JP2004014436A - Electrolyte film for fuel cell consisting of fluorine polymer ion exchange membrane - Google Patents

Electrolyte film for fuel cell consisting of fluorine polymer ion exchange membrane Download PDF

Info

Publication number
JP2004014436A
JP2004014436A JP2002169775A JP2002169775A JP2004014436A JP 2004014436 A JP2004014436 A JP 2004014436A JP 2002169775 A JP2002169775 A JP 2002169775A JP 2002169775 A JP2002169775 A JP 2002169775A JP 2004014436 A JP2004014436 A JP 2004014436A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
membrane
graft
polymer ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002169775A
Other languages
Japanese (ja)
Other versions
JP3932338B2 (en
Inventor
Masaru Yoshida
吉田 勝
Yosuke Morita
森田 洋右
Takeshi Suwa
諏訪 武
Tomoyuki Murakami
村上 知之
Soji Nishiyama
西山 総治
Takashi Wano
和野 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Nitto Denko Corp filed Critical Japan Atomic Energy Research Institute
Priority to JP2002169775A priority Critical patent/JP3932338B2/en
Publication of JP2004014436A publication Critical patent/JP2004014436A/en
Application granted granted Critical
Publication of JP3932338B2 publication Critical patent/JP3932338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorine polymer ion exchange membrane excellent in characteristics as a solid polymer electrolyte and in oxidation resistance, for one by radiation graft. <P>SOLUTION: With the fluorine polymer ion exchange membrane with a sulfonic acid group introduced to a double bond of a graft chain after radiation graft polymerization of fluorinated butadiene with a fluorine polymer film base material, and its manufacturing method, a graft ratio is 10 to 150%, and an ion exchange capacity is 0.3 to 3.0 meg/g. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に適した固体高分子電解質膜で優れた耐酸化性と広範囲なイオン交換容量を有するフッ素系高分子イオン交換膜及びその製造方法に関する。
【0002】
【従来の技術】
固体高分子電解質型イオン交換膜を用いた燃料電池はエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として期待されている。この燃料電池では優れた特性を有する高分子イオン交換膜の開発は最も重要な技術の一つである。
【0003】
高分子イオン交換膜型燃料電池においては、イオン交換膜はプロトンを伝導するための電解質として作用し、また、加圧下においても燃料である水素やメタノールと酸化剤とを直接混合させないための隔膜としての役割も有する。このようなイオン交換膜としては、電解質としてイオン交換容量が高いこと、大きな電流を長期間流すので膜の化学的な安定性、特に、膜の劣化の主因となる水酸化ラジカル等に対する耐性(耐酸化性)が優れていること、電気抵抗を低く保持するために保水性が一定で高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度が強いこと及び寸法安定性が優れていること、燃料である水素ガスや酸素ガスについて過剰なガス透過性を有しないことなどが要求される。
【0004】
初期の高分子イオン交換膜型燃料電池では、スチレンとジビニルベンゼンの共重合で製造した炭化水素系高分子イオン交換膜が使用された。しかし、このイオン交換膜は耐酸化性に起因する耐久性が非常に劣っていたため実用性に乏しく、その後はデュポン社により開発されたパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」等が一般に用いられてきた。
【0005】
しかしながら、「ナフィオン」等の従来のフッ素系高分子イオン交換膜は、化学的な耐久性や安定性には優れているが、イオン交換容量が1meq/g前後と小さく、また、保水性が不十分でイオン交換膜の乾燥が生じてプロトン伝導性が低下したり、あるいは、メタノールを燃料とする場合にはアルコール類に対する膜の膨潤が起きる。これは、イオン交換容量を大きくするため、スルホン酸基を多く導入しようとすると、高分子鎖中に架橋構造がないために膜強度が著しく低下し、容易に破損するようになる。したがって、従来のフッ素系高分子のイオン交換膜ではスルホン酸基の量を膜強度が保持される程度に抑える必要があり、このためイオン交換容量が1meq/g程度ものしかできなかった。また、ナフィオンなどのフッ素系高分子イオン交換膜はモノマーの合成が困難かつ複雑であり、また、これを重合してポリマー膜を製造する工程も複雑なため非常に高価であり、プロトン交換膜型燃料電池を自動車などへ搭載して実用化する場合の大きな障害になっている。そのため、前記ナフィオン等に替わる低コストで高性能な電解質膜を開発する努力がおこなわれてきた。
【0006】
また、本発明と密接に関連する放射線グラフト重合法では、フッ素系高分子膜にスルホン酸基を導入することができるモノマーをグラフトして、固体高分子電解質膜を作製する試みがなされている。しかし、通常のフッ素系高分子膜ではグラフト反応が膜の内部まで進行せず膜表面に限られるため、電解質膜としての特性が向上しない。また、電子線やγ線などの放射線を照射した場合に、選んだフッ素樹脂の構造によっては樹脂が劣化する場合があった。さらに、グラフトモノマーとして炭化水素構造のみのモノマーでは耐酸化性が低いことが問題であった。例えば、炭化水素構造を含むエチレン−テトラフルオロエチレン共重合体(以下ETFEと略す)にスチレンモノマーを放射線グラフト反応により導入し、次いでスルホン化することにより合成したイオン交換膜は燃料電池用イオン交換膜として機能する(特開平9−102322)。しかし、欠点として高分子膜の主鎖やポリスチレングラフト鎖が炭化水素で構成されているため、膜に大きな電流を長時間流すと炭化水素鎖部やポリスチレングラフト鎖部の酸化劣化が起こり、膜のイオン交換能が大幅に低下する。さらに、この炭化水素構造を多く含むイオン交換膜を固体電解質膜に用いるとガス拡散電極の触媒層に十分な撥水性がない場合には、特に燃料電池反応で水が生成する正極で、電極が湿り過ぎることに起因する出力低下が起こる問題が指摘されている(特開平11−111310)。
【0007】
【発明が解決しようとする課題】
本発明は、上述のような従来技術の問題点を克服するためになされたものであり、放射線グラフトによるフッ素系高分子イオン交換膜において、固体高分子電解質としての特性に優れ、かつ、耐酸化性の優れた膜を提供するものである。
【0008】
また、本発明は、フッ素系高分子イオン交換膜における最大の欠点であるイオン交換容量が小さく、かつ、保水性が悪いこと、また、炭化水素モノマーのみをグラフトした架橋PTFE系イオン交換膜における最大の欠点である耐酸化性が低いことなどを解決課題とする。
【0009】
【課題を解決するための手段】
本発明は、優れた耐酸化性と広いイオン交換容量を有するフッ素系高分子イオン交換膜であり、特に燃料電池に適したイオン交換膜を提供する。
【0010】
即ち、基材として、フッ素系高分子をマトリックスとし、これに放射線照射して各種のモノマーをグラフトし、さらに、グラフト鎖へのスルホン酸基の導入について研究を進めた結果、フッ素化ブタジエンをモノマーに選択することで、イオン交換容量などの各特性を適切で広い範囲内に制御することができるフッ素系高分子イオン交換膜を発明するに至った。フッ素化ブタジエンをグラフト共重合させた後、発煙硫酸で直接、スルホン酸基とするか、或いは、亜硫酸ナトリウム若しくは亜硫酸水素ナトリウムの溶液でスルホン酸ナトリウム基とし、これをさらにスルホン酸基とすることを特徴としたフッ素系高分子イオン交換膜を提供するものであり、かつ、このイオン交換膜のグラフト率が10〜150%、イオン交換容量が0.3〜3.0meq/gであることを特徴とするフッ素系高分子イオン交換膜、及び、その製造方法を提供するものである。
【0011】
【発明の実施の形態】
本発明で使用できる基材ポリマーとして、フッ素系高分子が挙げられる。そして、フッ素系高分子は予め架橋しておくと、耐熱性が向上するので、高温作動の燃料電池には好適である。具体的には、ポリテトラフルオロエチレン(以下PTFEと略す)、ポリテトラフルオロエチレン−六フッ化プロピレン共重合体(以下FEPと略す)、ポリテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(以下PFAと略す)、ポリフッ化ビニリデン(以下PVDFと略す)、又はエチレン−テトラフルオロエチレン共重合体(ETFE)の架橋、未架橋フィルムが適応できるが、未架橋PTFEだけは耐放射線性に乏しく、適応困難である。即ち、PTFEは予め、架橋した後にグラフト重合することが必要である。また、FEPあるいはPFAは、予め架橋しておく方が好ましいが、未架橋でもグラフト重合の際の吸収線量を30kGy以下に抑制すれば、膜強度の低下は小さい。一方、PVDFやETFEは未架橋でも耐放射線を有するが、架橋することで、耐熱性が向上する。
【0012】
架橋PTFEの製造方法は特開平6−116423に開示されている。
架橋FEPやPFAの製造方法はRadiation Physical Chemistry vol.42、NO.1/3、pp.139−142、1993に掲載されている。
【0013】
特に本発明に最も好適なフッ素系高分子として、架橋PTFEが好ましく、詳述する。
架橋PTFEと記載しているが、分子構造的には、長鎖分岐型で、長鎖分岐型
PTFEとは、下記の式
【化1】及び
【化2】で示されるくり返し単位を有する
フッ素系高分子、及び
【化1】と
【化2】が結合したものを繰り返し単位とするフッ素系高分子の混合物を指す。
【0014】
【化1】

Figure 2004014436
または、分子末端が−CF=CF
式中のn、m、r、kは1以上の任意の整数変数。m、n、k>r。
【0015】
【化2】
Figure 2004014436
式中のn、m、r、kは
【化1】に同じ。また、c≒n,d≒m,r≒fである。また、PTFE主鎖と長鎖分岐との結合がエーテル結合(−O−)となっているもの、さらに、分子鎖中に放射線照射によって生成した二重結合を含む。
【0016】
その分子構造から見ても無定型部分が多く、未架橋のPTFEのグラフト率が低いという欠点を解決できる。例えば、グラフトモノマーとしてスチレンを用いた場合、未架橋のPTFEに比較し、架橋PTFEはグラフト率を著しく増加させることができ、このため未架橋のPTFEの2〜10倍のスルホン酸基をPTFEに導入できることを本発明者らはすでに見出した(特願2000−170450)。
【0017】
架橋PTFEの製法は、PTFEを300〜365℃の温度範囲、10−3〜10Torrの減圧下、または、10−3〜2Torr(1Torr=1mm水銀柱)の酸素分圧の不活性ガス中でγ線、X線や電子線の放射線を5〜500kGy照射して作製することができる。不活性ガスとしては窒素、アルゴン、ヘリウムガスなどを用いる。
【0018】
本発明によるフッ素系高分子イオン交換膜は、上記の方法によって得られた架橋PTFEやFEP,PFA,ETFE,PVDF等の他のフッ素系高分子に下記の(1)〜(2)の各モノマーを放射線照射によってグラフト重合させる。
(1)次式:
  n+m=6、n≧1
の構造を有するフッ素化ブタジエン、例えば、1,1,2,2−テトラフルオロ−1,3ブタジエン、2,3−ジフルオロ−1,3ブタジエンがあげられる。及び、ヘキサフルオロ−1,3ブタジエン。
(2)主成分モノマーとして(1)のフッ素化ブタジエンと、コモノマーとして、フッ素化ブタジエンの50モル%以下の量の下記のa)〜c)から選ばれたモノマー:
a)炭素数4以下で、重合性二重結合を有する炭化水素系モノマーとして、例えば、エチレン、プロピレン、ブテン−1、ブテン−2、イソブテンなど;
b)CH=CR(COOR)若しくはCF=CF(COOR)で、R=−H,−CH,−F、R=−H,−CH,−C,−C,−Cであるアクリル系モノマーとしては、例えば、CH=CH(COOH)、CH=CH(COOCH)、CH=C(CH)(COOH)、CH=C(CH)(COOCH)、CH=CF(COOCH)、又は、CF=CF(COOCH)など;
c)炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー、例えば、CF=CF、CF=CHF、CF=CFCl、CF=CFBr、CF=CH、CHF=CHなどのフロオロエチレン系モノマー、CF=CFCFのフルオロプロピレン系モノマー、CF=CFCFCF(フルオロブテン−1)、CF=C(CF(フロオロイソブテン)、CFCF=CFCF(フルオロブテン−2)、CF=CFCF=CF(フルオロブタジエン)のフルオロブテン系モノマーなど、及び、CF=CFCHCHのハイドロフルオロビニル系モノマーやCF=CFOCHCHのハイドロフルオロビニルエーテル系モノマーなど。
【0019】
これら(1)〜(2)の各モノマーは、フレオン112(CClFCClF)、フレオン113(CClFCClF)、n−ヘキサン、イソプロピルアルコール、t−ブタノール、ベンゼン、トルエン、ヘキサフルオロベンゼン、クロロエタンやクロロメタン系溶媒などの溶媒で該モノマーを希釈したものを用いても良い。ガス状のモノマーを用いるときは、不活性なガスを用いてモノマーガスの分圧を1〜50気圧とし、液体状モノマー溶液と接触させ、かつ、この溶液を攪拌しながらグラフト重合すると良い。
【0020】
架橋PTFEフィルムへの上記モノマーのグラフト重合は、架橋PTFEに電子線、γ線やX線を室温、不活性ガス中で5〜500kGy照射した後、不活性ガスのバブリングや凍結脱気で酸素ガスを除いたモノマー溶液中にこの照射した架橋PTFEを浸漬する。
【0021】
グラフト重合は、架橋PTFEを放射線照射後モノマーとグラフト反応させる、いわゆる前照射法か、又は架橋PTFEとモノマーを同時に放射線照射してグラフトさせる、いわゆる同時照射法のいずれかの方法によってもよい。
【0022】
グラフト重合温度は、モノマーや溶媒の沸点以下の温度で、通常0℃〜100℃で行なうのがよい。酸素の存在はグラフト反応を阻害するため、これら一連の操作はアルゴンガスや窒素ガスなどの不活性ガス中で、また、モノマーやモノマーを溶媒に溶かした溶液は常法の処理(バブリングや凍結脱気)で酸素を除去した状態で使用する。
【0023】
グラフト率(実施例の式(1)参照)は放射線の線量とほぼ比例関係にあり、線量が多いほどグラフト率は高くなるが、グラフト率は徐々に飽和してくる。グラフト率は架橋PTFEに対し、10〜150%、より好ましくは15〜100%である。
【0024】
上記(1)〜(2)で得られたグラフト鎖中のブタジエンの二重結合に発煙硫酸で直接、スルホン酸基を導入する、或いは、亜硫酸ナトリウム(NaSO)若しくは亜硫酸水素ナトリウム(NaHSO)の水溶液、又は亜硫酸ナトリウム若しくは亜硫酸水素ナトリウムの水とアルコールの混合溶液中で反応させて、スルホン酸ナトリウム基[−SONa]とし、引き続き、得られた[−SONa]基を硫酸溶液でスルホン酸基[−SOH]とした架橋PTFEグラフト共重合体であるフッ素系高分子イオン交換膜が得られる。
【0025】
発煙硫酸、或いは、亜硫酸ナトリウム(NaSO)若しくは亜硫酸水素ナトリウム(NaHSO)の水溶液、または、亜硫酸ナトリウム若しくは亜硫酸水素ナトリウムの水とアルコールの混合溶液中の濃度は、室温における亜硫酸ナトリウムや亜硫酸水素ナトリウムの飽和濃度以下が良い。また、アルコールとしてはイソプロピルアルコールやブチルアルコールなどが良い。
【0026】
架橋PTFEグラフト共重合膜における上記のスルホン化反応温度は室温〜200℃で、より好ましくは80℃〜160℃である。膜の厚さが20μm〜500μmであるとき、反応時間は5〜60分である。反応に際しては、水溶液で最高で50気圧程度になるので、耐圧のオートクレーブを用い、水/アルコール溶液系では安全上、空気を除いて窒素置換し、温度の上限も160℃が望ましい。
【0027】
引き続いて、得られたグラフト鎖中のスルホン酸ナトリウム基[−SONa]を1N〜2N硫酸溶液中、60℃でスルホン酸基[−SOH]とする。
本発明によるフッ素系高分子イオン交換膜はグラフト量と導入されたスルホン酸基の量によって、この膜のイオン交換容量を変えることができる。イオン交換容量とは、乾燥イオン交換膜の重量1g当たりのイオン交換基量(meq/g)である。グラフトモノマーの種類にもよるが、グラフト率が10%で以下ではイオン交換容量が0.3meq/g、以下であり、グラフト率が150%以上では膜の膨潤が大きくなる。すなわち、グラフト率を高くしてイオン交換基を多く導入すれば、イオン交換容量は高くなる。しかし、イオン交換基量を多くしすぎると、含水時に膜が膨潤して膜の強度が低下する。これらのことから、本発明によるフッ素系高分子イオン交換膜のイオン交換容量は0.3meq/g〜3.0meq/g、より好ましくは、0.5meq/g〜2.0meq/gである。
【0028】
本発明のフッ素系高分子イオン交換膜では導入されたスルホン酸基の量によって、本発明のフッ素系高分子の含水率を制御できる。この膜を燃料電池用イオン交換膜として使用する場合、含水率が低すぎると運転条件のわずかな変化によって電気伝導度やガス透過係数が変わり好ましくない。従来のナフィオン膜はほとんどが−(CF)−で構成されているために、80℃以上の高い温度で電池を作動させると水原子が膜中に不足し、膜の導電率が急速に低下する。これに対し、本発明のイオン交換膜はグラフト鎖中にカルボキシル基などの親水基を導入することができるため、含水率は主にスルホン酸基の量によるが10〜80重量(wt)%の範囲で制御できる。一般的にはイオン交換容量が増すにつれて含水率も増大するが、本発明のイオン交換膜は含水率を変化させることができることから、膜の含水率は10〜80wt%、好ましくは20〜60wt%とすることができる。
【0029】
本発明のフッ素系高分子膜は
【化1】や
【化2】におけるPTFE主鎖末端の絡み合いや長鎖分岐両末端の結合によってイオン交換容量が3.0meq/g程度まで多量のスルホン酸基を導入しても、膜の力学特性や寸法安定性が保たれ、実用に供することができる。高いイオン交換容量と膜の力学的特性の優れた膜は実用上極めて重要な発明である。
【0030】
高分子イオン交換膜はイオン交換容量とも関係する電気伝導度が高いものほど電気抵抗が小さく、電解質膜としての性能は高い。しかし、25℃におけるイオン交換膜の電気伝導度が0.05(Ω・cm)−1以下であると燃料電池としての出力性能が著しく低下する場合が多いため、イオン交換膜の電気伝導度は0.05(Ω・cm)−1以上、より高性能のイオン交換膜では0.10(Ω・cm)−1以上に設計されていることが多い。本発明によるイオン交換膜では25℃におけるイオン交換膜の電気伝導度がナフィオン膜と同等かそれよりも高い値が得られた。
【0031】
イオン交換膜の電気伝導度を上げるために、イオン交換膜の厚みを薄くすることも考えられる。しかし現状では、あまり薄いイオン交換膜では破損しやすく、イオン交換膜自体の製作も難しいのが実状である。したがって、通常では30〜200μm厚の範囲のイオン交換膜が使われている。本発明の場合、膜厚は10〜500μm、好ましくは20μm〜100μmの範囲のものが有効である。
【0032】
燃料電池膜においては、現在、燃料の候補の一つとして考えられているメタノールがあるが、パーフルオロスルホン酸膜であるナフィオン膜(デュポン社)は分子間の架橋構造や絡み合い構造がないためにメタノールによって大きく膨潤し、燃料であるメタノールが電池膜を通してアノード(燃料極)からカソード(空気極)へと拡散し、発電効率が低下することが重大な問題とされている。しかし、本発明によるフッ素系高分子膜では高いイオン交換容量にも拘わらず、架橋PTFEのPTFE主鎖末端の絡み合いや長鎖分岐鎖両末端での結合、さらに、グラフト鎖の絡み合いにより、メタノールを含めたアルコール類による膜の膨潤はほとんど認められない。このため、改質器を用いずにメタノールを直接燃料とするダイレクト・メタノール型燃料電池(Direct methanol Fuel cell)の膜として有用である。
【0033】
燃料電池膜においては、膜の耐酸化性は膜の耐久性(寿命)に関係する極めて重要な特性である。これは電池稼働中に発生するOHラジカル等がイオン交換膜を攻撃して、膜を劣化させるものである。架橋PTFEに炭化水素系のスチレンをグラフトした後、ポリスチレングラフト鎖をスルホン化して得た高分子イオン交換膜の耐酸化性は極めて低い。例えば、グラフト率100%のポリスチレン鎖をスルホン化したポリスチレングラフト架橋PTFEイオン交換膜は80℃の3%過酸化水素水溶液中、約60分でイオン交換膜が劣化しイオン交換容量がほぼ半分となる。これは、OHラジカルの攻撃によって、ポリスチレン鎖が容易に分解するためである。これに対し、本発明によるフッ素系高分子イオン交換膜はグラフト鎖がフッ素系モノマーの重合体、ないしは、主にフッ素系モノマー同志の共重合体であるために、フッ素化合物の優れた耐性が発揮されるため耐酸化性がきわめて高く、80℃の3%過酸化水素水溶液中に24時間以上置いてもイオン交換容量はほとんど変化しない。
【0034】
以上のように、本発明のフッ素系高分子イオン交換膜は優れた耐酸化性や耐メタノール性を有すると共に、膜としての重要な特性、すなわち、イオン交換容量0.3〜3.0meq/gを広い範囲に制御できることも本発明の特徴である。
【0035】
【実施例】
以下、本発明を実施例及び比較例により説明するが、本発明はこれに限定されるものではない。
【0036】
なお、各測定値は以下の測定によって求めた。
(1)グラフト率
架橋PTFEを主鎖部、フッ素化ブタジエンのグラフト重合した部分をグラフト鎖部とすると、主鎖部に対するグラフト鎖部の重量比は、次式のグラフト率(Xdg(wt%))として表される。
【0037】
dg=100(W−W)/W            (1)
:グラフト前の架橋PTFEフィルムの重さ(g)
:グラフト後の架橋PTFEフィルム(乾燥状態)の重さ(g)
(2)イオン交換容量
膜のイオン交換容量(Iex(meq/g))は次式で表される。
【0038】
ex=n(酸基)obs/W              (2)
n(酸基)obs:イオン交換膜の酸基濃度(mM/g)
     :イオン交換膜の乾燥重量(g)
n(酸基)obsの測定は、完璧を期すため、膜を再度1M(1モル)硫酸溶液中に50℃で4時間浸漬し、完全に酸型(H型)とした。その後、3MのNaCl水溶液中50℃、4時間浸漬して−SONa型とし、置換されたプロトン(H)を0.2NのNaOHで中和滴定し酸基濃度を求めた。
(3)含水率
室温で水中に保存しておいたH型のイオン交換膜を水中から取出し軽くふき取った後(約1分後)の膜の重量をW(g)とし、その後、この膜を60℃にて16時間、真空乾燥した時の膜の重量W(g)を乾燥重量とすると、W、Wから次式により含水率が求められる。
【0039】
含水率(%)=100・(W−W)/W        (3)
(4)電気伝導度
イオン交換膜の電気伝導性は、交流法による測定(新実験化学講座19、高分子化学〈II〉、p.992,丸善)で、通常の膜抵抗測定セルとヒュ−レットパッカード製のLCRメータ、E−4925Aを使用して膜抵抗(R)の測定を行った。1M硫酸水溶液をセルに満たして膜の有無による白金電極間(距離5mm)の抵抗を測定し、膜の電気伝導度(比伝導度)は次式を用いて算出した。
【0040】
κ=1/R・d/S  (Ω−1cm−1)        (4)
κ:膜の電気伝導度((Ω−1cm−1
d:イオン交換膜の厚み(cm)
S:イオン交換膜の通電面積(cm
電気伝導度測定値の比較のために、直流法でMark W.Verbrugge,Robert F.Hill等(J.Electrochem.Soc.,.137,3770−3777(1990))と類似のセル及びポテンショスタット、関数発生器を用いて測定した。交流法と直流法の測定値には良い相関性が見られた。下記の表1の値は交流法による測定値である。
(5)耐酸化性(重量残存率%)
60℃で16時間真空乾燥後の重量をWとし、80℃の3%過酸化水素溶液に24時間処理した膜の乾燥後重量をWとする。
耐酸化性=100(W/W
実施例1
架橋PTFEフィルムを得るために以下の照射を行った。厚さ50μmのPTFEフィルム(日東電工製、品番No.900)の10cm角をヒーター付きのSUS製オートクレーブ照射容器(内径7cmφx高さ30cm)に入れ、容器内を10−3Torrに脱気してアルゴンガスに置換した。その後、電気ヒータで加熱してPTFEフィルムの温度を340℃として、60Co−γ線を線量率3kGy/hで線量90kGy(30時間)照射した。照射後、容器を冷却してPTFEフィルムを取り出した。この高温照射で得られた架橋PTFEフィルムは、フィルムの透明性が上がっていることから、結晶サイズが未架橋PTFEよりもかなり小さくなっていることを示している。この架橋PTFEフィルムの引張り強度は18MPa、破断伸びは320%(引張り速度200mm/minで試料片ダンベル状4号(JIS−K6251−1993))、DSC測定による融解温度は315℃であった。
【0041】
この架橋PTFEフィルムをコック付きのガラス製セパラブル容器(内径3cmφx15cm高さ)に入れて脱気後アルゴンガスで置換した。この状態で架橋PTFEフィルム4cmに、再び、γ線(線量率10kGy/h)を60kGy室温で照射した。引き続いて、フレオン112の25mlをアルゴンガスのバブリングによって酸素を除いた後、照射された架橋PTFEフィルムの入ったガラス容器中にフィルムが浸漬されるまで入れ、さらに、容器を0℃に冷やしてヘキサフルオロ−1,3−ブタジエン(CF=CF−CF=CF)10gを導入した。容器を密閉し、60℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。以下の式(1)によって求めたグラフト率は58%であった。
【0042】
このグラフト重合した架橋PTFEフィルムを耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(NaSO)の20重量%(wt%)水溶液を加えて、溶液に膜を浸し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを135℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取り出し、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を下記の表1に示す。
【0043】
実施例2
実施例1と同様にγ線を90kGy照射して得た架橋PTFEフィルム(4cm)をコック付きのガラス製セパラブル容器(内径3cmφx15cm高さ)に入れて脱気後アルゴンガスで置換した。この状態で再び、γ線(線量率10kGy/h)を60kGy室温で照射した。照射後、容器を真空脱気し、アルゴンガスのバブリングで酸素を除いたフレオン112を照射された架橋PTFEフィルムが浸漬(約25ml)されるまで入れ、さらに、容器を0℃に冷やしてヘキサフルオロ−1,3−ブタジエン(CF=CF−CF=CF)10gを導入した。さらに、2気圧に調整したテトラフルオロエチレン(CF=CF)ガスを反応容器に接続し、容器内を2気圧とした。磁気スターラーで溶液を攪拌しながら、室温で48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。実施例の式(1)によって求めたグラフト率は71%であった。
【0044】
このグラフト共重合した架橋PTFE膜を耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(NaSO)の20重量%(wt%)水溶液にイソプロパノール(1:3(水))を加えた溶液で膜を浸し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを120℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取りだし、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を表1に示す。
【0045】
なお、各測定値は実施例1と同様にして求めた。
実施例3
室温、空気中で電子線を100kGy照射して架橋した厚さ50μm、4cmのETFEフィルムをコック付きのSUS製耐圧オートクレーブ(内径4cmφx12cmH)に入れて脱気後アルゴンガスで置換した。この状態で再び、γ線(線量率10kGy/h)を60kGy室温で照射した。照射後、容器を真空脱気し、アルゴンガスのバブリングで空気を除いたフレオン112をETFEフィルムが浸漬される量(25ml)を入れた後、容器を0℃に冷却してヘキサフルオロ−1,3−ブタジエン(CF=CF−CF=CF)10gを導入した。容器を密封して溶液を攪拌しながら、60℃で48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。実施例の式(1)によって求めたグラフト率は76%であった。
【0046】
このグラフト重合したETFEフィルムを耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(NaSO)の20重量%(wt%)水溶液にイソプロパノール(1:3(水))を加えた溶液で膜を浸し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを120℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取りだし、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を表1に示す。
【0047】
なお、各測定値は実施例1と同様にして求めた。
実施例4
厚さ50μmのFEPフィルムの3cm角を20メッシュの2枚のカーボン布ではさみ、ヒーター付きのSUS製オートクレーブ照射容器(内径7cmφx高さ30cm)に入れ、容器内を10−3Torrに脱気してアルゴンガスに置換した。その後、電気ヒータで加熱してFEPフィルムの温度を305℃として、60Co−γ線を線量率3kGy/hで線量90kGy(30時間)照射した。照射後、容器を冷却して架橋FEPフィルムを取り出した。架橋FEPフィルム4cmをコック付きのガラス製セパラブル容器(内径3cmφx15cmH)に入れて脱気後アルゴンガスで置換した。この状態でFEPフィルムに、再び、γ線(線量率10kGy/h)を60kGy室温で照射した。引き続いて、アルゴンガスのバブリングで空気を除いたフレオン112をFEPフィルムが浸漬される量(25ml)を入れ、容器を0℃に冷却してヘキサフルオロ−1,3−ブタジエン(CF=CF−CF=CF)10gを導入した。その後、容器を密封して50℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。実施例の式(1)によって求めたグラフト率は62%であった。
【0048】
このグラフト重合したFEPフィルムを耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(NaSO)の20重量%(wt%)水溶液を加えて、溶液に膜を浸漬し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを135℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取りだし、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を表1に示す。
【0049】
なお、各測定値は以下の測定によって求めた。
実施例5
厚さ50μm、4cmの架橋してないPFAフィルムをコック付きのガラス製セパラブル容器(内径3cmφx15cmH)に入れて脱気後アルゴンガスで置換した。この状態で、γ線(線量率10kGy/h)を20kGy室温で照射した。引き続いて、アルゴンガスのバブリングで空気を除いたフレオン112をPFAフィルムが浸漬される量(25ml)を入れ、容器を0℃に冷却してヘキサフルオロ−1,3−ブタジエン(CF=CF−CF=CF)10gを導入した。その後、容器を密封して50℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。実施例の式(1)によって求めたグラフト率は43%であった。
【0050】
このグラフト重合したPFAフィルムを耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(NaSO)の20重量%(wt%)水溶液にイソプロパノール(1:3(水))を加えた溶液で膜を浸し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを120℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取りだし、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を表1に示す。
【0051】
なお、各測定値は実施例1と同様にして求めた。
実施例6
室温、空気中で電子線を100kGy照射して架橋した厚さ50μm、4cmのPVDFフィルムをコック付きのSUS製耐圧オートクレーブ(内径4cmφx12cmH)に入れて脱気後アルゴンガスで置換した。この状態で再び、γ線(線量率10kGy/h)を60kGy室温で照射した。
引き続いて、アルゴンガスのバブリングで空気を除いたフレオン112をPVDFフィルムが浸漬される量(25ml)を入れ、容器を0℃に冷却してヘキサフルオロ−1,3−ブタジエン(CF=CF−CF=CF)10gを導入した。その後、容器を密封して50℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。実施例の式(1)によって求めたグラフト率は78%であった。
【0052】
このグラフト重合したPVDFフィルムを耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(NaSO)の20重量%(wt%)水溶液にイソプロパノール(1:3(水))を加えた溶液で膜を浸し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを120℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取り出し、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。
【0053】
本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を表1に示す。なお、各測定値は実施例1と同様にして求めた。
比較例1、2
下記の表1に示したナフィオン115、ナフィオン117(デュポン社製)について測定されたイオン交換容量、含水率、および、電気伝導度の結果を表1の比較例1、2に示す。
【0054】
比較例3
実施例1で得た架橋PTFEフィルム(厚さ50μm)をコック付きのガラス製セパラブル容器(内径3cmφx15cmH)に入れて脱気後アルゴンガスで置換した。この状態で架橋PTFEフィルムに、再び、γ線(線量率10kGy/h)を45kGy室温で照射した。アルゴンガスのバブリングによって酸素を除きアルゴンガス置換したスチレンモノマーを架橋PTFEフィルムの入ったガラス容器に、膜が浸漬されるまで導入した。容器内を攪拌し、60℃で6時間反応させた。その後、グラフト共重合膜をトルエン、続いてアセトンで洗浄し、乾燥した。グラフト率は93%であった。このグラフト重合膜を0.5Mクロルスルホン酸(1,2−ジクロロエタン溶媒)に浸漬し60℃、24時間スルホン化反応を行った。その後、この膜を水洗いしてスルホン酸基とした。
(アルコールの膨潤度の測定)
実施例1およびナフィオン117を3Nの硫酸溶液に浸漬し、スルホン酸基をH型とした。そして、室温水に浸漬し、湿潤状態で寸法を測定した。次に膜をメタノール、イソプロパノール、の各アルコール溶液に浸けて60℃、3時間保持し、その後、室温まで一夜放冷した後、膜の寸法変化を測定し、その結果を図1に示す。本実施例で得られた膜は、ナフィオン膜に比べメタノールなどによる膜の膨潤がほとんど認められないので、直接メタノール型燃料電池の膜材料としてきわめて有効である。
図1.及び表1.より本発明の有効性が実証された。
【0055】
【表1】
Figure 2004014436
【0056】
【発明の効果】
本発明のフッ素樹脂イオン交換膜は、広い範囲のイオン交換容量と優れた保水性、及び高い耐酸化性を有するフッ素系高分子イオン交換膜を提供するものである。本発明のイオン交換膜は、特に燃料電池膜に適している。また、安価で耐久性のある電解膜やイオン交換膜として有用である。
【図面の簡単な説明】
【図1】アルコールと水の混合溶媒による膜の膨潤性を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluorine-based polymer ion-exchange membrane having excellent oxidation resistance and a wide range of ion-exchange capacity, which is a solid polymer electrolyte membrane suitable for a fuel cell, and a method for producing the same.
[0002]
[Prior art]
Fuel cells using solid polymer electrolyte type ion exchange membranes are expected to be used as power sources for electric vehicles and simple auxiliary power sources due to their high energy density. In this fuel cell, development of a polymer ion exchange membrane having excellent characteristics is one of the most important technologies.
[0003]
In a polymer ion-exchange membrane fuel cell, the ion-exchange membrane acts as an electrolyte for conducting protons, and also as a diaphragm for preventing the fuel or hydrogen or methanol from directly mixing with the oxidant even under pressure. Also has the role of. Such an ion-exchange membrane has a high ion-exchange capacity as an electrolyte, and a large current flows for a long period of time, so that the membrane is chemically stable. In particular, it is resistant to hydroxyl radicals and the like that are the main cause of membrane deterioration (acid resistance). ) Is required and the water retention is constant and high in order to keep the electric resistance low. On the other hand, from the role of the membrane, it is required that the membrane has high mechanical strength and excellent dimensional stability, and does not have excessive gas permeability for hydrogen gas or oxygen gas as a fuel. .
[0004]
Early polymer ion exchange membrane fuel cells used hydrocarbon polymer ion exchange membranes made by copolymerization of styrene and divinylbenzene. However, this ion-exchange membrane has very poor durability due to oxidation resistance and is therefore of poor practicality. Thereafter, a perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont and the like were used. It has been commonly used.
[0005]
However, conventional fluorine-based polymer ion-exchange membranes such as "Nafion" have excellent chemical durability and stability, but have a small ion exchange capacity of about 1 meq / g and lack water retention. If it is sufficient, the ion exchange membrane will be dried and proton conductivity will be reduced, or when methanol is used as fuel, the membrane will swell with respect to alcohols. This is because, in order to increase the ion exchange capacity, when an attempt is made to introduce a large number of sulfonic acid groups, the membrane strength is remarkably reduced because there is no crosslinked structure in the polymer chain, and the polymer is easily broken. Therefore, in a conventional ion exchange membrane made of a fluoropolymer, the amount of sulfonic acid groups needs to be suppressed to such an extent that the membrane strength is maintained, and as a result, the ion exchange capacity can only be about 1 meq / g. Also, fluorine-based polymer ion-exchange membranes such as Nafion are difficult and complicated to synthesize monomers, and the process of polymerizing them to produce a polymer membrane is also complicated. This is a major obstacle to putting a fuel cell in a car or the like for practical use. For this reason, efforts have been made to develop a low-cost, high-performance electrolyte membrane that replaces Nafion and the like.
[0006]
In a radiation graft polymerization method closely related to the present invention, an attempt has been made to produce a solid polymer electrolyte membrane by grafting a monomer capable of introducing a sulfonic acid group to a fluorine-based polymer membrane. However, in a normal fluorine-based polymer membrane, the graft reaction does not proceed to the inside of the membrane and is limited to the membrane surface, so that the characteristics as an electrolyte membrane are not improved. Further, when radiation such as an electron beam or γ-ray is irradiated, the resin may be deteriorated depending on the structure of the selected fluororesin. Further, there is a problem that a monomer having only a hydrocarbon structure as a graft monomer has low oxidation resistance. For example, an ion-exchange membrane synthesized by introducing a styrene monomer into an ethylene-tetrafluoroethylene copolymer (hereinafter abbreviated as ETFE) containing a hydrocarbon structure by a radiation grafting reaction and then sulfonating the same is used as an ion-exchange membrane for a fuel cell. (Japanese Patent Laid-Open No. 9-102322). However, as a drawback, the main chain and polystyrene graft chains of the polymer film are composed of hydrocarbons.If a large current is passed through the film for a long time, the hydrocarbon chains and polystyrene graft chains are oxidized and degraded. The ion exchange capacity is greatly reduced. Furthermore, when the ion exchange membrane containing a large amount of the hydrocarbon structure is used for the solid electrolyte membrane, particularly when the catalyst layer of the gas diffusion electrode does not have sufficient water repellency, a positive electrode in which water is generated by a fuel cell reaction, It has been pointed out that there is a problem that the output is reduced due to excessive wetness (JP-A-11-111310).
[0007]
[Problems to be solved by the invention]
The present invention has been made to overcome the above-mentioned problems of the prior art, and in a fluorine-based polymer ion-exchange membrane obtained by radiation grafting, it has excellent properties as a solid polymer electrolyte and has oxidation resistance. It provides a film having excellent properties.
[0008]
In addition, the present invention has a disadvantage that the ion exchange capacity, which is the greatest drawback in the fluorine-based polymer ion exchange membrane, is small, and the water retention is poor, and the maximum in the cross-linked PTFE ion exchange membrane in which only a hydrocarbon monomer is grafted. The problem to be solved is that the oxidation resistance, which is a disadvantage of the method, is low.
[0009]
[Means for Solving the Problems]
The present invention provides a fluorine-based polymer ion exchange membrane having excellent oxidation resistance and a wide ion exchange capacity, and particularly provides an ion exchange membrane suitable for a fuel cell.
[0010]
That is, as a base material, a fluoropolymer was used as a matrix, and various monomers were grafted by irradiating the matrix.Furthermore, research on the introduction of a sulfonic acid group into the graft chain resulted in the conversion of fluorinated butadiene to a monomer. Thus, a fluorine-based polymer ion-exchange membrane capable of appropriately controlling each characteristic such as ion exchange capacity within a wide range has been invented. After graft copolymerization of the fluorinated butadiene, it is converted directly to sulfonic acid groups with fuming sulfuric acid, or to sodium sulfonic acid groups with a solution of sodium sulfite or sodium hydrogen sulfite, and further to sulfonic acid groups. It is intended to provide a fluorinated polymer ion exchange membrane characterized by having a graft rate of 10 to 150% and an ion exchange capacity of 0.3 to 3.0 meq / g. And a method for producing the same.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the base polymer that can be used in the present invention include a fluorine-based polymer. If the fluorine-based polymer is crosslinked in advance, the heat resistance is improved, so that it is suitable for a fuel cell operating at a high temperature. Specifically, polytetrafluoroethylene (hereinafter abbreviated as PTFE), polytetrafluoroethylene-propylene hexafluoride copolymer (hereinafter abbreviated as FEP), polytetrafluoroethylene-perfluoroalkylvinyl ether copolymer (hereinafter PFA) Abbreviation), polyvinylidene fluoride (hereinafter abbreviated as PVDF), or a crosslinked or uncrosslinked film of ethylene-tetrafluoroethylene copolymer (ETFE) can be applied, but only uncrosslinked PTFE has poor radiation resistance and is difficult to adapt. It is. That is, PTFE needs to be graft-polymerized after cross-linking in advance. Further, it is preferable that FEP or PFA is crosslinked in advance, but even if it is not crosslinked, the decrease in film strength is small if the absorbed dose during graft polymerization is suppressed to 30 kGy or less. On the other hand, PVDF and ETFE have radiation resistance even when they are not cross-linked, but cross-linking improves heat resistance.
[0012]
A method for producing crosslinked PTFE is disclosed in JP-A-6-116423.
A method for producing a crosslinked FEP or PFA is described in Radiation Physical Chemistry vol. 42, NO. 1/3, pp. 139-142, 1993.
[0013]
In particular, crosslinked PTFE is preferred as the most suitable fluorine-based polymer in the present invention, and will be described in detail.
Although described as cross-linked PTFE, the molecular structure is long-chain branched, long-chain branched
PTFE is the following formula
Embedded image and
Having a repeating unit represented by the following formula:
Fluoropolymer, and
And
Refers to a mixture of fluoropolymers having a repeating unit represented by the following formula:
[0014]
Embedded image
Figure 2004014436
Or, the molecular end is -CF = CF2
In the formula, n, m, r, and k are one or more arbitrary integer variables. m, n, k> r.
[0015]
Embedded image
Figure 2004014436
Where n, m, r, and k are
Same as Also, c ≒ n, d ≒ m, and r ≒ f. In addition, the bond between the PTFE main chain and the long-chain branch is an ether bond (-O-), and further includes a double bond generated by irradiation in the molecular chain.
[0016]
Even from the viewpoint of its molecular structure, it is possible to solve the disadvantage that there are many amorphous portions and the graft ratio of uncrosslinked PTFE is low. For example, when styrene is used as the graft monomer, the crosslinked PTFE can significantly increase the graft ratio as compared with the uncrosslinked PTFE, so that the sulfonic acid group having 2 to 10 times the uncrosslinked PTFE can be added to the PTFE. The present inventors have already found that it can be introduced (Japanese Patent Application No. 2000-170450).
[0017]
The method for producing the crosslinked PTFE is as follows.-3Under reduced pressure of -10 Torr or 10-3Γ-rays, X-rays, or electron beams can be irradiated in an inert gas at an oxygen partial pressure of 22 Torr (1 Torr = 1 mm of mercury) to irradiate with 5-500 kGy. Nitrogen, argon, helium gas, or the like is used as the inert gas.
[0018]
The fluorinated polymer ion exchange membrane according to the present invention is obtained by adding the following monomers (1) and (2) to other fluorinated polymers such as cross-linked PTFE, FEP, PFA, ETFE, and PVDF obtained by the above method. Is subjected to graft polymerization by irradiation.
(1) The following equation:
C4FnHmN + m = 6, n ≧ 1
Fluorinated butadiene having the structure of 1,1,2,2-tetrafluoro-1,3 butadiene and 2,3-difluoro-1,3 butadiene. And hexafluoro-1,3 butadiene.
(2) The fluorinated butadiene of (1) as a main component monomer and a monomer selected from the following a) to c) in an amount of 50 mol% or less of the fluorinated butadiene as a comonomer:
a) As a hydrocarbon monomer having 4 or less carbon atoms and having a polymerizable double bond, for example, ethylene, propylene, butene-1, butene-2, isobutene, and the like;
b) CH2= CR1(COOR2) Or CF2= CF (COOR2) And R1= -H, -CH3, -F, R2= -H, -CH3, -C2H5, -C3H7, -C4H9The acrylic monomer is, for example, CH2= CH (COOH), CH2= CH (COOCH3), CH2= C (CH3) (COOH), CH2= C (CH3) (COOCH3), CH2= CF (COOCH3) Or CF2= CF (COOCH3)Such;
c) a fluorocarbon monomer having 4 or less carbon atoms and having a copolymerizable double bond, for example, CF2= CF2, CF2= CHF, CF2= CFCl, CF2= CFBr, CF2= CH2, CHF = CH2Fluoroethylene monomer such as CF2= CFCF3Of a fluoropropylene monomer, CF2= CFCF2CF3(Fluorobutene-1), CF2= C (CF3)2(Fluoroisobutene), CF3CF = CFCF3(Fluorobutene-2), CF2= CFCF = CF2(Fluorobutadiene) fluorobutene monomer and CF2= CFCH2CH3Of hydrofluorovinyl monomers and CF2= CFOCH2CH3And the like.
[0019]
Each of these monomers (1) and (2) is Freon 112 (CCl2FCCl2F), Freon 113 (CCl2FCClF2), N-hexane, isopropyl alcohol, t-butanol, benzene, toluene, hexafluorobenzene, chloroethane or a solvent obtained by diluting the monomer with a chloromethane-based solvent. When a gaseous monomer is used, a partial pressure of the monomer gas is preferably adjusted to 1 to 50 atm by using an inert gas, and the monomer is brought into contact with a liquid monomer solution, and graft polymerization is preferably performed while stirring the solution.
[0020]
Graft polymerization of the above monomer onto the cross-linked PTFE film is performed by irradiating the cross-linked PTFE with an electron beam, γ-ray or X-ray at room temperature in an inert gas at 5 to 500 kGy, and then bubbling the inert gas or freezing and degassing with oxygen gas. The irradiated cross-linked PTFE is immersed in a monomer solution from which has been removed.
[0021]
The graft polymerization may be performed by a so-called pre-irradiation method in which a graft reaction of the cross-linked PTFE with a monomer is performed after irradiation, or a so-called simultaneous irradiation method in which the cross-linked PTFE and the monomer are simultaneously irradiated and grafted.
[0022]
The graft polymerization is carried out at a temperature equal to or lower than the boiling point of the monomer or the solvent, usually at 0 ° C to 100 ° C. Since the presence of oxygen inhibits the grafting reaction, these series of operations are performed in an inert gas such as argon gas or nitrogen gas, and the monomer or the solution in which the monomer is dissolved in the solvent is subjected to a conventional treatment (such as bubbling or freeze-drying). Use after removing oxygen in the above conditions.
[0023]
The graft ratio (see the formula (1) in the example) is substantially proportional to the radiation dose. The higher the dose, the higher the graft ratio, but the graft ratio gradually becomes saturated. The graft ratio is from 10 to 150%, more preferably from 15 to 100%, based on the crosslinked PTFE.
[0024]
A sulfonic acid group is directly introduced into the double bond of butadiene in the graft chain obtained in the above (1) or (2) with fuming sulfuric acid, or sodium sulfite (Na2SO3) Or sodium bisulfite (NaHSO3) Or a mixed solution of sodium sulfite or sodium hydrogen sulfite in water and an alcohol to form a sodium sulfonate group [-SO3Na], and the resulting [-SO3Na] group with sulfonic acid group [-SO3H], a fluorinated polymer ion exchange membrane which is a crosslinked PTFE graft copolymer is obtained.
[0025]
Fuming sulfuric acid or sodium sulfite (Na2SO3) Or sodium bisulfite (NaHSO3) In an aqueous solution or a mixed solution of sodium sulfite or sodium bisulfite in water and alcohol is preferably not more than the saturation concentration of sodium sulfite or sodium bisulfite at room temperature. As the alcohol, isopropyl alcohol, butyl alcohol, and the like are preferable.
[0026]
The above-mentioned sulfonation reaction temperature in the crosslinked PTFE graft copolymer membrane is from room temperature to 200 ° C, more preferably from 80 ° C to 160 ° C. When the thickness of the membrane is from 20 μm to 500 μm, the reaction time is from 5 to 60 minutes. At the time of the reaction, since the maximum pressure is about 50 atm with an aqueous solution, a pressure-resistant autoclave is used, and in a water / alcohol solution system, it is desirable that the air is replaced with nitrogen except for air and the upper limit of the temperature is 160 ° C. for safety.
[0027]
Subsequently, sodium sulfonate group [-SO3Na] in a 1N to 2N sulfuric acid solution at 60 ° C.3H].
The ion exchange capacity of the fluorinated polymer ion exchange membrane according to the present invention can be changed depending on the graft amount and the amount of the introduced sulfonic acid groups. The ion exchange capacity is the amount of ion exchange groups (meq / g) per 1 g of the weight of the dry ion exchange membrane. Although depending on the type of the graft monomer, the ion exchange capacity is 0.3 meq / g or less when the graft ratio is 10% or less, and the swelling of the membrane increases when the graft ratio is 150% or more. That is, if the graft ratio is increased to introduce more ion-exchange groups, the ion-exchange capacity is increased. However, if the amount of ion exchange groups is too large, the membrane swells when it contains water, and the strength of the membrane decreases. From these facts, the ion exchange capacity of the fluorinated polymer ion exchange membrane according to the present invention is from 0.3 meq / g to 3.0 meq / g, and more preferably from 0.5 meq / g to 2.0 meq / g.
[0028]
In the fluoropolymer ion exchange membrane of the present invention, the water content of the fluoropolymer of the present invention can be controlled by the amount of the introduced sulfonic acid groups. When this membrane is used as an ion exchange membrane for a fuel cell, if the water content is too low, the electrical conductivity and the gas permeability coefficient change due to slight changes in operating conditions, which is not preferable. Most of conventional Nafion membranes have-(CF2)-, When the battery is operated at a high temperature of 80 ° C. or higher, water atoms become insufficient in the film, and the conductivity of the film rapidly decreases. On the other hand, since the ion exchange membrane of the present invention can introduce a hydrophilic group such as a carboxyl group into the graft chain, the water content mainly depends on the amount of the sulfonic acid group, but is 10 to 80% by weight (wt). Can be controlled by range. Generally, as the ion exchange capacity increases, the water content also increases. However, since the ion exchange membrane of the present invention can change the water content, the water content of the membrane is 10 to 80 wt%, preferably 20 to 60 wt%. It can be.
[0029]
The fluorine-based polymer membrane of the present invention
[Formula 1]
Even when a large amount of sulfonic acid groups are introduced up to about 3.0 meq / g due to the entanglement of the PTFE main chain terminals and the binding of long-chain branched terminals at the formula 2, the mechanical properties and dimensional stability of the membrane are obtained. And can be put to practical use. A membrane having a high ion exchange capacity and excellent mechanical properties of the membrane is a very important invention for practical use.
[0030]
The higher the electrical conductivity of the polymer ion exchange membrane, which is also related to the ion exchange capacity, the lower the electrical resistance and the higher the performance as an electrolyte membrane. However, the electrical conductivity of the ion exchange membrane at 25 ° C. is 0.05 (Ω · cm).-1If it is less than the above, the output performance of the fuel cell is often significantly reduced, so that the electric conductivity of the ion exchange membrane is 0.05 (Ω · cm).-1As described above, 0.10 (Ω · cm) is used for a higher-performance ion exchange membrane.-1Often designed above. In the ion exchange membrane according to the present invention, the electric conductivity of the ion exchange membrane at 25 ° C. was equal to or higher than that of the Nafion membrane.
[0031]
In order to increase the electrical conductivity of the ion exchange membrane, it is conceivable to reduce the thickness of the ion exchange membrane. However, at present, an extremely thin ion exchange membrane is easily damaged, and it is difficult to manufacture the ion exchange membrane itself. Therefore, an ion exchange membrane having a thickness in the range of 30 to 200 μm is usually used. In the case of the present invention, a film having a thickness in the range of 10 to 500 μm, preferably 20 to 100 μm is effective.
[0032]
In fuel cell membranes, methanol is currently considered as one of the fuel candidates, but Nafion membrane (DuPont), which is a perfluorosulfonic acid membrane, has no intermolecular cross-linked or entangled structure. It is a serious problem that methanol greatly swells due to methanol, and the fuel, methanol, diffuses from the anode (fuel electrode) to the cathode (air electrode) through the battery membrane, thereby lowering the power generation efficiency. However, in the fluorinated polymer membrane according to the present invention, despite the high ion exchange capacity, the entanglement of the cross-linked PTFE at the ends of the PTFE main chain and the bonds at both ends of the long-chain branched chain, and further, the entanglement of the graft chain, Almost no swelling of the film due to the included alcohols is observed. Therefore, it is useful as a membrane of a direct methanol fuel cell (Direct methanol fuel cell) using methanol directly as a fuel without using a reformer.
[0033]
In a fuel cell membrane, the oxidation resistance of the membrane is a very important property related to the durability (life) of the membrane. This is because OH radicals and the like generated during the operation of the battery attack the ion exchange membrane to deteriorate the membrane. Oxidation resistance of a polymer ion exchange membrane obtained by grafting a hydrocarbon-based styrene onto a crosslinked PTFE and then sulfonating a polystyrene graft chain is extremely low. For example, a polystyrene graft-crosslinked PTFE ion-exchange membrane in which a polystyrene chain having a graft ratio of 100% is sulfonated is deteriorated in about 60 minutes in a 3% aqueous hydrogen peroxide solution at 80 ° C., and the ion-exchange capacity becomes almost half. . This is because polystyrene chains are easily decomposed by OH radical attack. On the other hand, the fluorine-based polymer ion-exchange membrane according to the present invention exhibits excellent resistance of the fluorine compound because the graft chain is a polymer of a fluorine-based monomer or mainly a copolymer of fluorine-based monomers. Therefore, the ion exchange capacity hardly changes even if it is placed in a 3% hydrogen peroxide aqueous solution at 80 ° C. for 24 hours or more.
[0034]
As described above, the fluorinated polymer ion exchange membrane of the present invention has excellent oxidation resistance and methanol resistance, and has important properties as a membrane, that is, an ion exchange capacity of 0.3 to 3.0 meq / g. Is also a feature of the present invention.
[0035]
【Example】
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0036]
In addition, each measured value was obtained by the following measurement.
(1) Graft rate
Assuming that the crosslinked PTFE is the main chain portion and the graft polymerized portion of fluorinated butadiene is the graft chain portion, the weight ratio of the graft chain portion to the main chain portion is represented by the following graft ratio (Xdg(Wt%)).
[0037]
Xdg= 100 (W2-W1) / W1(1)
W1: Weight of crosslinked PTFE film before grafting (g)
W2: Weight (g) of cross-linked PTFE film (dry state) after grafting
(2) Ion exchange capacity
Ion exchange capacity of the membrane (Iex(Meq / g)) is represented by the following equation.
[0038]
Iex= N (acid group)obs/ Wd(2)
n (acid group)obs: Acid group concentration of ion exchange membrane (mM / g)
Wd: Dry weight of ion exchange membrane (g)
n (acid group)obsIn order to complete the measurement, the membrane was immersed again in a 1 M (1 mol) sulfuric acid solution at 50 ° C. for 4 hours to completely obtain an acid type (H type). Thereafter, the resultant was immersed in a 3M aqueous solution of NaCl at 50 ° C. for 4 hours to form -SO3Na type and the substituted proton (H+) Was neutralized and titrated with 0.2N NaOH to determine the acid group concentration.
(3) Moisture content
The H-type ion-exchange membrane stored in water at room temperature is taken out of water and lightly wiped (after about 1 minute), and the weight of the membrane is changed to Ws(G), and then the weight W of the film when the film is vacuum dried at 60 ° C. for 16 hours.dWhen (g) is a dry weight, Ws, WdThe water content is calculated from the following equation.
[0039]
Water content (%) = 100 · (Ws-Wd) / Wd(3)
(4) Electric conductivity
The electrical conductivity of the ion exchange membrane was measured by an alternating current method (New Experimental Chemistry Course 19, Polymer Chemistry <II>, p. 992, Maruzen), using a normal membrane resistance measurement cell and an LCR meter manufactured by Hewlett-Packard. , E-4925A, the film resistance (Rm) Was measured. The cell was filled with a 1 M aqueous sulfuric acid solution, and the resistance between the platinum electrodes (distance: 5 mm) was measured depending on the presence or absence of the membrane. The electrical conductivity (specific conductivity) of the membrane was calculated using the following equation.
[0040]
κ = 1 / Rm・ D / S (Ω-1cm-1) (4)
κ: Electric conductivity of membrane ((Ω-1cm-1)
d: Thickness of ion exchange membrane (cm)
S: Energizing area of the ion exchange membrane (cm2)
For comparison of the measured electric conductivity, Mark @ W. Verbruge, Robert @ F. Hill et al. (J. Electrochem. Soc.,.137, 3770-3777 (1990)) and a potentiostat, a function generator. Good correlation was found between the measured values of the AC method and the DC method. The values in Table 1 below are values measured by the AC method.
(5) Oxidation resistance (weight percentage remaining)
The weight after vacuum drying at 60 ° C. for 16 hours is W3The weight of the film treated with a 3% hydrogen peroxide solution at 80 ° C. for 24 hours after drying was W4And
Oxidation resistance = 100 (W4/ W3)
Example 1
The following irradiation was performed to obtain a crosslinked PTFE film. A 50-μm-thick PTFE film (manufactured by Nitto Denko, product number No. 900) is put into a SUS autoclave irradiation vessel (inner diameter: 7 cmφ × height: 30 cm) with a heater and 10 cm square.-3Torr was degassed and replaced with argon gas. Then, the temperature of the PTFE film was increased to 340 ° C. by heating with an electric heater.60Co-γ rays were irradiated at a dose rate of 3 kGy / h and a dose of 90 kGy (30 hours). After the irradiation, the container was cooled and the PTFE film was taken out. The crosslinked PTFE film obtained by this high-temperature irradiation shows that the crystal size is considerably smaller than that of the uncrosslinked PTFE, because the transparency of the film is increased. The crosslinked PTFE film had a tensile strength of 18 MPa, an elongation at break of 320% (a dumbbell-shaped sample No. 4 at a tensile speed of 200 mm / min (JIS-K6251-1993)), and a melting temperature of 315 ° C. by DSC measurement.
[0041]
The crosslinked PTFE film was placed in a glass separable container with a cock (inner diameter 3 cmφ × 15 cm height), degassed, and replaced with argon gas. In this state, cross-linked PTFE film 4cm2Was again irradiated with γ-rays (dose rate 10 kGy / h) at 60 kGy room temperature. Subsequently, 25 ml of Freon 112 was purged of oxygen by bubbling with argon gas, and then placed in a glass container containing the irradiated cross-linked PTFE film until the film was immersed. Fluoro-1,3-butadiene (CF2= CF-CF = CF2) 10 g were introduced. The vessel was sealed and reacted at 60 ° C. for 48 hours. After the reaction, the resultant was washed with toluene and then with acetone, and dried. The graft ratio determined by the following equation (1) was 58%.
[0042]
This graft-polymerized crosslinked PTFE film was placed in a pressure-resistant autoclave, and sodium sulfite (Na) was added thereto.2SO3) Was added, the membrane was immersed in the solution, and the air was replaced with nitrogen by simple bubbling. The autoclave was placed in a 135 ° C. oil bath and reacted for 30 minutes. After cooling, the membrane was taken out of the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 below shows the graft ratio, the ion exchange capacity, the water content, and the electrical conductivity of the membrane obtained in this example.
[0043]
Example 2
Crosslinked PTFE film (4 cm) obtained by irradiating γ-rays at 90 kGy in the same manner as in Example 12) Was placed in a glass separable container with a cock (inner diameter 3 cmφ × 15 cm height), degassed, and then replaced with argon gas. In this state, γ rays (dose rate: 10 kGy / h) were again irradiated at room temperature of 60 kGy. After the irradiation, the container was evacuated to a vacuum, and the irradiated crosslinked PTFE film was filled with Freon 112 from which oxygen was removed by bubbling with argon gas until the irradiated crosslinked PTFE film was immersed (about 25 ml). -1,3-butadiene (CF2= CF-CF = CF2) 10 g were introduced. Furthermore, tetrafluoroethylene (CF2= CF2) The gas was connected to the reaction vessel, and the inside of the vessel was set to 2 atm. The solution was reacted at room temperature for 48 hours while stirring the solution with a magnetic stirrer. After the reaction, the resultant was washed with toluene and then with acetone, and dried. The graft ratio determined by the formula (1) in the example was 71%.
[0044]
This graft-copolymerized crosslinked PTFE membrane was placed in a pressure-resistant autoclave, and sodium sulfite (Na) was added thereto.2SO3) Was immersed in a solution obtained by adding isopropanol (1: 3 (water)) to a 20% by weight (wt%) aqueous solution of (2), and the air was replaced with nitrogen by simple bubbling. The autoclave was placed in a 120 ° C. oil bath and reacted for 30 minutes. After cooling, the membrane was taken out of the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 shows the graft ratio, ion exchange capacity, water content, and electrical conductivity of the membrane obtained in this example.
[0045]
Each measured value was determined in the same manner as in Example 1.
Example 3
50 μm thick, 4 cm cross-linked by irradiating 100 kGy of electron beam in air at room temperature2Was placed in a SUS pressure-resistant autoclave (inner diameter 4 cmφ × 12 cmH) equipped with a cock and degassed, and then replaced with argon gas. In this state, γ rays (dose rate: 10 kGy / h) were again irradiated at room temperature of 60 kGy. After the irradiation, the container was degassed under vacuum, and the Freon 112 from which air was removed by bubbling with argon gas was put in an amount (25 ml) into which the ETFE film was immersed. 3-butadiene (CF2= CF-CF = CF2) 10 g were introduced. The reaction was carried out at 60 ° C. for 48 hours while the container was sealed and the solution was stirred. After the reaction, the resultant was washed with toluene and then with acetone, and dried. The graft ratio determined by the formula (1) in the example was 76%.
[0046]
The graft-polymerized ETFE film was put into a pressure-resistant autoclave, and sodium sulfite (Na) was added thereto.2SO3) Was immersed in a solution obtained by adding isopropanol (1: 3 (water)) to a 20% by weight (wt%) aqueous solution of (2), and the air was replaced with nitrogen by simple bubbling. The autoclave was placed in a 120 ° C. oil bath and reacted for 30 minutes. After cooling, the membrane was taken out of the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 shows the graft ratio, ion exchange capacity, water content, and electrical conductivity of the membrane obtained in this example.
[0047]
Each measured value was determined in the same manner as in Example 1.
Example 4
A 3 cm square of a 50 μm-thick FEP film is sandwiched between two 20-mesh carbon cloths, placed in a SUS autoclave irradiation vessel with a heater (inner diameter 7 cmφ × height 30 cm), and the inside of the vessel is filled with 10 μm.-3Torr was degassed and replaced with argon gas. Then, the temperature of the FEP film was raised to 305 ° C. by heating with an electric heater,60Co-γ rays were irradiated at a dose rate of 3 kGy / h and a dose of 90 kGy (30 hours). After irradiation, the container was cooled and the crosslinked FEP film was taken out. Crosslinked FEP film 4cm2Was placed in a glass separable container with a cock (inner diameter: 3 cmφ × 15 cmH), degassed, and then replaced with argon gas. In this state, the FEP film was again irradiated with γ-rays (dose rate: 10 kGy / h) at room temperature of 60 kGy. Subsequently, an amount (25 ml) of the FEP film in which the FEP film was immersed was put into Freon 112 from which air had been removed by bubbling with argon gas, and the vessel was cooled to 0 ° C. to prepare hexafluoro-1,3-butadiene (CF).2= CF-CF = CF2) 10 g were introduced. Thereafter, the container was sealed and heated at 50 ° C. for 48 hours. After the reaction, the resultant was washed with toluene and then with acetone, and dried. The graft ratio determined by the formula (1) in the example was 62%.
[0048]
The graft-polymerized FEP film was put into a pressure-resistant autoclave, and sodium sulfite (Na) was added thereto.2SO3) Was added, the membrane was immersed in the solution, and the air was replaced with nitrogen by simple bubbling. The autoclave was placed in a 135 ° C. oil bath and reacted for 30 minutes. After cooling, the membrane was taken out of the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 shows the graft ratio, ion exchange capacity, water content, and electrical conductivity of the membrane obtained in this example.
[0049]
In addition, each measured value was obtained by the following measurement.
Example 5
Thickness 50μm, 4cm2Was placed in a glass separable container equipped with a cock (inner diameter 3 cmφ × 15 cmH), degassed, and then replaced with argon gas. In this state, gamma rays (dose rate: 10 kGy / h) were irradiated at room temperature of 20 kGy. Subsequently, Freon 112 from which air was removed by bubbling of argon gas was charged in an amount (25 ml) into which the PFA film was immersed, and the vessel was cooled to 0 ° C. to cool hexafluoro-1,3-butadiene (CF).2= CF-CF = CF2) 10 g were introduced. Thereafter, the container was sealed and heated at 50 ° C. for 48 hours. After the reaction, the resultant was washed with toluene and then with acetone, and dried. The graft ratio determined by the formula (1) in the example was 43%.
[0050]
The graft-polymerized PFA film was placed in a pressure-resistant autoclave, and sodium sulfite (Na) was added thereto.2SO3) Was immersed in a solution obtained by adding isopropanol (1: 3 (water)) to a 20% by weight (wt%) aqueous solution of (2), and the air was replaced with nitrogen by simple bubbling. The autoclave was placed in a 120 ° C. oil bath and reacted for 30 minutes. After cooling, the membrane was taken out of the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 shows the graft ratio, ion exchange capacity, water content, and electrical conductivity of the membrane obtained in this example.
[0051]
Each measured value was determined in the same manner as in Example 1.
Example 6
50 μm thick, 4 cm cross-linked by irradiating 100 kGy of electron beam in air at room temperature2Was placed in a SUS pressure-resistant autoclave (inner diameter 4 cmφ × 12 cmH) equipped with a cock and degassed, and then replaced with argon gas. In this state, γ rays (dose rate: 10 kGy / h) were again irradiated at room temperature of 60 kGy.
Subsequently, the amount of Freon 112 from which air was removed by bubbling argon gas was put in an amount (25 ml) into which the PVDF film was immersed, and the vessel was cooled to 0 ° C. to prepare hexafluoro-1,3-butadiene (CF).2= CF-CF = CF2) 10 g were introduced. Thereafter, the container was sealed and heated at 50 ° C. for 48 hours. After the reaction, the resultant was washed with toluene and then with acetone, and dried. The graft ratio determined by the formula (1) in the example was 78%.
[0052]
The graft-polymerized PVDF film was placed in a pressure-resistant autoclave, and sodium sulfite (Na) was added thereto.2SO3) Was immersed in a solution obtained by adding isopropanol (1: 3 (water)) to a 20% by weight (wt%) aqueous solution of (2), and the air was replaced with nitrogen by simple bubbling. The autoclave was placed in a 120 ° C. oil bath and reacted for 30 minutes. After cooling, the membrane was taken out of the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours.
[0053]
Table 1 shows the graft ratio, ion exchange capacity, water content, and electrical conductivity of the membrane obtained in this example. Each measured value was determined in the same manner as in Example 1.
Comparative Examples 1 and 2
The results of ion exchange capacity, water content, and electrical conductivity measured for Nafion 115 and Nafion 117 (manufactured by DuPont) shown in Table 1 below are shown in Comparative Examples 1 and 2 of Table 1.
[0054]
Comparative Example 3
The crosslinked PTFE film (thickness: 50 μm) obtained in Example 1 was placed in a glass separable container with a cock (inner diameter: 3 cmφ × 15 cmH), degassed, and then replaced with argon gas. In this state, the crosslinked PTFE film was again irradiated with γ-rays (dose rate 10 kGy / h) at room temperature of 45 kGy. A styrene monomer from which oxygen was removed by bubbling argon gas and replaced with argon gas was introduced into a glass container containing a cross-linked PTFE film until the film was immersed. The vessel was stirred and reacted at 60 ° C. for 6 hours. Thereafter, the graft copolymer film was washed with toluene, then with acetone, and dried. The graft ratio was 93%. This graft polymerized membrane was immersed in 0.5 M chlorosulfonic acid (1,2-dichloroethane solvent) to perform a sulfonation reaction at 60 ° C. for 24 hours. Thereafter, the membrane was washed with water to obtain sulfonic acid groups.
(Measurement of alcohol swelling degree)
Example 1 and Nafion 117 were immersed in a 3N sulfuric acid solution to make the sulfonic acid group H-type. Then, it was immersed in room temperature water, and the dimensions were measured in a wet state. Next, the film was immersed in an alcohol solution of methanol and isopropanol, kept at 60 ° C. for 3 hours, and then allowed to cool to room temperature overnight, and the dimensional change of the film was measured. The results are shown in FIG. The membrane obtained in the present example is very effective as a membrane material for a direct methanol fuel cell, since almost no swelling of the membrane due to methanol or the like is observed as compared with the Nafion membrane.
FIG. And Table 1. Thus, the effectiveness of the present invention was demonstrated.
[0055]
[Table 1]
Figure 2004014436
[0056]
【The invention's effect】
The fluororesin ion exchange membrane of the present invention provides a fluoropolymer ion exchange membrane having a wide range of ion exchange capacity, excellent water retention, and high oxidation resistance. The ion exchange membrane of the present invention is particularly suitable for a fuel cell membrane. Further, it is useful as an inexpensive and durable electrolytic membrane or ion exchange membrane.
[Brief description of the drawings]
FIG. 1 is a diagram showing the swellability of a film by a mixed solvent of alcohol and water.

Claims (7)

架橋構造を有するポリテトラフルオロエチレンフィルム基材にモノマーとして、次式:
  n+m=6、n≧1
の構造を有するフッ素化ブタジエンを放射線グラフト重合した後、グラフト鎖中の二重結合にスルホン酸基を導入したフッ素系高分子イオン交換膜。
As a monomer on a polytetrafluoroethylene film substrate having a crosslinked structure, the following formula:
C 4 F n H m n + m = 6, n ≧ 1
A fluorinated polymer ion-exchange membrane obtained by subjecting a fluorinated butadiene having the following structure to radiation graft polymerization and then introducing a sulfonic acid group into a double bond in the graft chain.
