JP2009151938A - Solid polymer electrolyte membrane for fuel cell and fuel cell - Google Patents

Solid polymer electrolyte membrane for fuel cell and fuel cell Download PDF

Info

Publication number
JP2009151938A
JP2009151938A JP2006059194A JP2006059194A JP2009151938A JP 2009151938 A JP2009151938 A JP 2009151938A JP 2006059194 A JP2006059194 A JP 2006059194A JP 2006059194 A JP2006059194 A JP 2006059194A JP 2009151938 A JP2009151938 A JP 2009151938A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fuel cell
solid polymer
polymer electrolyte
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006059194A
Other languages
Japanese (ja)
Inventor
Junichi Tsukada
淳一 塚田
Toshio Oba
敏夫 大庭
Atsuo Kawada
敦雄 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006059194A priority Critical patent/JP2009151938A/en
Priority to PCT/JP2007/054011 priority patent/WO2007102418A1/en
Publication of JP2009151938A publication Critical patent/JP2009151938A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte membrane which is manufactured by a radiation graft polymerization method and has both high proton conductance and low methanol permeability, and a fuel cell. <P>SOLUTION: The solid polymer electrolyte membrane for the fuel cell is made by graft polymerization of a polymeric monomer on a resin film on which radiation is irradiated so that the number of unit of a graft chain may be 30 or less, and by sulfonating it. The solid polymer electrolyte membrane manufactured by radiation graft shows a high ion conductance and has a low permeability of methanol. Thereby, it is suitable for an electrolyte membrane of the fuel cell, in particular, for the electrolyte membrane for direct methanol type fuel cell. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池用固体高分子電解質膜及び燃料電池に関する。   The present invention relates to a solid polymer electrolyte membrane for a fuel cell and a fuel cell.

固体高分子電解質型イオン交換膜を用いた燃料電池は、作動温度が100℃以下と低く、そのエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として広く実用化が期待されている。この燃料電池においては、固体高分子電解質膜、白金系の触媒、ガス拡散電極、及び高分子電解質膜と電極の接合体などに関する重要な要素技術がある。しかし、この中でも燃料電池としての良好な特性を有する固体高分子電解質膜の開発は最も重要な技術の一つである。   A fuel cell using a solid polymer electrolyte type ion exchange membrane is expected to be widely put into practical use as a power source for electric vehicles or a simple auxiliary power source because its operating temperature is as low as 100 ° C. or less and its energy density is high. In this fuel cell, there are important elemental technologies related to a solid polymer electrolyte membrane, a platinum-based catalyst, a gas diffusion electrode, and a polymer electrolyte membrane-electrode assembly. However, among these, development of a solid polymer electrolyte membrane having good characteristics as a fuel cell is one of the most important technologies.

固体高分子電解質膜型燃料電池においては、電解質膜の両面にガス拡散電極が複合されており、膜と電極とは実質的に一体構造になっている。このため、電解質膜はプロトンを伝導するための電解質として作用し、また、加圧下においても燃料である水素やメタノールと酸化剤とを直接混合させないための隔膜としての役割も有する。このような電解質膜としては、電解質としてプロトンの移動速度が大きく、イオン交換容量が高いこと、電気抵抗を低く保持するために保水性が一定で、かつ高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度が大きいこと、及び寸法安定性が優れていること、長期の使用に対する化学的な安定性に優れていること、燃料である水素ガスやメタノール、酸化剤である酸素ガスに対して透過性を有しないことなどが要求される。   In a solid polymer electrolyte membrane fuel cell, gas diffusion electrodes are combined on both sides of the electrolyte membrane, and the membrane and the electrode have a substantially integrated structure. For this reason, the electrolyte membrane acts as an electrolyte for conducting protons, and also has a role as a diaphragm for preventing direct mixing of hydrogen or methanol as a fuel with an oxidizing agent even under pressure. Such an electrolyte membrane is required to have a high proton transfer rate as an electrolyte, a high ion exchange capacity, and a constant and high water retention in order to keep electric resistance low. On the other hand, because of its role as a diaphragm, the mechanical strength of the membrane is large, its dimensional stability is excellent, its chemical stability with respect to long-term use is excellent, and hydrogen gas or methanol as fuel In addition, it is required to have no permeability to oxygen gas as an oxidant.

