JP2008243393A - Forming method of solid polymer electrolyte membrane - Google Patents

Forming method of solid polymer electrolyte membrane Download PDF

Info

Publication number
JP2008243393A
JP2008243393A JP2007078099A JP2007078099A JP2008243393A JP 2008243393 A JP2008243393 A JP 2008243393A JP 2007078099 A JP2007078099 A JP 2007078099A JP 2007078099 A JP2007078099 A JP 2007078099A JP 2008243393 A JP2008243393 A JP 2008243393A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
solid polymer
membrane
graft polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007078099A
Other languages
Japanese (ja)
Inventor
Junichi Tsukada
淳一 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007078099A priority Critical patent/JP2008243393A/en
Publication of JP2008243393A publication Critical patent/JP2008243393A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forming method a solid polymer electrolyte membrane for a fuel cell by radiation graft polymerization, wherein deterioration in the membrane is reduced, since a graft membrane having a high graft rate can be obtained only by radiating a small amount of radial rays. <P>SOLUTION: In the forming method of the solid polymer electrolyte membrane, when forming it by applying the graft polymerization of a radically reactive monomer to a fluororesin membrane irradiated with radial rays, the graft polymerization is carried out in an aprotic polar solvent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は固体高分子電解質膜の製造方法、特に燃料電池用として好適な固体高分子電解質膜に関する。   The present invention relates to a method for producing a solid polymer electrolyte membrane, and more particularly to a solid polymer electrolyte membrane suitable for a fuel cell.

固体高分子電解質型イオン交換膜を用いた燃料電池は、作動温度が100℃以下と低く、そのエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として広く実用化が期待されている。この燃料電池においては固体高分子電解質膜、白金系の触媒、ガス拡散電極、及び高分子電解質膜と電極の接合体などに関する重要な要素技術がある。しかし、この中でも燃料電池としての良好な特性を有する固体高分子電解質膜の開発は最も重要な技術の一つである。   A fuel cell using a solid polymer electrolyte type ion exchange membrane is expected to be widely put into practical use as a power source for electric vehicles or a simple auxiliary power source because of its low operating temperature of 100 ° C. or less and high energy density. In this fuel cell, there are important elemental technologies relating to a solid polymer electrolyte membrane, a platinum-based catalyst, a gas diffusion electrode, and a polymer electrolyte membrane-electrode assembly. However, among these, development of a solid polymer electrolyte membrane having good characteristics as a fuel cell is one of the most important technologies.

固体高分子電解質膜型燃料電池においては、電解質膜の両面にガス拡散電極が複合されており、膜と電極とは実質的に一体構造になっている。このため、電解質膜はプロトンを伝導するための電解質として作用し、また、加圧下においても燃料である水素やメタノールと酸化剤とを直接混合させないための隔膜としての役割も有する。このような電解質膜としては、電解質としてプロトンの移動速度が大きくイオン交換容量が高いこと、電気抵抗を低く保持するために保水性が一定でかつ高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度が大きいこと、及び寸法安定性が優れていること、長期の使用に対する化学的な安定性に優れていること、燃料である水素ガスやメタノール、酸化剤である酸素ガスに対して過剰な透過性を有さないことなどが要求される。   In a solid polymer electrolyte membrane fuel cell, gas diffusion electrodes are combined on both surfaces of the electrolyte membrane, and the membrane and the electrode are substantially integrated. For this reason, the electrolyte membrane acts as an electrolyte for conducting protons, and also has a role as a diaphragm for preventing hydrogen or methanol as a fuel and an oxidizing agent from being directly mixed even under pressure. Such an electrolyte membrane is required to have a high proton transfer rate and high ion exchange capacity as an electrolyte, and a constant and high water retention in order to keep electric resistance low. On the other hand, because of its role as a diaphragm, the mechanical strength of the membrane is large, its dimensional stability is excellent, its chemical stability with respect to long-term use is excellent, and hydrogen gas or methanol as fuel In addition, it is required that the gas does not have excessive permeability to oxygen gas that is an oxidizing agent.

初期の固体高分子電解質膜型燃料電池では、スチレンとジビニルベンゼンの共重合で製造した炭化水素系樹脂のイオン交換膜が電解質膜として使用された。しかし、この電解質膜は、耐久性が非常に低いため実用性に乏しく、そのためその後はデュポン社によって開発されたフッ素樹脂系のパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」等が一般に用いられてきた。   In early solid polymer electrolyte membrane fuel cells, ion exchange membranes of hydrocarbon resins produced by copolymerization of styrene and divinylbenzene were used as electrolyte membranes. However, this electrolyte membrane is not very practical because of its very low durability. Therefore, the fluororesin-based perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont is generally used thereafter. Has been.

しかしながら、「ナフィオン」等の従来のフッ素樹脂系電解質膜は、化学的な耐久性や安定性には優れているが、製造工程が多くコストが高くなる問題があり、実用化する場合の大きな障害になっている。そのため、前記「ナフィオン」等に替わる低コストの電解質膜を開発する努力が行われてきた。例えば、放射線グラフト重合法により、フッ素樹脂系の膜にスルホン基を導入して、固体高分子電解質膜を作製する方法が提案されている(特開2001−348439号公報(特許文献1)、特開2002−313364号公報(特許文献2)、特開2003−82129号公報(特許文献3))。   However, conventional fluororesin-based electrolyte membranes such as “Nafion” are excellent in chemical durability and stability, but there are problems of many manufacturing processes and high cost, which is a major obstacle to practical use. It has become. For this reason, efforts have been made to develop low-cost electrolyte membranes that replace the “Nafion” and the like. For example, a method of producing a solid polymer electrolyte membrane by introducing a sulfone group into a fluororesin membrane by a radiation graft polymerization method has been proposed (Japanese Patent Laid-Open No. 2001-348439 (Patent Document 1)). JP 2002-313364 A (Patent Document 2), JP-A 2003-82129 (Patent Document 3)).

このように放射線グラフト重合を用いることで、「ナフィオン」と同等或いはそれを凌ぐプロトン伝導度で、メタノール透過度が「ナフィオン」以下の電解質膜を得ることが可能である。しかしながら、高イオン伝導度を付与するためにはイオン交換基の数を増やすことが不可欠である。このため多量の放射線を照射しグラフト率の高い膜を準備する必要があるが、線量が増えるほど膜は劣化し機械的強度は低下する。   By using radiation graft polymerization in this way, it is possible to obtain an electrolyte membrane having a proton conductivity equal to or exceeding that of “Nafion” and a methanol permeability of “Nafion” or less. However, in order to provide high ionic conductivity, it is essential to increase the number of ion exchange groups. For this reason, it is necessary to prepare a film having a high graft ratio by irradiating a large amount of radiation. However, as the dose increases, the film deteriorates and the mechanical strength decreases.

特開2001−348439号公報JP 2001-348439 A 特開2002−313364号公報JP 2002-313364 A 特開2003−82129号公報JP 2003-82129 A

本発明は、上記事情に鑑みなされたもので、放射線グラフト重合法による固体高分子電解質膜の製造において、照射する放射線量を低減し、かつ高グラフト率の固体高分子電解質膜を製造することができる方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in the production of a solid polymer electrolyte membrane by a radiation graft polymerization method, the radiation dose to be irradiated can be reduced and a solid polymer electrolyte membrane having a high graft ratio can be produced. It aims to provide a possible method.

本発明者らは、上記目的を達成するために鋭意検討を行った結果、放射線グラフト重合時にラジカル反応性モノマーに非プロトン性極性溶媒を混合し、グラフト重合を非プロトン性極性溶媒中で行うことで、グラフト率が格段に向上することから、低線量でも高グラフト率の固体高分子電解質膜が得られることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have mixed an aprotic polar solvent with a radical reactive monomer at the time of radiation graft polymerization, and carried out graft polymerization in the aprotic polar solvent. Thus, since the graft ratio was remarkably improved, it was found that a solid polymer electrolyte membrane having a high graft ratio could be obtained even at a low dose, and the present invention was made.

従って、本発明は、下記固体高分子電解質膜の製造方法を提供する。
請求項1:
放射線を照射したフッ素樹脂膜にラジカル反応性モノマーをグラフト重合させ固体高分子電解質膜を製造する方法であって、グラフト重合を非プロトン性極性溶媒中で行うことを特徴とする固体高分子電解質膜の製造方法。
請求項2:
非プロトン性極性溶媒が、アセトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド又はN−メチルピロリドンであることを特徴とする請求項1記載の固体高分子電解質膜の製造方法。
請求項3:
フッ素樹脂が、テトラフルオロエチレン重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、エチレン−テトラフルオロエチレン共重合体、フッ化ビニリデン重合体から選ばれる少なくとも1種であることを特徴とする請求項1又は2記載の固体高分子電解質膜の製造方法。
請求項4:
ラジカル反応性モノマーが、スチレン若しくはトリフルオロスチレン又はそれらの誘導体から選ばれる少なくとも1種を含むことを特徴とする請求項1〜3のいずれか1項記載の固体高分子電解質膜の製造方法。
Accordingly, the present invention provides the following method for producing a solid polymer electrolyte membrane.
Claim 1:
A method for producing a solid polymer electrolyte membrane by graft polymerization of a radical reactive monomer onto a fluororesin membrane irradiated with radiation, characterized in that the graft polymerization is carried out in an aprotic polar solvent. Manufacturing method.
Claim 2:
2. The method for producing a solid polymer electrolyte membrane according to claim 1, wherein the aprotic polar solvent is acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or N-methylpyrrolidone. .
Claim 3:
The fluororesin is selected from a tetrafluoroethylene polymer, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer, an ethylene-tetrafluoroethylene copolymer, and a vinylidene fluoride polymer. The method for producing a solid polymer electrolyte membrane according to claim 1 or 2, wherein at least one kind is used.
Claim 4:
The method for producing a solid polymer electrolyte membrane according to any one of claims 1 to 3, wherein the radical-reactive monomer contains at least one selected from styrene, trifluorostyrene, and derivatives thereof.

本発明の放射線グラフト重合による固体高分子電解質膜の製造方法では、僅かな放射線を照射するだけで。高グラフト率を有するグラフト膜が得られるため、膜劣化の少ない燃料電池用の固体高分子電解質膜の製造方法として適している。   In the method for producing a solid polymer electrolyte membrane by radiation graft polymerization of the present invention, only a slight amount of radiation is irradiated. Since a graft membrane having a high graft ratio is obtained, it is suitable as a method for producing a solid polymer electrolyte membrane for a fuel cell with little membrane deterioration.

本発明において、固体高分子電解質膜は、放射線を照射したフッ素樹脂膜にラジカル反応性モノマーをグラフト重合させて製造され、このグラフト重合は非プロトン性極性溶媒中で行われる。   In the present invention, the solid polymer electrolyte membrane is produced by graft polymerization of a radical reactive monomer to a fluororesin membrane irradiated with radiation, and this graft polymerization is performed in an aprotic polar solvent.

ここで、使用されるフッ素樹脂としては、テトラフルオロエチレン重合体(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)、フッ化ビニリデン重合体(PVDF)等のフッ素樹脂が例示され、これらの1種を単独で又は2種以上を併用して使用することができる。   Here, as the fluororesin used, tetrafluoroethylene polymer (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene -Fluororesin such as tetrafluoroethylene copolymer (ETFE) and vinylidene fluoride polymer (PVDF) is exemplified, and one of these can be used alone or in combination of two or more.

なお、この場合、フッ素樹脂膜の膜厚は特に限定されないが、10〜100μm、特に10〜50μmであることが好ましい。   In this case, the film thickness of the fluororesin film is not particularly limited, but is preferably 10 to 100 μm, particularly preferably 10 to 50 μm.

フッ素樹脂膜には、ラジカル反応性モノマーをグラフト重合させるために放射線が照射される。本発明において照射する放射線としては、γ線、X線、電子線、イオンビーム、紫外線などが例示されるが、ラジカル生成の容易さからγ線、電子線が好ましい。   The fluororesin film is irradiated with radiation in order to graft polymerize the radical reactive monomer. Examples of the radiation to be irradiated in the present invention include γ-rays, X-rays, electron beams, ion beams, ultraviolet rays and the like, but γ-rays and electron beams are preferable because of the ease of radical generation.

放射線の吸収線量としては、1kGy以上、特に1〜100kGy、とりわけ1〜50kGyとすることが好ましく、1kGy未満ではラジカル生成量が少なく、グラフトし難くなる場合があり、100kGyを超えるとグラフト率が大きくなりすぎて、得られる電解質膜の機械的強度が低下する場合がある。   The absorbed dose of radiation is preferably 1 kGy or more, particularly 1 to 100 kGy, particularly 1 to 50 kGy, and if it is less than 1 kGy, the amount of radical generation is small and grafting may be difficult. In some cases, the mechanical strength of the resulting electrolyte membrane may decrease.

更に、放射線の照射は、ヘリウム、窒素、アルゴンガスなどの不活性ガス雰囲気中で行うのが好ましく、該ガス中の酸素濃度は100ppm以下、より好ましくは50ppm以下が好ましいが、必ずしも酸素不在下で行う必要はない。   Further, the irradiation with radiation is preferably performed in an inert gas atmosphere such as helium, nitrogen, and argon gas, and the oxygen concentration in the gas is preferably 100 ppm or less, more preferably 50 ppm or less, but it is not necessarily in the absence of oxygen. There is no need to do it.

放射線が照射されたフッ素樹脂膜には、ラジカル反応性モノマーがグラフト重合される。放射線グラフト重合は、フッ素樹脂膜に放射線を照射することでラジカルを生成し、そこをグラフト点としてラジカル反応性モノマーをグラフトする方法であるが、この場合、放射線を用いるグラフト法には、フッ素樹脂膜の主鎖に予め放射線を照射して、グラフトの起点となるラジカルを生成させた後、フッ素樹脂膜をモノマーと接触させてグラフト反応を行う前照射法と、モノマーとフッ素樹脂膜の共存下に放射線を照射する同時照射法とがあるが、本発明においては、いずれの方法をも採用できる。   A radical reactive monomer is graft-polymerized on the fluororesin film irradiated with radiation. Radiation graft polymerization is a method in which a radical is generated by irradiating a fluororesin film with radiation, and a radical reactive monomer is grafted using the radical as a grafting point. In this case, the grafting method using radiation includes a fluororesin. Radiation is applied to the main chain of the membrane in advance to generate radicals that will be the starting point of grafting, and then the pre-irradiation method in which the fluororesin film is brought into contact with the monomer to carry out the graft reaction, In the present invention, any method can be adopted.

本発明において、フッ素樹脂膜に放射線を照射してグラフト重合させるラジカル反応性モノマーは、分子中にアルケニル基(例えばビニル基等)、アクリル基、メタクリル基などのラジカル反応性の基を1個以上有するモノマーであるが、スチレン系単官能モノマー、特に、スチレン若しくはトリフルオロスチレン又はそれらの誘導体から選ばれる少なくとも1種を含むことが好ましい。具体的には、スチレン、α−メチルスチレン、スチレンスルホン酸ナトリウム、トリフルオロスチレン等の置換されたスチレン誘導体などを挙げることができる。これらのラジカル反応性モノマーは、単独で使用しても、2種以上を適宜組み合わせて使用してもよい。   In the present invention, the radical-reactive monomer that is graft-polymerized by irradiating the fluororesin film with radiation contains at least one radical-reactive group such as alkenyl group (for example, vinyl group), acrylic group, and methacryl group in the molecule. Although it is a monomer which has, it is preferable to contain at least 1 sort (s) chosen from a styrene monofunctional monomer, especially styrene, trifluorostyrene, or derivatives thereof. Specific examples include substituted styrene derivatives such as styrene, α-methylstyrene, sodium styrenesulfonate, and trifluorostyrene. These radical reactive monomers may be used alone or in combination of two or more.

更に、本発明においては、グラフト重合時に非プロトン性極性溶媒を用いる。非プロトン性極性溶媒としては、ラジカル反応性モノマーを均一に溶解するものが好ましく、例えば、アセトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドンなどが挙げられる。非プロトン性極性溶媒は、単独で使用しても、2種以上を適宜組み合わせて使用してもよい。なお、本発明の効果を損なわない程度で、非プロトン性極性溶媒以外の溶媒を混合して用いてもよい。なお、溶媒の使用量は、ラジカル反応性モノマー100質量部に対して、50〜900質量部、特に100〜300質量部であることが好ましい。   Furthermore, in the present invention, an aprotic polar solvent is used during graft polymerization. As the aprotic polar solvent, those that uniformly dissolve the radical-reactive monomer are preferable, and examples thereof include acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, and the like. . The aprotic polar solvent may be used alone or in combination of two or more. In addition, a solvent other than the aprotic polar solvent may be mixed and used as long as the effects of the present invention are not impaired. In addition, it is preferable that the usage-amount of a solvent is 50-900 mass parts with respect to 100 mass parts of radical reactive monomers, especially 100-300 mass parts.

また、本発明においてグラフト重合を行う際は、窒素、アルゴンなどの不活性ガス雰囲気中が望ましく、酸素濃度は5容量%以下が好ましい。グラフト重合の反応条件としては、0〜100℃、特に40〜80℃の温度で、1〜40時間、特に4〜20時間反応させることが好ましい。   In the present invention, the graft polymerization is preferably performed in an inert gas atmosphere such as nitrogen or argon, and the oxygen concentration is preferably 5% by volume or less. The reaction conditions for graft polymerization are preferably 0 to 100 ° C., particularly 40 to 80 ° C., for 1 to 40 hours, particularly 4 to 20 hours.

ここで、放射線を照射したフッ素樹脂膜にグラフトするラジカル反応性モノマーの使用量は、フッ素樹脂膜100質量部に対してラジカル反応性モノマーを100〜10,000質量部、特に400〜2,000質量部使用することが好ましい。ラジカル反応性モノマーが少なすぎるとフッ素樹脂膜との接触が不十分となる場合があり、多すぎるとラジカル反応性モノマーが効率的に使用できなくなるおそれがある。また、フッ素樹脂膜にラジカル反応性モノマーをグラフト重合するに際しては、アゾビスイソブチロニトリル等の開始剤を本発明の目的を損なわない範囲で適宜用いてもよい。   Here, the amount of the radical reactive monomer grafted onto the fluororesin film irradiated with radiation is 100 to 10,000 parts by mass, particularly 400 to 2,000 parts by mass of the radical reactive monomer with respect to 100 parts by mass of the fluororesin film. It is preferable to use parts by mass. If the amount of the radical reactive monomer is too small, the contact with the fluororesin film may be insufficient. If the amount is too large, the radical reactive monomer may not be used efficiently. Moreover, when graft-polymerizing a radical reactive monomer to a fluororesin film | membrane, you may use suitably initiators, such as azobisisobutyronitrile, in the range which does not impair the objective of this invention.

上述したように、放射線を照射したフッ素樹脂膜にラジカル反応性モノマーをグラフト重合させた後、ラジカル反応性モノマーがグラフトして形成されたグラフト鎖には、通常、イオン伝導性基が導入される。イオン伝導性基としては、スルホン酸基等が挙げられ、スルホン酸基を導入するためのスルホン化は公知の方法によって行うことができ、例えばクロロスルホン酸−ジクロロエタン中に浸漬することによってクロロスルホン酸基を導入し、その後純水中に浸漬させ加水分解することによりスルホン化させる等の方法を採用し得る。   As described above, an ion conductive group is usually introduced into a graft chain formed by grafting a radical reactive monomer onto a fluororesin film irradiated with radiation and then grafting the radical reactive monomer. . Examples of the ion conductive group include a sulfonic acid group and the like. Sulfonation for introducing the sulfonic acid group can be performed by a known method. For example, chlorosulfonic acid is immersed in chlorosulfonic acid-dichloroethane. A method of introducing a group and then sulfonating it by immersion in pure water and hydrolysis can be employed.

このようにして得られた固体高分子電解質膜は、燃料電池用として好適に用いることができる。   The solid polymer electrolyte membrane thus obtained can be suitably used for a fuel cell.

以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1〜3、比較例1〜3]
縦5cm、横6cm、厚さ25μmのエチレン−テトラフルオロエチレン共重合体(ETFE、Norton社製)に室温、窒素雰囲気下で電子線を15kGy照射した(加速電圧100kV)。また、スチレンに、溶媒としてN,N−ジメチルホルムアミド(DMF)〔実施例1〕、アセトン〔実施例2〕、ジメチルスルホキシド(DMSO)〔実施例3〕、トルエン〔比較例1〕、メタノール〔比較例2〕、ヘキサン〔比較例3〕を、それぞれ質量比でトルエン:溶媒=1:3になるように加え、反応溶液とした。
[Examples 1-3, Comparative Examples 1-3]
An ethylene-tetrafluoroethylene copolymer (ETFE, manufactured by Norton) having a length of 5 cm, a width of 6 cm, and a thickness of 25 μm was irradiated with an electron beam of 15 kGy at room temperature in a nitrogen atmosphere (acceleration voltage: 100 kV). In addition, N, N-dimethylformamide (DMF) [Example 1], acetone [Example 2], dimethyl sulfoxide (DMSO) [Example 3], toluene [Comparative Example 1], methanol [Comparative] Example 2] and hexane [Comparative Example 3] were added in a mass ratio of toluene: solvent = 1: 3 to obtain a reaction solution.

三方コックを付けた60ml試験管に、反応溶液を入れ15min窒素バブリングした後、照射した膜を浸漬し、室温で16hrグラフト重合した。取り出した膜をキシレン洗浄後、100℃、2hr減圧乾燥した。   The reaction solution was placed in a 60 ml test tube equipped with a three-way cock and nitrogen bubbling was performed for 15 min. Then, the irradiated film was immersed and graft polymerization was performed at room temperature for 16 hr. The extracted film was washed with xylene and then dried under reduced pressure at 100 ° C. for 2 hours.

グラフト重合前後の膜質量変化から、次式によりグラフト率を求めた。各溶媒を用いて得られた膜のグラフト率を表1に示す。
グラフト率[%]=(グラフト重合後膜質量−グラフト重合前膜質量)/グラフト重合前膜質量×100
From the change in the mass of the membrane before and after the graft polymerization, the graft ratio was determined by the following formula. Table 1 shows the graft ratio of the membrane obtained using each solvent.
Graft rate [%] = (Membrane mass after graft polymerization−Membrane mass before graft polymerization) / Membrane mass before graft polymerization × 100

Figure 2008243393
Figure 2008243393

Claims (4)

放射線を照射したフッ素樹脂膜にラジカル反応性モノマーをグラフト重合させ固体高分子電解質膜を製造する方法であって、グラフト重合を非プロトン性極性溶媒中で行うことを特徴とする固体高分子電解質膜の製造方法。   A method for producing a solid polymer electrolyte membrane by graft polymerization of a radical reactive monomer onto a fluororesin membrane irradiated with radiation, characterized in that the graft polymerization is carried out in an aprotic polar solvent. Manufacturing method. 非プロトン性極性溶媒が、アセトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド又はN−メチルピロリドンであることを特徴とする請求項1記載の固体高分子電解質膜の製造方法。   2. The method for producing a solid polymer electrolyte membrane according to claim 1, wherein the aprotic polar solvent is acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or N-methylpyrrolidone. . フッ素樹脂が、テトラフルオロエチレン重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、エチレン−テトラフルオロエチレン共重合体、フッ化ビニリデン重合体から選ばれる少なくとも1種であることを特徴とする請求項1又は2記載の固体高分子電解質膜の製造方法。   The fluororesin is selected from a tetrafluoroethylene polymer, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer, an ethylene-tetrafluoroethylene copolymer, and a vinylidene fluoride polymer. The method for producing a solid polymer electrolyte membrane according to claim 1 or 2, wherein at least one kind is used. ラジカル反応性モノマーが、スチレン若しくはトリフルオロスチレン又はそれらの誘導体から選ばれる少なくとも1種を含むことを特徴とする請求項1〜3のいずれか1項記載の固体高分子電解質膜の製造方法。   The method for producing a solid polymer electrolyte membrane according to any one of claims 1 to 3, wherein the radical-reactive monomer contains at least one selected from styrene, trifluorostyrene, and derivatives thereof.
JP2007078099A 2007-03-26 2007-03-26 Forming method of solid polymer electrolyte membrane Pending JP2008243393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078099A JP2008243393A (en) 2007-03-26 2007-03-26 Forming method of solid polymer electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078099A JP2008243393A (en) 2007-03-26 2007-03-26 Forming method of solid polymer electrolyte membrane

Publications (1)

Publication Number Publication Date
JP2008243393A true JP2008243393A (en) 2008-10-09

Family

ID=39914505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078099A Pending JP2008243393A (en) 2007-03-26 2007-03-26 Forming method of solid polymer electrolyte membrane

Country Status (1)

Country Link
JP (1) JP2008243393A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121020A (en) * 1997-06-16 1999-04-30 Solvay & Cie Manufacture of ion exchange membrane usable as separator in fuel cell
JP2002313364A (en) * 2001-04-13 2002-10-25 Hitachi Cable Ltd Electrolyte film for use in fuel cell, film manufacturing method, and fuel cell
JP2005135681A (en) * 2003-10-29 2005-05-26 Shin Etsu Chem Co Ltd Solid polymer electrolyte film and fuel cell
JP2006019028A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Solid polymer electrolyte film for fuel cell, and its manufacturing method
JP2006140086A (en) * 2004-11-15 2006-06-01 Nitto Denko Corp Electrolyte membrane superior in oxidation resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121020A (en) * 1997-06-16 1999-04-30 Solvay & Cie Manufacture of ion exchange membrane usable as separator in fuel cell
JP2002313364A (en) * 2001-04-13 2002-10-25 Hitachi Cable Ltd Electrolyte film for use in fuel cell, film manufacturing method, and fuel cell
JP2005135681A (en) * 2003-10-29 2005-05-26 Shin Etsu Chem Co Ltd Solid polymer electrolyte film and fuel cell
JP2006019028A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Solid polymer electrolyte film for fuel cell, and its manufacturing method
JP2006140086A (en) * 2004-11-15 2006-06-01 Nitto Denko Corp Electrolyte membrane superior in oxidation resistance

Similar Documents

Publication Publication Date Title
JP5004178B2 (en) High proton conductive polymer electrolyte membrane excellent in mechanical strength and method for producing the same
US9382367B2 (en) Polymer electrolyte membrane composed of aromatic polymer membrane base and method for producing the same
JP2006344552A (en) Cross-link type electrolyte membrane and its manufacturing method
JP5376485B2 (en) POLYMER ELECTROLYTE MEMBRANE COMPRISING ALKYL GRAFT CHAIN AND PROCESS FOR PRODUCING THE SAME
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
US7629393B2 (en) Solid polymer electrolyte membrane and process for producing the same, and fuel cell
JP4625327B2 (en) Fuel cell with polymer electrolyte membrane grafted by irradiation
US7714027B2 (en) Crosslinked aromatic polymer electrolyte membrane and method for producing same
JP5158353B2 (en) Fuel cell electrolyte membrane and method for producing fuel cell electrolyte membrane / electrode assembly
JP4822389B2 (en) Electrolyte membrane with excellent oxidation resistance
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
JP4434666B2 (en) Method for producing solid polymer electrolyte membrane and fuel cell
JP2005142014A (en) Electrolyte membrane for fuel cells superior in acid resistance
JP4390047B2 (en) Solid polymer electrolyte membrane, method for producing the same, and fuel cell
JP2006307051A (en) Solid polymer electrolytic membrane and method for producing the same, and fuel battery
JP4683181B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4851769B2 (en) Electrolyte membrane and direct methanol solid polymer fuel cell
JP2008243393A (en) Forming method of solid polymer electrolyte membrane
JP5158309B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5321458B2 (en) Solid polymer electrolyte membrane and production method thereof, membrane / electrode assembly for fuel cell, and fuel cell
JP5029797B2 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP4814860B2 (en) Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate
US20080044710A1 (en) Electrolyte Membrane Having Excellent Adhesion To Electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120725