架橋構造を有するポリテトラフルオロエチレンフィルム基材が、架橋構造を有するポリテトラフルオロエチレン−六フッ化プロピレン共重合体、ポリテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材である、請求項1記載のフッ素系高分子イオン交換膜。A polytetrafluoroethylene film substrate having a crosslinked structure is a polytetrafluoroethylene-propylene hexafluoride copolymer having a crosslinked structure, a polytetrafluoroethylene-perfluoroalkylvinyl ether copolymer, polyvinylidene fluoride, or ethylene- The fluorinated polymer ion exchange membrane according to claim 1, which is a tetrafluoroethylene copolymer film substrate. 架橋構造を有するポリテトラフルオロエチレンフィルム基材が、架橋構造を有しないポリテトラフルオロエチレン−六フッ化プロピレン共重合体、ポリテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材である、請求項1のフッ素系高分子イオン交換膜。Polytetrafluoroethylene film base material having a cross-linked structure, polytetrafluoroethylene-propylene hexafluoride copolymer having no cross-linked structure, polytetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinylidene fluoride, or ethylene The fluorine-based polymer ion-exchange membrane according to claim 1, which is a tetrafluoroethylene copolymer film substrate. スルホン酸基を導入する方法が、発煙硫酸によってグラフト鎖中の二重結合にスルホン酸基を導入するか、或いは、亜硫酸ナトリウム若しくは亜硫酸水素ナトリウムの水溶液、又は、亜硫酸ナトリウム若しくは亜硫酸水素ナトリウムの水とアルコールの混合溶液中で反応させて、グラフト鎖中の二重結合にスルホン酸ナトリウム基[−SONa]を導入し、得られたスルホン酸ナトリウム基を酸でスルホン酸基[−SOH]とした、請求項1〜3のいずれか1項に記載のフッ素系高分子イオン交換膜。A method for introducing a sulfonic acid group is to introduce a sulfonic acid group to a double bond in a graft chain by fuming sulfuric acid, or an aqueous solution of sodium sulfite or sodium bisulfite, or water of sodium sulfite or sodium bisulfite. The reaction is carried out in a mixed solution of alcohol to introduce a sodium sulfonate group [—SO 3 Na] into a double bond in the graft chain, and the obtained sodium sulfonate group is acid-sulfonated to form a sulfonic acid group [—SO 3 H]. The fluorinated polymer ion exchange membrane according to any one of claims 1 to 3, wherein 更に、グラフトコモノマーとして、
a)炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b)CH=CR(COOR)若しくはCF=CF(COOR)で、R=−H,−CH,−F、R=−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c)炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれたモノマーをフッ素化ブタジエンの50モル%以下の量でグラフト共重合した、請求範囲1〜4のいずれか1項に記載のフッ素系高分子イオン交換膜。
Further, as a graft comonomer,
a) a hydrocarbon monomer having 4 or less carbon atoms and having a polymerizable double bond;
b) CH 2 = CR 1 (COOR 2 ) or CF 2 = CF (COOR 2 ) and R 1 = —H, —CH 3 , —F, R 2 = —H, —CH 3 , —C 2 H 5 , -C 3 H 7, -C 4 H a is acrylic monomer 9; or in c) at most 4 carbon atoms, a monomer selected from fluorocarbon-based monomer having a copolymerizable double bond of the fluorinated butadiene The fluorinated polymer ion exchange membrane according to any one of claims 1 to 4, wherein the graft copolymerization is performed in an amount of 50 mol% or less.
グラフト率が10〜150%、イオン交換容量が0.3〜3.0meq/gであることを特徴とする、請求範囲1〜5のいずれか1項に記載のフッ素系高分子イオン交換膜。The fluorinated polymer ion exchange membrane according to any one of claims 1 to 5, wherein the graft ratio is 10 to 150%, and the ion exchange capacity is 0.3 to 3.0 meq / g. フッ素化ブタジエンがCである、請求範囲1〜6のいずれか1項に記載のフッ素系高分子イオン交換膜。Fluorinated butadiene is C 4 F 6, a fluorine-based polymer ion-exchange membrane according to any one of claims 1 to 6.
JP2002169775A 2002-06-11 2002-06-11 Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane Expired - Fee Related JP3932338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169775A JP3932338B2 (en) 2002-06-11 2002-06-11 Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169775A JP3932338B2 (en) 2002-06-11 2002-06-11 Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane

Publications (2)

Publication Number Publication Date
JP2004014436A true JP2004014436A (en) 2004-01-15
JP3932338B2 JP3932338B2 (en) 2007-06-20

Family

ID=30436237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169775A Expired - Fee Related JP3932338B2 (en) 2002-06-11 2002-06-11 Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane

Country Status (1)

Country Link
JP (1) JP3932338B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005076396A1 (en) * 2004-02-03 2007-10-18 東亞合成株式会社 Electrolyte membrane and fuel cell using the electrolyte membrane
FR2921518A1 (en) * 2007-09-26 2009-03-27 Commissariat Energie Atomique PROCESS FOR PRODUCING FUEL CELL PROTONS CONDUCTIVE MEMBRANES BY RADIOGRAPHY
JP2010065106A (en) * 2008-09-09 2010-03-25 Japan Atomic Energy Agency Method and apparatus for manufacturing grafted substrate
US7785726B2 (en) 2005-04-05 2010-08-31 Japan Atomic Energy Agency Process for producing hybrid ion-exchange membranes comprising functional inorganics and graft polymer and electrolyte membranes for use in fuel cells comprising the hybrid ion-exchange membranes
CN101837251A (en) * 2010-04-07 2010-09-22 南京工业大学 Method for hydrophilic modification on polyvinylidene fluoride porous film surface by amphipathic molecule
US7803846B2 (en) 2004-12-22 2010-09-28 Japan Atomic Energy Agency Highly durable polymer electrolytic membrane for a fuel cell having a cross-linked structure
US7919537B2 (en) 2004-11-15 2011-04-05 Japan Atomic Energy Agency Methods for producing a polymer electrolyte membrane having improved oxidation resistance
US7993793B2 (en) 2006-03-24 2011-08-09 Japan Atomic Energy Agency Process for producing polymer electrolyte membranes for fuel cells, polymer electrolyte membranes for fuel cells produced by the process, and fuel cell membrane-electrode assemblies using the membranes
JP2011189223A (en) * 2010-03-11 2011-09-29 Agc Engineering Co Ltd Cation exchange membrane, hydrogen ion permselective membrane and method of recovering acid
US8129074B2 (en) 2005-11-17 2012-03-06 Japan Atomic Energy Agency Crosslinked nano-inorganic particle/polymer electrolyte membrane for membrane electrode assembly
US8173325B2 (en) 2005-02-25 2012-05-08 Japan Atomic Energy Agency Functional membrane and electrolyte membrane for fuel cells and method for producing the same
JP2013184071A (en) * 2012-03-05 2013-09-19 Chiba Univ Separation membrane and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102527265B (en) * 2010-12-15 2013-11-27 华东理工大学 Membrane functional monomer containing hexafluoroisopropanol group and nanofiltration membrane preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005076396A1 (en) * 2004-02-03 2007-10-18 東亞合成株式会社 Electrolyte membrane and fuel cell using the electrolyte membrane
US7919537B2 (en) 2004-11-15 2011-04-05 Japan Atomic Energy Agency Methods for producing a polymer electrolyte membrane having improved oxidation resistance
US7803846B2 (en) 2004-12-22 2010-09-28 Japan Atomic Energy Agency Highly durable polymer electrolytic membrane for a fuel cell having a cross-linked structure
US8173325B2 (en) 2005-02-25 2012-05-08 Japan Atomic Energy Agency Functional membrane and electrolyte membrane for fuel cells and method for producing the same
US7785726B2 (en) 2005-04-05 2010-08-31 Japan Atomic Energy Agency Process for producing hybrid ion-exchange membranes comprising functional inorganics and graft polymer and electrolyte membranes for use in fuel cells comprising the hybrid ion-exchange membranes
US8241770B2 (en) 2005-04-05 2012-08-14 Japan Atomic Energy Agency Process or producing hybrid ion-exchange membranes comprising functional inorganics and graft polymer and electrolyte membranes for use in fuel cells comprising the hybrid ion-exchange membranes
US8129074B2 (en) 2005-11-17 2012-03-06 Japan Atomic Energy Agency Crosslinked nano-inorganic particle/polymer electrolyte membrane for membrane electrode assembly
US7993793B2 (en) 2006-03-24 2011-08-09 Japan Atomic Energy Agency Process for producing polymer electrolyte membranes for fuel cells, polymer electrolyte membranes for fuel cells produced by the process, and fuel cell membrane-electrode assemblies using the membranes
JP2011501857A (en) * 2007-09-26 2011-01-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Production method of proton conducting membrane for fuel cell by radiographing
WO2009040365A1 (en) * 2007-09-26 2009-04-02 Commissariat A L'energie Atomique Method for making proton conducting membranes for fuel cells by radiografting
FR2921518A1 (en) * 2007-09-26 2009-03-27 Commissariat Energie Atomique PROCESS FOR PRODUCING FUEL CELL PROTONS CONDUCTIVE MEMBRANES BY RADIOGRAPHY
JP2010065106A (en) * 2008-09-09 2010-03-25 Japan Atomic Energy Agency Method and apparatus for manufacturing grafted substrate
JP2011189223A (en) * 2010-03-11 2011-09-29 Agc Engineering Co Ltd Cation exchange membrane, hydrogen ion permselective membrane and method of recovering acid
CN101837251A (en) * 2010-04-07 2010-09-22 南京工业大学 Method for hydrophilic modification on polyvinylidene fluoride porous film surface by amphipathic molecule
CN101837251B (en) * 2010-04-07 2012-05-23 南京工业大学 Method for hydrophilic modification on polyvinylidene fluoride porous film surface by amphipathic molecule
JP2013184071A (en) * 2012-03-05 2013-09-19 Chiba Univ Separation membrane and method for manufacturing the same

Also Published As

Publication number Publication date
JP3932338B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP4568848B2 (en) Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same
US8232353B2 (en) Processes for producing nano-space controlled polymer ion-exchange membranes
US7803846B2 (en) Highly durable polymer electrolytic membrane for a fuel cell having a cross-linked structure
JP5137174B2 (en) Method for producing polymer electrolyte membrane for fuel cell with silane cross-linked structure
JP3739713B2 (en) Method for producing a fluorine-based polymer ion exchange membrane having excellent oxidation resistance and a wide range of ion exchange amounts
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
JP4953113B2 (en) Fluoropolymer ion exchange membrane having excellent oxidation resistance and high ion exchange capacity and method for producing the same
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
JP3972125B2 (en) Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane
JP3932338B2 (en) Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane
JP5105340B2 (en) Fluorine polymer ion exchange membrane having wide ion exchange capacity and method for producing the same
JP4576620B2 (en) Method for producing nanostructure control polymer ion exchange membrane
JP4219656B2 (en) Electrolyte membrane for fuel cell
JP4670073B2 (en) Method for producing nano space control polymer ion exchange membrane
JP4429851B2 (en) Durable electrolyte membrane
JP4822389B2 (en) Electrolyte membrane with excellent oxidation resistance
JP4670074B2 (en) Fuel cell electrolyte membrane with excellent acid resistance
JP2004010744A (en) Fluorine-based macromolecular copolymer having large ion-exchanging capacity and oxidation resistance, and method for producing the same
JP2005063778A (en) Electrolyte film for fuel cell excellent in oxidation resistance
JP2004300360A (en) Method for producing electrolyte membrane for fuel cell comprising graft polymer ion-exchange membrane
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP2005142014A (en) Electrolyte membrane for fuel cells superior in acid resistance
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
JP4683181B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4710027B2 (en) Cross-linked fuel cell electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees