JP4683181B2 - Method for producing solid polymer electrolyte membrane for fuel cell - Google Patents

Method for producing solid polymer electrolyte membrane for fuel cell Download PDF

Info

Publication number
JP4683181B2
JP4683181B2 JP2004243335A JP2004243335A JP4683181B2 JP 4683181 B2 JP4683181 B2 JP 4683181B2 JP 2004243335 A JP2004243335 A JP 2004243335A JP 2004243335 A JP2004243335 A JP 2004243335A JP 4683181 B2 JP4683181 B2 JP 4683181B2
Authority
JP
Japan
Prior art keywords
film
electrolyte membrane
polymer electrolyte
crystallinity
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004243335A
Other languages
Japanese (ja)
Other versions
JP2006059776A (en
Inventor
繁 小西
紀文 高橋
敦雄 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004243335A priority Critical patent/JP4683181B2/en
Publication of JP2006059776A publication Critical patent/JP2006059776A/en
Application granted granted Critical
Publication of JP4683181B2 publication Critical patent/JP4683181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、高分子電解質型燃料電池用固体高分子電解質膜の製造方法に関する。 The present invention relates to a method for producing a solid polymer electrolyte membrane for a polymer electrolyte fuel cell.

固体高分子電解質型イオン交換膜を用いた燃料電池は、作動温度が100℃以下と低く、そのエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として広く実用化が期待されている。この燃料電池においては、固体高分子電解質膜、白金系の触媒、ガス拡散電極、及び高分子電解質膜と電極の接合体などに関する重要な要素技術がある。しかし、この中でも燃料電池としての良好な特性を有する固体高分子電解質膜の開発は、最も重要な技術の一つである。   A fuel cell using a solid polymer electrolyte type ion exchange membrane is expected to be widely put into practical use as a power source for electric vehicles or a simple auxiliary power source because its operating temperature is as low as 100 ° C. or less and its energy density is high. In this fuel cell, there are important elemental technologies related to a solid polymer electrolyte membrane, a platinum-based catalyst, a gas diffusion electrode, and a polymer electrolyte membrane-electrode assembly. However, among these, the development of a solid polymer electrolyte membrane having good characteristics as a fuel cell is one of the most important technologies.

固体高分子電解質膜型燃料電池においては、電解質膜の両面にガス拡散電極が複合されており、膜と電極とは実質的に一体構造になっている。このため、電解質膜はプロトンを伝導するための電解質として作用し、また、加圧下においても燃料である水素やメタノールと酸化剤とを直接混合させないための隔膜としての役割も有する。このような電解質膜としては、電解質としてプロトンの移動速度が大きく、イオン交換容量が高いこと、電気抵抗を低く保持するために保水性が一定で、かつ高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度が大きいこと、及び寸法安定性が優れていること、長期の使用に対する化学的な安定性に優れていること、燃料である水素ガスやメタノール、酸化剤である酸素ガスに対して過剰な透過性を有しないことなどが要求される。   In a solid polymer electrolyte membrane fuel cell, gas diffusion electrodes are combined on both sides of the electrolyte membrane, and the membrane and the electrode have a substantially integrated structure. For this reason, the electrolyte membrane acts as an electrolyte for conducting protons, and also has a role as a diaphragm for preventing direct mixing of hydrogen or methanol as a fuel with an oxidizing agent even under pressure. Such an electrolyte membrane is required to have a high proton transfer rate as an electrolyte, a high ion exchange capacity, and a constant and high water retention in order to keep electric resistance low. On the other hand, because of its role as a diaphragm, the mechanical strength of the membrane is large, its dimensional stability is excellent, its chemical stability with respect to long-term use is excellent, and hydrogen gas or methanol as fuel Further, it is required that the gas does not have excessive permeability with respect to oxygen gas which is an oxidizing agent.

初期の固体高分子電解質膜型燃料電池では、スチレンとジビニルベンゼンの共重合で製造した炭化水素系樹脂のイオン交換膜が電解質膜として使用された。しかし、この電解質膜は、耐久性が非常に低いため、実用性に乏しく、そのため、その後はデュポン社によって開発されたフッ素樹脂系のパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」等が一般に用いられてきた。   In early solid polymer electrolyte membrane fuel cells, ion exchange membranes of hydrocarbon resins produced by copolymerization of styrene and divinylbenzene were used as electrolyte membranes. However, since this electrolyte membrane has very low durability, it is poor in practicality. Therefore, after that, a fluororesin-based perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont is used. It has been used in general.

しかしながら、「ナフィオン」等の従来のフッ素樹脂系電解質膜は、化学的な耐久性や安定性には優れているが、メタノールを燃料とする直接メタノール型燃料電池(DMFC)ではメタノールによって膜が膨潤し、膜と電極の接合部が剥がれる問題、更にメタノールが電解質膜を通過するクロスオーバー現象が生じ、出力が低下する等の問題があった。   However, conventional fluororesin electrolyte membranes such as “Nafion” have excellent chemical durability and stability, but in direct methanol fuel cells (DMFC) using methanol as fuel, the membrane swells with methanol. However, there is a problem that the joint between the membrane and the electrode is peeled off, and further, a crossover phenomenon in which methanol passes through the electrolyte membrane occurs, resulting in a decrease in output.

更に、フッ素樹脂系電解質膜はモノマーの合成から出発するために、製造工程が多く、コストが高くなる問題があり、実用化する場合の大きな障害になっている。   Furthermore, since the fluororesin-based electrolyte membrane starts from the synthesis of the monomer, there are problems in that the number of manufacturing processes is increased and the cost is increased, and this is a major obstacle to practical use.

そのため、前記「ナフィオン」等に代わるメタノールに対する膨潤が小さく、かつ低コストの電解質膜を開発する努力が行われている。その中で、フッ素樹脂系の膜に放射線を照射し、スチレンなど反応性モノマーをグラフト重合した後にスルホン基を導入して固体高分子電解質膜を作製する方法は、ナフィオンと同程度あるいはそれより高いイオン伝導度を容易に得られることから有望な方法と考えられている。この方法については、例えば特開2001−348439号公報(特許文献1)、特開2002−313364号公報(特許文献2)、特開2003−82129号公報(特許文献3)などで提案されている。   For this reason, efforts are being made to develop low-cost electrolyte membranes that are less swelled with methanol instead of “Nafion” and the like. Among them, the method of producing a solid polymer electrolyte membrane by irradiating a fluororesin film with radiation and graft polymerization of a reactive monomer such as styrene and then introducing a sulfone group is the same as or higher than that of Nafion. Since ionic conductivity can be easily obtained, it is considered a promising method. This method is proposed in, for example, Japanese Patent Application Laid-Open No. 2001-348439 (Patent Document 1), Japanese Patent Application Laid-Open No. 2002-313364 (Patent Document 2), Japanese Patent Application Laid-Open No. 2003-82129 (Patent Document 3), and the like. .

反応性モノマーをグラフトするフィルムとしては、ポリテトラフルオロエチレン(PTFE)、ポリ[テトラフルオロエチレン−ヘキサフルオロプロピレン](FEP)、ポリ[テトラフルオロエチレン−パーフルオロアルキルビニルエーテル](PFA)など、フッ素樹脂が耐酸化性に優れることより主に検討されている。しかしながら、これらのフィルムは、スチレンなど反応性モノマーのグラフト率を増加するにつれて脆くなり、スルホン化した電解質膜と電極との接合体(Membrane−Electrode−Assembly:MEA)をホットプレス法で形成しようとすると、電解質膜に亀裂が入りやすい問題点がある。   Examples of films for grafting reactive monomers include polytetrafluoroethylene (PTFE), poly [tetrafluoroethylene-hexafluoropropylene] (FEP), and poly [tetrafluoroethylene-perfluoroalkyl vinyl ether] (PFA). Has been mainly studied because of its superior oxidation resistance. However, these films become brittle as the graft ratio of reactive monomers such as styrene increases, and an attempt is made to form a sulfonated electrolyte membrane-electrode assembly (Mebrane-Electrode-Assembly: MEA) by hot pressing. Then, there is a problem that the electrolyte membrane is easily cracked.

そのため、反応性モノマーをグラフトするフィルムには、スチレンなどの反応性モノマーをグラフトし、スルホン化後の伸び・破断強度が大きくなるものが好ましい。炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体からなるフィルムがその要請を満たし、代表的なものとしてポリ[エチレン−テトラフルオロエチレン](ETFE)が挙げられる。ETFEフィルムにスチレンなど反応性モノマーをグラフトし、電解質膜を得る方法については、例えば特開平9−102322号公報(特許文献4)、H.P.Brack et al.,American Chemical Society Symposium Series Vol.744,p.174(1999)(非特許文献1)、A.S.Arico et al.,Journal of Power Sources 123,p.107(2003)(非特許文献2)などに述べられている。上記文献では、燃料に水素を用いたときの電池特性について記載されているが、燃料にメタノールを用いたときの電池特性について記載された例として、T.Hatanaka et al.,Fuel 81,p.2173(2002)(非特許文献3)が挙げられる。   For this reason, the film to which the reactive monomer is grafted is preferably a film in which a reactive monomer such as styrene is grafted to increase the elongation and breaking strength after sulfonation. A film made of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer satisfies the requirement, and a typical example is poly [ethylene-tetrafluoroethylene] (ETFE). For a method of grafting a reactive monomer such as styrene to an ETFE film to obtain an electrolyte membrane, see, for example, JP-A-9-102322 (Patent Document 4), H.C. P. Black et al. , American Chemical Society Symposium Series Vol. 744, p. 174 (1999) (Non-Patent Document 1), A.I. S. Arico et al. , Journal of Power Sources 123, p. 107 (2003) (Non-Patent Document 2). The above document describes the cell characteristics when hydrogen is used as the fuel. As an example of the cell characteristics when methanol is used as the fuel, T. Hatanaka et al. , Fuel 81, p. 2173 (2002) (Non-patent Document 3).

この場合、ETFEのフィルムに放射線を照射後、スチレンなど反応性モノマーをグラフト重合し、スルホン化した膜は、スチレンのグラフト率を高くすることで優れた機械的特性を保ちつつ高いイオン伝導度を示す。しかし、グラフト率の増加に伴い、メタノールに対する膨潤度も大きくなる。そのため、グラフト率の高い、即ち、イオン伝導度の高い膜をMEA化した後メタノールに浸漬すると、膜のメタノール膨潤により、膜と電極とが剥がれたり、あるいは膜が破れる等の問題点があった。   In this case, after irradiating the ETFE film with radiation, a reactive monomer such as styrene is graft polymerized, and the sulfonated film has high ionic conductivity while maintaining excellent mechanical properties by increasing the grafting ratio of styrene. Show. However, as the graft rate increases, the degree of swelling with respect to methanol also increases. For this reason, when a membrane having a high graft ratio, that is, a high ion conductivity is made into MEA and then immersed in methanol, there is a problem that the membrane and the electrode peel off or the membrane is broken due to methanol swelling of the membrane. .

特開2001−348439号公報JP 2001-348439 A 特開2002−313364号公報JP 2002-313364 A 特開2003−82129号公報JP 2003-82129 A 特開平9−102322号公報JP-A-9-102322 H.P.Brack et al.,American Chemical Society Symposium Series Vol.744,p.174(1999)H. P. Black et al. , American Chemical Society Symposium Series Vol. 744, p. 174 (1999) A.S.Arico et al.,Journal of Power Sources 123,p.107(2003)A. S. Arico et al. , Journal of Power Sources 123, p. 107 (2003) T.Hatanaka et al.,Fuel 81,p.2173(2002)T.A. Hatanaka et al. , Fuel 81, p. 2173 (2002)

本発明は、放射線グラフト重合法により製造した固体高分子電解質膜において、高いイオン伝導度を保ちつつ、メタノール膨潤度を従来のグラフト膜より小さくした固体高分子電解質膜の製造方法を提供することを目的とする。 The present invention provides a solid polymer electrolyte membrane produced by radiation-induced graft polymerization, while maintaining the high ionic conductivity, to provide a process for producing a solid polyelectrolyte film smaller than the conventional graft membrane methanol swelling Objective.

本発明者らは、上記目的を達成するために鋭意検討を行った結果、放射線グラフト重合を行う基材として、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムであり、その結晶化度が33%以上のフィルムを用いることによって、高いイオン伝導度を保ちつつメタノールに対する膨潤度が小さくなることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have formed a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer as a base material for radiation graft polymerization. Thus, by using a film having a crystallinity of 33% or more, it was found that the degree of swelling with respect to methanol decreases while maintaining high ionic conductivity, and the present invention has been made.

従って、本発明は、下記の固体高分子電解質膜の製造方法を提供する。
請求項
炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムを、放射線を照射する前に加熱処理を施し、結晶化度を33%以上とした後、放射線を照射し、次いでラジカル反応性モノマーをグラフト重合させ、グラフト重合した膜にクロロスルホン酸基を導入し、更にクロロスルホン酸基を加水分解することによってスルホン化させることを特徴とする燃料電池用固体高分子電解質膜の製造方法。
請求項
前記炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムが、エチレン−四フッ化エチレン共重合体である請求項記載の燃料電池用固体高分子電解質膜の製造方法。
Accordingly, the present invention provides the following method for producing a solid polymer electrolyte membrane .
Claim 1 :
A film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer is subjected to a heat treatment before irradiating with radiation, the crystallinity is set to 33% or more, and then irradiated with radiation. then by graft polymerizing a radical reactive monomer graft polymerized film introduced chlorosulfonic acid group, further a fuel cell for a solid polymer electrolyte, characterized in Rukoto was sulfonated by hydrolyzing chlorosulfonic acid A method for producing a membrane.
Claim 2 :
Production of tetrafluoroethylene copolymer in which claim 1 for a fuel cell polymer electrolyte membrane according - the fluorocarbon-based vinyl monomer and hydrocarbon-based film formed by the copolymer of vinyl monomers, ethylene Method.

本発明の放射線グラフトにより製造された固体高分子電解質膜は、高いイオン伝導度を示し、かつメタノールに対する膨潤が少ないため、燃料電池用の電解質膜、特にダイレクトメタノール型燃料電池用の電解質膜として適している。   The solid polymer electrolyte membrane produced by the radiation grafting of the present invention exhibits high ionic conductivity and is less swelled with methanol, and is therefore suitable as an electrolyte membrane for fuel cells, particularly as an electrolyte membrane for direct methanol fuel cells. ing.

本発明の燃料電池用固体高分子電解質膜で使用される炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムとしては、反応性モノマーグラフト化後の伸び・破断強度が優れることよりエチレン−四フッ化エチレン共重合体(ETFE)が望ましい。
この場合、エチレンと四フッ化エチレンとの割合は、40:60〜60:40(モル比)であることが好ましい。
As a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer used in the solid polymer electrolyte membrane for fuel cells of the present invention, the elongation / breaking strength after reactive monomer grafting is used. Is more preferable than ethylene-tetrafluoroethylene copolymer (ETFE).
In this case, the ratio of ethylene to ethylene tetrafluoride is preferably 40:60 to 60:40 (molar ratio).

ここで、本発明においては、ETFE等の炭化フッ素ビニルモノマーと炭化水素系ビニルモノマーとの共重合体(以下、単に共重合体という)として、結晶化度が33%以上のものを使用する。
即ち、本発明者の検討によれば、上記ETFE等の共重合体を特にダイレクトメタノール型燃料電池の電解質膜として使用する場合、その結晶化度の相違によりメタノール膨潤度が相違するもので、使用するETFEフィルムの放射線照射前の結晶化度によってメタノール膨潤度が異なることを見出している。ETFEフィルムの結晶化度は、Mohamed Mahmoud Nasef et al., Rad.Phys.Chem. 68(5),875−883(2003)に記載されているように、DSCの測定結果から以下の式によって求めることができる。
結晶化度(%)=(ΔHm/ΔHm100)×100
Here, in the present invention, a copolymer having a crystallinity of 33% or more is used as a copolymer of a fluorinated vinyl monomer such as ETFE and a hydrocarbon vinyl monomer (hereinafter simply referred to as a copolymer).
That is, according to the study of the present inventor, when using a copolymer such as ETFE as an electrolyte membrane of a direct methanol fuel cell, the degree of methanol swelling differs depending on the difference in crystallinity. It has been found that the degree of methanol swelling differs depending on the crystallinity of the ETFE film before irradiation. The degree of crystallinity of the ETFE film is determined according to the method of Mohamed Mahmud Nasef et al. , Rad. Phys. Chem. 68 (5), 875-883 (2003), it can be obtained from the DSC measurement result by the following equation.
Crystallinity (%) = (ΔHm / ΔHm100) × 100

ここで、ΔHmは、ETFEフィルムの融解熱であり、ΔHm100は100%結晶化したETFEの融解熱である。ΔHm100の値として113.4J/g(例えば、Hans−Peter Brack et al.,J.Mater.Chem. 10,1795−1803(2000))を用いることによって結晶化度を求めることが可能である。   Here, ΔHm is the heat of fusion of the ETFE film, and ΔHm100 is the heat of fusion of 100% crystallized ETFE. The crystallinity can be obtained by using 113.4 J / g as the value of ΔHm100 (for example, Hans-Peter Black et al., J. Mater. Chem. 10, 1795-1803 (2000)).

この場合、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体、特にETFEで形成されたフィルムを使用し、これに放射線を照射した後、ラジカル反応性モノマーをグラフト重合させることによって燃料電池用の固体高分子電解質膜を製造することは従来より行われてきたが、従来使用されてきたETFEフィルムの結晶化度は32%程度であったが、本発明者の検討によれば、結晶化度が33%以上、好ましくは35%以上の共重合体フィルム、特にETFEフィルムを用いた場合にメタノール膨潤度が小さくなるものである。なお、結晶化度の上限は、適宜選定されるが、通常50%以下、特に40%以下である。   In this case, a copolymer of a fluorine-based vinyl monomer and a hydrocarbon-based vinyl monomer, particularly a film formed of ETFE is used, and after irradiation with radiation, a radical-reactive monomer is graft-polymerized. Production of a solid polymer electrolyte membrane for a battery has been conventionally performed, but the crystallinity of an ETFE film that has been conventionally used was about 32%. When a copolymer film having a crystallinity of 33% or more, preferably 35% or more, particularly an ETFE film is used, the degree of methanol swelling becomes small. The upper limit of the crystallinity is appropriately selected, but is usually 50% or less, particularly 40% or less.

従って、本発明においては、上述した通り、上記共重合体フィルム、特にETFEフィルムとして、結晶化度が33%以上、特に35%以上のものを使用する。ここで、市販されているETFEフィルムの多くは、その結晶化度が32%程度であるが、予め結晶化度が33%以上、好ましくは35%以上のETFEフィルムを探索して用いてもよい。また、結晶化度を大きくする方法として、例えばエチレンとテトラフルオロエチレンの割合や、第三成分を添加するなど、フィルム組成を変えることで制御することが可能であるが、フィルムのコストが高くなる。   Therefore, in the present invention, as described above, the copolymer film, particularly the ETFE film, having a crystallinity of 33% or more, particularly 35% or more is used. Here, most of commercially available ETFE films have a crystallinity of about 32%, but an ETFE film having a crystallinity of 33% or more, preferably 35% or more may be searched for and used in advance. . Further, as a method for increasing the crystallinity, it is possible to control by changing the film composition, for example, the ratio of ethylene and tetrafluoroethylene or the addition of a third component, but the cost of the film increases. .

結晶化度を大きくする簡便な方法として、例えば放射線を照射する前に加熱処理を施すことによって結晶化度を上げることも可能である。このとき加熱処理は50〜260℃、特に100〜200℃で行うことが好ましい。加熱処理温度が50℃未満であると、加熱処理の効果が得られない場合があり、260℃より高い温度では、ETFEの融点を超えるためフィルムの形状が保てなくなる場合がある。   As a simple method for increasing the crystallinity, it is possible to increase the crystallinity by, for example, performing a heat treatment before irradiation with radiation. At this time, the heat treatment is preferably performed at 50 to 260 ° C., particularly 100 to 200 ° C. If the heat treatment temperature is less than 50 ° C., the effect of the heat treatment may not be obtained. If the temperature is higher than 260 ° C., the melting point of ETFE may be exceeded, and the shape of the film may not be maintained.

また、加熱処理時間は1分〜2時間、特に30分〜1時間とすることが好ましい。処理時間が短すぎると、フィルムが十分熱処理されず、結晶化度はほとんど変わらない。処理時間が長すぎると、フィルムが変形する問題が生じる。   The heat treatment time is preferably 1 minute to 2 hours, particularly preferably 30 minutes to 1 hour. If the treatment time is too short, the film will not be sufficiently heat treated and the crystallinity will hardly change. If the treatment time is too long, there arises a problem that the film is deformed.

ここで、このような加熱処理されるフィルムは、結晶化度が33%より小さいETFEフィルム等が挙げられ、結晶化度が32%程度のETFEフィルムの市販品を用いることができ、このような市販品としてサンゴバン社製Norton ETFE等を挙げることができる。
なお、使用するフィルムの厚さは10〜300μm、特に25〜200μmが好ましい。
Here, examples of the heat-treated film include ETFE films having a crystallinity of less than 33%, and commercially available ETFE films having a crystallinity of about 32% can be used. Examples of commercially available products include Norton ETFE manufactured by Saint-Gobain.
In addition, the thickness of the film to be used is preferably 10 to 300 μm, particularly preferably 25 to 200 μm.

本発明においては、このように結晶化度が33%以上の共重合体を使用し、これに放射線を照射した後、ラジカル反応性モノマーをグラフト重合させることによって、燃料電池用の固体高分子電解質膜を得るものであるが、かかる放射線グラフト重合法は、公知の方法を採用し得る。   In the present invention, a copolymer having a crystallinity of 33% or more is used in this way, and after irradiating this with radiation, a radical reactive monomer is graft-polymerized to obtain a solid polymer electrolyte for a fuel cell. Although a film is obtained, a known method can be adopted as the radiation graft polymerization method.

即ち、放射線グラフト重合は、フッ素系樹脂のフィルムに放射線を照射することで、ラジカルを生成し、そこをグラフト点としてラジカル反応性モノマーをグラフトする方法であるが、照射する放射線としてはγ線、X線、電子線、イオンビーム、紫外線などが例示される。ラジカル生成の容易さからγ線、電子線が好ましい。
放射線の吸収線量は1kGy以上になるよう照射される。1kGy未満であると、ラジカル生成量が少なく、所望のイオン伝導度を得るのに十分なグラフト率が得られない。100kGyを超えるとフッ素系樹脂の伸び、強度などの機械特性が低下する。望ましい吸収線量は1〜100kGy,更に望ましい吸収線量は1〜50kGyである。
That is, radiation graft polymerization is a method in which a radical is generated by irradiating a fluorine resin film with radiation, and the radical reactive monomer is grafted using the film as a grafting point. Examples include X-rays, electron beams, ion beams, and ultraviolet rays. Gamma rays and electron beams are preferred because of the ease of radical generation.
Irradiation is performed so that the absorbed dose of radiation is 1 kGy or more. If it is less than 1 kGy, the amount of radicals produced is small, and a graft rate sufficient to obtain the desired ionic conductivity cannot be obtained. When it exceeds 100 kGy, mechanical properties such as elongation and strength of the fluororesin are deteriorated. A desirable absorbed dose is 1 to 100 kGy, and a more desirable absorbed dose is 1 to 50 kGy.

グラフトするラジカル重合性のモノマーとしては、例えば、スチレン、α−メチルスチレン、スチレンスルホン酸ナトリウム、トリフルオロスチレン、ジビニルベンゼンなどが例示される。これら有機化合物をグラフト重合するに際し、アゾビスイソブチルニトリルなどの開始剤、トルエン、キシレン、ヘキサン、ヘプタンなどの有機溶剤を用いてもよい。   Examples of the radically polymerizable monomer to be grafted include styrene, α-methylstyrene, sodium styrenesulfonate, trifluorostyrene, and divinylbenzene. In graft polymerization of these organic compounds, an initiator such as azobisisobutylnitrile and an organic solvent such as toluene, xylene, hexane, and heptane may be used.

この場合、グラフト共重合条件としては、窒素等の不活性雰囲気下、40〜80℃、特に50〜70℃で5〜30時間、特に10〜20時間重合を行うことが好ましい。またグラフト率は20〜100%、特に30〜60%であることが好ましい。   In this case, as graft copolymerization conditions, it is preferable to perform polymerization at 40 to 80 ° C., particularly 50 to 70 ° C. for 5 to 30 hours, particularly 10 to 20 hours under an inert atmosphere such as nitrogen. The graft ratio is preferably 20 to 100%, particularly preferably 30 to 60%.

グラフトした膜は、クロロスルホン酸−ジクロロエタン中に浸漬することによってクロロスルホン酸基を導入することができる。クロロスルホン酸と反応させた膜は、水酸化カリウムや水酸化ナトリウム水溶液中で反応させ、スルホン酸アルカリ塩とし、引き続き塩酸などで酸処理することによってスルホン化される。   The grafted membrane can introduce chlorosulfonic acid groups by immersing in chlorosulfonic acid-dichloroethane. The membrane reacted with chlorosulfonic acid is reacted in potassium hydroxide or sodium hydroxide aqueous solution to form an alkali salt of sulfonic acid, and subsequently sulfonated by acid treatment with hydrochloric acid or the like.

このようにして得られた膜は、燃料電池用電解質膜、特にダイレクトメタノール型燃料電池用電解質膜として使用されるが、この場合、かかる燃料電池の構成としては、電解質膜として本発明の電解質膜を用いる以外は、公知の構成とすることができる。   The membrane thus obtained is used as an electrolyte membrane for a fuel cell, particularly as an electrolyte membrane for a direct methanol fuel cell. In this case, the configuration of such a fuel cell is the electrolyte membrane of the present invention as an electrolyte membrane. A known configuration can be used except that is used.

以下、本発明を実施例及び比較例により説明するが、これらは例示の目的で挙げられるものであり、本発明は、これらの実施例に示された具体的な事項に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention, these are mentioned for the purpose of illustration, This invention is not limited to the specific matter shown by these Examples. .

[実施例1]
ETFEフィルムとして、厚さ50μmの市販されているフィルム(サイゴバン社製Norton ETFE)を用いた。結晶化度の測定は、DSC(Perkin Elmer社製、DSC7)により行った。窒素雰囲気下、昇温速度10℃/minで測定し、融解ピーク温度268℃のピークの面積より、結晶化度は35.2%であった。
サイズを6cm×6cmとした上記ETFEフィルムに、電子線を25℃で照射し、スチレン40質量部、ジビニルベンゼン2質量部、ヘキサン40質量部、アゾビスイソブチルニトリル0.01質量部が仕込んである500ccのセパラブルフラスコに入れ、窒素雰囲気下で60℃で16時間加熱し、グラフト重合した。電子線吸収線量を2kGy、3kGy、5kGyの3種類について実施し、下記の式よりグラフト率を算出した。
グラフト率(wt%)=(W−W0)/W0×100
各吸収線量におけるグラフト率は(表1)の通りであった。W0はグラフト前の基板質量であり、Wはグラフト後の基板質量である。グラフト後質量Wはグラフト後のフィルムをアセトンで3回洗浄し、60℃で2時間真空乾燥後の質量とした。
[Example 1]
As the ETFE film, a commercially available film (Norton ETFE manufactured by Saigoban Co., Ltd.) having a thickness of 50 μm was used. The crystallinity was measured by DSC (Perkin Elmer, DSC7). It was measured at a temperature elevation rate of 10 ° C./min in a nitrogen atmosphere, and the crystallinity was 35.2% from the peak area at a melting peak temperature of 268 ° C.
The ETFE film having a size of 6 cm × 6 cm is irradiated with an electron beam at 25 ° C., and 40 parts by mass of styrene, 2 parts by mass of divinylbenzene, 40 parts by mass of hexane, and 0.01 parts by mass of azobisisobutylnitrile are charged. The mixture was placed in a 500 cc separable flask and heated at 60 ° C. for 16 hours under a nitrogen atmosphere to perform graft polymerization. The electron beam absorbed dose was applied to 3 types of 2 kGy, 3 kGy, and 5 kGy, and the graft ratio was calculated from the following formula.
Graft rate (wt%) = (W−W0) / W0 × 100
The graft ratio at each absorbed dose was as shown in (Table 1). W0 is the substrate mass before grafting, and W is the substrate mass after grafting. The post-grafting mass W was the mass after the grafted film was washed three times with acetone and vacuum dried at 60 ° C. for 2 hours.

上記フィルムをクロロスルホン酸30質量部と1,2−ジクロロエタン70質量部の混合液に浸漬し、50℃で1時間加熱後、90℃の1N苛性カリ水溶液中に1時間浸漬することで加水分解し、続いて90℃の2N塩酸に1時間浸漬後、純水で3回洗浄し、スルホン酸基を含有する固体高分子電解質膜を得た。
得られた膜についてイオン伝導度、及びメタノール膨潤度の測定を行った。イオン伝導度は交流インビーダンス法により純水中に1時間浸漬後室温における表面の伝導度を測定した。メタノールの膨潤度は、膜を60℃で2時間真空乾燥後、メタノールに室温下で16時間浸漬し、浸漬前後の質量変化より算出した。浸漬前の膜質量をW1、浸漬後の膜質量をW2とし、膨潤度は以下の式により算出した。
膨潤度(wt%)=(W2−W1)/W1×100
得られた固体高分子電解質膜のイオン伝導度、及びメタノール膨潤度は表1の通りであった。
The film is immersed in a mixed solution of 30 parts by mass of chlorosulfonic acid and 70 parts by mass of 1,2-dichloroethane, heated at 50 ° C. for 1 hour, and then hydrolyzed by being immersed in a 1N aqueous solution of caustic potassium at 90 ° C. for 1 hour. Subsequently, after being immersed in 2N hydrochloric acid at 90 ° C. for 1 hour, it was washed with pure water three times to obtain a solid polymer electrolyte membrane containing sulfonic acid groups.
The obtained membrane was measured for ionic conductivity and methanol swelling. The ionic conductivity was measured by measuring the surface conductivity at room temperature after being immersed in pure water for 1 hour by the alternating current impedance method. The degree of swelling of methanol was calculated from the change in mass before and after immersion after the membrane was vacuum dried at 60 ° C. for 2 hours and then immersed in methanol at room temperature for 16 hours. The film mass before immersion was W1, the film mass after immersion was W2, and the degree of swelling was calculated by the following equation.
Swelling degree (wt%) = (W2-W1) / W1 × 100
Table 1 shows the ionic conductivity and methanol swelling degree of the obtained solid polymer electrolyte membrane.

[実施例2]
ETFEフィルムとして厚さ50μmの、別のメーカーから市販されているフィルム(サンプラテック社製 ETFE)を用いた。このフィルムの結晶化度は、実施例1に記載した手順と同様の方法で測定し、その結晶化度は32.4%であった。このETFEフィルムをオーブンに入れ、100℃で1時間保持し、室温まで冷却した。加熱後のETFEフィルムの結晶化度を測定したところ33.5%であった。
加熱処理したETFEフィルム(サイズ6cm×6cm)に電子線を25℃で照射し、スチレン40質量部、ジビニルベンゼン2質量部、ヘキサン40質量部、アゾビスイソブチルニトリル0.01質量部が仕込んである500ccのセパラブルフラスコに入れ、窒素雰囲気下で、60℃で16時間加熱し、グラフト重合した。電子線吸収線量を2kGy、3kGy、5kGyの3種類について実施し、各吸収線量におけるグラフト率は表1の通りであった。スルホン化は実施例1と同様に実施した。得られた膜のイオン伝導度、及びメタノール膨潤度を実施例1と同様に測定した。測定結果は表1に示す通りであった。
[Example 2]
As the ETFE film, a film having a thickness of 50 μm and commercially available from another manufacturer (ETFE manufactured by Sampratec) was used. The crystallinity of this film was measured by the same method as described in Example 1, and the crystallinity was 32.4%. The ETFE film was placed in an oven, held at 100 ° C. for 1 hour, and cooled to room temperature. The crystallinity of the ETFE film after heating was measured and found to be 33.5%.
The heat-treated ETFE film (size 6 cm × 6 cm) is irradiated with an electron beam at 25 ° C., and 40 parts by mass of styrene, 2 parts by mass of divinylbenzene, 40 parts by mass of hexane, and 0.01 parts by mass of azobisisobutylnitrile are charged. The flask was placed in a 500 cc separable flask and heated at 60 ° C. for 16 hours under a nitrogen atmosphere to conduct graft polymerization. The electron beam absorbed dose was carried out for 3 types of 2 kGy, 3 kGy, and 5 kGy, and the graft ratio at each absorbed dose was as shown in Table 1. Sulfonation was carried out as in Example 1. The ionic conductivity and methanol swelling degree of the obtained membrane were measured in the same manner as in Example 1. The measurement results are as shown in Table 1.

[比較例1]
比較例として、従来の方法を示す。使用するETFEフィルムは実施例2で示した結晶化度32.4%のものであり、それを加熱処理せずそのまま使用した。サイズ6cm×6cm,厚さ50μmのETFEフィルムに電子線を25℃で照射し、スチレン40質量部、ジビニルベンゼン2質量部、ヘキサン40質量部、アゾビスイソブチルニトリル0.01質量部が仕込んである500ccのセパラブルフラスコに入れ、窒素雰囲気下で60℃で16時間加熱し、グラフト重合した。各吸収線量におけるグラフト率は表1の通りであった。スルホン化は実施例1と同様に実施した。得られた膜のイオン伝導度、及びメタノール膨潤度を実施例1と同様に測定した。測定結果は表1に示す通りであった。
[Comparative Example 1]
A conventional method is shown as a comparative example. The ETFE film used had a crystallinity of 32.4% as shown in Example 2 and was used as it was without heat treatment. An ETFE film having a size of 6 cm × 6 cm and a thickness of 50 μm is irradiated with an electron beam at 25 ° C., and 40 parts by mass of styrene, 2 parts by mass of divinylbenzene, 40 parts by mass of hexane, and 0.01 parts by mass of azobisisobutylnitrile are prepared. The mixture was placed in a 500 cc separable flask and heated at 60 ° C. for 16 hours under a nitrogen atmosphere to perform graft polymerization. The graft ratio at each absorbed dose was as shown in Table 1. Sulfonation was carried out as in Example 1. The ionic conductivity and methanol swelling degree of the obtained membrane were measured in the same manner as in Example 1. The measurement results are as shown in Table 1.

Figure 0004683181
Figure 0004683181

用いたETFEフィルムの結晶化度によって、電子線吸収線量に対するグラフト率は異なっているが、イオン伝導度が0.10S/cmであるサンプルNo.1−3,2−2,3−1についてメタノール膨潤度を比較すると、結晶化度の高いフィルムの方が膨潤度が小さくなっていることがわかる。即ち、結晶化度が33%以上、好ましくは35%以上で、同程度のイオン伝導度であるにもかかわらず、メタノール膨潤度が小さくなっていることがわかった。   Depending on the crystallinity of the ETFE film used, the graft ratio with respect to the electron beam absorbed dose varies, but sample No. 1 having an ionic conductivity of 0.10 S / cm. Comparing the degree of methanol swelling for 1-3, 2-2 and 3-1, it can be seen that the degree of swelling is smaller in the film having a higher degree of crystallinity. That is, it was found that the degree of swell of methanol was small in spite of the same degree of ionic conductivity with a crystallinity of 33% or more, preferably 35% or more.

Claims (2)

炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムを、放射線を照射する前に加熱処理を施し、結晶化度を33%以上とした後、放射線を照射し、次いでラジカル反応性モノマーをグラフト重合させ、グラフト重合した膜にクロロスルホン酸基を導入し、更にクロロスルホン酸基を加水分解することによってスルホン化させることを特徴とする燃料電池用固体高分子電解質膜の製造方法。 A film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer is subjected to a heat treatment before irradiating with radiation, the crystallinity is set to 33% or more, and then irradiated with radiation. then by graft polymerizing a radical reactive monomer graft polymerized film introduced chlorosulfonic acid group, further a fuel cell for a solid polymer electrolyte, characterized in Rukoto was sulfonated by hydrolyzing chlorosulfonic acid A method for producing a membrane. 前記炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムが、エチレン−四フッ化エチレン共重合体である請求項記載の燃料電池用固体高分子電解質膜の製造方法。 Production of tetrafluoroethylene copolymer in which claim 1 for a fuel cell polymer electrolyte membrane according - the fluorocarbon-based vinyl monomer and hydrocarbon-based film formed by the copolymer of vinyl monomers, ethylene Method.
JP2004243335A 2004-08-24 2004-08-24 Method for producing solid polymer electrolyte membrane for fuel cell Expired - Fee Related JP4683181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243335A JP4683181B2 (en) 2004-08-24 2004-08-24 Method for producing solid polymer electrolyte membrane for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243335A JP4683181B2 (en) 2004-08-24 2004-08-24 Method for producing solid polymer electrolyte membrane for fuel cell

Publications (2)

Publication Number Publication Date
JP2006059776A JP2006059776A (en) 2006-03-02
JP4683181B2 true JP4683181B2 (en) 2011-05-11

Family

ID=36107054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243335A Expired - Fee Related JP4683181B2 (en) 2004-08-24 2004-08-24 Method for producing solid polymer electrolyte membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP4683181B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151938A (en) * 2006-03-06 2009-07-09 Shin Etsu Chem Co Ltd Solid polymer electrolyte membrane for fuel cell and fuel cell
JP5158309B2 (en) * 2006-10-06 2013-03-06 信越化学工業株式会社 ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5376485B2 (en) * 2007-02-21 2013-12-25 独立行政法人日本原子力研究開発機構 POLYMER ELECTROLYTE MEMBRANE COMPRISING ALKYL GRAFT CHAIN AND PROCESS FOR PRODUCING THE SAME

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102322A (en) * 1995-07-31 1997-04-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Solid polymeric electrolyte film for fuel cell and its manufacture
JPH11111310A (en) * 1997-09-30 1999-04-23 Aisin Seiki Co Ltd Solid polymer electrolyte film for fuel cell and manufacture thereof
JP2004059752A (en) * 2002-07-30 2004-02-26 Nitto Denko Corp Electrolyte membrane for fuel cell comprising crosslinked fluororesin base

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102322A (en) * 1995-07-31 1997-04-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Solid polymeric electrolyte film for fuel cell and its manufacture
JPH11111310A (en) * 1997-09-30 1999-04-23 Aisin Seiki Co Ltd Solid polymer electrolyte film for fuel cell and manufacture thereof
JP2004059752A (en) * 2002-07-30 2004-02-26 Nitto Denko Corp Electrolyte membrane for fuel cell comprising crosslinked fluororesin base

Also Published As

Publication number Publication date
JP2006059776A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4568848B2 (en) Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
EP1806371A1 (en) Electrolyte material, electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
WO2008023801A1 (en) Polymer electrolyte membrane composed of aromatic polymer membrane base and method for producing the same
JP4514643B2 (en) Solid polymer electrolyte membrane for direct methanol fuel cell, method for producing the same, and direct methanol fuel cell
JP2008204857A (en) Polymer electrolyte membrane consisting of alkyl graft chain, and its manufacturing method
JP4986219B2 (en) Electrolyte membrane
JP4854284B2 (en) Method for producing polymer electrolyte membrane
WO2017029967A1 (en) Polyphenylsulfone-based proton conducting polymer electrolyte, proton conducting solid polymer electrolyte membrane, electrode catalyst layer for solid polymer fuel cells, method for producing electrode catalyst layer for solid polymer fuel cells, and fuel cell
JP2004051685A (en) Electrolytic membrane comprising fluorine-containing polymer ion exchange membrane and used for fuel battery
JP4576620B2 (en) Method for producing nanostructure control polymer ion exchange membrane
JP2004014436A (en) Electrolyte film for fuel cell consisting of fluorine polymer ion exchange membrane
JP5158353B2 (en) Fuel cell electrolyte membrane and method for producing fuel cell electrolyte membrane / electrode assembly
JP4683181B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4810726B2 (en) Method for producing solid polymer electrolyte
JP2005063778A (en) Electrolyte film for fuel cell excellent in oxidation resistance
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP4434666B2 (en) Method for producing solid polymer electrolyte membrane and fuel cell
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
JP3781023B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2004300360A (en) Method for producing electrolyte membrane for fuel cell comprising graft polymer ion-exchange membrane
JP4390047B2 (en) Solid polymer electrolyte membrane, method for producing the same, and fuel cell
JP2009187726A (en) Solid polyelectrolyte membrane, its manufacturing method, membrane electrode assembly for fuel cell, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees