can also be used.
“(Meth) allyl” represents “allyl and / or methallyl”, and “(meth) acrylate” represents “acrylate and / or methacrylate”.

本発明の電解質膜に用いられる電解質ポリマーは、耐久性を向上させるために架橋構造を導入することが好ましい。架橋構造を導入する方法としては、特に限定されず公知の方法を用いることができる。具体的には、2個以上の重合性二重結合を有する架橋剤を併用して重合反応を行う方法、架橋構造を形成し得る官能基を有するモノマーを共重合する方法、ポリマー中の官能基と反応する基を分子内に2個以上有する架橋剤を用いる方法、重合時の水素引き抜き反応による自己架橋を利用する方法、重合後のポリマーに電子線、ガンマ線等の活性エネルギー線を照射する方法等が挙げられる。   The electrolyte polymer used in the electrolyte membrane of the present invention preferably has a crosslinked structure introduced in order to improve durability. A method for introducing a crosslinked structure is not particularly limited, and a known method can be used. Specifically, a method of performing a polymerization reaction in combination with a crosslinking agent having two or more polymerizable double bonds, a method of copolymerizing a monomer having a functional group capable of forming a crosslinked structure, a functional group in the polymer Using a crosslinking agent having two or more groups that react with the molecule in the molecule, utilizing self-crosslinking by hydrogen abstraction during polymerization, and irradiating the polymerized polymer with active energy rays such as electron beams and gamma rays Etc.

これらの方法のうち、架橋構造導入の簡便さから、2個以上の重合性二重結合を有する架橋剤を併用して重合反応を行う方法が好ましい。当該架橋剤としては、例えばN,N−メチレンビス(メタ)アクリルアミド、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ジビニルベンゼン、ビスフェノールジ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、テトラアリルオキシエタン、トリアリルアミン、ジアリルオキシ酢酸塩等が挙げられる。また架橋密度を高くし易い点から、架橋構造を形成し得る官能基を有する水溶性モノマーを共重合する方法も好ましい。このような化合物としてはN−メチロール(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド等が挙げられ、重合性二重結合のラジカル重合を行った後で加熱して縮合反応等を起こさせて架橋するか、ラジカル重合と同時に加熱を行って同様の架橋反応を起こさせることができる。これらの架橋剤は単独で使用することも、必要に応じて2種類以上を併用することも可能である。上記共重合性架橋剤の使用量は、電解質ポリマーを構成する全モノマー(以下「ポリマー前駆体」と称する。)中の不飽和モノマーの総質量に対して0.1〜50質量%が好ましく、0.1〜40質量%がより好ましく、特に好ましくは1〜40質量%である。架橋剤量は少なすぎると、得られた電解質膜を25℃で1時間水に浸漬させた時の式(a)で表わされる水膨潤率が2.0を超え易く、本発明の効果が得られなくなり好ましくない。また多すぎる場合には、相対的にスルホン酸基含有モノマー量が低下しプロトン伝導率が5mS/cm以下となり、本発明の効果が得られ難くなりいずれも好ましくない。   Among these methods, a method in which a polymerization reaction is carried out using a crosslinking agent having two or more polymerizable double bonds in combination is preferable because of the ease of introduction of a crosslinked structure. Examples of the cross-linking agent include N, N-methylenebis (meth) acrylamide, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and triglyceride. Methylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane diallyl ether, pentaerythritol tri Allyl ether, divinylbenzene, bisphenol di (meth) acrylate, isocyanuric acid di (meth) acrylate, tetra ali Okishietan, triallylamine, diallyloxy acetate, and the like. A method of copolymerizing a water-soluble monomer having a functional group capable of forming a crosslinked structure is also preferred from the viewpoint of easily increasing the crosslinking density. Examples of such compounds include N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc., and heating after radical polymerization of polymerizable double bonds. Then, a condensation reaction or the like is caused to crosslink, or the same crosslinking reaction can be caused by heating simultaneously with radical polymerization. These cross-linking agents can be used alone or in combination of two or more as required. The amount of the copolymerizable crosslinking agent used is preferably 0.1 to 50% by mass with respect to the total mass of unsaturated monomers in all monomers (hereinafter referred to as “polymer precursor”) constituting the electrolyte polymer, 0.1-40 mass% is more preferable, Especially preferably, it is 1-40 mass%. If the amount of the crosslinking agent is too small, the water swelling ratio represented by the formula (a) when the obtained electrolyte membrane is immersed in water at 25 ° C. for 1 hour tends to exceed 2.0, and the effect of the present invention is obtained. This is not preferable. On the other hand, when the amount is too large, the amount of the sulfonic acid group-containing monomer is relatively lowered, the proton conductivity is 5 mS / cm or less, and it is difficult to obtain the effects of the present invention.

本発明の電解質膜に用いられるポリマー前駆体を共重合して電解質ポリマーを得る方法としては、公知の水溶液ラジカル重合法の技術を使用することができる。具体例としては、レドックス開始重合、熱開始重合、電子線開始重合、紫外線等の光開始重合等が挙げられる。熱開始重合、レドックス開始重合のラジカル重合開始剤としては、次のようなものが挙げられる。過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、過酸化水素、過酸化ベンゾイル、クメンヒドロパーオキサイド、ジ−t−ブチルパーオキサイド等の過酸化物;上記過酸化物と、亜硫酸塩、重亜硫酸塩、チオ硫酸塩、ホルムアミジンスルフィン酸、アスコルビン酸等の還元剤とを組み合わせたレドックス開始剤;または2,2’−アゾビス−(2−アミジノプロパン)二塩酸塩、アゾビスシアノ吉草酸等のアゾ系ラジカル重合開始剤等。
これらラジカル重合開始剤は、単独で用いてもよく、また、二種類以上を併用してもよい。これらの内、過酸化物系ラジカル重合開始剤は炭素水素結合から水素を引き抜くことによってラジカルを発生することができるため多孔性基材としてポリオレフィン等の有機材料と併用すると、基材表面と充填電解質ポリマーとの間に化学結合を形成することができるので好ましい。
As a method for obtaining an electrolyte polymer by copolymerizing a polymer precursor used in the electrolyte membrane of the present invention, a known aqueous solution radical polymerization technique can be used. Specific examples include redox-initiated polymerization, heat-initiated polymerization, electron beam-initiated polymerization, and photoinitiated polymerization such as ultraviolet rays. Examples of the radical polymerization initiator for heat-initiated polymerization and redox-initiated polymerization include the following. Peroxides such as ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, benzoyl peroxide, cumene hydroperoxide, di-t-butyl peroxide; the above peroxides and sulfites, bisulfites, Redox initiator combined with a reducing agent such as thiosulfate, formamidinesulfinic acid, ascorbic acid; or azo radical polymerization such as 2,2′-azobis- (2-amidinopropane) dihydrochloride, azobiscyanovaleric acid Initiators, etc.
These radical polymerization initiators may be used alone or in combination of two or more. Among these, peroxide radical polymerization initiators can generate radicals by extracting hydrogen from carbon-hydrogen bonds, so when used in combination with an organic material such as polyolefin as a porous substrate, the surface of the substrate and the filled electrolyte A chemical bond can be formed with the polymer, which is preferable.

上記ラジカル重合開始手段の中では、重合反応の制御がし易く、比較的簡便なプロセスで生産性良く所望の電解質膜が得られる点で、紫外線による光開始重合が望ましい。さらに光開始重合させる場合には、ラジカル系光重合開始剤を、ポリマー前駆体、その溶液または分散液中に予め溶解若しくは分散させておくことがより好ましい。
ラジカル系光重合開始剤としては、一般に紫外線重合に利用されているベンゾイン、ベンジル、アセトフェノン、ベンゾフェノン、キノン、チオキサントン、チオアクリドンおよびこれらの誘導体等が挙げられる。当該誘導体の例としては、ベンゾイン系として、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル;アセトフェノン系として、ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モンフォリノプロパン−1、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−(2−ヒドロキシエトキシ)−フェニル)−2−ヒドロキシジ−2−メチル−1−プロパン−1−オン;ベンゾフェノン系として、o−ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6−トリメチルベンゾフェノン、4−ベンゾイル−N,N−ジメチル−N−[2−(1−オキシ−2−プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4−ベンゾイルベンジル)トリメチルアンモニウムクロリド、4,4’−ジメチルアミノベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン等が挙げられる。
Among the radical polymerization initiating means, photoinitiated polymerization by ultraviolet rays is desirable in that the polymerization reaction is easily controlled and a desired electrolyte membrane can be obtained with a relatively simple process and high productivity. In the case of further photoinitiating polymerization, the radical photopolymerization initiator is more preferably dissolved or dispersed in advance in the polymer precursor, a solution or dispersion thereof.
Examples of the radical photopolymerization initiator include benzoin, benzyl, acetophenone, benzophenone, quinone, thioxanthone, thioacridone, and derivatives thereof that are generally used for ultraviolet polymerization. Examples of such derivatives include benzoin-based benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; acetophenone-based diethoxyacetophenone, 2,2-dimethoxy-1,2-diphenylethane-1- ON, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-montolinopropane-1, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) Butanone-1,2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-hydroxydi-2-methyl-1-propane- 1-one; as benzophenone, o-benzoy Methyl benzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4-Benzoyl-N, N-dimethyl-N- [2- (1-oxy-2-propenyloxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride, 4,4′-dimethylamino Examples include benzophenone and 4,4′-diethylaminobenzophenone.

これら光重合開始剤の使用量は、ポリマー前駆体中の不飽和モノマーの総質量に対して0.001〜1質量%が好ましく、さらに好ましくは0.001〜0.5質量%、特に好ましくは0.01〜0.5質量%である。光重合開始剤量は少なすぎると未反応モノマーが多くなる等の問題があり、多すぎると生成するポリマーの架橋密度が低くなりすぎ、燃料電池に組み込んで運転したときの耐久性が低くなる問題があるため何れも好ましくない。
またこれらの内、ベンゾフェノン、チオキサントン、キノン、チオアクリドン等の芳香族ケトン系ラジカル重合開始剤は炭素水素結合から水素を引き抜くことによってラジカルを発生することができるため多孔性基材としてポリオレフィン等の有機材料と併用すると基材表面と充填電解質ポリマーとの間に化学結合を形成することができ好ましい。
The amount of these photopolymerization initiators used is preferably 0.001 to 1% by mass, more preferably 0.001 to 0.5% by mass, particularly preferably the total mass of unsaturated monomers in the polymer precursor. 0.01 to 0.5% by mass. If the amount of the photopolymerization initiator is too small, there is a problem that the amount of unreacted monomers increases. If the amount is too large, the crosslink density of the polymer that is generated becomes too low, and the durability when the fuel cell is built and operated is lowered Therefore, neither is preferable.
Of these, aromatic ketone radical polymerization initiators such as benzophenone, thioxanthone, quinone, and thioacridone can generate radicals by extracting hydrogen from carbon-hydrogen bonds. When used together, it is preferable because a chemical bond can be formed between the substrate surface and the filled electrolyte polymer.

本発明で用いる多孔性基材は、メタノールおよび水に対して実質的に膨潤しない材料であり、特に乾燥時に比べて水による湿潤時の面積変化が少ないか、ほとんどないことが望ましい。面積増加率は、浸漬時間や温度によって変化するが、本発明では25℃における純水に1時間浸漬したときの面積増加率が、乾燥時に比較して最大でも20%以下であることが好ましい。   The porous base material used in the present invention is a material which does not substantially swell with respect to methanol and water, and it is desirable that there is little or almost no change in area when wetted with water, especially when dry. Although the area increase rate varies depending on the immersion time and temperature, in the present invention, the area increase rate when immersed in pure water at 25 ° C. for 1 hour is preferably 20% or less at the maximum compared to the time of drying.

また本発明で用いる多孔性基材は、引張り弾性率が500〜5000MPaであるものが好ましく、さらに好ましくは1000〜5000MPaであり、また破断強度が50〜500MPaを有するのが好ましく、さらに好ましくは100〜500MPaである。これらの範囲を低い方に外れると充填したポリマーのメタノールや水により膨潤しようとする力によって膜が変形し易くなり、高い方に外れると基材が脆くなり過ぎて電極接合時のプレス成形や電池に組み込む際の締付け等によって膜がひび割れたりし易い。   The porous substrate used in the present invention preferably has a tensile modulus of 500 to 5000 MPa, more preferably 1000 to 5000 MPa, and preferably has a breaking strength of 50 to 500 MPa, more preferably 100. ~ 500 MPa. If these ranges are deviated to the lower side, the membrane tends to be deformed by the force of swelling of the filled polymer with methanol or water, and if it deviates to the higher side, the base material becomes too brittle and press molding and battery for electrode joining are performed. The film is liable to crack due to tightening during assembly.

また、多孔性基材は燃料電池を運転する際の温度に対して耐熱性を有するものがよく、外力が加えられても容易に延びないものがよい。そのような性質を持つ材料として、無機材料ではガラスまたはアルミナ若しくはシリカ等のセラミックス等が挙げられる。また、有機材料では芳香族ポリイミド等のエンジニアリングプラスチック、ポリオレフィンを放射線の照射や架橋剤を加えて架橋したり延伸する等の方法で、外力に対して延び等の変形をし難くしたもの等が挙げられる。これらの材料は単独で用いても2種以上を積層する等により複合化して用いてもよい。
これらの多孔性基材の中では、延伸ポリオレフィン、架橋ポリオレフィン、延伸後架橋されたポリオレフィン、ポリイミド類からなるものが充填工程の作業性が良く、基材の入手し易さの点からも好ましい。
Further, the porous substrate is preferably one having heat resistance against the temperature at which the fuel cell is operated, and one that does not easily extend even when an external force is applied. Examples of the material having such a property include inorganic materials such as glass or ceramics such as alumina or silica. Examples of organic materials include engineering plastics such as aromatic polyimides, polyolefins that have been made difficult to be deformed such as being stretched against external forces by methods such as radiation irradiation and crosslinking or stretching by adding a crosslinking agent. It is done. These materials may be used alone or in combination by stacking two or more of them.
Among these porous base materials, those made of stretched polyolefin, cross-linked polyolefin, cross-linked polyolefin after stretching, and polyimides are preferable from the viewpoint of easy workability of the filling step and easy availability of the base material.

本発明で用いる多孔性基材の空孔率は、5〜95%が好ましく、さらに好ましくは5〜90%、特に好ましくは20〜80%である。また平均孔径は0.001〜100μmの範囲にあることが好ましく、さらに好ましくは0.01〜1μmの範囲である。空孔率が小さすぎると面積当たりのプロトン伝導性基であるプロトン酸性基が少なすぎて燃料電池としては出力が低くなり、大きすぎると膜強度が低下し好ましくない。さらに基材の厚さは200μm以下が好ましい。より好ましくは1〜150μm、さらに好ましくは5〜100μm、特に好ましくは5〜50μmである。膜厚が薄すぎると膜強度が低下しメタノールの透過量も増え、厚すぎると膜抵抗が大きくなりすぎ燃料電池の出力が低いため何れも好ましくない。   The porosity of the porous substrate used in the present invention is preferably 5 to 95%, more preferably 5 to 90%, and particularly preferably 20 to 80%. Moreover, it is preferable that an average hole diameter exists in the range of 0.001-100 micrometers, More preferably, it is the range of 0.01-1 micrometer. If the porosity is too small, there are too few proton acidic groups, which are proton conductive groups per area, and the output of the fuel cell will be low. Furthermore, the thickness of the substrate is preferably 200 μm or less. More preferably, it is 1-150 micrometers, More preferably, it is 5-100 micrometers, Most preferably, it is 5-50 micrometers. If the film thickness is too thin, the film strength decreases and the amount of permeated methanol also increases. If the film thickness is too thick, the film resistance becomes too large and the output of the fuel cell is low, which is not preferable.

多孔性基材の細孔内に電解質ポリマーを充填する方法に関して特に制限はなく公知の方法が利用できる。例えばポリマー前駆体またはその溶液若しくは分散液を多孔性基材に含浸させ、その後にポリマー前駆体を重合および架橋させる方法が挙げられる。その際、充填する混合液には必要に応じて架橋剤、重合開始剤、触媒、硬化剤、界面活性剤等を含んでいてもよい。   There is no particular limitation on the method for filling the electrolyte polymer in the pores of the porous substrate, and a known method can be used. For example, a method of impregnating a porous substrate with a polymer precursor or a solution or dispersion thereof, and then polymerizing and crosslinking the polymer precursor can be mentioned. At that time, the mixed liquid to be filled may contain a crosslinking agent, a polymerization initiator, a catalyst, a curing agent, a surfactant and the like, if necessary.

多孔性基材の細孔に充填するポリマー前駆体が低粘度の場合は、そのまま含浸に用いることができるが、そうでない場合は溶液または分散液とすることが好ましい。特に、濃度を10〜90質量%の溶液とするのが好ましく、20〜70質量%の溶液とするのがさらに好ましい。また使用する成分に水に難溶のものが含まれる場合は水の一部または全部を有機溶剤に置き換えてもよいが、有機溶剤を使用する場合は電極を接合する前に有機溶剤を全て取り除く必要があるため水溶液の方が好ましい。このように溶液状にして含浸する理由は、水または溶剤に溶解して含浸に用いることにより細孔を有する多孔性基材への含浸が行い易くなることと、予め膨潤したゲルを細孔内に作ることによって、製造した電解質膜を燃料電池にした場合に水またはメタノールが細孔内のポリマーを膨潤させすぎてポリマーが抜け落ちるのを防止する効果があるためである。また含浸作業をより行い易くする目的で、多孔性基材の親水化処理、ポリマー前駆体溶液への界面活性剤の添加、または含浸中における超音波の照射も行うことができる。   When the polymer precursor filled in the pores of the porous substrate has a low viscosity, it can be used for impregnation as it is, but otherwise it is preferably a solution or a dispersion. In particular, a solution with a concentration of 10 to 90% by mass is preferable, and a solution with a concentration of 20 to 70% by mass is more preferable. In addition, if the components used are insoluble in water, some or all of the water may be replaced with an organic solvent, but when using an organic solvent, remove all the organic solvent before joining the electrodes. An aqueous solution is preferred because it is necessary. The reason for impregnation in the form of a solution in this way is that it is easy to impregnate a porous substrate having pores by dissolving in water or a solvent and using it for impregnation, and that a pre-swelled gel is contained in the pores. This is because when the manufactured electrolyte membrane is made into a fuel cell, water or methanol has an effect of preventing the polymer in the pores from swelling too much and the polymer from falling off. Further, for the purpose of facilitating the impregnation operation, hydrophilic treatment of the porous substrate, addition of a surfactant to the polymer precursor solution, or ultrasonic irradiation during the impregnation can be performed.

また多孔性基材の表面、特に細孔内表面にプロトン伝導性を有する架橋電解質ポリマーが化学的に結合されているのが好ましく、その結合を形成する手段としては、充填するポリマー前駆体がラジカル重合性物質である場合は予め基材にプラズマ、紫外線、電子線、ガンマ線、コロナ放電等を照射して表面にラジカルを発生させ、充填したポリマー前駆体を重合させる際に基材表面へのグラフト重合が同時に起こるようにする方法、基材にポリマー前駆体を充填した後に電子線を照射することによって基材表面へのグラフト重合とポリマー前駆体の重合を同時に起こす方法、水素引き抜き型のラジカル重合開始剤をポリマー前駆体に配合して充填して加熱または紫外線の照射を行って基材表面へのグラフト重合とポリマー前駆体の重合を同時に起こす方法、カップリング剤を用いる方法等が挙げられる。これらは単独で行っても複数の方法を併用してもよい。   In addition, it is preferable that a crosslinked electrolyte polymer having proton conductivity is chemically bonded to the surface of the porous substrate, particularly the surface inside the pores. As a means for forming the bond, the polymer precursor to be filled is a radical. In the case of a polymerizable substance, the substrate is preliminarily irradiated with plasma, ultraviolet rays, electron beams, gamma rays, corona discharge, etc. to generate radicals on the surface, and when the filled polymer precursor is polymerized, it is grafted onto the substrate surface. A method that allows polymerization to occur simultaneously, a method that causes graft polymerization to the surface of the substrate and polymerization of the polymer precursor simultaneously by irradiating an electron beam after filling the polymer precursor to the substrate, radical extraction polymerization of hydrogen abstraction type Initiator is blended with polymer precursor, heated, or irradiated with ultraviolet rays to simultaneously graft onto the substrate surface and polymer precursor polymerization The method of causing, methods and the like using a coupling agent. These may be performed alone or a plurality of methods may be used in combination.

また本発明における電解質膜の膜表面は、多孔性基材部分が剥き出していても、充填ポリマーと同種または異種のプロトン導電性ポリマーにより覆われていてもどちらでも良いが、表面の接触抵抗が低減される点から、膜表面は充填電解質ポリマーにより覆われている方が好ましい。   In addition, the membrane surface of the electrolyte membrane in the present invention may be either exposed from the porous base material portion or covered with the same or different proton conductive polymer as the filled polymer, but the surface contact resistance is reduced. Therefore, it is preferable that the membrane surface is covered with the filled electrolyte polymer.

本発明の電解質膜は、プロトン伝導性を有する電解質ポリマーを多孔性基材の細孔内に充填してなる電解質膜であって、この膜を水に浸漬させた時の水膨潤率が特定の範囲内にあることを特徴とする。即ち本発明の電解質膜は、当該電解質膜を25℃で1時間水に浸漬させた時の、式(a)で表わされる水膨潤率が0.1〜2.0であることを特徴とする。好ましい範囲は0.1〜1.5で、より好ましくは0.2〜1.5である。
水膨潤率=(A−B)/(B−C)‥(a)
ここで、(A)は水に浸漬後の電解質膜質量、(B)は乾燥時の電解質膜質量、(C)は多孔性基材の質量(C)である。
なお、水膨潤率が問題となるのは細孔中に充填された電解質のみであり、前述のように多孔性基材部分が充填ポリマーにより覆われている場合には、湿潤状態で表面の被覆ポリマーを掻き落とした後に水分量を測定するものとする。
なお、本来は式(a)で表わされる水膨潤率ではなく、水浸漬時の充填電解質の膨潤率(浸漬後の充填電解質中の水分量/充填電解質量)を特定の範囲とすべきであるが、浸漬後の充填電解質中の水分量の測定は困難であり、また基材となる多孔質膜は水に殆ど膨潤しないことから、膜の水膨潤率で代用するものである。
式(a)で表わされる水膨潤率の値が大きすぎると膜の耐久性が不十分となり、燃料電池として運転したとき短時間に出力が低下する等の問題があり、小さすぎるとプロトン伝導性が極端に悪くなり、燃料電池としての性能が低下してしまう問題があるため何れも好ましくない。この比率を調整する方法は特に限定はされない。比率を上げる方法としては、充填する架橋の量を多くする方法、充填す電解質ポリマーの架橋密度を低くする方法、充填する電解質ポリマーの量を少なくする方法、充填する電解質ポリマーのスルホン酸基密度を高くする方法が挙げられ、比率を下げる方法としては、充填する架橋電解質ポリマーの架橋密度を高くする方法、充填する充填回数を増やす等の手段により電解質ポリマーる電解質ポリマーの疎水性を高くする方法等が挙げられる。
The electrolyte membrane of the present invention is an electrolyte membrane obtained by filling an electrolyte polymer having proton conductivity into the pores of a porous substrate, and the water swelling rate when the membrane is immersed in water is specific. It is in the range. That is, the electrolyte membrane of the present invention is characterized in that when the electrolyte membrane is immersed in water at 25 ° C. for 1 hour, the water swelling ratio represented by the formula (a) is 0.1 to 2.0. . A preferred range is 0.1 to 1.5, more preferably 0.2 to 1.5.
Water swelling rate = (A−B) / (B−C) (a)
Here, (A) is the mass of the electrolyte membrane after being immersed in water, (B) is the mass of the electrolyte membrane during drying, and (C) is the mass (C) of the porous substrate.
It should be noted that the water swelling rate is a problem only for the electrolyte filled in the pores, and when the porous substrate portion is covered with the filled polymer as described above, the surface coating is wet. The amount of water shall be measured after scraping off the polymer.
It should be noted that the swelling ratio of the filled electrolyte when immersed in water (the amount of water in the filled electrolyte after immersion / the filled electrolytic mass) should be in a specific range, not the water swelling ratio represented by the formula (a). However, it is difficult to measure the amount of water in the filled electrolyte after immersion, and the porous membrane serving as the substrate hardly swells in water, so that the water swelling rate of the membrane is used instead.
When the value of the water swelling ratio represented by the formula (a) is too large, the durability of the membrane becomes insufficient, and there is a problem that the output decreases in a short time when operated as a fuel cell. However, both of them are not preferable because of the problem that the performance as a fuel cell deteriorates. The method for adjusting this ratio is not particularly limited. As a method of increasing the ratio, there are a method of increasing the amount of crosslinking to be filled, a method of reducing the crosslinking density of the electrolyte polymer to be filled, a method of reducing the amount of the electrolyte polymer to be filled, and a sulfonic acid group density of the electrolyte polymer to be filled. Examples of the method for decreasing the ratio include a method for increasing the crosslinking density of the filled electrolyte electrolyte, a method for increasing the hydrophobicity of the electrolyte polymer by means such as increasing the number of times of filling, etc. Is mentioned.

さらに本発明の電解質膜は、交流インピーダンス法により求めたプロトン伝導率が5mS/cm以上、かつ透析法により求めた25℃におけるメタノール透過係数が50(μm・kg)/(m2・h)以下であることが好ましい。この2つの物性値が上記範囲を外れると、燃料電池としての性能が低下してしまうため好ましくない。Further, the electrolyte membrane of the present invention has a proton conductivity of 5 mS / cm or more determined by the alternating current impedance method and a methanol permeability coefficient at 25 ° C. of 50 (μm · kg) / (m 2 · h) or less determined by the dialysis method. It is preferable that If these two physical property values are out of the above range, the performance as a fuel cell is deteriorated, which is not preferable.

以下、本発明を実施例および比較例によりさらに詳しく説明するが、本発明の範囲がこれらの例により限定されるものではない。また実施例および比較例中の部は特に断りの無い限り質量部を意味するものとする。得られた電解質膜の水膨潤率およびプロトン伝導性、メタノール透過性、耐久性(強制劣化試験)は以下のように評価した。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, the scope of the present invention is not limited by these examples. Moreover, the part in an Example and a comparative example shall mean a mass part unless there is particular notice. The obtained electrolyte membrane was evaluated for water swelling rate, proton conductivity, methanol permeability, and durability (forced deterioration test) as follows.

<水膨潤率> 25℃における式(a)で表わされる水膨潤率の測定を行った。純水に1時間浸して膨潤させた電解質膜の表面の水分を拭き取り質量(A)を測定した。また乾燥時の電解質膜質量(B)も測定し、下記の式から式(a)で表わされる水膨潤率を算出した。式中のCは多孔性基材の質量を示す。
水膨潤率=(A―B)/(B−C)
<Water swelling rate> The water swelling rate represented by the formula (a) at 25 ° C was measured. Moisture on the surface of the electrolyte membrane swollen by being immersed in pure water for 1 hour was wiped off, and the mass (A) was measured. Moreover, the electrolyte membrane mass (B) at the time of drying was also measured, and the water swelling rate represented by the formula (a) was calculated from the following formula. C in a formula shows the mass of a porous substrate.
Water swelling rate = (AB) / (BC)

<プロトン伝導性> 25℃における膨潤試料の伝導度測定を行った。純水に1時間浸して膨潤させた電解質膜を2枚の白金板で挟み込み測定用試料とした。その後、100Hzから40MHzの交流インピーダンス測定を実施して、伝導率を測定した。伝導率が高いほど、電解質膜中をプロトンが移動し易く、燃料電池用途に優れていることを示す。   <Proton conductivity> The conductivity of the swollen sample at 25 ° C was measured. An electrolyte membrane that was swollen by being immersed in pure water for 1 hour was sandwiched between two platinum plates to obtain a measurement sample. Thereafter, AC impedance measurement from 100 Hz to 40 MHz was performed to measure the conductivity. The higher the conductivity, the easier the protons move in the electrolyte membrane, indicating that the fuel cell is excellent.

<メタノール透過性> 25℃における浸透実験を以下のように行った。電解質膜をガラス製セルに挟み、一方のセルに10質量%メタノール水溶液を入れ、もう一方のセルに純水を入れた。純水側に浸透するメタノール量をガスクロマトグラフ分析により経時的に測定し、定常状態になった時の透過係数を測定した。透過係数が低いほど、電解質膜中をメタノールが透過し難く、燃料電池用途に適していることを示す。   <Methanol Permeability> A permeation experiment at 25 ° C. was performed as follows. The electrolyte membrane was sandwiched between glass cells, 10% by mass aqueous methanol solution was placed in one cell, and pure water was placed in the other cell. The amount of methanol penetrating the pure water side was measured over time by gas chromatographic analysis, and the permeation coefficient when it reached a steady state was measured. A lower permeation coefficient indicates that methanol is less likely to pass through the electrolyte membrane and is suitable for fuel cell applications.

<耐久性(強制劣化試験)> 電池内で発生する過酸化水素による電解質ポリマーの劣化現象を確認する代わりに強制劣化により耐久性を評価した。3.5質量%過酸化水素および0.01質量%硫酸第二鉄7水和物を含む水溶液を調製し、その中に電解質膜を浸し、25℃で6時間攪拌したのち電解質膜を引き上げた。試験前後の質量変化から電解質膜中の充填電解質ポリマーの溶出率を求めた。溶出率が大きいほど、電池として運転した時の劣化が早く、小さいほど劣化し難いことを示す。   <Durability (Forced Degradation Test)> Instead of confirming the deterioration phenomenon of the electrolyte polymer due to hydrogen peroxide generated in the battery, durability was evaluated by forced deterioration. An aqueous solution containing 3.5% by mass hydrogen peroxide and 0.01% by mass ferric sulfate heptahydrate was prepared, and the electrolyte membrane was immersed therein, stirred at 25 ° C. for 6 hours, and then the electrolyte membrane was pulled up. . The elution rate of the filled electrolyte polymer in the electrolyte membrane was determined from the mass change before and after the test. The larger the elution rate, the faster the deterioration when operated as a battery, and the smaller the dissolution rate, the less likely it is to deteriorate.

(実施例1)
多孔性基材として架橋ポリエチレン膜(厚さ16μm、空孔率38%)を用いた。2−アクリルアミド−2−メチルプロパンスルホン酸45部、N,N’−メチレンビスアクリルアミド5部、ノニオン性界面活性剤0.5部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン0.05部、水50部からなるモノマー水溶液に、当該多孔性基材を浸漬させ、当該水溶液を多孔性基材に充填させた。次いで、多孔性基材を溶液から引き上げた後、高圧水銀ランプにて紫外線を2分間照射して細孔内部のモノマーを重合させて電解質膜を得た。得られた膜の評価結果を表1に示す。
Example 1
A cross-linked polyethylene film (thickness 16 μm, porosity 38%) was used as the porous substrate. 2-acrylamido-2-methylpropanesulfonic acid 45 parts, N, N′-methylenebisacrylamide 5 parts, nonionic surfactant 0.5 part, 2-hydroxy-2-methyl-1-phenylpropane-1-one The porous substrate was immersed in an aqueous monomer solution composed of 0.05 part and 50 parts of water, and the aqueous solution was filled into the porous substrate. Next, after pulling up the porous substrate from the solution, ultraviolet rays were irradiated for 2 minutes with a high-pressure mercury lamp to polymerize the monomers inside the pores to obtain an electrolyte membrane. Table 1 shows the evaluation results of the obtained film.

(実施例2)
実施例1において2−アクリルアミド−2−メチルプロパンスルホン酸45部を54部、N,N’−メチレンビスアクリルアミド5部を6部、水50部を40部にする以外は、実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Example 2)
Example 1 is the same as Example 1 except that 45 parts of 2-acrylamido-2-methylpropanesulfonic acid is 54 parts, 5 parts of N, N′-methylenebisacrylamide is 6 parts, and 50 parts of water is 40 parts. Thus, an electrolyte membrane was obtained. Table 1 shows the evaluation results of the obtained film.

(実施例3)
実施例1において2−アクリルアミド−2−メチルプロパンスルホン酸45部を52部、N,N’−メチレンビスアクリルアミド5部を6.5部、水50部を35部とし、新たにアクリル酸6.5部を追加する以外は、実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Example 3)
In Example 1, 52 parts of 2-acrylamido-2-methylpropanesulfonic acid were 52 parts, 5 parts of N, N′-methylenebisacrylamide were 6.5 parts, and 50 parts of water were 35 parts. An electrolyte membrane was obtained in the same manner as in Example 1 except that 5 parts were added. Table 1 shows the evaluation results of the obtained film.

(実施例4)
実施例1と同じ多孔性基材を用いた。2−アクリルアミド−2−メチルプロパンスルホン酸52部、N−メチロールアクリルアミド13部、ノニオン性界面活性剤0.5部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン0.05部、水35部からなるモノマー水溶液に、当該多孔性基材を浸漬させ、当該水溶液を多孔性基材に充填させた。次いで、多孔性基材を溶液から引き上げた後、高圧水銀ランプにて紫外線を2分間照射して細孔内部のモノマーを重合させた。その後120℃のオーブンにて3分間加熱して電解質膜を得た。得られた膜の評価結果を表1に示す。
(Example 4)
The same porous substrate as in Example 1 was used. 2-acrylamido-2-methylpropanesulfonic acid 52 parts, N-methylolacrylamide 13 parts, nonionic surfactant 0.5 parts, 2-hydroxy-2-methyl-1-phenylpropan-1-one 0.05 parts The porous substrate was immersed in an aqueous monomer solution composed of 35 parts of water, and the porous substrate was filled with the aqueous solution. Next, after pulling up the porous substrate from the solution, ultraviolet rays were irradiated for 2 minutes with a high-pressure mercury lamp to polymerize the monomers inside the pores. Thereafter, it was heated in an oven at 120 ° C. for 3 minutes to obtain an electrolyte membrane. Table 1 shows the evaluation results of the obtained film.

(実施例5)
実施例1と同じ多孔性基材を用いた。2−アクリルアミド−2−メチルプロパンスルホン酸31.5部、N,N’−メチレンビスアクリルアミド3.5部、ノニオン性界面活性剤0.5部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン0.05部、水65部からなるモノマー水溶液に、当該多孔性基材を浸漬させ、当該水溶液を多孔性基材に充填させた。次いで、多孔性基材を溶液から引き上げた後、高圧水銀ランプにて紫外線を2分間照射して細孔内部のモノマーを重合させて電解質膜とした。さらに得られた電解質膜を、2−アクリルアミド−2−メチルプロパンスルホン酸31.5部、N,N’−メチレンビスアクリルアミド3.5部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン0.05部、水65部からなるモノマー水溶液に浸漬させ、当該水溶液にて電解質膜を膨潤させた。次いで、膨潤した電解質膜を溶液から引き上げた後、高圧水銀ランプにて紫外線を2分間照射して電解質膜内部のモノマーを重合させて電解質膜を得た。得られた膜の評価結果を表1に示す
(Example 5)
The same porous substrate as in Example 1 was used. 2-acrylamido-2-methylpropanesulfonic acid 31.5 parts, N, N′-methylenebisacrylamide 3.5 parts, nonionic surfactant 0.5 parts, 2-hydroxy-2-methyl-1-phenylpropane The porous substrate was immersed in an aqueous monomer solution composed of 0.05 part of -1-one and 65 parts of water, and the aqueous solution was filled into the porous substrate. Next, after pulling up the porous substrate from the solution, ultraviolet rays were irradiated for 2 minutes with a high-pressure mercury lamp to polymerize the monomers inside the pores to obtain an electrolyte membrane. Further, the obtained electrolyte membrane was prepared by using 31.5 parts of 2-acrylamido-2-methylpropanesulfonic acid, 3.5 parts of N, N′-methylenebisacrylamide, 2-hydroxy-2-methyl-1-phenylpropane-1 -It was immersed in an aqueous monomer solution consisting of 0.05 parts of ON and 65 parts of water, and the electrolyte membrane was swollen with the aqueous solution. Next, after the swollen electrolyte membrane was lifted from the solution, ultraviolet rays were irradiated for 2 minutes with a high-pressure mercury lamp to polymerize the monomers inside the electrolyte membrane, thereby obtaining an electrolyte membrane. The evaluation results of the obtained film are shown in Table 1.

(比較例1)
実施例1において2−アクリルアミド−2−メチルプロパンスルホン酸45部を31.5部、N,N’−メチレンビスアクリルアミド5部を3.5部、水50部を65部にする以外は、実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Comparative Example 1)
In Example 1, except that 45 parts of 2-acrylamido-2-methylpropanesulfonic acid was 31.5 parts, 5 parts of N, N′-methylenebisacrylamide was 3.5 parts, and 50 parts of water was 65 parts. An electrolyte membrane was obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained film.

(比較例2)
実施例1において2−アクリルアミド−2−メチルプロパンスルホン酸45部を49部、N,N’−メチレンビスアクリルアミド5部を1部にする以外は、実施例1と同様にして電解質膜を得た。得られた膜の評価結果を表1に示す。
(Comparative Example 2)
An electrolyte membrane was obtained in the same manner as in Example 1 except that 45 parts of 2-acrylamido-2-methylpropanesulfonic acid and 49 parts of N, N′-methylenebisacrylamide were 1 part in Example 1. . Table 1 shows the evaluation results of the obtained film.

(実施例6)
得られた膜が燃料電池として機能することを確認するため実施例1で作成した膜をDMFCセルに組み込んで評価を行った。 酸素極用に白金担持カーボン(田中貴金属工業(株)製:TEC10E50E)、および燃料極用に白金ルテニウム合金担持カーボン(田中貴金属工業(株)製:TEC61E54)をそれぞれ用い、これらの触媒粉末に高分子電解質溶液(デュポン社製:ナフィオン5%溶液)とポリテトラフルオロエチレンディスパージョンを配合し、水を適宜加えて攪拌して反応層用塗料を得た。これをスクリーン印刷法でカーボンペーパー(東レ(株)製:TGP−H−060)の片面に印刷し乾燥して電極とした。その際酸素極側は白金量が1mg/cm2、燃料極側は白金とルテニウムの総量が3mg/cm2とした。これらを実施例1で得られた電解質膜の中央部に塗料面を内側にして重ね合せ、120℃で加熱プレスし燃料電池用膜電極接合体(MEA)を作成した。これをDMFC単セルに組み込んで運転し、性能を確認した。DMFC運転条件はセル温度を50℃とし、燃料極へ濃度1mol/リットルのメタノール水溶液を10ml/分で供給し、酸素極には純空気を2リットル/分で供給した。電流値を上げながら電圧を読み取り、図1の電流密度−電圧曲線を得た。
(Example 6)
In order to confirm that the obtained membrane functions as a fuel cell, the membrane prepared in Example 1 was incorporated into a DMFC cell and evaluated. Platinum-supported carbon (Tanaka Kikinzoku Co., Ltd .: TEC10E50E) is used for the oxygen electrode, and platinum ruthenium alloy-supported carbon (Tanaka Kikinzoku Kogyo Co., Ltd .: TEC61E54) is used for the fuel electrode. A molecular electrolyte solution (manufactured by DuPont: Nafion 5% solution) and polytetrafluoroethylene dispersion were blended, and water was appropriately added and stirred to obtain a reaction layer coating material. This was printed on one side of carbon paper (manufactured by Toray Industries, Inc .: TGP-H-060) by screen printing and dried to obtain an electrode. At that time, the platinum amount on the oxygen electrode side was 1 mg / cm 2 , and the total amount of platinum and ruthenium on the fuel electrode side was 3 mg / cm 2 . These were superposed on the center of the electrolyte membrane obtained in Example 1 with the paint surface inside, and heated and pressed at 120 ° C. to prepare a membrane electrode assembly (MEA) for fuel cells. This was installed in a DMFC single cell and operated to confirm the performance. The DMFC operating conditions were such that the cell temperature was 50 ° C., an aqueous methanol solution having a concentration of 1 mol / liter was supplied to the fuel electrode at 10 ml / min, and pure air was supplied to the oxygen electrode at 2 liter / min. The voltage was read while increasing the current value, and the current density-voltage curve of FIG. 1 was obtained.

Figure 2005076396
Figure 2005076396

表1から明らかなように、各実施例とも比較例に比べ特に耐久性試験において優れた性能を示した。   As is clear from Table 1, each example showed superior performance in the durability test as compared with the comparative example.

本発明の電解質膜は、燃料電池のみならず、各種センサー等の電気化学デバイス素子や、電気分解用の分離膜の用途にも適用できる。   The electrolyte membrane of the present invention can be applied not only to fuel cells, but also to electrochemical device elements such as various sensors and separation membranes for electrolysis.

【特許請求の範囲】
【請求項1】
メタノールを含む有機溶媒および水に対して実質的に膨張しない多孔性基材の細孔内に、プロトン伝導性を有する電解質ポリマーを充填してなる電解質膜であって、当該膜は25℃で1時間水に浸漬させた時の下記式(a)で表わされる水膨潤率が、0.1〜2.0であることを特徴とする直接メタノール形燃料電池用電解質膜。
水膨潤率=(A―B)/(B−C)‥(a)
但し、Aは水に浸漬後の電解質膜質量、Bは乾燥時の電解質膜質量、Cは多孔性基材の質量を示す。
【請求項2】
交流インピーダンス法により求めたプロトン伝導率が5mS/cm以上で、かつ透析法により求めた25℃におけるメタノール透過係数が50(μm・kg)/(m2・h)以下であることを特徴とする請求項1に記載の直接メタノール形燃料電池用電解質膜。
【請求項3】
電解質ポリマーが、2−アクリルアミド−2−メチルプロパンスルホン酸および/または2−メタクリルアミド−2−メチルプロパンスルホン酸、或いはこれらの塩を必須構成モノマーとするポリマーであることを特徴とする請求項1または2に記載の直接メタノール形燃料電池用電解質膜。
【請求項4】
多孔性基材が、延伸ポリオレフィン、架橋ポリオレフィン、延伸後架橋されたポリオレフィン、ポリイミド類からなることを特徴とする請求項1ないしに記載の直接メタノール形燃料電池用電解質膜。
【請求項5】
請求項1ないしに記載の直接メタノール形燃料電池用電解質膜を組み込んでなる直接メタノール形燃料電池。
[Claims]
[Claim 1]
An electrolyte membrane formed by filling an electrolyte polymer having proton conductivity into pores of a porous base material that does not substantially expand with respect to an organic solvent containing methanol and water, the membrane being 1 at 25 ° C. An electrolyte membrane for a direct methanol fuel cell, wherein a water swelling ratio represented by the following formula (a) when immersed in water for a period of time is 0.1 to 2.0.
Water swelling rate = (AB) / (BC) (a)
However, A represents the mass of the electrolyte membrane after being immersed in water, B represents the mass of the electrolyte membrane during drying, and C represents the mass of the porous substrate.
[Claim 2]
Proton conductivity determined by AC impedance method is 5 mS / cm or more, and methanol permeability coefficient at 25 ° C. determined by dialysis method is 50 (μm · kg) / (m 2 · h) or less. The electrolyte membrane for direct methanol fuel cells according to claim 1.
[Claim 3]
Claim 1 electrolyte polymer, characterized in that it is a 2-acrylamido-2-methylpropanesulfonic acid and / or 2-methacrylamide-2-methylpropanesulfonic acid or polymers of these salts as essential constituent monomers, Or an electrolyte membrane for a direct methanol fuel cell as described in 2 ;
[Claim 4]
Porous substrate, oriented polyolefin, crosslinked polyolefin, polyolefin is crosslinked after stretching, claims 1 to direct methanol fuel cell electrolyte membrane according to 3, characterized in that it consists of polyimides.
[Claim 5]
It claims 1 to direct direct methanol fuel cell comprising incorporating a methanol fuel cell electrolyte membrane according to 4.

本発明の電解質膜は、プロトン伝導性を有する電解質ポリマーを多孔性基材の細孔内に充填してなる電解質膜であって、この膜を水に浸漬させた時の水膨潤率が特定の範囲内にあることを特徴とする。即ち本発明の電解質膜は、当該電解質膜を25℃で1時間水に浸漬させた時の、式(a)で表わされる水膨潤率が0.1〜2.0であることを特徴とする。好ましい範囲は0.1〜1.5で、より好ましくは0.2〜1.5である。
水膨潤率=(A−B)/(B−C)‥(a)
ここで、(A)は水に浸漬後の電解質膜質量、(B)は乾燥時の電解質膜質量、(C)は多孔性基材の質量(C)である。
なお、水膨潤率が問題となるのは細孔中に充填された電解質のみであり、前述のように多孔性基材部分が充填ポリマーにより覆われている場合には、湿潤状態で表面の被覆ポリマーを掻き落とした後に水分量を測定するものとする。
なお、本来は式(a)で表わされる水膨潤率ではなく、水浸漬時の充填電解質の膨潤率(浸漬後の充填電解質中の水分量/充填電解質量)を特定の範囲とすべきであるが、浸漬後の充填電解質中の水分量の測定は困難であり、また基材となる多孔質膜は水に殆ど膨潤しないことから、膜の水膨潤率で代用するものである。
式(a)で表わされる水膨潤率の値が大きすぎると膜の耐久性が不十分となり、燃料電
池として運転したとき短時間に出力が低下する等の問題があり、小さすぎるとプロトン伝導性が極端に悪くなり、燃料電池としての性能が低下してしまう問題があるため何れも好ましくない。この比率を調整する方法は特に限定はされない。比率を上げる方法としては、充填する電解質ポリマーの架橋密度を低くする方法、充填する架橋電解質ポリマーの量を少なくする方法、充填する電解質ポリマーのスルホン酸基密度を高くする方法等が挙げられ、比率を下げる方法としては、充填する架橋電解質ポリマーの架橋密度を高くする方法、充填する架橋電解質ポリマーの充填回数を増やす等の手段により電解質ポリマーの疎水性を高くする方法等が挙げられる。
The electrolyte membrane of the present invention is an electrolyte membrane obtained by filling an electrolyte polymer having proton conductivity into the pores of a porous substrate, and the water swelling rate when the membrane is immersed in water is specific. It is in the range. That is, the electrolyte membrane of the present invention is characterized in that when the electrolyte membrane is immersed in water at 25 ° C. for 1 hour, the water swelling ratio represented by the formula (a) is 0.1 to 2.0. . A preferred range is 0.1 to 1.5, more preferably 0.2 to 1.5.
Water swelling rate = (A−B) / (B−C) (a)
Here, (A) is the mass of the electrolyte membrane after being immersed in water, (B) is the mass of the electrolyte membrane during drying, and (C) is the mass (C) of the porous substrate.
It should be noted that the water swelling rate is a problem only for the electrolyte filled in the pores, and when the porous substrate portion is covered with the filled polymer as described above, the surface coating is wet. The amount of water shall be measured after scraping off the polymer.
It should be noted that the swelling ratio of the filled electrolyte when immersed in water (the amount of water in the filled electrolyte after immersion / the filled electrolytic mass) should be in a specific range, not the water swelling ratio represented by the formula (a). However, it is difficult to measure the amount of water in the filled electrolyte after immersion, and the porous membrane serving as the substrate hardly swells in water, so that the water swelling rate of the membrane is used instead.
When the value of the water swelling ratio represented by the formula (a) is too large, the durability of the membrane becomes insufficient, and there is a problem that the output decreases in a short time when operated as a fuel cell. However, both of them are not preferable because of the problem that the performance as a fuel cell deteriorates. The method for adjusting this ratio is not particularly limited. Examples of the method for increasing the ratio include a method for reducing the crosslinking density of the electrolyte polymer to be filled, a method for reducing the amount of the crosslinked electrolyte polymer to be filled, a method for increasing the density of the sulfonic acid group of the electrolyte polymer to be filled, and the like. Examples of the method for lowering the pH include a method of increasing the crosslinking density of the crosslinked electrolyte polymer to be filled and a method of increasing the hydrophobicity of the electrolyte polymer by means such as increasing the number of times of filling the crosslinked electrolyte polymer to be filled.

Claims (16)

メタノールを含む有機溶媒および水に対して実質的に膨張しない多孔性基材の細孔内に、プロトン伝導性を有する電解質ポリマーを充填してなる電解質膜であって、当該膜は25℃で1時間水に浸漬させた時の下記式(a)で表わされる水膨潤率が、0.1〜2.0であることを特徴とする電解質膜。
水膨潤率=(A―B)/(B−C)‥(a)
但し、Aは水に浸漬後の電解質膜質量、Bは乾燥時の電解質膜質量、Cは多孔性基材の質量を示す。
An electrolyte membrane formed by filling an electrolyte polymer having proton conductivity into pores of a porous base material that does not substantially expand with respect to an organic solvent containing methanol and water, the membrane being 1 at 25 ° C. An electrolyte membrane, wherein a water swelling ratio represented by the following formula (a) when immersed in water for a period of time is 0.1 to 2.0.
Water swelling rate = (AB) / (BC) (a)
However, A represents the mass of the electrolyte membrane after being immersed in water, B represents the mass of the electrolyte membrane during drying, and C represents the mass of the porous substrate.
式(a)で表わされる水膨潤率が、0.1〜1.5であることを特徴とする請求項1に記載の電解質膜。 The electrolyte membrane according to claim 1, wherein the water swelling ratio represented by the formula (a) is 0.1 to 1.5. 式(a)で表わされる水膨潤率が、0.2〜1.5であることを特徴とする請求項2に記載の電解質膜。 The electrolyte membrane according to claim 2, wherein a water swelling ratio represented by the formula (a) is 0.2 to 1.5. 交流インピーダンス法により求めたプロトン伝導率が5mS/cm以上で、かつ透析法により求めた25℃におけるメタノール透過係数が50(μm・kg)/(m2・h)以下であることを特徴とする請求項1ないし3に記載の電解質膜。Proton conductivity determined by AC impedance method is 5 mS / cm or more, and methanol permeability coefficient at 25 ° C. determined by dialysis method is 50 (μm · kg) / (m 2 · h) or less. The electrolyte membrane according to claim 1. 電解質ポリマーが、スルホン酸基を含有するポリマーであることを特徴とする請求項1ないし4に記載の電解質膜。 5. The electrolyte membrane according to claim 1, wherein the electrolyte polymer is a polymer containing a sulfonic acid group. 電解質ポリマーが、1分子中に重合可能な炭素炭素二重結合およびスルホン酸基を含有する化合物またはこれらの塩を必須構成モノマーとする電解質ポリマーであることを特徴とする請求項5に記載の電解質膜。 6. The electrolyte according to claim 5, wherein the electrolyte polymer is an electrolyte polymer having a compound containing a carbon-carbon double bond and a sulfonic acid group polymerizable in one molecule or a salt thereof as an essential constituent monomer. film. 前記必須構成モノマーが、2−アクリルアミド−2−メチルプロパンスルホン酸および/または2−メタクリルアミド−2−メチルプロパンスルホン酸、或いはこれらの塩であることを特徴とする請求項6に記載の電解質膜。 The electrolyte membrane according to claim 6, wherein the essential constituent monomer is 2-acrylamido-2-methylpropanesulfonic acid and / or 2-methacrylamide-2-methylpropanesulfonic acid, or a salt thereof. . 電解質ポリマーが、架橋構造を導入したポリマーであることを特徴とする請求項1ないし7に記載の電解質膜。 8. The electrolyte membrane according to claim 1, wherein the electrolyte polymer is a polymer into which a crosslinked structure is introduced. 架橋構造の導入が、2個以上の重合性二重結合を有する架橋剤を併用した重合反応であることを特徴とする請求項8に記載の電解質膜。 9. The electrolyte membrane according to claim 8, wherein the introduction of the crosslinked structure is a polymerization reaction using a crosslinking agent having two or more polymerizable double bonds. 架橋剤の使用量は、電解質ポリマーを構成する全モノマー中の不飽和モノマーの総質量に対して、0.1〜40質量%であることを特徴とする請求項9に記載の電解質膜。 10. The electrolyte membrane according to claim 9, wherein the amount of the crosslinking agent used is 0.1 to 40% by mass with respect to the total mass of unsaturated monomers in all monomers constituting the electrolyte polymer. 電解質ポリマーが、紫外線による光開始重合により得られたポリマーであることを特徴とする請求項1ないし10に記載の電解質膜。 11. The electrolyte membrane according to claim 1, wherein the electrolyte polymer is a polymer obtained by photoinitiated polymerization with ultraviolet rays. 紫外線による光開始重合が、電解質ポリマーを構成するモノマーに添加された光重合開始剤により行われる反応であることを特徴とする請求項11に記載の電解質膜。 The electrolyte membrane according to claim 11, wherein the photoinitiated polymerization by ultraviolet rays is a reaction performed by a photopolymerization initiator added to a monomer constituting the electrolyte polymer. 光重合開始剤の使用量は、電解質ポリマーを構成する全モノマー中の不飽和モノマーの総質量に対して、0.01〜1質量%であることを特徴とする請求項12に記載の電解質膜。 13. The electrolyte membrane according to claim 12, wherein the amount of the photopolymerization initiator used is 0.01 to 1% by mass with respect to the total mass of unsaturated monomers in all monomers constituting the electrolyte polymer. . 多孔性基材が、延伸ポリオレフィン、架橋ポリオレフィン、延伸後架橋されたポリオレフィン、ポリイミド類からなることを特徴とする請求項1ないし13に記載の電解質膜。 14. The electrolyte membrane according to claim 1, wherein the porous substrate is composed of a stretched polyolefin, a crosslinked polyolefin, a polyolefin crosslinked after stretching, and a polyimide. 下記の工程を含む製造方法により得られたことを特徴とする請求項1ないし14に記載の電解質膜。
(1)電解質ポリマーを構成するモノマーまたはその溶液若しくは分散液を多孔性基材の細孔内に充填する工程。
(2)充填したモノマーを重合する工程。
The electrolyte membrane according to claim 1, wherein the electrolyte membrane is obtained by a production method including the following steps.
(1) A step of filling the pores of the porous substrate with a monomer constituting the electrolyte polymer or a solution or dispersion thereof.
(2) A step of polymerizing the filled monomer.
請求項1ないし15に記載の電解質膜を組み込んでなる燃料電池。 A fuel cell incorporating the electrolyte membrane according to claim 1.
JP2005517670A 2004-02-03 2005-02-01 Electrolyte membrane and fuel cell using the electrolyte membrane Pending JPWO2005076396A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004026650 2004-02-03
JP2004026650 2004-02-03
PCT/JP2005/001372 WO2005076396A1 (en) 2004-02-03 2005-02-01 Electrolyte film and fuel cell using the electrolyte film

Publications (1)

Publication Number Publication Date
JPWO2005076396A1 true JPWO2005076396A1 (en) 2007-10-18

Family

ID=34835859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517670A Pending JPWO2005076396A1 (en) 2004-02-03 2005-02-01 Electrolyte membrane and fuel cell using the electrolyte membrane

Country Status (2)

Country Link
JP (1) JPWO2005076396A1 (en)
WO (1) WO2005076396A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487418B2 (en) * 2009-12-16 2016-11-08 Fujifilm Manufacturing Europe B.V. Curable compositions and membranes
US9539548B2 (en) * 2009-12-16 2017-01-10 Fujifilm Manufacturing Europe B.V. Devices including a membrane formed from a curable composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024500B2 (en) * 2005-09-20 2012-09-12 株式会社リコー Solid electrolyte, fuel cell, and electronic device
JP2007109432A (en) * 2005-10-11 2007-04-26 Nitto Denko Corp Electrolyte membrane and polymer electrolyte fuel cell
DE102005051887A1 (en) * 2005-10-29 2007-05-03 Pemeas Gmbh Membrane for fuel cells containing polymers comprising phosphonic acid and / or sulfonic acid groups, membrane-electrode assembly and their application in fuel cells
GB201112382D0 (en) * 2011-07-19 2011-08-31 Fujifilm Mfg Europe Bv Curable compositions and membranes
GB201206415D0 (en) * 2012-04-12 2012-05-23 Fujifilm Mfg Europe Bv Curable compositions and membranes
GB201407397D0 (en) * 2014-04-28 2014-06-11 Fujifilm Mfg Europe Bv Curable compositions and membranes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335473A (en) * 1998-05-26 1999-12-07 Tokuyama Corp Ion exchange film and its use
JP2001135328A (en) * 1999-11-01 2001-05-18 Tokuyama Corp Diaphragm for solid high molecular electrolyte fuel cell
JP2002083514A (en) * 2000-09-06 2002-03-22 Nitto Denko Corp Proton conductive membrane or film and fuel cell using them
JP2003022823A (en) * 2001-07-09 2003-01-24 Nitto Denko Corp Proton conductive membrane or film, and fuel cell using it
JP2003086021A (en) * 2000-10-19 2003-03-20 Uni-Chemical Co Ltd Solid macromolecular electrolyte (composite) film containing phosphoric acid group and method for manufacturing the same
JP2003157862A (en) * 2001-11-20 2003-05-30 Tokuyama Corp Ion exchange resin membrane and its manufacturing method
JP2003257238A (en) * 2002-03-04 2003-09-12 Nitto Denko Corp Proton conduction membrane or film and fuel cell using the same
JP2003263998A (en) * 2002-03-07 2003-09-19 Japan Science & Technology Corp Electrolyte membrane and solid polymer fuel cell using the same
JP2004014436A (en) * 2002-06-11 2004-01-15 Japan Atom Energy Res Inst Electrolyte film for fuel cell consisting of fluorine polymer ion exchange membrane

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335473A (en) * 1998-05-26 1999-12-07 Tokuyama Corp Ion exchange film and its use
JP2001135328A (en) * 1999-11-01 2001-05-18 Tokuyama Corp Diaphragm for solid high molecular electrolyte fuel cell
JP2002083514A (en) * 2000-09-06 2002-03-22 Nitto Denko Corp Proton conductive membrane or film and fuel cell using them
JP2003086021A (en) * 2000-10-19 2003-03-20 Uni-Chemical Co Ltd Solid macromolecular electrolyte (composite) film containing phosphoric acid group and method for manufacturing the same
JP2003022823A (en) * 2001-07-09 2003-01-24 Nitto Denko Corp Proton conductive membrane or film, and fuel cell using it
JP2003157862A (en) * 2001-11-20 2003-05-30 Tokuyama Corp Ion exchange resin membrane and its manufacturing method
JP2003257238A (en) * 2002-03-04 2003-09-12 Nitto Denko Corp Proton conduction membrane or film and fuel cell using the same
JP2003263998A (en) * 2002-03-07 2003-09-19 Japan Science & Technology Corp Electrolyte membrane and solid polymer fuel cell using the same
JP2004014436A (en) * 2002-06-11 2004-01-15 Japan Atom Energy Res Inst Electrolyte film for fuel cell consisting of fluorine polymer ion exchange membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487418B2 (en) * 2009-12-16 2016-11-08 Fujifilm Manufacturing Europe B.V. Curable compositions and membranes
US9539548B2 (en) * 2009-12-16 2017-01-10 Fujifilm Manufacturing Europe B.V. Devices including a membrane formed from a curable composition

Also Published As

Publication number Publication date
WO2005076396A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP4656060B2 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
JP4284463B2 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
CA2450346C (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
WO2005098875A1 (en) Electrolyte membrane, method for producing membrane electrode assembly, and fuel cell
JPWO2005076396A1 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
WO2006059582A1 (en) Electrolyte membrane and solid polymer fuel cell using same
JP4247571B2 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
US20080020255A1 (en) Electrolyte Membrane and Fuel Cell
JP2007035599A (en) Polyelectrolyte for fuel cell, electrolyte membrane, and fuel cell
JP4561214B2 (en) Electrolyte membrane
JP2004253336A (en) Electrolyte film and fuel cell using it
JPWO2006092914A1 (en) Membrane electrode assembly, method for producing the same, and direct methanol fuel cell
JP2007048543A (en) Electrolyte film and direct liquid fuel type fuel cell
JP4851757B2 (en) Electrolyte membrane and polymer electrolyte fuel cell
JP2005268032A (en) Polymer electrolyte membrane, its evaluation method, and fuel cell
JP2007194019A (en) Cross-linked electrolyte film and its manufacturing method
JP4379025B2 (en) Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point
JP2009093919A (en) Manufacturing method for aromatic polyether electrolyte membrane
JP2004253183A (en) Manufacturing method of electrolyte membrane, and fuel cell
JP2005063690A (en) Electrolyte membrane and fuel cell using same
JP2010047724A (en) Electrolyte polymer having improved humidity retention property, and method of manufacturing the same
JP2008135399A (en) Electrolyte membrane-electrode assembly, fuel cell, and method of manufacturing electrolyte membrane-electrode assembly
JP2009218154A (en) Manufacturing method of membrane electrode assembly
JP2007048551A (en) Electrolyte membrane for direct liquid fuel type fuel cell, and direct liquid fuel type fuel cell
JP2009193726A (en) Composite film, and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914