このような固体高分子電解質膜として、デュポン社によって開発されたフッ素樹脂系のパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」等が一般に用いられてきた。
しかしながら、「ナフィオン」等の従来のフッ素樹脂系電解質膜は、化学的な耐久性や安定性には優れているが、メタノールを燃料とする直接メタノール型燃料電池(DMFC)では、メタノールが電解質膜を通過するクロスオーバー現象が生じ、出力が低下する問題があった。更に、フッ素樹脂系電解質膜は、モノマーの合成から出発するために、製造工程が多く、コストが高くなる問題があり、実用化する場合の大きな障害になっている。
そのため、前記「ナフィオン」等に替わる固体高分子電解質膜を作製するための技術が検討され、そのような技術の一つとして、フッ素系樹脂に、スチレンなどの炭化水素系モノマーや、炭化水素を一部含むフッ素系モノマーを放射線グラフト重合した電解質膜の作製が検討されている(特許文献1:特開2001−348439号公報、特許文献2:特開2002−313364号公報、特許文献3:特開2003−82129号公報等参照)。
As such a solid polymer electrolyte membrane, a fluororesin-based perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont and the like has been generally used.
However, conventional fluororesin-based electrolyte membranes such as “Nafion” are excellent in chemical durability and stability, but in direct methanol fuel cells (DMFC) using methanol as fuel, methanol is the electrolyte membrane. There was a problem that the crossover phenomenon passing through the slab occurred and the output decreased. Further, since the fluororesin-based electrolyte membrane starts from the synthesis of the monomer, there are problems in that the number of manufacturing steps is increased and the cost is increased, which is a great obstacle when put to practical use.
For this reason, a technique for producing a solid polymer electrolyte membrane replacing “Nafion” or the like has been studied. As one of such techniques, a hydrocarbon monomer such as styrene or a hydrocarbon is added to a fluororesin. Preparation of an electrolyte membrane obtained by radiation graft polymerization of a fluorine-containing monomer containing a part has been studied (Patent Document 1: JP 2001-348439 A, Patent Document 2: JP 2002-313364 A, Patent Document 3: Special (See Kai 2003-82129).

これらの放射線グラフト重合において、スチレンとジビニルベンゼンなどの2種類以上のグラフト原材料と放射線を照射したフッ素樹脂を同時に仕込んで共グラフト重合したスチレン/ジビニルベンゼン共グラフト膜は、「ナフィオン」と同等あるいはそれを凌ぐプロトン伝導度で、メタノール透過度が「ナフィオン」よりも低い電解質膜を得ることが可能であるものの、更なるメタノール透過度の低減が要求されている。しかしながら、このようなスチレン/ジビニルベンゼン共グラフト膜のメタノール透過度を小さくしようとして、架橋剤であるジビニルベンゼン量の増量や、グラフト率の低減を行うと、メタノール透過度は低減するものの、同時にプロトン伝導度が著しく低下してしまうため、高いプロトン伝導度と低いメタノール透過度を併せ持つ固体高分子電解質膜を得ることができないという問題があった。   In these radiation graft polymerizations, styrene / divinylbenzene co-graft membranes prepared by co-grafting two or more graft raw materials such as styrene and divinylbenzene and fluororesin irradiated with radiation at the same time are equivalent to or more than “Nafion”. Although it is possible to obtain an electrolyte membrane having a proton conductivity exceeding that of Nafion and lower than that of Nafion, further reduction in methanol permeability is required. However, increasing the amount of divinylbenzene as a cross-linking agent or reducing the graft ratio in an attempt to reduce the methanol permeability of such a styrene / divinylbenzene co-graft membrane will reduce the methanol permeability, but at the same time, proton Since the conductivity is significantly lowered, there is a problem that a solid polymer electrolyte membrane having both high proton conductivity and low methanol permeability cannot be obtained.

特開2001−348439号公報JP 2001-348439 A 特開2002−313364号公報JP 2002-313364 A 特開2003−82129号公報JP 2003-82129 A

従って、本発明は、放射線グラフト重合法により製造され、高いプロトン伝導度と低メタノール透過度を併せ持つ固体高分子電解質膜及び燃料電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a solid polymer electrolyte membrane and a fuel cell which are produced by a radiation graft polymerization method and have both high proton conductivity and low methanol permeability.

本発明者らは、上記目的を達成するために鋭意検討を行った結果、放射線を照射した樹脂フィルムに、グラフト鎖のユニット数が30以下になるように重合性モノマーをグラフト重合させた後、スルホン化することにより、高いプロトン伝導度と低いメタノール透過度を併せ持つ固体高分子電解質膜が得られることを見出し、本発明をなすに至った。   As a result of diligent studies to achieve the above object, the present inventors grafted a polymerizable monomer so that the number of graft chain units is 30 or less on a resin film irradiated with radiation, The inventors have found that a solid polymer electrolyte membrane having both high proton conductivity and low methanol permeability can be obtained by sulfonation, and the present invention has been made.

従って、本発明は、下記燃料電池用固体高分子電解質膜及び燃料電池を提供する。
請求項1:
放射線を照射した樹脂フィルムに、グラフト鎖のユニット数が30以下になるように重合性モノマーをグラフト重合させると共に、スルホン化してなることを特徴とする燃料電池用固体高分子電解質膜。
請求項2:
樹脂フィルムが、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル系共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体及びエチレン−テトラフルオロエチレン共重合体から選ばれるフッ素樹脂フィルムの少なくとも1種である請求項1記載の固体高分子電解質膜。
請求項3:
重合性モノマーがスチレン系モノマーである請求項1又は2記載の固体高分子電解質膜。
請求項4:
樹脂フィルムに照射する放射線の吸収線量が10kGy以上で、グラフト率が60%以下であることを特徴とする請求項1,2又は3記載の固体高分子電解質膜。
請求項5:
放射線が電子線であることを特徴とする請求項1乃至4のいずれか1項記載の固体高分子電解質膜。
請求項6:
請求項1乃至5のいずれか1項記載の固体高分子電解質膜が燃料極と空気極との間に設けられていることを特徴とする燃料電池。
請求項7:
メタノールを燃料とするダイレクトメタノール型であることを特徴とする請求項6記載の燃料電池。
Accordingly, the present invention provides the following solid polymer electrolyte membrane for fuel cell and fuel cell.
Claim 1:
A solid polymer electrolyte membrane for a fuel cell, wherein a polymerizable monomer is graft-polymerized on a resin film irradiated with radiation so that the number of graft chain units is 30 or less and sulfonated.
Claim 2:
The resin film is at least a fluororesin film selected from polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer and ethylene-tetrafluoroethylene copolymer. The solid polymer electrolyte membrane according to claim 1, which is one type.
Claim 3:
The solid polymer electrolyte membrane according to claim 1 or 2, wherein the polymerizable monomer is a styrene monomer.
Claim 4:
4. The solid polymer electrolyte membrane according to claim 1, wherein the absorbed dose of radiation applied to the resin film is 10 kGy or more and the graft ratio is 60% or less.
Claim 5:
The solid polymer electrolyte membrane according to any one of claims 1 to 4, wherein the radiation is an electron beam.
Claim 6:
A fuel cell, wherein the solid polymer electrolyte membrane according to any one of claims 1 to 5 is provided between a fuel electrode and an air electrode.
Claim 7:
7. The fuel cell according to claim 6, wherein the fuel cell is a direct methanol type fueled with methanol.

本発明の放射線グラフトにより製造された固体高分子電解質膜は、高いイオン伝導度を示し、かつメタノール透過度が低いため、燃料電池用の電解質膜、特にダイレクトメタノール型燃料電池用の電解質膜として適している。   The solid polymer electrolyte membrane produced by the radiation grafting of the present invention exhibits high ionic conductivity and low methanol permeability, and is therefore suitable as an electrolyte membrane for fuel cells, particularly for direct methanol fuel cells. ing.

本発明の燃料電池用固体高分子電解質膜は、放射線を照射した樹脂フィルムに、グラフト鎖のユニット数が30以下になるように重合性モノマーをグラフト重合させると共に、スルホン化してなるものであるが、この場合、樹脂フィルムとしては、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル系共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体及びエチレン−テトラフルオロエチレン共重合体等のフッ素系樹脂フィルム又はポリエチレン、ポリプロピレンなどの炭化水素系樹脂フィルムが挙げられる。   The solid polymer electrolyte membrane for a fuel cell of the present invention is obtained by grafting a polymerizable monomer onto a resin film irradiated with radiation so that the number of graft chain units is 30 or less and sulfonating the polymerized monomer. In this case, the resin film includes fluorine such as polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, and ethylene-tetrafluoroethylene copolymer. Examples thereof include hydrocarbon resin films such as polyethylene resin films or polyethylene and polypropylene.

一方、放射線を照射した樹脂フィルムに、グラフト鎖のユニット数が30以下になるように重合性モノマーをグラフト重合させるには、樹脂フィルムに照射する放射線の吸収線量を高くし、ラジカルを多量に発生した後に、重合性モノマーのグラフト率を一定割合(通常60%)以下となるように制御することにより可能になる。グラフト率の制御には、例えば、グラフト重合時の重合性モノマー濃度、酸素濃度などを調整する方法が挙げられる。重合性モノマーとしては一官能重合性モノマーが好ましく、スチレン、α−メチルスチレン、p−フルオロスチレン、スチレンスルホン酸、スチレンスルホン酸ナトリウム等のスチレン系モノマーが望ましいが、アクリルアミドメチルプロパンスルホン酸ナトリウムなどのアクリル系モノマーも単独で、もしくは適宜組み合わせて使用できる。多官能重合性モノマーを併用することも可能である。   On the other hand, in order to graft polymerize a polymerizable monomer so that the number of graft chain units is 30 or less on a resin film irradiated with radiation, the radiation dose irradiated to the resin film is increased and a large amount of radicals are generated. Thereafter, the graft ratio of the polymerizable monomer can be controlled to be a certain ratio (usually 60%) or less. Examples of the control of the graft ratio include a method of adjusting a polymerizable monomer concentration, an oxygen concentration and the like at the time of graft polymerization. As the polymerizable monomer, a monofunctional polymerizable monomer is preferable, and a styrene monomer such as styrene, α-methylstyrene, p-fluorostyrene, styrenesulfonic acid, sodium styrenesulfonate, and the like is preferable. Acrylic monomers can also be used alone or in appropriate combination. It is also possible to use a polyfunctional polymerizable monomer in combination.

放射線グラフト重合は、樹脂フィルムに放射線を照射することでラジカルを生成し、そこをグラフト点として重合性モノマーをグラフトする方法であるが、樹脂フィルムの主鎖に予め放射線を照射して、グラフトの起点となるラジカルを生成させた後、樹脂フィルムをモノマーと接触させてグラフト反応を行う前照射法と、重合性モノマーと樹脂フィルムの共存下に放射線を照射する同時照射法とがあるが、本発明においては、いずれの方法をも採用できる。なお、この場合、樹脂フィルムの膜厚は特に限定されないが、15〜100μm、特に25〜60μmであることが好ましい。   Radiation graft polymerization is a method in which a radical is generated by irradiating a resin film with radiation, and a polymerizable monomer is grafted using the radical as a grafting point. There are a pre-irradiation method in which a grafting reaction is performed by bringing a resin film into contact with a monomer after generating a radical as a starting point, and a simultaneous irradiation method in which radiation is irradiated in the presence of a polymerizable monomer and a resin film. Any method can be employed in the invention. In this case, the thickness of the resin film is not particularly limited, but is preferably 15 to 100 μm, particularly preferably 25 to 60 μm.

本発明でグラフト重合させるために照射する放射線としては、γ線、X線、電子線、イオンビーム、紫外線等が例示されるが、特に、ラジカル生成の容易さからγ線、電子線が好ましい。   Examples of radiation irradiated for graft polymerization in the present invention include γ-rays, X-rays, electron beams, ion beams, ultraviolet rays, and the like, and γ-rays and electron beams are particularly preferable because of the ease of radical generation.

放射線の吸収線量は、10kGy以上になるように照射されることが好ましく、望ましい吸収線量は20〜300kGy、更に望ましい吸収線量は150〜250kGyである。10kGy未満であると、ラジカル生成量が少なく、所望のイオン伝導度を得るには、グラフト鎖のモノマーユニット数を多くしなくてはならない。300kGyを超えると樹脂フィルムの伸び、強度などの機械特性が低下する場合がある。   It is preferable that the absorbed dose of radiation is 10 kGy or more, a desirable absorbed dose is 20 to 300 kGy, and a more desirable absorbed dose is 150 to 250 kGy. If it is less than 10 kGy, the amount of radicals produced is small, and the number of monomer units in the graft chain must be increased in order to obtain the desired ionic conductivity. If it exceeds 300 kGy, mechanical properties such as elongation and strength of the resin film may be deteriorated.

更に、放射線の照射は、ヘリウム、窒素、アルゴンガス等の不活性ガス雰囲気中で行うのが好ましく、該ガス中の酸素濃度は100ppm以下、特に50ppm以下が好ましいが、必ずしも酸素不在下で行う必要はない。   Further, the irradiation with radiation is preferably performed in an inert gas atmosphere such as helium, nitrogen, or argon gas, and the oxygen concentration in the gas is preferably 100 ppm or less, and particularly preferably 50 ppm or less. There is no.

ここで、放射線を照射した樹脂にグラフトする重合性モノマーの使用量は、樹脂フィルム100質量部に対して重合性モノマーを1,000〜100,000質量部、特に4,000〜20,000質量部使用することが好ましい。モノマーが少なすぎると接触が不十分になる場合があり、多すぎるとモノマーが効率的に使用できなくなるおそれがある。   Here, the usage-amount of the polymerizable monomer grafted to the resin irradiated with radiation is 1,000 to 100,000 parts by weight, particularly 4,000 to 20,000 parts by weight of the polymerizable monomer with respect to 100 parts by weight of the resin film. It is preferable to use a part. If the amount of the monomer is too small, the contact may be insufficient. If the amount is too large, the monomer may not be used efficiently.

これら重合性モノマーをグラフト重合するに際しては、アゾビスイソブチルニトリルなどの重合開始剤を本発明の目的を損なわない範囲で適宜用いてもよい。   In graft polymerization of these polymerizable monomers, a polymerization initiator such as azobisisobutyl nitrile may be appropriately used as long as the object of the present invention is not impaired.

更に、グラフト反応時に溶媒を用いることができ、溶媒としては、モノマーを均一に溶解するものが好ましく、例えばアセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール類、テトラヒドロフラン、ジオキサン等のエーテル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンゼン、トルエン、キシレン等の芳香族炭化水素、n−ヘプタン、n−ヘキサン、シクロヘキサン等の脂肪族又は脂環族炭化水素、あるいはこれらの混合溶媒を用いることができる。モノマー/溶媒(質量比)は0.01〜1が望ましい。モノマー/溶媒(質量比)が1より大きいとグラフト鎖のモノマーユニット数の調整が困難になり、0.01より小さいと、グラフト率が低くなりすぎる場合がある。更に望ましい範囲は0.03〜0.5である。   Furthermore, a solvent can be used during the grafting reaction, and the solvent is preferably one that uniformly dissolves the monomer, for example, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, methyl alcohol and ethyl alcohol , Alcohols such as propyl alcohol and butyl alcohol, ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as N, N-dimethylformamide, N, N-dimethylacetamide, benzene, toluene and xylene, n-heptane, n -Aliphatic or alicyclic hydrocarbons such as hexane and cyclohexane, or a mixed solvent thereof can be used. The monomer / solvent (mass ratio) is preferably from 0.01 to 1. When the monomer / solvent (mass ratio) is larger than 1, it is difficult to adjust the number of monomer units of the graft chain, and when it is smaller than 0.01, the graft ratio may be too low. A more desirable range is 0.03 to 0.5.

上記グラフト重合の反応条件としては、0〜100℃、特に40〜80℃の温度で1〜40時間、特に4〜20時間の反応時間とすることが好ましい。窒素、アルゴンなどの不活性ガス雰囲気中、もしくは酸素濃度0.01〜20Vol%で行うことができる。   The reaction conditions for the graft polymerization are preferably 0 to 100 ° C., particularly 40 to 80 ° C. for 1 to 40 hours, particularly 4 to 20 hours. The reaction can be performed in an inert gas atmosphere such as nitrogen or argon, or at an oxygen concentration of 0.01 to 20 Vol%.

上述したように、放射線を照射した樹脂フィルムに重合性モノマーをグラフト重合させ、更にスルホン化させることにより、固体高分子電解質膜を得ることができる。   As described above, a solid polymer electrolyte membrane can be obtained by graft polymerization of a polymerizable monomer to a resin film irradiated with radiation and further sulfonation.

グラフトした膜は、クロロスルホン酸−ジクロロエタン中に浸漬することによってクロロスルホン酸基を導入することができる。クロロスルホン酸と反応させた膜は、水酸化カリウムや水酸化ナトリウム水溶液中で反応させ、スルホン酸アルカリ塩とし、引き続き塩酸などで酸処理することによってスルホン化することができる。   The grafted membrane can introduce chlorosulfonic acid groups by dipping in chlorosulfonic acid-dichloroethane. The membrane reacted with chlorosulfonic acid can be sulfonated by reacting in an aqueous solution of potassium hydroxide or sodium hydroxide to form an alkali salt of sulfonic acid, followed by acid treatment with hydrochloric acid or the like.

本発明の固体高分子電解質膜は、燃料電池の燃料極と空気極の間に設けられる固体高分子電解質膜として使用できるものであり、固体高分子電解質膜の両面に触媒層・燃料拡散層及びセパレータを配置することで、特にダイレクトメタノール型燃料電池用電解質膜として好適に使用されて、メタノールのクロスオーバーがなく、電池特性に優れた燃料電池を得ることが可能である。なお、燃料極、空気極の構成、材質、燃料電池の構成は公知のものとすることができる。   The solid polymer electrolyte membrane of the present invention can be used as a solid polymer electrolyte membrane provided between a fuel electrode and an air electrode of a fuel cell, and has a catalyst layer, a fuel diffusion layer, and a catalyst layer on both sides of the solid polymer electrolyte membrane. By disposing the separator, it is possible to obtain a fuel cell that is suitably used particularly as an electrolyte membrane for a direct methanol fuel cell, has no methanol crossover, and has excellent cell characteristics. Note that the configurations and materials of the fuel electrode and the air electrode and the configuration of the fuel cell can be known.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
縦5cm,横6cm,厚さ50μmのエチレン−テトラフルオロエチレン共重合体(ETFE,Norton社製)に室温、窒素雰囲気下、加速電圧100kV電子線を両面に各20kGy照射した後、直ちに、スチレン6質量部、トルエン18質量部が仕込んである三方コックを付けた30ml容器に浸漬し、室温で15分窒素バブリングした後、60℃で16時間加熱し、グラフト率が42%のスチレングラフト膜を得た。
グラフト率=[(グラフト後フィルム質量−グラフト前フィルム質量)/グラフト前
フィルム質量]×100(%)
なお、グラフト後フィルム質量はグラフト後のフィルムをトルエンで1回、アセトンで3回洗浄し、60℃で2時間減圧乾燥後の質量とした。
また、13C NMRにより求めた上記スチレングラフト鎖のグラフト鎖一本当たりの平均スチレンユニット数は20であった。
上記グラフト重合膜を、クロロスルホン酸30質量部と1,2−ジクロロエタン70質量部の混合液に浸漬し、50℃で2時間加熱後、90℃の1N苛性カリ水溶液中に2時間浸漬することで加水分解し、続いて90℃の2N塩酸に2時間浸漬後、純水で3回洗浄し、スルホン酸基を含有する固体高分子電解質膜を得た。電解質膜の特性を下記の方法により測定した結果を表1に示す。
[Example 1]
Immediately after irradiating an ethylene-tetrafluoroethylene copolymer (ETFE, manufactured by Norton) having a length of 5 cm, a width of 6 cm, and a thickness of 50 μm with an electron beam of 20 kGy on both sides with an acceleration voltage of 100 kV in a nitrogen atmosphere at room temperature, styrene 6 After immersing in a 30 ml container equipped with a three-way cock containing 18 parts by mass of toluene and 18 parts by mass of toluene, bubbling with nitrogen for 15 minutes at room temperature and then heating at 60 ° C. for 16 hours to obtain a styrene graft membrane with a graft rate of 42% It was.
Graft ratio = [(film weight after grafting−film weight before grafting) / before grafting
Film mass] × 100 (%)
The weight of the film after grafting was the weight after the grafted film was washed once with toluene and three times with acetone and dried under reduced pressure at 60 ° C. for 2 hours.
The average number of styrene units per graft chain of the styrene graft chain determined by 13 C NMR was 20.
The graft polymerized membrane is immersed in a mixed solution of 30 parts by mass of chlorosulfonic acid and 70 parts by mass of 1,2-dichloroethane, heated at 50 ° C. for 2 hours, and then immersed in a 1N caustic potash aqueous solution at 90 ° C. for 2 hours. It was hydrolyzed and subsequently immersed in 2N hydrochloric acid at 90 ° C. for 2 hours and then washed 3 times with pure water to obtain a solid polymer electrolyte membrane containing sulfonic acid groups. The results of measuring the characteristics of the electrolyte membrane by the following method are shown in Table 1.

1.イオン交換容量
H型電解質膜を0.02M水酸化ナトリウム水溶液中に24h浸漬した後、膜を取り出し、溶液を0.02M塩酸で中和滴定することで求めた。
2.含水率
室温純水浸漬後の含水膜質量と100℃減圧乾燥後の乾燥膜質量の差から求めた。
含水率=(含水膜質量−乾燥膜質量)/乾燥膜質量×100(%)
3.イオン伝導度
インピーダンスアナライザー(ソーラトロン社製1260)を使い、4端子交流インピーダンス法により室温で短冊状サンプル(幅1cm)の長手方向の抵抗を測定して求めた。
4.メタノール透過係数
10Mメタノール水と純水を膜で隔離し、室温でメタノール水側から膜を透過して純水側に出てきたメタノール量をガスクロマトグラフィーで定量して求めた。
1. Ion exchange capacity After immersing the H-type electrolyte membrane in a 0.02M aqueous sodium hydroxide solution for 24 hours, the membrane was taken out, and the solution was determined by neutralization titration with 0.02M hydrochloric acid.
2. Moisture content The moisture content was determined from the difference between the mass of the hydrous film after immersion in room temperature pure water and the mass of the dried film after drying at 100 ° C under reduced pressure.
Water content = (Hydrohydrate film mass−Dry film mass) / Dry film mass × 100 (%)
3. Ionic conductivity Using an impedance analyzer (Solartron 1260), the resistance in the longitudinal direction of the strip-shaped sample (width 1 cm) was measured at room temperature by the 4-terminal AC impedance method.
4). Methanol Permeability Coefficient 10M methanol water and pure water were separated by a membrane, and the amount of methanol that permeated the membrane from the methanol water side at room temperature and emerged on the pure water side was determined by gas chromatography.

[比較例1]
縦5cm,横6cm,厚さ50μmのエチレン−テトラフルオロエチレン共重合体(ETFE,Norton社製)に室温、窒素雰囲気下、加速電圧100kV電子線を両面に各2kGy照射した後、直ちに、スチレン20質量部が仕込んである三方コックを付けた30ml容器に浸漬し、室温で15分窒素バブリングした後、60℃で16時間加熱し、グラフト率が45%のスチレングラフト膜を得た。
グラフト率=[(グラフト後フィルム質量−グラフト前フィルム質量)/グラフト前
フィルム質量]×100(%)
なお、グラフト後フィルム質量はグラフト後のフィルムをトルエンで1回、アセトンで3回洗浄し、60℃で2時間減圧乾燥後の質量とした。
また、13C NMRにより求めた上記スチレングラフト鎖のグラフト鎖一本当たりの平均スチレンユニット数は約170であった。
上記グラフト重合膜を、クロロスルホン酸30質量部と1,2−ジクロロエタン70質量部の混合液に浸漬し、50℃で2時間加熱後、90℃の1N苛性カリ水溶液中に2時間浸漬することで加水分解し、続いて90℃の2N塩酸に2時間浸漬後、純水で3回洗浄し、スルホン酸基を含有する固体高分子電解質膜を得た。この電解質膜の特性について実施例1の方法で測定した結果を表1に示す。
[Comparative Example 1]
An ethylene-tetrafluoroethylene copolymer (ETFE, manufactured by Norton) having a length of 5 cm, a width of 6 cm, and a thickness of 50 μm was irradiated with an electron beam of 2 kGy at an acceleration voltage of 100 kV on both sides in a nitrogen atmosphere at room temperature. After immersing in a 30 ml container equipped with a three-way cock charged with parts by mass and bubbling with nitrogen at room temperature for 15 minutes, it was heated at 60 ° C. for 16 hours to obtain a styrene graft membrane having a graft ratio of 45%.
Graft ratio = [(film weight after grafting−film weight before grafting) / before grafting
Film mass] × 100 (%)
The weight of the film after grafting was the weight after the grafted film was washed once with toluene and three times with acetone and dried under reduced pressure at 60 ° C. for 2 hours.
The average number of styrene units per graft chain of the styrene graft chain determined by 13 C NMR was about 170.
The graft polymerized membrane is immersed in a mixed solution of 30 parts by mass of chlorosulfonic acid and 70 parts by mass of 1,2-dichloroethane, heated at 50 ° C. for 2 hours, and then immersed in a 1N caustic potash aqueous solution at 90 ° C. for 2 hours. It was hydrolyzed and subsequently immersed in 2N hydrochloric acid at 90 ° C. for 2 hours and then washed 3 times with pure water to obtain a solid polymer electrolyte membrane containing sulfonic acid groups. The results of measuring the characteristics of this electrolyte membrane by the method of Example 1 are shown in Table 1.

実施例1、比較例1の結果より、グラフト率がほぼ同じ場合、電子線の吸収線量が高いグラフト膜はグラフトしたモノマーのユニット数が少なくイオン伝導度が同じでメタノール透過係数が小さいことが確認できた。   From the results of Example 1 and Comparative Example 1, when the graft ratio is almost the same, it is confirmed that the graft membrane having a high absorbed dose of electron beams has a small number of grafted monomer units, the same ionic conductivity, and a small methanol permeability coefficient. did it.

[比較例2]
実施例1で用いたエチレン−テトラフルオロエチレン共重合体に室温、窒素雰囲気下、加速電圧100kV電子線を両面に各2kGy照射した後、直ちに、スチレン20.0質量部、ジビニルベンゼン2.4質量部が仕込んである三方コックを付けた30ml容器に浸漬し、室温で15分窒素バブリングした後、60℃で16時間加熱した。実施例1と同様にして求めたグラフト率は52%であった。
上記グラフト重合膜を、クロロスルホン酸30質量部と1,2−ジクロロエタン70質量部の混合液に浸漬し、50℃で2時間加熱後、90℃の1N苛性カリ水溶液中に2時間浸漬することで加水分解し、続いて90℃の2N塩酸に2時間浸漬後、純水で3回洗浄し、スルホン酸基を含有する固体高分子電解質膜を得た。この電解質膜の特性について実施例1の方法で測定した結果を表1に示す。
[Comparative Example 2]
The ethylene-tetrafluoroethylene copolymer used in Example 1 was irradiated with an electron beam of 2 kGy at an acceleration voltage of 100 kV on both sides in a nitrogen atmosphere at room temperature, and immediately after that, 20.0 parts by mass of styrene and 2.4 parts by mass of divinylbenzene. The sample was immersed in a 30 ml container equipped with a three-way cock charged with a part, bubbled with nitrogen at room temperature for 15 minutes, and then heated at 60 ° C. for 16 hours. The graft ratio determined in the same manner as in Example 1 was 52%.
The graft polymerized membrane is immersed in a mixed solution of 30 parts by mass of chlorosulfonic acid and 70 parts by mass of 1,2-dichloroethane, heated at 50 ° C. for 2 hours, and then immersed in a 1N caustic potash aqueous solution at 90 ° C. for 2 hours. It was hydrolyzed and subsequently immersed in 2N hydrochloric acid at 90 ° C. for 2 hours and then washed 3 times with pure water to obtain a solid polymer electrolyte membrane containing sulfonic acid groups. The results of measuring the characteristics of this electrolyte membrane by the method of Example 1 are shown in Table 1.

[比較例3]
ナフィオン112(デュポン社製)の特性について実施例1の方法で測定した結果を表1に示す。
[Comparative Example 3]
Table 1 shows the results of measuring the properties of Nafion 112 (manufactured by DuPont) by the method of Example 1.

Figure 2009151938
Figure 2009151938

Claims (7)

放射線を照射した樹脂フィルムに、グラフト鎖のユニット数が30以下になるように重合性モノマーをグラフト重合させると共に、スルホン化してなることを特徴とする燃料電池用固体高分子電解質膜。   A solid polymer electrolyte membrane for a fuel cell, wherein a polymerizable monomer is graft-polymerized on a resin film irradiated with radiation so that the number of graft chain units is 30 or less and sulfonated. 樹脂フィルムが、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル系共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン系共重合体及びエチレン−テトラフルオロエチレン共重合体から選ばれるフッ素樹脂フィルムの少なくとも1種である請求項1記載の固体高分子電解質膜。   The resin film is at least a fluororesin film selected from polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer and ethylene-tetrafluoroethylene copolymer. The solid polymer electrolyte membrane according to claim 1, which is one type. 重合性モノマーがスチレン系モノマーである請求項1又は2記載の固体高分子電解質膜。   The solid polymer electrolyte membrane according to claim 1 or 2, wherein the polymerizable monomer is a styrene monomer. 樹脂フィルムに照射する放射線の吸収線量が10kGy以上で、グラフト率が60%以下であることを特徴とする請求項1,2又は3記載の固体高分子電解質膜。   4. The solid polymer electrolyte membrane according to claim 1, wherein the absorbed dose of radiation applied to the resin film is 10 kGy or more and the graft ratio is 60% or less. 放射線が電子線であることを特徴とする請求項1乃至4のいずれか1項記載の固体高分子電解質膜。   The solid polymer electrolyte membrane according to any one of claims 1 to 4, wherein the radiation is an electron beam. 請求項1乃至5のいずれか1項記載の固体高分子電解質膜が燃料極と空気極との間に設けられていることを特徴とする燃料電池。   A fuel cell, wherein the solid polymer electrolyte membrane according to any one of claims 1 to 5 is provided between a fuel electrode and an air electrode. メタノールを燃料とするダイレクトメタノール型であることを特徴とする請求項6記載の燃料電池。   7. The fuel cell according to claim 6, wherein the fuel cell is a direct methanol type fueled with methanol.
JP2006059194A 2006-03-06 2006-03-06 Solid polymer electrolyte membrane for fuel cell and fuel cell Pending JP2009151938A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006059194A JP2009151938A (en) 2006-03-06 2006-03-06 Solid polymer electrolyte membrane for fuel cell and fuel cell
PCT/JP2007/054011 WO2007102418A1 (en) 2006-03-06 2007-03-02 Solid polymer electrolyte membrane for fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059194A JP2009151938A (en) 2006-03-06 2006-03-06 Solid polymer electrolyte membrane for fuel cell and fuel cell

Publications (1)

Publication Number Publication Date
JP2009151938A true JP2009151938A (en) 2009-07-09

Family

ID=38474849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059194A Pending JP2009151938A (en) 2006-03-06 2006-03-06 Solid polymer electrolyte membrane for fuel cell and fuel cell

Country Status (2)

Country Link
JP (1) JP2009151938A (en)
WO (1) WO2007102418A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195047A (en) * 2015-03-31 2016-11-17 株式会社Ihi Electrolyte membrane and manufacturing method for the same
EP3187524A1 (en) * 2015-12-29 2017-07-05 Sabanci Üniversitesi Proton exchange membrane and a method for preparation thereof
JP2018012084A (en) * 2016-07-22 2018-01-25 国立大学法人山口大学 Manufacturing method of mosaic charged membrane and mosaic charged membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076579A1 (en) 2009-12-21 2011-06-30 Höganäs Ab (Publ) Stator element for a modulated pole machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313364A (en) * 2001-04-13 2002-10-25 Hitachi Cable Ltd Electrolyte film for use in fuel cell, film manufacturing method, and fuel cell
JP4434666B2 (en) * 2003-08-29 2010-03-17 信越化学工業株式会社 Method for producing solid polymer electrolyte membrane and fuel cell
JP4683181B2 (en) * 2004-08-24 2011-05-11 信越化学工業株式会社 Method for producing solid polymer electrolyte membrane for fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195047A (en) * 2015-03-31 2016-11-17 株式会社Ihi Electrolyte membrane and manufacturing method for the same
EP3187524A1 (en) * 2015-12-29 2017-07-05 Sabanci Üniversitesi Proton exchange membrane and a method for preparation thereof
JP2018012084A (en) * 2016-07-22 2018-01-25 国立大学法人山口大学 Manufacturing method of mosaic charged membrane and mosaic charged membrane

Also Published As

Publication number Publication date
WO2007102418A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4682358B2 (en) Method for producing functional inorganic / graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell
JP5137174B2 (en) Method for producing polymer electrolyte membrane for fuel cell with silane cross-linked structure
JP5004178B2 (en) High proton conductive polymer electrolyte membrane excellent in mechanical strength and method for producing the same
WO2008023801A1 (en) Polymer electrolyte membrane composed of aromatic polymer membrane base and method for producing the same
JP4997625B2 (en) Method for producing polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
US7629393B2 (en) Solid polymer electrolyte membrane and process for producing the same, and fuel cell
JP2004059752A (en) Electrolyte membrane for fuel cell comprising crosslinked fluororesin base
JP4986219B2 (en) Electrolyte membrane
JP2002348389A (en) Fluoropolymer ion-exchange membrane having wide ion- exchange capacity and its production method
JP4822389B2 (en) Electrolyte membrane with excellent oxidation resistance
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP2011249093A (en) Cross-linked aromatic polymer electrolyte membrane and producing method thereof, and polymer fuel cell using cross-linked aromatic polymer electrolyte membrane
EP2124277A1 (en) Method for producing electrolyte membrane for fuel cell and method for producing electrolyte membrane-electrode assembly for fuel cell
WO2006134801A1 (en) Solid polyelectrolyte membrane, process for production thereof, and fuel cells
JP2004158270A (en) Electrolyte membrane for fuel cell
JP5305283B2 (en) Production method of polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
JP4434666B2 (en) Method for producing solid polymer electrolyte membrane and fuel cell
JP5316413B2 (en) Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell
JP4390047B2 (en) Solid polymer electrolyte membrane, method for producing the same, and fuel cell
JP2006307051A (en) Solid polymer electrolytic membrane and method for producing the same, and fuel battery
JP2005142014A (en) Electrolyte membrane for fuel cells superior in acid resistance
JP5158309B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5029797B2 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell