JP4645794B2 - Solid polymer electrolyte membrane and fuel cell - Google Patents

Solid polymer electrolyte membrane and fuel cell Download PDF

Info

Publication number
JP4645794B2
JP4645794B2 JP2003368834A JP2003368834A JP4645794B2 JP 4645794 B2 JP4645794 B2 JP 4645794B2 JP 2003368834 A JP2003368834 A JP 2003368834A JP 2003368834 A JP2003368834 A JP 2003368834A JP 4645794 B2 JP4645794 B2 JP 4645794B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fluorine
radical
polymer electrolyte
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003368834A
Other languages
Japanese (ja)
Other versions
JP2005135681A (en
Inventor
光人 高橋
敦雄 川田
厚雄 伊藤
敏夫 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003368834A priority Critical patent/JP4645794B2/en
Publication of JP2005135681A publication Critical patent/JP2005135681A/en
Application granted granted Critical
Publication of JP4645794B2 publication Critical patent/JP4645794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、プロトンの移動速度が大きく、イオン交換容量が高い性能を持ち、かつ、耐酸化性に優れ、燃料電池用として好適な固体高分子電解質膜及びこれを用いた燃料電池に関する。   The present invention relates to a solid polymer electrolyte membrane having a high proton transfer speed, high ion exchange capacity, excellent oxidation resistance, and suitable for a fuel cell, and a fuel cell using the same.

固体高分子電解質型イオン交換膜を用いた燃料電池は、作動温度が100℃以下と低く、そのエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として広く実用化が期待されている。この燃料電池においては、固体高分子電解質膜、白金系の触媒、ガス拡散電極、及び高分子電解質膜と電極の接合体などに関する重要な要素技術がある。しかし、この中でも燃料電池としての良好な特性を有する固体高分子電解質膜の開発は最も重要な技術の一つである。   A fuel cell using a solid polymer electrolyte type ion exchange membrane is expected to be widely put into practical use as a power source for electric vehicles or a simple auxiliary power source because its operating temperature is as low as 100 ° C. or less and its energy density is high. In this fuel cell, there are important elemental technologies related to a solid polymer electrolyte membrane, a platinum-based catalyst, a gas diffusion electrode, and a polymer electrolyte membrane-electrode assembly. However, among these, development of a solid polymer electrolyte membrane having good characteristics as a fuel cell is one of the most important technologies.

固体高分子電解質膜型燃料電池においては、電解質膜の両面にガス拡散電極が複合されており、膜と電極とは実質的に一体構造になっている。このため、電解質膜はプロトンを伝導するための電解質として作用し、また、加圧下においても燃料である水素やメタノールと酸化剤とを直接混合させないための隔膜としての役割も有する。このような電解質膜としては、電解質としてプロトンの移動速度が大きく、イオン交換容量が高いこと、電気抵抗を低く保持するために保水性が一定かつ高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度が大きいこと、及び寸法安定性が優れていること、長期の使用に対する化学的な安定性に優れていること、燃料である水素ガスやメタノール、酸化剤である酸素ガスに対して過剰な透過性を有しないことなどが要求される。   In a solid polymer electrolyte membrane fuel cell, gas diffusion electrodes are combined on both sides of the electrolyte membrane, and the membrane and the electrode have a substantially integrated structure. For this reason, the electrolyte membrane acts as an electrolyte for conducting protons, and also has a role as a diaphragm for preventing direct mixing of hydrogen or methanol as a fuel with an oxidizing agent even under pressure. Such an electrolyte membrane is required to have a high proton transfer rate as an electrolyte, a high ion exchange capacity, and a constant and high water retention in order to keep the electric resistance low. On the other hand, because of its role as a diaphragm, the mechanical strength of the membrane is large, its dimensional stability is excellent, its chemical stability with respect to long-term use is excellent, and hydrogen gas or methanol as fuel Further, it is required that the gas does not have excessive permeability with respect to oxygen gas which is an oxidizing agent.

初期の固体高分子電解質膜型燃料電池では、スチレンとジビニルベンゼンの共重合で製造した炭化水素系樹脂のイオン交換膜が電解質膜として使用されていた。しかし、この電解質膜は、耐久性が非常に低いため実用性に乏しく、そのため、その後はデュポン社によって開発されたフッ素樹脂系のパーフルオロスルホン酸膜「ナフィオン」(デュポン社登録商標)等が一般に用いられてきた。   In early polymer electrolyte membrane fuel cells, ion exchange membranes of hydrocarbon resins produced by copolymerization of styrene and divinylbenzene were used as electrolyte membranes. However, this electrolyte membrane has poor durability due to its very low durability. Therefore, after that, fluororesin-based perfluorosulfonic acid membrane “Nafion” (registered trademark of DuPont) developed by DuPont is generally used. Has been used.

しかしながら、「ナフィオン」等の従来のフッ素樹脂系電解質膜は、化学的な耐久性や安定性には優れているが、メタノールを燃料とする直接メタノール型燃料電池(DMFC)ではメタノールが電解質膜を通過するクロスオーバー現象が生じ、出力が低下する問題があった。
更に、フッ素樹脂系電解質膜は、モノマーの合成から出発するために製造工程が多く、コストが高くなる問題があり、実用化する場合の大きな障害になっている。
However, conventional fluororesin-based electrolyte membranes such as “Nafion” are excellent in chemical durability and stability. However, in direct methanol fuel cells (DMFC) using methanol as fuel, methanol is used as an electrolyte membrane. There is a problem that the crossover phenomenon occurs and the output decreases.
Furthermore, since the fluororesin-based electrolyte membrane starts from the synthesis of the monomer, there are many manufacturing processes, and there is a problem that the cost becomes high, which is a big obstacle when put into practical use.

そのため、前記「ナフィオン」等に替わる低コストの電解質膜を開発する努力が行われてきた。また、放射線グラフト重合法では、フッ素樹脂系の膜に炭化フッ素系の反応性モノマーをグラフトさせ、スルホン化することにより、固体高分子電解質膜を作製する方法が、特開2002−313364号公報(特許文献1)、特開2003−82129号公報(特許文献2)で提案されている。これらには、PTFEフィルムに架橋構造を付与することで、グラフト後の膜強度が強く、耐酸化性に優れた固体電解質膜を製造できることが記載されている。   For this reason, efforts have been made to develop low-cost electrolyte membranes that replace the “Nafion” and the like. In addition, in the radiation graft polymerization method, a method of producing a solid polymer electrolyte membrane by grafting a fluorocarbon reactive monomer to a fluororesin membrane and sulfonating is disclosed in JP-A-2002-313364 ( Patent Document 1) and Japanese Patent Application Laid-Open No. 2003-82129 (Patent Document 2). These describe that a solid electrolyte membrane having a strong membrane strength after grafting and excellent oxidation resistance can be produced by imparting a crosslinked structure to the PTFE film.

しかし、炭化フッ素系反応性モノマーの放射線グラフト重合において、パーフルオロビニルエーテルスルホン酸などの反応性モノマーは、単独での重合性が低いため、製造工程において、安定して高グラフト率の電解質膜を得ることが難しい。   However, in the radiation graft polymerization of fluorocarbon-based reactive monomers, reactive monomers such as perfluorovinyl ether sulfonic acid have low polymerizability alone, so that an electrolyte membrane having a high graft rate can be stably obtained in the production process. It is difficult.

そこで、特開2003−082129号公報(特許文献3)では、重合性の高いモノマーを用いた、テトラフルオロエチレン(TFE)との共グラフトによる方法が提案されている。   Therefore, Japanese Patent Laid-Open No. 2003-082129 (Patent Document 3) proposes a method by co-grafting with tetrafluoroethylene (TFE) using a highly polymerizable monomer.

しかしながら、TFEは気体であるため取り扱いが難しく、また、グラフト重合条件の制限も多くなるといった問題があった。   However, since TFE is a gas, it is difficult to handle, and there is a problem that restrictions on graft polymerization conditions are increased.

このように、従来、炭化フッ素系反応性モノマーを放射線グラフト重合法によりグラフト重合した固体電解質膜は、耐酸化性には優れた特性を示すが、グラフト率が低いため、プロトン伝導度が低いという問題があり、また、炭化水素系反応性モノマーを放射線グラフト重合法によりグラフト重合した膜は、高グラフト率が得られることにより、高プロトン伝導度は得られるものの、耐酸化性に乏しいという問題があり、上記特性を両立する膜を得ることは困難であった。従って、これら問題のない、より優れた特性を有する固体電解質膜の開発が望まれていた。   As described above, a solid electrolyte membrane obtained by graft polymerization of a fluorocarbon-based reactive monomer by a radiation graft polymerization method has excellent oxidation resistance, but has a low graft conductivity and a low proton conductivity. There is a problem, and a film obtained by graft polymerization of a hydrocarbon-based reactive monomer by a radiation graft polymerization method has a problem that it has a high proton conductivity due to a high graft ratio, but has a poor oxidation resistance. In addition, it has been difficult to obtain a film having both of the above characteristics. Therefore, it has been desired to develop a solid electrolyte membrane having these characteristics without any problems.

特開2002−313364号公報JP 2002-313364 A 特開2003−82129号公報JP 2003-82129 A 特開2003−082129号公報Japanese Patent Laid-Open No. 2003-082129

本発明は、上記事情に鑑みなされたもので、放射線グラフト重合法により得られる固体高分子電解質膜であって、高いプロトン伝導性を有し、かつ、耐酸化性に優れた固体高分子電解質膜及びこの電解質膜を用いた燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a solid polymer electrolyte membrane obtained by a radiation graft polymerization method, which has high proton conductivity and excellent oxidation resistance And it aims at providing the fuel cell using this electrolyte membrane.

本発明者は、上記目的を達成するため鋭意研究を重ねた結果、放射線を照射したフッ素系樹脂に、反応性モノマーをグラフト重合させることにより得られる固体高分子電解質膜であって、前記電解質膜の表裏面が、異なる組成で構成されてなるもの、好ましくは、片面が炭化水素系化合物をグラフト重合させて得られた組成で構成され、他面がフッ素含有炭化水素系化合物をグラフト重合させて得られた組成で構成されてなるものが、高いプロトン伝導性を有し、かつ、耐酸化性に優れた固体高分子電解質膜となること、この固体高分子電解質膜を燃料極と空気極の間に設けることで、高性能の燃料電池とすることができることを知見し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventor is a solid polymer electrolyte membrane obtained by graft polymerization of a reactive monomer to a fluorine-based resin irradiated with radiation, the electrolyte membrane The front and back surfaces of each of these are composed of different compositions, preferably, one surface is composed of a composition obtained by graft polymerization of a hydrocarbon compound, and the other surface is graft polymerized with a fluorine-containing hydrocarbon compound. What is composed of the obtained composition is a solid polymer electrolyte membrane having high proton conductivity and excellent oxidation resistance, and this solid polymer electrolyte membrane is used as a fuel electrode and an air electrode. It has been found that a high-performance fuel cell can be obtained by providing it in between, and the present invention has been made.

この場合、本発明においては、放射線として電子線をフッ素系樹脂に照射することで、加速電圧の調節により、膜厚方向への電子線が到達する範囲を規定して、膜の片面のみにラジカル反応活性点を作成することが可能となり、膜の両面にラジカル反応活性点分布の差を容易に作成することができ、これにより、膜の表裏面において異なる反応性モノマーをグラフト重合させることが可能となり、本発明の電解質膜の表裏面が異なる組成で構成された電解質膜を得ることができる。そして、好ましくは膜の片面には、ラジカル重合反応性が高い炭化水素系の反応性モイマーをグラフトし、スルホン化することにより、高プロトン伝導度を有するものとすることができ、更に、他面に炭化フッ素系の反応性モノマーをグラフトさせることにより、高いプロトン伝導性を有すると共に、優れた耐酸化性を有するという両特性を兼ね備えた固体高分子電解質膜の作成が可能となった。   In this case, in the present invention, by irradiating the fluororesin with an electron beam as radiation, the range in which the electron beam reaches the film thickness direction is regulated by adjusting the acceleration voltage, and the radical is applied only to one side of the film. It is possible to create reactive sites and easily create a difference in radical reaction site distribution on both sides of the membrane, which allows different reactive monomers to be graft polymerized on the front and back surfaces of the membrane. Thus, an electrolyte membrane can be obtained in which the front and back surfaces of the electrolyte membrane of the present invention are composed of different compositions. Preferably, a hydrocarbon-based reactive monomer having high radical polymerization reactivity is grafted on one side of the membrane and sulfonated to have high proton conductivity. By grafting a fluorocarbon-based reactive monomer on the surface, it was possible to produce a solid polymer electrolyte membrane having both high proton conductivity and excellent oxidation resistance.

従って、本発明は、下記の事項を提供する。
[請求項1]
放射線を照射したシート状、フィルム状又は板状のフッ素系樹脂の両面に、それぞれイオン交換基をもつラジカル反応性モノマーをグラフト重合させること、もしくはイオン交換基が導入可能なラジカル反応性モノマーをグラフト重合させた後にイオン交換基を導入することにより得られる固体高分子電解質膜であって、前記電解質膜の片面が前記ラジカル反応性モノマーとしてフッ素を含有しない炭化水素系化合物をグラフト重合させて得られた組成で構成され、他面が前記ラジカル反応性モノマーとしてフッ素含有炭化水素系化合物をグラフト重合させて得られた組成で構成されてなることを特徴とする固体高分子電解質膜。
[請求項2]
フッ素系樹脂が、四フッ化エチレン樹脂、四フッ化エチレン−六フッ化プロピレン共重合樹脂、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合樹脂、四フッ化エチレン−エチレン共重合樹脂、フッ化ビニリデン樹脂から選ばれる少なくとも1種である請求項1記載の固体高分子電解質膜。
[請求項3]
請求項1又は2記載の固体高分子電解質膜を、燃料極と空気極の間に設けてなることを特徴とする燃料電池。
[請求項4]
固体高分子電解質膜のフッ素含有炭化水素系ラジカル反応性モノマーをグラフト重合させて得られた組成で構成された面を空気極側に配置した請求項3記載の燃料電池。
[請求項5]
放射線を照射したシート状、フィルム状又は板状のフッ素系樹脂の両面に、それぞれイオン交換基をもつラジカル反応性モノマーをグラフト重合させ、もしくはイオン交換基が導入可能なラジカル反応性モノマーをグラフト重合させた後にイオン交換基を導入して固体高分子電解質膜を製造する方法であって、フッ素系樹脂の片面に電子線を照射してフッ素を含有しない炭化水素系ラジカル反応性モノマーをグラフト重合させた後、このフッ素系樹脂の他面に電子線を照射してフッ素含有炭化水素系ラジカル反応性モノマーをグラフト重合させることを特徴とする固体高分子電解質膜の製造方法。
[請求項6]
放射線を照射したシート状、フィルム状又は板状のフッ素系樹脂の両面に、それぞれイオン交換基をもつラジカル反応性モノマーをグラフト重合させ、もしくはイオン交換基が導入可能なラジカル反応性モノマーをグラフト重合させた後にイオン交換基を導入して固体高分子電解質膜を製造する方法であって、フッ素系樹脂の片面に電子線を照射してフッ素含有炭化水素系ラジカル反応性モノマーをグラフト重合させた後、このフッ素系樹脂の他面に電子線を照射してフッ素を含有しない炭化水素系ラジカル反応性モノマーをグラフト重合させることを特徴とする固体高分子電解質膜の製造方法。
[請求項7]
グラフト重合を行う際の反応雰囲気が、酸素濃度0.05〜5体積%を含む不活性ガス雰囲気である請求項5又は6記載の製造方法。
Accordingly, the present invention provides the following matters.
[Claim 1]
Radical-reactive monomers having ion-exchange groups are grafted onto both sides of a sheet-like, film-like or plate-like fluorine-based resin irradiated with radiation, or radical-reactive monomers capable of introducing ion-exchange groups are grafted. A solid polymer electrolyte membrane obtained by introducing an ion exchange group after polymerization, wherein one surface of the electrolyte membrane is obtained by graft polymerization of a hydrocarbon-based compound containing no fluorine as the radical reactive monomer A solid polymer electrolyte membrane comprising a composition obtained by graft polymerization of a fluorine-containing hydrocarbon compound as the radical-reactive monomer.
[Claim 2]
Fluorine resin is tetrafluoroethylene resin, tetrafluoroethylene-hexafluoropropylene copolymer resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin, tetrafluoroethylene-ethylene copolymer resin, vinylidene fluoride The solid polymer electrolyte membrane according to claim 1, which is at least one selected from resins.
[Claim 3]
A fuel cell comprising the solid polymer electrolyte membrane according to claim 1 or 2 between a fuel electrode and an air electrode.
[Claim 4]
4. The fuel cell according to claim 3, wherein a surface composed of a composition obtained by graft polymerization of a fluorine-containing hydrocarbon radical reactive monomer of the solid polymer electrolyte membrane is disposed on the air electrode side.
[Claim 5]
Radical-reactive monomers having ion-exchange groups are grafted onto both sides of a sheet-like, film-like or plate-like fluororesin irradiated with radiation, or radical-reactive monomers capable of introducing ion-exchange groups are grafted. In this method, an ion exchange group is introduced and a solid polymer electrolyte membrane is manufactured by irradiating one side of a fluorine resin with an electron beam to graft polymerize a hydrocarbon radical reactive monomer not containing fluorine. And then irradiating the other surface of the fluororesin with an electron beam to graft polymerize the fluorine-containing hydrocarbon radical reactive monomer.
[Claim 6]
Radical-reactive monomers having ion-exchange groups are grafted onto both sides of a sheet-like, film-like or plate-like fluororesin irradiated with radiation, or radical-reactive monomers capable of introducing ion-exchange groups are grafted. In this method, an ion exchange group is introduced and a solid polymer electrolyte membrane is produced by grafting the fluorine-containing hydrocarbon radical reactive monomer by irradiating one side of the fluorine resin with an electron beam. A method for producing a solid polymer electrolyte membrane, wherein the other surface of the fluororesin is irradiated with an electron beam and a hydrocarbon radical reactive monomer not containing fluorine is graft polymerized.
[Claim 7]
The production method according to claim 5 or 6, wherein a reaction atmosphere in carrying out the graft polymerization is an inert gas atmosphere containing an oxygen concentration of 0.05 to 5% by volume.

本発明の固体高分子電解質膜は、放射線グラフト重合法により得られる固体高分子電解質膜であって、高いプロトン伝導性と優れた耐酸化性とを兼ね備えたもので、この電解質膜を用いることで、非常に高性能でのダイレクトメタノール型燃料電池とすることができる。   The solid polymer electrolyte membrane of the present invention is a solid polymer electrolyte membrane obtained by a radiation graft polymerization method, which combines high proton conductivity and excellent oxidation resistance. By using this electrolyte membrane, It can be a direct methanol fuel cell with very high performance.

以下、本発明につき更に詳細に説明すると、本発明の固体高分子電解質膜は、放射線を照射したフッ素系樹脂に、反応性モノマーをグラフト重合させることにより得られるものである。ここで、使用されるフッ素系樹脂としては、四フッ化エチレン樹脂(PTFE)、四フッ化エチレン−六フッ化プロピレン共重合樹脂(FEP)、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合樹脂(PFA)、四フッ化エチレン−エチレン共重合樹脂(ETFE)、フッ化ビニリデン樹脂(PVDF)等が例示され、これらの1種を単独で又は2種以上を併用して使用することができる。その形状は、シート状、フィルム状、板状とすることができる。   Hereinafter, the present invention will be described in more detail. The solid polymer electrolyte membrane of the present invention is obtained by graft polymerization of a reactive monomer to a fluorine resin irradiated with radiation. Here, as the fluororesin used, tetrafluoroethylene resin (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin ( PFA), ethylene tetrafluoride-ethylene copolymer resin (ETFE), vinylidene fluoride resin (PVDF) and the like are exemplified, and one of these can be used alone or in combination of two or more. The shape can be a sheet, film, or plate.

本発明においては、上記フッ素系樹脂表面に、イオン交換基、もしくはイオン交換基が導入可能なラジカル反応性モノマーを放射線の照射によりグラフト重合させることにより、固体高分子電解質膜を得ることができる。この場合、放射線を用いるグラフト法には、フッ素系樹脂の主鎖に予め放射線を照射して、グラフトの起点となるラジカルを生成させた後、フッ素樹脂をモノマーと接触させてグラフト反応を行う前照射法と、モノマーとフッ素系樹脂の共存下に放射線を照射する同時照射法とがあるが、本発明においては、いずれの方法をも採用できる。   In the present invention, a solid polymer electrolyte membrane can be obtained by graft-polymerizing an ion exchange group or a radical reactive monomer capable of introducing an ion exchange group onto the surface of the fluororesin by radiation irradiation. In this case, in the grafting method using radiation, the main chain of the fluororesin is irradiated with radiation in advance to generate radicals that are the starting points of grafting, and then before the grafting reaction is performed by bringing the fluororesin into contact with the monomer. There are an irradiation method and a simultaneous irradiation method in which radiation is irradiated in the coexistence of a monomer and a fluorine-based resin, and any method can be adopted in the present invention.

本発明でフッ素系樹脂にラジカル反応性モノマーをグラフト重合させるために照射する放射線としては、電子線が好適に用いられる。電子線の加速電圧は、フッ素系樹脂の膜厚に応じて規定し得、電子線がフッ素系樹脂を透過しない範囲の加速電圧に規定することが好ましく、50〜200kV、特に80〜130kVが好ましい。この場合、フッ素系樹脂の膜厚は25〜100μm、特に50〜80μmであることが好ましい。本発明においては、放射線として電子線をフッ素系樹脂に照射することにより、膜の片面のみにラジカル反応活性点を作成することができ、これによりフッ素系樹脂の表裏面それぞれに電子線を照射することでグラフト反応に必要な活性点分布の差を容易に作成でき、膜の表裏面に異なる反応性モノマーをグラフト重合させることができるもので、γ線などのフッ素系樹脂中を透過してしまう放射線を用いたのでは、膜の表裏面に異なる反応性モノマーをグラフト重合させることができず、本発明の目的を達成できない。   In the present invention, an electron beam is suitably used as the radiation to be irradiated for graft polymerization of the radical reactive monomer onto the fluororesin. The acceleration voltage of the electron beam can be defined according to the film thickness of the fluororesin, and is preferably regulated to an acceleration voltage in a range where the electron beam does not pass through the fluororesin, and is preferably 50 to 200 kV, particularly 80 to 130 kV. . In this case, the film thickness of the fluororesin is preferably 25 to 100 μm, particularly 50 to 80 μm. In the present invention, a radical reaction active site can be created only on one side of the film by irradiating the fluorine resin with an electron beam as radiation, thereby irradiating each of the front and back surfaces of the fluorine resin with an electron beam. This makes it possible to easily create the difference in active site distribution necessary for the grafting reaction, and to graft polymerize different reactive monomers on the front and back surfaces of the membrane, which will penetrate the fluororesin such as gamma rays. When radiation is used, different reactive monomers cannot be graft-polymerized on the front and back surfaces of the film, and the object of the present invention cannot be achieved.

また、電子線の照射線量としては、5〜100kGy、特に5〜50kGyとすることが好ましく、5kGy未満では官能基の特性が有効に作用する程度のグラフト率が得られない場合があり、100kGyを越えるとフッ素樹脂の著しい強度の低下を招く場合がある。
なお、電子線を照射するときの温度が高くなると、ラジカルの消滅が起こり易いので、照射時の温度は室温乃至それ以下が好ましい。
Further, the irradiation dose of the electron beam is preferably 5 to 100 kGy, particularly preferably 5 to 50 kGy, and if it is less than 5 kGy, the graft ratio to the extent that the functional group properties can be effectively obtained may not be obtained. If it exceeds, the strength of the fluororesin may be significantly reduced.
Note that, when the temperature at which the electron beam is irradiated becomes high, the radical disappears easily. Therefore, the temperature at the irradiation is preferably room temperature or lower.

更に、電子線の照射は、ヘリウム、窒素、アルゴンガスなどの不活性ガス雰囲気中で行うのが好ましく、該ガス中の酸素濃度は100ppm以下、特に50ppm以下が好ましいが、必ずしも酸素不在下で行う必要はない。   Further, the electron beam irradiation is preferably performed in an inert gas atmosphere such as helium, nitrogen, or argon gas, and the oxygen concentration in the gas is preferably 100 ppm or less, particularly preferably 50 ppm or less, but is always performed in the absence of oxygen. There is no need.

電子線の照射線量は、1kGy未満では官能基の特性が有効に作用する程度のグラフト率が得られない傾向にあり、1MGyを越えるとフッ素樹脂の著しい強度の低下を招く傾向にある。これに対し、特開2001−348439号公報では、フッ素樹脂に予め融点以上の温度で放射線を照射することによって、架橋構造を有するフッ素樹脂とすることができ、これにより放射線に対する膜強度を向上できることが提案されている。本発明の固体高分子電解質膜においても、フッ素系樹脂に予め融点以上の温度で放射線を照射することによって、架橋構造を有したフッ素系樹脂とし、これをフッ素系樹脂として使用し、これに上述したように室温(20〜40℃)又はそれ以下、好ましくは20〜40℃で電子線を照射してラジカルを発生させ、反応性モノマーをグラフト重合させることが好ましい。   If the irradiation dose of the electron beam is less than 1 kGy, the graft ratio to such an extent that the functional group properties can be effectively obtained cannot be obtained, and if it exceeds 1 MGy, the strength of the fluororesin tends to be significantly reduced. In contrast, in Japanese Patent Laid-Open No. 2001-348439, a fluororesin having a cross-linked structure can be obtained by previously irradiating the fluororesin with radiation at a temperature equal to or higher than the melting point, thereby improving the film strength against radiation. Has been proposed. Also in the solid polymer electrolyte membrane of the present invention, the fluororesin is irradiated with radiation at a temperature equal to or higher than the melting point in advance to form a fluororesin having a cross-linked structure, which is used as the fluororesin. Thus, it is preferable to generate a radical by irradiating an electron beam at room temperature (20 to 40 ° C.) or lower, preferably 20 to 40 ° C., and to graft polymerize the reactive monomer.

ここで、フッ素系樹脂に予め融点以上の温度で照射する放射線としては、電子線、γ線、X線、イオンビーム、紫外線などが例示され、中でもラジカル生成の容易性から電子線、γ線が好ましい。   Here, examples of the radiation irradiated to the fluororesin in advance at a temperature equal to or higher than the melting point include electron beams, γ rays, X rays, ion beams, and ultraviolet rays. preferable.

フッ素系樹脂に予め融点以上の温度で照射する放射線の吸収線量は、5kGy以上、特に10〜100kGyが好ましい。5kGy未満であると、十分な架橋効果が達成できないおそれがあり、100kGyを超えるとフッ素系樹脂の伸び、強度などの機械特性が低下するおそれがある。   The absorbed dose of radiation previously irradiated to the fluororesin at a temperature equal to or higher than the melting point is preferably 5 kGy or more, particularly preferably 10 to 100 kGy. If it is less than 5 kGy, a sufficient crosslinking effect may not be achieved, and if it exceeds 100 kGy, mechanical properties such as elongation and strength of the fluororesin may be deteriorated.

更に、上記フッ素系樹脂の融点以上での放射線の照射は、ヘリウム、窒素、アルゴンガスなどの不活性ガス雰囲気中で行うのが好ましく、該ガス中の酸素濃度は500ppm以下、特に200ppm以下が好ましい。   Furthermore, the irradiation with radiation above the melting point of the fluororesin is preferably carried out in an inert gas atmosphere such as helium, nitrogen or argon gas, and the oxygen concentration in the gas is preferably 500 ppm or less, particularly preferably 200 ppm or less. .

本発明の固体高分子電解質膜において、フッ素系樹脂に電子線を照射してグラフト重合させるラジカル反応性モノマーとしては、イオン交換基、又はイオン交換基が導入可能なモノマーであれば特に制限なく使用できるが、電解質膜の表裏面を異なる組成で構成するためには、少なくとも2種以上の異なる反応性モノマーを使用することが必要である。特に本発明では、電解質膜の片面が炭化水素系化合物をグラフト重合させて得られた組成で構成され、他面がフッ素含有炭化水素系化合物をグラフト重合させて得られた組成で構成されることが好ましく、このため、ラジカル反応性モノマーとしては、炭化水素系反応性モノマーと、フッ素含有炭化水素系モノマーとを使用することが好適である。   In the solid polymer electrolyte membrane of the present invention, as a radical reactive monomer that is graft polymerized by irradiating an electron beam to a fluorine-based resin, any ion-exchange group or a monomer into which an ion-exchange group can be introduced can be used without particular limitation. However, in order to configure the front and back surfaces of the electrolyte membrane with different compositions, it is necessary to use at least two different reactive monomers. In particular, in the present invention, one surface of the electrolyte membrane is composed of a composition obtained by graft polymerization of a hydrocarbon compound, and the other surface is composed of a composition obtained by graft polymerization of a fluorine-containing hydrocarbon compound. Therefore, it is preferable to use a hydrocarbon-based reactive monomer and a fluorine-containing hydrocarbon-based monomer as the radical-reactive monomer.

ここで、グラフトする炭化水素系反応性モノマーとしては、単独重合性があり、かつ、イオン交換性の官能基を有するか、もしくは、イオン交換性の官能基を有さないが、化学反応を利用してイオン交換性の官能基を付与することが可能な炭化水素系反応性モノマーが好適である。   Here, the hydrocarbon-based reactive monomer to be grafted is homopolymerizable and has an ion-exchange functional group or does not have an ion-exchange functional group, but uses a chemical reaction. Thus, a hydrocarbon-based reactive monomer capable of imparting an ion-exchange functional group is preferable.

この場合、イオン交換性の官能基としては、フェノール性水酸基、カルボン酸基、アミン基、スルホン酸基などが挙げられる。また、アシルオキシ基、エステル基、酸イミド基などは、加水分解することによって定量的にフェノール性水酸基、スルホン酸基などのイオン交換性の官能基に変換できるので、これらの基を有するモノマーも使用することができる。   In this case, examples of the ion-exchangeable functional group include a phenolic hydroxyl group, a carboxylic acid group, an amine group, and a sulfonic acid group. In addition, acyloxy groups, ester groups, acid imide groups, etc. can be quantitatively converted into ion-exchangeable functional groups such as phenolic hydroxyl groups and sulfonic acid groups by hydrolysis, so monomers having these groups are also used. can do.

イオン交換性の官能基を有する炭化水素系反応性モノマーの具体例としては、アクリル酸エステル、メタアクリル酸エステル、マレイン酸エステル、フマル酸エステル、ヒドロキシオキシスチレン、アシルオキシスチレン、ビニルエステル、ビニルスルホン酸エステル、スチレンカルボン酸、アルキルスルホン酸スチレン、ビニルスルホン酸などが挙げられる。なお、上記エステル類としては、炭素数1〜10のアルキルエステルが好ましい。   Specific examples of the hydrocarbon-based reactive monomer having an ion-exchange functional group include acrylic acid ester, methacrylic acid ester, maleic acid ester, fumaric acid ester, hydroxyoxystyrene, acyloxystyrene, vinyl ester, and vinyl sulfonic acid. Examples thereof include esters, styrene carboxylic acids, styrene alkyl sulfonates, and vinyl sulfonic acids. In addition, as said esters, a C1-C10 alkylester is preferable.

また、イオン交換性の官能基を有さないが、化学反応を利用してイオン交換性の官能基を付与することが可能なモノマーを用いる場合は、イオン交換性の官能基を有しない反応性モノマーでグラフト重合を行った後、化学反応を利用してスルホン化等を行うことで、イオン交換性の官能基を付与することができる。イオン交換性の官能基を有さないが、化学反応を利用してイオン交換性の官能基を付与することが可能な炭化水素系反応性モノマーとしては、スチレン、α−メチルスチレン、ビニルトルエン、ヒドロキシスチレンなどを用いることができる。なお、上記反応性モノマーにスルホン基を導入するには、硫酸、発煙硫酸などのスルホン化剤を反応させることにより行うことができる。   In addition, when using a monomer that does not have an ion-exchangeable functional group but can impart an ion-exchangeable functional group using a chemical reaction, the reactivity without an ion-exchangeable functional group After graft polymerization with a monomer, ion exchange functional groups can be imparted by sulfonation using a chemical reaction. The hydrocarbon-based reactive monomer that does not have an ion-exchange functional group but can impart an ion-exchange functional group using a chemical reaction includes styrene, α-methylstyrene, vinyl toluene, Hydroxystyrene or the like can be used. The sulfone group can be introduced into the reactive monomer by reacting with a sulfonating agent such as sulfuric acid or fuming sulfuric acid.

更に、必要に応じて、ジビニルベンゼン等のビニル基を複数有するモノマーなどの架橋性モノマーを、上記反応性モノマーに対して0.1〜15mo1%混合することができる。   Furthermore, if necessary, a crosslinkable monomer such as a monomer having a plurality of vinyl groups such as divinylbenzene can be mixed in an amount of 0.1 to 15 mol 1% with respect to the reactive monomer.

また、フッ素含有炭化水素系反応性モノマーとしては、上述した炭化水素系反応性モノマーと同様のイオン交換性の官能基を有するか、もしくは、イオン交換性の官能基を有さないが、化学反応を利用してイオン交換性の官能基を付与することが可能なフッ素含有炭化水素系モノマーが好適に使用される。なお、この炭化フッ素系反応性モノマーにおいて、加水分解によりイオン交換性の官能基に変換可能な官能基としては、−SO2F、−SO2NH2、−SO2NH4、−COOH、−CN、−COF、−COOR(Rは炭素数1〜10のアルキル基)等が挙げられ、これら官能基は、加水分解によりスルホン基、カルボン酸基を容易に与えることができるので、好適である。 In addition, the fluorine-containing hydrocarbon-based reactive monomer has the same ion-exchange functional group as the above-mentioned hydrocarbon-based reactive monomer, or has no ion-exchange functional group, but the chemical reaction A fluorine-containing hydrocarbon-based monomer capable of imparting an ion-exchangeable functional group using is preferably used. In this fluorine-containing reactive monomer, functional groups that can be converted into ion-exchangeable functional groups by hydrolysis include —SO 2 F, —SO 2 NH 2 , —SO 2 NH 4 , —COOH, — CN, -COF, -COOR (R is an alkyl group having 1 to 10 carbon atoms) and the like, and these functional groups are suitable because they can easily give a sulfone group or a carboxylic acid group by hydrolysis. .

フッ素含有炭化水素系反応性モノマーとして具体的には、下記化合物を例示することができる。
トリフルオロエチレンスルホニルハライド
CF2=CFSO2X(X:-F又は-Cl)
トリフルオロビニルエーテルスルホニルハライド
CF2=CF−O−SO2X(X:-F又は-Cl)
パーフルオロアリルフルオロスルファイド
CF2=CFCF2−O−SO2
パーフルオロビニルエーテルスルホニルフロライド
CF2=CF−O−CF2CF(CF3)O(CF22SO2
トリフルオロスチレン
CF2=CFC65
トリフルオロアクリレート
CF2=CFCOOR(R:−CH3又は−C(CH33
Specific examples of the fluorine-containing hydrocarbon-based reactive monomer include the following compounds.
Trifluoroethylenesulfonyl halide CF 2 ═CFSO 2 X (X: —F or —Cl)
Trifluorovinyl ether sulfonyl halide CF 2 ═CF—O—SO 2 X (X: —F or —Cl)
Perfluoroallylfluorosulfide CF 2 ═CFCF 2 —O—SO 2 F
Perfluorovinyl ether sulfonyl fluoride CF 2 ═CF—O—CF 2 CF (CF 3 ) O (CF 2 ) 2 SO 2 F
Trifluorostyrene CF 2 = CFC 6 H 5
Trifluoroacrylate CF 2 ═CFCOOR (R: —CH 3 or —C (CH 3 ) 3 )

本発明において、フッ素系樹脂への上記反応性モノマーのグラフト重合法としては、フッ素系樹脂の片面に電子線を照射して第一のラジカル反応性モノマーをグラフト重合させた後、フッ素系樹脂の他面に電子線を照射して第二の他のラジカル反応性モノマーをグラフト重合させることにより行うことができる。なお、電子線の照射条件は、上記加速電圧、照射量等の条件で両面それぞれを照射すればよい。   In the present invention, as a method of graft polymerization of the reactive monomer to the fluororesin, the first radical reactive monomer is graft polymerized by irradiating one side of the fluororesin with an electron beam, It can be carried out by irradiating the other surface with an electron beam and graft polymerizing a second other radical-reactive monomer. In addition, the irradiation conditions of an electron beam should just irradiate both surfaces on conditions, such as the said acceleration voltage and irradiation amount.

ここで、放射線を照射したフッ素系樹脂の各面にそれぞれグラフトするラジカル反応性モノマーの使用量は、フッ素系樹脂100質量部に対してラジカル反応性モノマーを1,000〜100,000質量部、特に4,000〜20,000質量部使用することが好ましい。ラジカル反応性モノマーが少なすぎると接触が不十分となる場合があり、多すぎるとラジカル反応性モノマーが効率的に使用できなくなるおそれがある。   Here, the amount of the radical reactive monomer grafted on each surface of the fluororesin irradiated with radiation is 1,000 to 100,000 parts by mass of the radical reactive monomer with respect to 100 parts by mass of the fluororesin, In particular, it is preferable to use 4,000 to 20,000 parts by mass. If the amount of the radical reactive monomer is too small, the contact may be insufficient. If the amount is too large, the radical reactive monomer may not be used efficiently.

また、フッ素系樹脂にラジカル反応性モノマーをグラフト重合するに際しては、アゾビスイソブチロニトリル等の開始剤を本発明の目的を損なわない範囲で適宜用いてもよい。   Moreover, when graft-polymerizing a radical-reactive monomer to a fluororesin, an initiator such as azobisisobutyronitrile may be appropriately used as long as the object of the present invention is not impaired.

更に、本発明においては、グラフト反応時に溶媒を用いることができる。溶媒としては、反応性モノマーを均一に溶解するものが好ましく、例えばアセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール類、テトラヒドロフラン、ジオキサン等のエーテル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンゼン、トルエン等の芳香族炭化水素、n−ヘプタン、n−へキサン、シクロヘキサン等の脂肪族又は脂環族炭化水素、あるいはこれらの混合溶媒を用いることができる。   Furthermore, in the present invention, a solvent can be used during the graft reaction. As the solvent, those that uniformly dissolve the reactive monomer are preferable. For example, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol , Ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as N, N-dimethylformamide, N, N-dimethylacetamide, benzene and toluene, aliphatic or alicyclic rings such as n-heptane, n-hexane and cyclohexane A group hydrocarbon or a mixed solvent thereof can be used.

本発明においては、グラフト重合を行う際の反応雰囲気中の酸素濃度を0.05〜5%(体積%、以下同様)に調整することが好ましい。反応雰囲気中の酸素は、系内のラジカルと反応し、カルボニルラジカルやパーオキシラジカルとなり、それ以上の反応を抑制する作用を果たしていると考えられる。酸素濃度が0.05%未満であるとラジカル重合性モノマーが単独重合し、溶剤に不溶のゲルが生成するため、原料が無駄になるとともに、ゲルの除去にも時間がかかり、酸素濃度が5%を超えるとグラフト率が低下する場合がある。望ましい酸素濃度は0.1〜3%であり、更に望ましい酸素濃度は0.1〜1%である。なお、酸素以外のガスとしては、窒素、アルゴンなどの不活性ガスが使用される。   In the present invention, it is preferable to adjust the oxygen concentration in the reaction atmosphere during graft polymerization to 0.05 to 5% (volume%, the same applies hereinafter). It is considered that oxygen in the reaction atmosphere reacts with radicals in the system to become carbonyl radicals or peroxy radicals, and acts to suppress further reactions. When the oxygen concentration is less than 0.05%, the radically polymerizable monomer is homopolymerized and a gel insoluble in the solvent is generated. Therefore, the raw material is wasted and it takes time to remove the gel. If it exceeds%, the graft ratio may decrease. A desirable oxygen concentration is 0.1 to 3%, and a more desirable oxygen concentration is 0.1 to 1%. In addition, as gas other than oxygen, inert gas, such as nitrogen and argon, is used.

なお、上記グラフト重合の反応条件としては、0〜100℃、特に40〜80℃の温度で、1〜40時間、特に4〜20時間の反応時間とすることが好ましい。   In addition, as reaction conditions of the said graft polymerization, it is preferable to set it as the reaction time of 1 to 40 hours, especially 4 to 20 hours at the temperature of 0-100 degreeC, especially 40-80 degreeC.

上述したように、放射線を照射したフッ素系樹脂にラジカル反応性モノマーをグラフト重合させ、更に必要に応じてスルホン化させることにより、固体高分子電解質膜を得ることができる。   As described above, a solid polymer electrolyte membrane can be obtained by graft polymerization of a radical reactive monomer to a fluorine-based resin irradiated with radiation, and further sulfonated as necessary.

本発明の燃料電池は、燃料極と空気極の間に上記固体高分子電解質膜が設けられているものである。この場合、固体高分子電解質膜のフッ素含有炭化水素系化合物をグラフト重合させて得られた面が空気極側に配置されることが、耐酸化性の点で好ましい。なお、燃料極、空気極の構成、材質、燃料電池の構成は公知のものとすることができる。   In the fuel cell of the present invention, the solid polymer electrolyte membrane is provided between a fuel electrode and an air electrode. In this case, it is preferable in terms of oxidation resistance that the surface of the solid polymer electrolyte membrane obtained by graft polymerization of the fluorine-containing hydrocarbon compound is disposed on the air electrode side. Note that the configurations and materials of the fuel electrode and the air electrode and the configuration of the fuel cell can be known.

以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。なお、以下の例において配合量はいずれも質量%である。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, the blending amount is mass%.

〔実施例1〕
電子線の加速電圧を130kVとして電子線を照射したときの電子(100keV)の、厚さ50μmのPTFEフィルムに対する深度線量分布を、EGSによるプログラム計算より求めた。結果を図1(PTFEフィルム深度に対する相対吸収線量のグラフ)に示す。なお、EGSによるプログラム計算条件は、図2に示すとおりであり、真空雰囲気で、アルミ1(厚さ1mm)上に積層したPTFEフィルム2(厚さ50μm)に、窒素ガス層3(15mm)、チタン箔4(厚さ10μm)を介して電子線(100keV)を特定の加速電圧で照射した時の深度に対する相対吸収線量(%)を求めた。
この計算結果によると、厚さ50μmのPTFEフィルム片面に対し、加速電圧130kVで電子線を照射した場合、深度45μm付近で相対吸収線量50%となる結果が得られた。
[Example 1]
The depth dose distribution of an electron beam (100 keV) with respect to a PTFE film having a thickness of 50 μm when the electron beam acceleration voltage was set to 130 kV was determined by EGS program calculation. The results are shown in FIG. 1 (graph of relative absorbed dose against PTFE film depth). The program calculation conditions by EGS are as shown in FIG. 2. In a vacuum atmosphere, a nitrogen gas layer 3 (15 mm), a PTFE film 2 (thickness 50 μm) laminated on aluminum 1 (thickness 1 mm), The relative absorbed dose (%) with respect to the depth when the electron beam (100 keV) was irradiated through the titanium foil 4 (thickness 10 μm) at a specific acceleration voltage was determined.
According to this calculation result, when a single-sided PTFE film having a thickness of 50 μm was irradiated with an electron beam at an acceleration voltage of 130 kV, a relative absorbed dose of 50% was obtained at a depth of about 45 μm.

厚さ50μmのPTFEフィルム(5cm角、質量0.25g)の片面に対して、酸素濃度30ppm以下の窒素ガス雰囲気下、室温で電子線を加速電圧130kV、照射線量30kGy照射した。   An electron beam was irradiated with an acceleration voltage of 130 kV and an irradiation dose of 30 kGy at room temperature in a nitrogen gas atmosphere with an oxygen concentration of 30 ppm or less on one side of a PTFE film (5 cm square, mass 0.25 g) having a thickness of 50 μm.

引き続いて、5回の脱気/窒素置換によって酸素を除き、窒素ガスで置換して、炭化水素系反応性モノマーを含むスチレン溶液(スチレン40質量部、ジビニルベンゼン2質量部、アゾビスイソブチロニトリル0.01質量部、n−ヘキサン40質量部)を、照射されたPTFEフィルムの入ったガラス製セパラブルフラスコ中に膜が浸されるまで導入した。60℃で15時間反応させ、その後、膜を取り出し、トルエン、アセトンで洗浄した後、乾燥させた。下記式によって求めたグラフト率は、35%であった。   Subsequently, oxygen is removed by five times of degassing / nitrogen replacement, and the styrene solution containing hydrocarbon reactive monomer (40 parts by mass of styrene, 2 parts by mass of divinylbenzene, azobisisobutyro is substituted with nitrogen gas). Nitrile 0.01 parts by mass, n-hexane 40 parts by mass) was introduced into the glass separable flask containing the irradiated PTFE film until the membrane was immersed. The reaction was carried out at 60 ° C. for 15 hours, and then the membrane was taken out, washed with toluene and acetone, and then dried. The graft ratio determined by the following formula was 35%.

グラフト率の算出式:
X=100×(W1−Wo)/Wo
X:グラフト率(%)
0:グラフト前のPTFEフィルムの重さ(g)
1:グラフト後のPTFEフィルムの重さ(g)
Formula for calculating graft ratio:
X = 100 × (W 1 −W o ) / W o
X: Graft ratio (%)
W 0 : Weight of PTFE film before grafting (g)
W 1 : Weight of PTFE film after grafting (g)

続いて、上記のようにしてグラフトさせた膜を、1,2−ジクロロエタン溶媒中、50℃でクロロスルホン酸と2時間反応させた。得られた膜を1,2−ジクロロエタン、イオン交換水で洗浄し、乾燥させた。   Subsequently, the membrane grafted as described above was reacted with chlorosulfonic acid at 50 ° C. for 2 hours in a 1,2-dichloroethane solvent. The obtained membrane was washed with 1,2-dichloroethane and ion-exchanged water and dried.

引き続き、上記PTFEフィルムの他面に再度電子線を加速電圧80kVで照射した。なお、加速電圧80kVでの、厚さ50μmのPTFEフィルムに対する深度線量分布(上記と同様にECGによるプログラム計算により算出)は、図3に示すとおりである。
照射後、脱気操作により酸素を取り除き、窒素置換して、炭化フッ素系反応性モノマーであるCF2=CFOCF2CF(CF3)O(CF22SO2Fを含む溶液(炭化フッ素系モノマー30質量部、ヘキサフロロメタキシレン30質量部、アゾビスイソブチロニトリル0.01質量部)中に膜を浸漬させ、60℃で24時間反応させた。その後、常法によりスルホン化することで、固体電解質膜を得た。
Subsequently, the other surface of the PTFE film was again irradiated with an electron beam at an acceleration voltage of 80 kV. In addition, the depth dose distribution (calculated by the program calculation by ECG similarly to the above) with respect to the PTFE film having a thickness of 50 μm at the acceleration voltage of 80 kV is as shown in FIG.
After irradiation, oxygen is removed by a deaeration operation, nitrogen substitution is performed, and a solution containing fluorine-containing reactive monomer CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 2 F (fluorine-carbon-based) The film was immersed in 30 parts by mass of a monomer, 30 parts by mass of hexafluorometaxylene, and 0.01 parts by mass of azobisisobutyronitrile, and reacted at 60 ° C. for 24 hours. Then, the solid electrolyte membrane was obtained by sulfonation by a conventional method.

上記実施例で得られた電解質膜のイオン交換容量、プロトン伝導度及び耐酸化性を表1に示す。なお、膜のイオン交換容量(IEC(meq/g))の測定は、中和滴定により求め、プロトン伝導度は、通常の膜抵抗測定を行うことにより求めた。耐酸化性評価は、作成した電解質膜を電池に組み込み、耐久試験運転における200時間後の電圧降下度を求めた。なお、耐久試験条件は表2に示すとおりである。 Table 1 shows the ion exchange capacity, proton conductivity, and oxidation resistance of the electrolyte membranes obtained in the above examples. The ion exchange capacity (I EC (meq / g)) of the membrane was determined by neutralization titration, and the proton conductivity was determined by performing normal membrane resistance measurement. In the evaluation of oxidation resistance, the prepared electrolyte membrane was incorporated into a battery, and the voltage drop after 200 hours in the durability test operation was determined. The durability test conditions are as shown in Table 2.

〔実施例2〕
予め、340℃でγ線を100kGy照射したPTFEフィルムを使用した以外は、実施例1と同様な実験を行った。
[Example 2]
An experiment similar to that in Example 1 was performed except that a PTFE film irradiated with 100 kGy of γ rays at 340 ° C. was used in advance.

〔比較例1〕
厚さ50μmのPTFEフィルム(5cm角、質量0.25g)に対して酸素濃度30ppm以下の窒素ガス雰囲気下、室温で電子線を加速電圧130kV、照射線量30kGy照射した。引き続いて、5回の脱気/窒素置換によって酸素を除き、窒素ガスで置換し、炭化フッ素系モノマーであるCF2=CFOCF2CF(CF3)O(CF22SO2Fを含む溶液(組成は実施例と同様)中に膜を浸漬させ、60℃、24時間反応させた。その後、常法によりスルホン化し、実施例と同様に特性を評価した。
[Comparative Example 1]
An electron beam was irradiated with an acceleration voltage of 130 kV and an irradiation dose of 30 kGy at room temperature in a nitrogen gas atmosphere with an oxygen concentration of 30 ppm or less on a PTFE film (5 cm square, mass 0.25 g) having a thickness of 50 μm. Subsequently, oxygen is removed by five times of degassing / nitrogen replacement, and the solution is replaced with nitrogen gas, and contains a fluorine-containing monomer CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 2 F The film was immersed in the same composition as in the example, and reacted at 60 ° C. for 24 hours. Thereafter, sulfonation was performed by a conventional method, and the characteristics were evaluated in the same manner as in the Examples.

〔比較例2〕
厚さ50μmのPTFEフィルム(5cm角、質量0.25g)に対して酸素濃度30ppm以下の窒素ガス雰囲気下、室温で電子線を加速電圧130kV、照射線量30kGy照射した。引き続いて、5回の脱気/窒素置換によって酸素を除き、窒素ガスで置換し、炭化水素系モノマーであるスチレン溶液(組成は実施例と同様)中に膜を浸漬させ、60℃で15時間反応させた。その後、常法によりスルホン化し、実施例と同様に特性を評価した。
[Comparative Example 2]
An electron beam was irradiated with an acceleration voltage of 130 kV and an irradiation dose of 30 kGy at room temperature in a nitrogen gas atmosphere with an oxygen concentration of 30 ppm or less on a PTFE film (5 cm square, mass 0.25 g) having a thickness of 50 μm. Subsequently, oxygen was removed by five times of degassing / nitrogen replacement, the gas was replaced with nitrogen gas, and the membrane was immersed in a styrene solution (composition is the same as in the example), which is a hydrocarbon monomer, at 60 ° C. for 15 hours. Reacted. Thereafter, sulfonation was performed by a conventional method, and the characteristics were evaluated in the same manner as in the Examples.

実施例1において、電子線の加速電圧を130kVとして電子線を照射したときの電子(100keV)の、厚さ50μmのPTFEフィルムに対する深度線量分布を、EGSによるプログラム計算より求めた結果を示すグラフである。In Example 1, it is a graph which shows the result of having calculated | required the depth dose distribution with respect to the PTFE film of thickness 50 micrometers of the electron (100 keV) when irradiating an electron beam with the acceleration voltage of an electron beam being 130 kV by the program calculation by EGS. is there. 実施例1において使用された、EGSによるプログラム計算条件を示す概略図である。It is the schematic which shows the program calculation conditions by EGS used in Example 1. FIG. 実施例1において、電子線の加速電圧を80kVとして電子線を照射したときの電子(100keV)の、厚さ50μmのPTFEフィルムに対する深度線量分布を、EGSによるプログラム計算より求めた結果を示すグラフである。In Example 1, it is a graph which shows the result which calculated | required the depth dose distribution with respect to the PTFE film of thickness 50 micrometers of the electron (100 keV) when irradiating an electron beam with the acceleration voltage of an electron beam being 80 kV by the program calculation by EGS. is there.

符号の説明Explanation of symbols

1 アルミ
2 PTFEフィルム
3 窒素ガス層
4 チタン箔
1 Aluminum 2 PTFE film 3 Nitrogen gas layer 4 Titanium foil

Claims (7)

放射線を照射したシート状、フィルム状又は板状のフッ素系樹脂の両面に、それぞれイオン交換基をもつラジカル反応性モノマーをグラフト重合させること、もしくはイオン交換基が導入可能なラジカル反応性モノマーをグラフト重合させた後にイオン交換基を導入することにより得られる固体高分子電解質膜であって、前記電解質膜の片面が前記ラジカル反応性モノマーとしてフッ素を含有しない炭化水素系化合物をグラフト重合させて得られた組成で構成され、他面が前記ラジカル反応性モノマーとしてフッ素含有炭化水素系化合物をグラフト重合させて得られた組成で構成されてなることを特徴とする固体高分子電解質膜。 Radical-reactive monomers having ion-exchange groups are grafted onto both sides of a sheet-like, film-like or plate-like fluorine-based resin irradiated with radiation, or radical-reactive monomers capable of introducing ion-exchange groups are grafted. A solid polymer electrolyte membrane obtained by introducing an ion exchange group after polymerization, wherein one surface of the electrolyte membrane is obtained by graft polymerization of a hydrocarbon-based compound containing no fluorine as the radical reactive monomer A solid polymer electrolyte membrane comprising a composition obtained by graft polymerization of a fluorine-containing hydrocarbon compound as the radical-reactive monomer. フッ素系樹脂が、四フッ化エチレン樹脂、四フッ化エチレン−六フッ化プロピレン共重合樹脂、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合樹脂、四フッ化エチレン−エチレン共重合樹脂、フッ化ビニリデン樹脂から選ばれる少なくとも1種である請求項1記載の固体高分子電解質膜。   Fluorine resin is tetrafluoroethylene resin, tetrafluoroethylene-hexafluoropropylene copolymer resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin, tetrafluoroethylene-ethylene copolymer resin, vinylidene fluoride The solid polymer electrolyte membrane according to claim 1, which is at least one selected from resins. 請求項1又は2記載の固体高分子電解質膜を、燃料極と空気極の間に設けてなることを特徴とする燃料電池。   A fuel cell comprising the solid polymer electrolyte membrane according to claim 1 or 2 between a fuel electrode and an air electrode. 固体高分子電解質膜のフッ素含有炭化水素系ラジカル反応性モノマーをグラフト重合させて得られた組成で構成された面を空気極側に配置した請求項3記載の燃料電池。   4. The fuel cell according to claim 3, wherein a surface composed of a composition obtained by graft polymerization of a fluorine-containing hydrocarbon radical reactive monomer of the solid polymer electrolyte membrane is disposed on the air electrode side. 放射線を照射したシート状、フィルム状又は板状のフッ素系樹脂の両面に、それぞれイオン交換基をもつラジカル反応性モノマーをグラフト重合させ、もしくはイオン交換基が導入可能なラジカル反応性モノマーをグラフト重合させた後にイオン交換基を導入して固体高分子電解質膜を製造する方法であって、フッ素系樹脂の片面に電子線を照射してフッ素を含有しない炭化水素系ラジカル反応性モノマーをグラフト重合させた後、このフッ素系樹脂の他面に電子線を照射してフッ素含有炭化水素系ラジカル反応性モノマーをグラフト重合させることを特徴とする固体高分子電解質膜の製造方法。 Radical-reactive monomers having ion-exchange groups are grafted onto both sides of a sheet-like, film-like or plate-like fluororesin irradiated with radiation, or radical-reactive monomers capable of introducing ion-exchange groups are grafted. In this method, an ion exchange group is introduced and a solid polymer electrolyte membrane is manufactured by irradiating one side of a fluorine resin with an electron beam to graft polymerize a hydrocarbon radical reactive monomer not containing fluorine. And then irradiating the other surface of the fluororesin with an electron beam to graft polymerize the fluorine-containing hydrocarbon radical reactive monomer. 放射線を照射したシート状、フィルム状又は板状のフッ素系樹脂の両面に、それぞれイオン交換基をもつラジカル反応性モノマーをグラフト重合させ、もしくはイオン交換基が導入可能なラジカル反応性モノマーをグラフト重合させた後にイオン交換基を導入して固体高分子電解質膜を製造する方法であって、フッ素系樹脂の片面に電子線を照射してフッ素含有炭化水素系ラジカル反応性モノマーをグラフト重合させた後、このフッ素系樹脂の他面に電子線を照射してフッ素を含有しない炭化水素系ラジカル反応性モノマーをグラフト重合させることを特徴とする固体高分子電解質膜の製造方法。 Radical-reactive monomers having ion-exchange groups are grafted onto both sides of a sheet-like, film-like or plate-like fluororesin irradiated with radiation, or radical-reactive monomers capable of introducing ion-exchange groups are grafted. In this method, an ion exchange group is introduced and a solid polymer electrolyte membrane is produced by grafting the fluorine-containing hydrocarbon radical reactive monomer by irradiating one side of the fluorine resin with an electron beam. A method for producing a solid polymer electrolyte membrane, wherein the other surface of the fluororesin is irradiated with an electron beam and a hydrocarbon radical reactive monomer not containing fluorine is graft polymerized. グラフト重合を行う際の反応雰囲気が、酸素濃度0.05〜5体積%を含む不活性ガス雰囲気である請求項5又は6記載の製造方法。   The production method according to claim 5 or 6, wherein a reaction atmosphere in carrying out the graft polymerization is an inert gas atmosphere containing an oxygen concentration of 0.05 to 5% by volume.
JP2003368834A 2003-10-29 2003-10-29 Solid polymer electrolyte membrane and fuel cell Expired - Fee Related JP4645794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368834A JP4645794B2 (en) 2003-10-29 2003-10-29 Solid polymer electrolyte membrane and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368834A JP4645794B2 (en) 2003-10-29 2003-10-29 Solid polymer electrolyte membrane and fuel cell

Publications (2)

Publication Number Publication Date
JP2005135681A JP2005135681A (en) 2005-05-26
JP4645794B2 true JP4645794B2 (en) 2011-03-09

Family

ID=34646379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368834A Expired - Fee Related JP4645794B2 (en) 2003-10-29 2003-10-29 Solid polymer electrolyte membrane and fuel cell

Country Status (1)

Country Link
JP (1) JP4645794B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351244A (en) * 2005-06-13 2006-12-28 Shin Etsu Chem Co Ltd Solid polyelectrolyte membrane, manufacturing method therefor, and fuel cell
WO2007069491A1 (en) 2005-12-14 2007-06-21 Japan Atomic Energy Agency High-frequency substrate and process for producing the same
US20090280378A1 (en) 2006-09-29 2009-11-12 Fujifilm Corporation Membrane and electrode assembly and method for producing the same
US8017257B2 (en) * 2007-01-26 2011-09-13 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
JP2008243393A (en) * 2007-03-26 2008-10-09 Shin Etsu Chem Co Ltd Forming method of solid polymer electrolyte membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251906A (en) * 1999-03-01 2000-09-14 Agency Of Ind Science & Technol Solid polymer electrolyte membrane and bipolar membrane fuel cell using it
JP2003234111A (en) * 2002-02-08 2003-08-22 Hitachi Cable Ltd Electrolyte film for fuel cell and its manufacturing method as well as fuel cell
JP2003272663A (en) * 2002-03-13 2003-09-26 Toyota Central Res & Dev Lab Inc Electrode structural body for fuel cell and solid polymer fuel cell using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376265A (en) * 1986-09-18 1988-04-06 Hitachi Maxell Ltd Ordinary type acid methanol fuel cell
JPH0268861A (en) * 1988-09-02 1990-03-08 Matsushita Electric Ind Co Ltd Liquid fuel battery
JPH07335233A (en) * 1994-06-02 1995-12-22 Toyota Central Res & Dev Lab Inc Fuel cell
JP4062755B2 (en) * 1997-11-27 2008-03-19 アイシン精機株式会社 Method for producing solid polymer electrolyte membrane
JPH11176456A (en) * 1997-12-15 1999-07-02 Aisin Seiki Co Ltd Solid high polymer electrolyte fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251906A (en) * 1999-03-01 2000-09-14 Agency Of Ind Science & Technol Solid polymer electrolyte membrane and bipolar membrane fuel cell using it
JP2003234111A (en) * 2002-02-08 2003-08-22 Hitachi Cable Ltd Electrolyte film for fuel cell and its manufacturing method as well as fuel cell
JP2003272663A (en) * 2002-03-13 2003-09-26 Toyota Central Res & Dev Lab Inc Electrode structural body for fuel cell and solid polymer fuel cell using the same

Also Published As

Publication number Publication date
JP2005135681A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP5261937B2 (en) Manufacturing method of electrolyte membrane
JP4682358B2 (en) Method for producing functional inorganic / graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell
JP3739713B2 (en) Method for producing a fluorine-based polymer ion exchange membrane having excellent oxidation resistance and a wide range of ion exchange amounts
JP2004059752A (en) Electrolyte membrane for fuel cell comprising crosslinked fluororesin base
JP5158353B2 (en) Fuel cell electrolyte membrane and method for producing fuel cell electrolyte membrane / electrode assembly
JP4576620B2 (en) Method for producing nanostructure control polymer ion exchange membrane
JP2004014436A (en) Electrolyte film for fuel cell consisting of fluorine polymer ion exchange membrane
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
JP4219656B2 (en) Electrolyte membrane for fuel cell
JP2005063778A (en) Electrolyte film for fuel cell excellent in oxidation resistance
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP5326288B2 (en) Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
JP4434666B2 (en) Method for producing solid polymer electrolyte membrane and fuel cell
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4390047B2 (en) Solid polymer electrolyte membrane, method for producing the same, and fuel cell
JP5316413B2 (en) Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell
JP2006307051A (en) Solid polymer electrolytic membrane and method for producing the same, and fuel battery
JP2004300360A (en) Method for producing electrolyte membrane for fuel cell comprising graft polymer ion-exchange membrane
JP2005142014A (en) Electrolyte membrane for fuel cells superior in acid resistance
JP4683181B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP5158309B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5029797B2 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP2008243393A (en) Forming method of solid polymer electrolyte membrane
JP2006316140A (en) Solid polymer electrolyte film, method for producing the same, and fuel cell
JP2006172858A (en) Electrolyte film with excellent adhesion to electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees