JP2006019028A - Solid polymer electrolyte film for fuel cell, and its manufacturing method - Google Patents

Solid polymer electrolyte film for fuel cell, and its manufacturing method Download PDF

Info

Publication number
JP2006019028A
JP2006019028A JP2004192602A JP2004192602A JP2006019028A JP 2006019028 A JP2006019028 A JP 2006019028A JP 2004192602 A JP2004192602 A JP 2004192602A JP 2004192602 A JP2004192602 A JP 2004192602A JP 2006019028 A JP2006019028 A JP 2006019028A
Authority
JP
Japan
Prior art keywords
vinyl monomer
polymer electrolyte
solid polymer
fuel cell
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004192602A
Other languages
Japanese (ja)
Other versions
JP4692714B2 (en
Inventor
Shigeru Konishi
繁 小西
Noribumi Takahashi
紀文 高橋
Atsuo Kawada
敦雄 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004192602A priority Critical patent/JP4692714B2/en
Publication of JP2006019028A publication Critical patent/JP2006019028A/en
Application granted granted Critical
Publication of JP4692714B2 publication Critical patent/JP4692714B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte film for a fuel cell in which high ion conductivity is shown, in which swelling against methanol is less, and which is superior in battery characteristics, and to provide its manufacturing method. <P>SOLUTION: This is the solid polymer electrolyte film for the fuel cell manufactured by graft-polymerizing a radical-reactive monomer after irradiation of radiation to a film formed by a copolymer of fluorocarbon based vinyl monomer and hydrocarbon based vinyl monomer. In the solid polymer electrolyte film for the fuel cell and in the manufacturing method of the solid polymer electrolyte film for the fuel cell wherein a heat-treatment is applied before the irradiation of radiation to the copolymer of the fluorocarbon based vinyl monomer and the hydrocarbon based vinyl monomer, after heat-treating the film formed by the copolymer of the fluorocarbon based vinyl monomer and the hydrocarbon based vinyl monomer, the radiation is irradiated and the radical-reactive monomer is graft-polymerized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高分子電解質型燃料電池用固体高分子電解質膜及びその製造方法に関する。   The present invention relates to a solid polymer electrolyte membrane for a polymer electrolyte fuel cell and a method for producing the same.

固体高分子電解質型イオン交換膜を用いた燃料電池は、作動温度が100℃以下と低く、そのエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として広く実用化が期待されている。この燃料電池においては、固体高分子電解質膜、白金系の触媒、ガス拡散電極、及び高分子電解質膜と電極の接合体などに関する重要な要素技術がある。しかし、この中でも燃料電池としての良好な特性を有する固体高分子電解質膜の開発は最も重要な技術の一つである。   A fuel cell using a solid polymer electrolyte type ion exchange membrane is expected to be widely put into practical use as a power source for electric vehicles or a simple auxiliary power source because its operating temperature is as low as 100 ° C. or less and its energy density is high. In this fuel cell, there are important elemental technologies related to a solid polymer electrolyte membrane, a platinum-based catalyst, a gas diffusion electrode, and a polymer electrolyte membrane-electrode assembly. However, among these, development of a solid polymer electrolyte membrane having good characteristics as a fuel cell is one of the most important technologies.

固体高分子電解質膜型燃料電池においては、電解質膜の両面にガス拡散電極が複合されており、膜と電極とは実質的に一体構造になっている。このため、電解質膜はプロトンを伝導するための電解質として作用し、また、加圧下においても燃料である水素やメタノールと酸化剤とを直接混合させないための隔膜としての役割も有する。このような電解質膜としては、電解質としてプロトンの移動速度が大きくイオン交換容量が高いこと、電気抵抗を低く保持するために保水性が一定でかつ高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度が大きいこと、及び寸法安定性が優れていること、長期の使用に対する化学的な安定性に優れていること、燃料である水素ガスやメタノール、酸化剤である酸素ガスに対して過剰な透過性を有しないことなどが要求される。   In a solid polymer electrolyte membrane fuel cell, gas diffusion electrodes are combined on both sides of the electrolyte membrane, and the membrane and the electrode have a substantially integrated structure. For this reason, the electrolyte membrane acts as an electrolyte for conducting protons, and also has a role as a diaphragm for preventing direct mixing of hydrogen or methanol as a fuel with an oxidizing agent even under pressure. Such an electrolyte membrane is required to have a high proton transfer rate and high ion exchange capacity as an electrolyte, and a constant and high water retention in order to keep electric resistance low. On the other hand, because of its role as a diaphragm, the mechanical strength of the membrane is large, its dimensional stability is excellent, its chemical stability with respect to long-term use is excellent, and hydrogen gas or methanol as fuel Further, it is required that the gas does not have excessive permeability with respect to oxygen gas which is an oxidizing agent.

初期の固体高分子電解質膜型燃料電池では、スチレンとジビニルベンゼンの共重合で製造した炭化水素系樹脂のイオン交換膜が電解質膜として使用された。しかし、この電解質膜は、耐久性が非常に低いため実用性に乏しく、そのため、その後はデュポン社によって開発されたフッ素樹脂系のパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」等が一般に用いられてきた。   In early solid polymer electrolyte membrane fuel cells, ion exchange membranes of hydrocarbon resins produced by copolymerization of styrene and divinylbenzene were used as electrolyte membranes. However, this electrolyte membrane has poor durability because of its very low durability. Therefore, after that, fluororesin-based perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont is generally used. Has been used.

しかしながら、「ナフィオン」等の従来のフッ素樹脂系電解質膜は、化学的な耐久性や安定性には優れているが、メタノールを燃料とする直接メタノール型燃料電池(DMFC)では、メタノールが電解質膜を通過するクロスオーバー現象が生じ、出力が低下する問題があった。   However, conventional fluororesin-based electrolyte membranes such as “Nafion” are excellent in chemical durability and stability, but in direct methanol fuel cells (DMFC) using methanol as fuel, methanol is the electrolyte membrane. There was a problem that the crossover phenomenon passing through the slab occurred and the output decreased.

更に、フッ素樹脂系電解質膜は、モノマーの合成から出発するために、製造工程が多くコストが高くなる問題があり、実用化する場合の大きな障害になっていた。   Furthermore, since the fluororesin-based electrolyte membrane starts from the synthesis of the monomer, it has a problem that the manufacturing process is large and the cost is high, which has been a great obstacle to practical use.

そのため、前記「ナフィオン」等に替わる低コストの電解質膜を開発する努力が行われている。その中で、フッ素樹脂系の膜に放射線を照射し、スチレンなど反応性モノマーをグラフト重合した後にスルホン基を導入して固体高分子電解質膜を作製する方法は、ナフィオンと同程度あるいはそれより高いイオン伝導度を容易に得られることより有望な方法と考えられており、例えば特許文献1(特開2001−348439号公報)、特許文献2(特開2002−313364号公報)、特許文献3(特開2003−82129号公報)などで提案されている。   Therefore, efforts are being made to develop low-cost electrolyte membranes that can replace the “Nafion” and the like. Among them, the method of producing a solid polymer electrolyte membrane by irradiating a fluororesin film with radiation and graft polymerization of a reactive monomer such as styrene and then introducing a sulfone group is the same as or higher than that of Nafion. It is considered to be a promising method because ionic conductivity can be easily obtained. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2001-348439), Patent Document 2 (Japanese Patent Laid-Open No. 2002-313364), and Patent Document 3 ( Japanese Patent Laid-Open No. 2003-82129).

反応性モノマーをグラフトするフィルムとしては、ポリテトラフルオロエチレン(PTFE)、ポリ[テトラフルオロエチレン−ヘキサフルオロプロピレン](FEP)、ポリ[テトラフルオロエチレン−パーフルオロアルキルビニルエーテル](PFA)などのフッ素樹脂が耐酸化性に優れることから主に検討されている。しかしながら、これらのフィルムは、スチレンなど反応性モノマーのグラフト率が増加するにつれて脆くなり、スルホン化した電解質膜と電極との接合体(Membrane−Electrode−Assembly:MEA)をホットプレス法で形成しようとすると、電解質膜に亀裂が入りやすい問題点がある。   Fluoropolymers such as polytetrafluoroethylene (PTFE), poly [tetrafluoroethylene-hexafluoropropylene] (FEP), poly [tetrafluoroethylene-perfluoroalkyl vinyl ether] (PFA) are used as films for grafting reactive monomers. Has been studied mainly because of its excellent oxidation resistance. However, these films become brittle as the graft ratio of reactive monomers such as styrene increases, and an attempt to form a sulfonated electrolyte membrane-electrode assembly (Mebrane-Electrode-Assembly: MEA) by hot pressing. Then, there is a problem that the electrolyte membrane is easily cracked.

そのため、反応性モノマーをグラフトするフィルムとしては、スチレンなど反応性モノマーをグラフト、スルホン化後の伸び、破断強度が大きくなるものが好ましい。炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体からなるフィルムがその要請を満たし、代表的なものとしてポリ[エチレン−テトラフルオロエチレン](ETFE)が挙げられる。ETFEフィルムにスチレンなど反応性モノマーをグラフトして電解質膜を得る方法については、例えば特許文献4(特開平9−102322号公報)、非特許文献1(H.P.Brack et al.,American Chemical Society Symposium Series Vol.744,p.174(1999))、非特許文献2(A.S.Arico et al.,Journal of Power Sources 123,p.107(2003))などに述べられている。上記文献では、燃料に水素を用いたときの電池特性について記載されているが、燃料にメタノールを用いたときの電池特性について記載された例として、非特許文献3(T.Hatanaka et al.,Fuel 81,p.2173(2002))が挙げられる。   Therefore, the film to which the reactive monomer is grafted is preferably a film that increases the elongation and breaking strength after grafting and sulfonation of a reactive monomer such as styrene. A film made of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer satisfies the requirement, and a typical example is poly [ethylene-tetrafluoroethylene] (ETFE). Regarding a method for obtaining an electrolyte membrane by grafting a reactive monomer such as styrene to an ETFE film, for example, Patent Document 4 (Japanese Patent Laid-Open No. 9-102322), Non-Patent Document 1 (HP Black et al., American Chemical) Society Symposium Series Vol. 744, p. 174 (1999)), Non-Patent Document 2 (AS Arico et al., Journal of Power Sources 123, p. 107 (2003)). The above document describes the cell characteristics when hydrogen is used as the fuel. As an example of the cell characteristics when methanol is used as the fuel, Non-Patent Document 3 (T. Hatanaka et al., Fuel 81, p. 2173 (2002)).

しかし、ETFEのフィルムに放射線を照射後、スチレンなど反応性モノマーをグラフト重合し、スルホン化した膜の特性を評価すると、膜単独のイオン伝導度はナフィオンより優れた値を示すが、膜両面に電極を一体化した後の電池特性は、ナフィオンよりも性能が劣っていることが多いことがわかった。   However, after irradiating the ETFE film with radiation, a reactive monomer such as styrene is graft polymerized and the characteristics of the sulfonated film are evaluated. The ionic conductivity of the film alone is superior to that of Nafion. It was found that the battery characteristics after integrating the electrodes are often inferior to those of Nafion.

特開2001−348439号公報JP 2001-348439 A 特開2002−313364号公報JP 2002-313364 A 特開2003−82129号公報JP 2003-82129 A 特開平9−102322号公報JP-A-9-102322 H.P.Brack et al.,American Chemical Society Symposium Series Vol.744,p.174(1999))、H. P. Black et al. , American Chemical Society Symposium Series Vol. 744, p. 174 (1999)), A.S.Arico et al.,Journal of Power Sources 123,p.107(2003))A. S. Arico et al. , Journal of Power Sources 123, p. 107 (2003)) T.Hatanaka et al.,Fuel 81,p.2173(2002))T.A. Hatanaka et al. , Fuel 81, p. 2173 (2002))

本発明は、上記事情に鑑みなされたもので、放射線グラフト重合法により製造される固体高分子電解質膜及びその製造方法において、電池特性に優れた燃料電池用固体高分子電解質膜及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances. In a solid polymer electrolyte membrane produced by a radiation graft polymerization method and a production method thereof, a solid polymer electrolyte membrane for a fuel cell excellent in battery characteristics and a production method thereof are provided. The purpose is to provide.

本発明者は、上記目的を達成するため鋭意研究を重ねた結果、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムに放射線を照射した後、ラジカル反応性モノマーをグラフト重合させることによって製造される燃料電池用の固体高分子電解質膜において、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムを加熱処理した後に放射線を照射し、反応性モノマーをグラフト重合、スルホン化することで、加熱処理をしない時に比べ、電池特性が向上し、電池特性に優れた固体高分子電解質膜を工業的に有利に製造できることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventor has radiated a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, followed by irradiation with a radical reactive monomer. In a solid polymer electrolyte membrane for fuel cells produced by graft polymerization, a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer is heated and then irradiated with radiation. The present inventors have found that a solid polymer electrolyte membrane having improved battery characteristics and excellent battery characteristics can be industrially advantageously produced by graft polymerization and sulfonation of a reactive monomer, compared to when heat treatment is not performed. It came to make.

従って、本発明は、下記の固体高分子電解質膜の製造方法および燃料電池を提供する。
〔請求項1〕 炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムに放射線を照射した後、ラジカル反応性モノマーをグラフト重合させることによって製造される燃料電池用の固体高分子電解質膜であって、前記炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムに、放射線照射前に加熱処理が施されてなることを特徴とする燃料電池用固体高分子電解質膜。
〔請求項2〕 炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体が、エチレン−四フッ化エチレン共重合体である請求項1記載の燃料電池用固体高分子電解質膜。
〔請求項3〕 加熱処理が、50〜260℃の温度による加熱処理であることを特徴とする請求項1又は2記載の燃料電池用固体高分子電解質膜。
〔請求項4〕 炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムに放射線を照射した後、ラジカル反応性モノマーをグラフト重合させる燃料電池用の固体高分子電解質膜の製造方法において、前記炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムを加熱処理した後、放射線を照射し、ラジカル反応性モノマーをグラフト重合させることを特徴とする燃料電池用固体高分子電解質膜の製造方法。
〔請求項5〕 炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体が、エチレン−四フッ化エチレン共重合体である請求項4記載の燃料電池用固体高分子電解質膜の製造方法。
〔請求項6〕 加熱処理が、50〜260℃の温度による加熱処理であることを特徴とする請求項4又は5記載の燃料電池用固体高分子電解質膜の製造方法。
Accordingly, the present invention provides the following method for producing a solid polymer electrolyte membrane and a fuel cell.
[Claim 1] For a fuel cell produced by irradiating a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer with radiation and then graft-polymerizing a radical reactive monomer. A fuel comprising a polymer electrolyte membrane, the film formed of a copolymer of the fluorocarbon vinyl monomer and the hydrocarbon vinyl monomer being subjected to a heat treatment before radiation irradiation. Solid polymer electrolyte membrane for batteries.
[Claim 2] The solid polymer electrolyte membrane for a fuel cell according to claim 1, wherein the copolymer of the fluorocarbon vinyl monomer and the hydrocarbon vinyl monomer is an ethylene-tetrafluoroethylene copolymer.
[Claim 3] The solid polymer electrolyte membrane for a fuel cell according to claim 1 or 2, wherein the heat treatment is a heat treatment at a temperature of 50 to 260 ° C.
[Claim 4] A solid polymer electrolyte membrane for a fuel cell, in which a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer is irradiated with radiation and then a radical reactive monomer is graft polymerized. In the production method, the film formed of the copolymer of the fluorocarbon vinyl monomer and the hydrocarbon vinyl monomer is heat-treated and then irradiated with radiation to graft polymerize the radical reactive monomer. A method for producing a solid polymer electrolyte membrane for a fuel cell.
[Claim 5] The method for producing a solid polymer electrolyte membrane for a fuel cell according to claim 4, wherein the copolymer of the fluorocarbon vinyl monomer and the hydrocarbon vinyl monomer is an ethylene-tetrafluoroethylene copolymer. .
[6] The method for producing a solid polymer electrolyte membrane for a fuel cell according to [4] or [5], wherein the heat treatment is a heat treatment at a temperature of 50 to 260 ° C.

本発明の放射線グラフトにより製造された固体高分子電解質膜は、高いイオン伝導度を示し、かつメタノールに対する膨潤が少なく、電池特性に優れているため、燃料電池用の電解質膜、特にダイレクトメタノール型燃料電池用の電解質膜として適している。本発明の製造方法によれば、上記固体高分子電解質膜を工業的に有利に製造することができる。   The solid polymer electrolyte membrane produced by the radiation grafting of the present invention exhibits high ionic conductivity, has little swelling with respect to methanol, and has excellent battery characteristics. Therefore, an electrolyte membrane for a fuel cell, particularly a direct methanol fuel Suitable as an electrolyte membrane for batteries. According to the production method of the present invention, the solid polymer electrolyte membrane can be advantageously produced industrially.

以下、本発明につき更に詳細に説明すると、本発明の燃料電池用の固体高分子電解質膜は、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムに加熱処理を行い、次いで、放射線を照射した後、ラジカル反応性モノマーをグラフト重合させることによって製造されるものである。   Hereinafter, the present invention will be described in more detail. The solid polymer electrolyte membrane for a fuel cell of the present invention is obtained by subjecting a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer to a heat treatment. Followed by irradiation with radiation followed by graft polymerization of a radical reactive monomer.

本発明で使用される炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムとしては、反応性モノマーグラフト化後の伸び、破断強度に優れることから、エチレン−四フッ化エチレン共重合体(ETFE)が望ましい。   As a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer used in the present invention, it has excellent elongation and breaking strength after reactive monomer grafting. Ethylene chloride copolymer (ETFE) is desirable.

本発明では、上記共重合体で形成されたフィルムに、放射線照射を行う前に加熱処理を行う。この場合、加熱処理は50〜260℃、特に100〜200℃で行うことが好ましい。加熱処理温度が50℃未満であると加熱処理の効果が得られない場合があり、260℃より高い温度では、ETFEの融点を超えるためフィルムの形状が保てなくなる場合がある。加熱時間は1〜4時間、特に1〜2時間とすることが好ましい。また、加熱処理雰囲気は、大気又は窒素などの不活性雰囲気でもかまわない。なお、上記加熱処理後は、室温まで冷却し、放射線照射を行うことができる。   In the present invention, the film formed of the above copolymer is subjected to a heat treatment before radiation irradiation. In this case, the heat treatment is preferably performed at 50 to 260 ° C, particularly 100 to 200 ° C. If the heat treatment temperature is less than 50 ° C., the effect of the heat treatment may not be obtained. If the temperature is higher than 260 ° C., the melting point of ETFE may be exceeded and the shape of the film may not be maintained. The heating time is preferably 1 to 4 hours, particularly 1 to 2 hours. The heat treatment atmosphere may be air or an inert atmosphere such as nitrogen. Note that after the above heat treatment, irradiation with radiation can be performed by cooling to room temperature.

本発明においては、このように反応性モノマーをグラフトするためフッ素樹脂フィルムに放射線を照射する前に加熱処理を行うことで、後述する実施例から明らかなように、加熱処理の有無によって電流−電圧特性(I−V特性)に違いが認められ、加熱処理を行った方が同じ電流密度において高い電圧を得ることができる。その原因については、加熱処理の有無によってフィルムの結晶構造あるいは結晶化度が変化し、その差異が電極との接触抵抗の大きさに影響しているものと思われる。   In the present invention, in order to graft the reactive monomer in this way, by performing heat treatment before irradiating the fluororesin film with radiation, as is clear from the examples described later, current-voltage depending on the presence or absence of the heat treatment. Differences in the characteristics (IV characteristics) are recognized, and a higher voltage can be obtained at the same current density when the heat treatment is performed. Regarding the cause, it is considered that the crystal structure or crystallinity of the film changes depending on the presence or absence of heat treatment, and the difference influences the magnitude of the contact resistance with the electrode.

次いで、上記加熱処理後のフィルムを室温まで冷却し、放射線照射を行う。
放射線グラフト重合は、フッ素系樹脂のフィルムに放射線を照射することでラジカルを生成し、そこをグラフト点としてラジカル反応性モノマーをグラフトする方法であるが、この場合、放射線を用いるグラフト法には、フッ素系樹脂の主鎖に予め放射線を照射して、グラフトの起点となるラジカルを生成させた後、フッ素系樹脂をモノマーと接触させてグラフト反応を行う前照射法と、モノマーとフッ素系樹脂の共存下に放射線を照射する同時照射法とがあるが、本発明においては、いずれの方法をも採用できる。なお、この場合、フッ素系樹脂の膜厚は特に限定されないが、25〜100μm、特に25〜80μmであることが好ましい。
Next, the heat-treated film is cooled to room temperature and irradiated with radiation.
Radiation graft polymerization is a method in which a radical is generated by irradiating a fluorine resin film with radiation, and a radical-reactive monomer is grafted using the film as a grafting point. In this case, in the grafting method using radiation, Radiation is applied to the main chain of the fluororesin in advance to generate radicals that are the starting points of grafting, and then the pre-irradiation method in which the fluororesin is brought into contact with the monomer to carry out the graft reaction, and the monomer and fluororesin Although there is a simultaneous irradiation method of irradiating radiation in the coexistence, any method can be adopted in the present invention. In this case, the film thickness of the fluororesin is not particularly limited, but is preferably 25 to 100 μm, particularly preferably 25 to 80 μm.

本発明でグラフト重合させるために照射する放射線としては、γ線、X線、電子線、イオンビーム、紫外線などが例示されるが、特に、ラジカル生成の容易さからγ線、電子線が好ましい。   Examples of the radiation irradiated for graft polymerization in the present invention include γ-rays, X-rays, electron beams, ion beams, ultraviolet rays, and the like. In particular, γ-rays and electron beams are preferable because of the ease of radical generation.

放射線の吸収線量は、1kGy以上になるよう照射されることが好ましく、望ましい吸収線量は1〜100kGy、更に望ましい吸収線量は1〜50kGyである。1kGy未満であると、ラジカル生成量が少なく、所望のイオン伝導度を得るのに十分なグラフト率が得られない場合がある。100kGyを超えるとフッ素系樹脂の伸び、強度などの機械特性が低下する場合がある。   The absorbed dose of radiation is preferably 1 kGy or more, preferably 1 to 100 kGy, and more preferably 1 to 50 kGy. If it is less than 1 kGy, the amount of radical generation is small, and a graft rate sufficient to obtain the desired ionic conductivity may not be obtained. If it exceeds 100 kGy, mechanical properties such as elongation and strength of the fluororesin may be deteriorated.

更に、放射線の照射は、ヘリウム、窒素、アルゴンガスなどの不活性ガス雰囲気中で行うのが好ましく、該ガス中の酸素濃度は100ppm以下、特に50ppm以下が好ましいが、必ずしも酸素不在下で行う必要はない。   Further, the irradiation with radiation is preferably performed in an inert gas atmosphere such as helium, nitrogen, or argon gas, and the oxygen concentration in the gas is preferably 100 ppm or less, particularly preferably 50 ppm or less, but it is always necessary to be performed in the absence of oxygen. There is no.

グラフトするラジカル重合性のモノマーとしては、例えば、スチレン、α−メチルスチレン、スチレンスルホン酸ナトリウム、トリフルオロスチレン、ジビニルベンゼン等の置換されたスチレン誘導体などが例示される。   Examples of the radical polymerizable monomer to be grafted include substituted styrene derivatives such as styrene, α-methylstyrene, sodium styrenesulfonate, trifluorostyrene, and divinylbenzene.

ここで、放射線を照射したフッ素系樹脂にグラフトするラジカル反応性モノマーの使用量は、フッ素系樹脂100質量部に対してラジカル反応性モノマーを1,000〜100,000質量部、特に4,000〜20,000質量部使用することが好ましい。ラジカル反応性モノマーが少なすぎると接触が不十分となる場合があり、多すぎるとラジカル反応性モノマーが効率的に使用できなくなるおそれがある。   Here, the amount of the radical reactive monomer grafted to the fluororesin irradiated with radiation is 1,000 to 100,000 parts by mass, particularly 4,000, with respect to 100 parts by mass of the fluororesin. It is preferable to use ~ 20,000 mass parts. If the amount of the radical reactive monomer is too small, the contact may be insufficient. If the amount is too large, the radical reactive monomer may not be used efficiently.

これら有機化合物をグラフト重合するに際しては、アゾビスイソブチルニトリルなどの重合開始剤を本発明の目的を損なわない範囲で適宜用いてもよい。   In graft polymerization of these organic compounds, a polymerization initiator such as azobisisobutylnitrile may be appropriately used as long as the object of the present invention is not impaired.

更に、グラフト反応時に溶媒を用いることができ、溶媒としては、反応性モノマーを均一に溶解するものが好ましく、例えばアセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール類、テトラヒドロフラン、ジオキサン等のエーテル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンゼン、トルエン、キシレン等の芳香族炭化水素、n−ヘプタン、n−へキサン、シクロヘキサン等の脂肪族又は脂環族炭化水素、あるいはこれらの混合溶媒を用いることができる。   Further, a solvent can be used during the grafting reaction, and the solvent is preferably one that uniformly dissolves the reactive monomer, for example, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, methyl alcohol, Alcohols such as ethyl alcohol, propyl alcohol and butyl alcohol, ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as N, N-dimethylformamide, N, N-dimethylacetamide, benzene, toluene and xylene, n-heptane , N-hexane, cyclohexane and other aliphatic or alicyclic hydrocarbons, or a mixed solvent thereof can be used.

上記グラフト重合の反応条件としては、窒素、アルゴンなどの不活性ガス雰囲気中で0〜100℃、特に40〜80℃の温度で、1〜40時間、特に4〜20時間の反応時間とすることが好ましい。   As the reaction conditions for the graft polymerization, the reaction time is 1 to 40 hours, particularly 4 to 20 hours at 0 to 100 ° C., particularly 40 to 80 ° C. in an inert gas atmosphere such as nitrogen or argon. Is preferred.

上述したように、放射線を照射したフッ素系樹脂にラジカル反応性モノマーをグラフト重合させ、更に必要に応じてスルホン化させることにより、固体高分子電解質膜を得ることができる。   As described above, a solid polymer electrolyte membrane can be obtained by graft polymerization of a radical reactive monomer to a fluorine-based resin irradiated with radiation, and further sulfonated as necessary.

グラフトした膜は、クロロスルホン酸−ジクロロエタン中に浸漬することによってクロロスルホン酸基を導入することができる。クロロスルホン酸と反応させた膜は、水酸化カリウムや水酸化ナトリウム水溶液中で反応させ、スルホン酸アルカリ塩とし、引き続き塩酸などで酸処理することによってスルホン化することができる。   The grafted membrane can introduce chlorosulfonic acid groups by immersing in chlorosulfonic acid-dichloroethane. The membrane reacted with chlorosulfonic acid can be sulfonated by reacting in an aqueous solution of potassium hydroxide or sodium hydroxide to form an alkali salt of sulfonic acid, followed by acid treatment with hydrochloric acid or the like.

本発明の固体高分子電解質膜は、燃料電池の燃料極と空気極の間に設けられる固体高分子電解質膜として使用できるものであり、固体高分子電解質膜の両面に触媒層・燃料拡散層およびセパレータを配置することでメタノールのクロスオーバーがなく、電池特性に優れた燃料電池を得ることが可能である。なお、燃料極、空気極の構成、材質、燃料電池の構成は公知のものとすることができる。   The solid polymer electrolyte membrane of the present invention can be used as a solid polymer electrolyte membrane provided between a fuel electrode and an air electrode of a fuel cell, and has a catalyst layer, a fuel diffusion layer, and a catalyst layer on both sides of the solid polymer electrolyte membrane. By disposing a separator, it is possible to obtain a fuel cell having no cell crossover and excellent cell characteristics. Note that the configurations and materials of the fuel electrode and the air electrode and the configuration of the fuel cell can be known.

本発明の固体高分子電解質膜は、固体高分子電解質膜の両面に電極を一体化した後においても優れた電池特性を有するものである。なお、電池特性の評価は、スルホン化した固体高分子電解質膜をアノード電極とカソード電極で挟みホットプレスしてMEAを作製し、燃料極側に1〜10Mのメタノール水溶液を、空気極側に酸素又は空気を流し、電流−電圧特性(I−V特性)を見ることによって調べることができる。   The solid polymer electrolyte membrane of the present invention has excellent battery characteristics even after electrodes are integrated on both sides of the solid polymer electrolyte membrane. The battery characteristics were evaluated by preparing a MEA by hot pressing a sulfonated solid polymer electrolyte membrane between an anode electrode and a cathode electrode, and using a 1-10 M aqueous methanol solution on the fuel electrode side and oxygen on the air electrode side. Or it can investigate by flowing air and seeing a current-voltage characteristic (IV characteristic).

以下、実施例及び比較例により本発明を具体的に説明するが、これらは例示の目的で挙げられるものであり、本発明は、これらの実施例に示された具体的な事項に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples and comparative examples. However, these are given for illustrative purposes, and the present invention is limited to the specific items shown in these examples. It is not a thing.

〔実施例1〕
サイズ6cm×6cm、厚さ50μmのETFEフィルム(サンゴバン製)をオーブンに入れ、100℃で1時間保持し、室温まで冷却した。フィルムに電子線を25℃で照射し、スチレン40質量部、ジビニルベンゼン2質量部、ヘキサン40質量部、アゾビスイソブチルニトリル0.01質量部が仕込んである500ccのセパラブルフラスコに入れ、窒素雰囲気下、60℃で16時間加熱し、グラフト重合した。電子線吸収線量を2、3、5kGyの3種類について実施し、下記の式よりグラフト率を算出した。
グラフト率(%)=
{(グラフト後フィルム質量−グラフト前質量)/グラフト前質量}×100
[Example 1]
An ETFE film (manufactured by Saint-Gobain) having a size of 6 cm × 6 cm and a thickness of 50 μm was placed in an oven, held at 100 ° C. for 1 hour, and cooled to room temperature. The film was irradiated with an electron beam at 25 ° C., placed in a 500 cc separable flask charged with 40 parts by mass of styrene, 2 parts by mass of divinylbenzene, 40 parts by mass of hexane, and 0.01 parts by mass of azobisisobutylnitrile, and a nitrogen atmosphere Under heating at 60 ° C. for 16 hours, graft polymerization was performed. The electron beam absorbed dose was carried out for three types of 2, 3, 5 kGy, and the graft ratio was calculated from the following formula.
Graft rate (%) =
{(Film mass after grafting-mass before grafting) / mass before grafting} × 100

各吸収線量におけるグラフト率は表1の通りであった。なお、グラフト後質量はグラフト後のフィルムをアセトンで3回洗浄し、60℃で2時間真空乾燥後の質量とした。   The graft ratio at each absorbed dose was as shown in Table 1. The mass after grafting was the mass after the grafted film was washed three times with acetone and vacuum-dried at 60 ° C. for 2 hours.

上記フィルムをクロロスルホン酸30質量部と1,2−ジクロロエタン70質量部の混合液に浸漬し、50℃で1時間加熱後、90℃の1N苛性カリ水溶液中に1時間浸漬することで加水分解し、続いて90℃の2N塩酸に1時間浸漬後、純水で3回洗浄し、スルホン酸基を含有する固体高分子電解質膜を得た。
得られた固体高分子電解質膜の純水中に1時間浸漬後の表面のイオン伝導度は、表1の通りであった。
The film is immersed in a mixed solution of 30 parts by mass of chlorosulfonic acid and 70 parts by mass of 1,2-dichloroethane, heated at 50 ° C. for 1 hour, and then hydrolyzed by being immersed in a 1N aqueous solution of caustic potassium at 90 ° C. for 1 hour. Subsequently, after being immersed in 2N hydrochloric acid at 90 ° C. for 1 hour, it was washed with pure water three times to obtain a solid polymer electrolyte membrane containing sulfonic acid groups.
The ionic conductivity of the surface of the obtained solid polymer electrolyte membrane after being immersed in pure water for 1 hour was as shown in Table 1.

〔実施例2〕
サイズ6cm×6cm、厚さ50μmのETFEフィルムをオーブンに入れ、200℃で1時間保持し、室温まで冷却した。フィルムに電子線を25℃で照射し、スチレン40質量部、ジビニルベンゼン2質量部、ヘキサン40質量部、アゾビスイソブチルニトリル0.01質量部が仕込んである500ccのセパラブルフラスコに入れ、窒素雰囲気下で60℃で16時間加熱し、グラフト重合した。電子線吸収線量を2、3、5kGyの3種類について実施し、下記の式よりグラフト率を算出した。各吸収線量におけるグラフト率は表1の通りであった。スルホン化は実施例1と同様に実施し、純水中に1時間浸漬後の表面のイオン伝導度は表1の通りであった。
[Example 2]
An ETFE film having a size of 6 cm × 6 cm and a thickness of 50 μm was placed in an oven, held at 200 ° C. for 1 hour, and cooled to room temperature. The film was irradiated with an electron beam at 25 ° C., placed in a 500 cc separable flask containing 40 parts by mass of styrene, 2 parts by mass of divinylbenzene, 40 parts by mass of hexane, and 0.01 parts by mass of azobisisobutylnitrile, and a nitrogen atmosphere Under heating at 60 ° C. for 16 hours, graft polymerization was performed. The electron beam absorbed dose was carried out for three types of 2, 3, 5 kGy, and the graft ratio was calculated from the following formula. The graft ratio at each absorbed dose was as shown in Table 1. Sulfonation was carried out in the same manner as in Example 1, and the ionic conductivity of the surface after immersion in pure water for 1 hour was as shown in Table 1.

〔比較例1〕
サイズ6cm×6cm、厚さ50μmのETFEフィルムに電子線を25℃で照射し、スチレン40質量部、ジビニルベンゼン2質量部、ヘキサン40質量部、アゾビスイソブチルニトリル0.01質量部が仕込んである500ccのセパラブルフラスコに入れ、窒素雰囲気下で60℃で16時間加熱し、グラフト重合した。各吸収線量におけるグラフト率は表1の通りであった。スルホン化は実施例1と同様に実施し、純水中に1時間浸漬後の表面のイオン伝導度は表1の通りであった。
[Comparative Example 1]
An ETFE film having a size of 6 cm × 6 cm and a thickness of 50 μm is irradiated with an electron beam at 25 ° C., and 40 parts by mass of styrene, 2 parts by mass of divinylbenzene, 40 parts by mass of hexane, and 0.01 parts by mass of azobisisobutylnitrile are prepared. The mixture was placed in a 500 cc separable flask and heated at 60 ° C. for 16 hours under a nitrogen atmosphere to perform graft polymerization. The graft ratio at each absorbed dose was as shown in Table 1. Sulfonation was carried out in the same manner as in Example 1, and the ionic conductivity of the surface after immersion in pure water for 1 hour was as shown in Table 1.

表1の結果より、電子線照射前に加熱処理する温度が高くなるに従い、同じ電子線吸収線量におけるグラフト率が減少する傾向が認められた。   From the results in Table 1, it was recognized that the graft rate at the same electron beam absorbed dose decreased as the temperature of the heat treatment before the electron beam irradiation increased.

次に、電池特性に及ぼす電子線処理前の熱処理の効果を確認するため、上記結果において、それぞれの処理温度において同程度のイオン伝導度を示した表1中のSample No.1−2、2−2及び3−1について、MEAを作製し、電池特性を下記方法で評価した。   Next, in order to confirm the effect of the heat treatment before the electron beam treatment on the battery characteristics, Sample No. in Table 1 showing the same ionic conductivity at each treatment temperature in the above results. About 1-2, 2-2, and 3-1, MEA was produced and the battery characteristic was evaluated by the following method.

電極はカーボンペーパー(TGP−H−060、東レ製)上に、FEPとカーボンブラック(Vulcan XC−72、Cabot製)からなる撥水ペーストを塗布し、340℃で処理することによって撥水層を形成した後、その上に触媒と20%ナフィオン溶液からなるペーストを塗布し、60℃で乾燥することによって作製した。アノード電極触媒にはPtRu触媒HiSPEC6000(ジョンソンマッセイ製)、カソード電極触媒にはPt触媒HiSPEC1000(ジョンソンマッセイ製)を使用し、アノード電極の触媒搭載量を3mg/cm2、カソード電極の触媒搭載量を3mg/cm2とした。 The electrode is coated with a water-repellent paste made of FEP and carbon black (Vulcan XC-72, manufactured by Cabot) on carbon paper (TGP-H-060, manufactured by Toray), and treated at 340 ° C. to form a water-repellent layer. After forming, the paste which consists of a catalyst and a 20% Nafion solution was apply | coated on it, and it produced by drying at 60 degreeC. PtRu catalyst HiSPEC6000 (manufactured by Johnson Matthey) is used for the anode electrode catalyst, Pt catalyst HiSPEC1000 (manufactured by Johnson Matthey) is used for the cathode electrode catalyst, the catalyst loading amount of the anode electrode is 3 mg / cm 2 , and the catalyst loading amount of the cathode electrode It was 3 mg / cm 2 .

電極のサイズを2.2cm×2.2cmとし、スルホン化した膜を挟み、150℃、30kgf/cm2で5分ホットプレスすることによってMEAを作製した。特性評価セルにはElectrochem製FC05−01SPを用いた。燃料極側には1Mメタノール水溶液を0.86ml/minで流し、空気極側には空気を0.22SLMで流し、セル温度30℃でI−V特性を評価した。I−V特性の評価にはチノー製の評価装置を使用した。 The size of the electrode was set to 2.2 cm × 2.2 cm, the sulfonated membrane was sandwiched, and MEA was produced by hot pressing at 150 ° C. and 30 kgf / cm 2 for 5 minutes. The characteristic evaluation cell used was FC05-01SP manufactured by Electrochem. A 1M methanol aqueous solution was flowed at 0.86 ml / min on the fuel electrode side, air was flowed at 0.22 SLM on the air electrode side, and IV characteristics were evaluated at a cell temperature of 30 ° C. An evaluation device made by Chino was used for evaluation of the IV characteristics.

図1に上述したSample No.1−2、2−2、3−1のMEAについて測定したI−V特性を示す。図1の結果から、Sample No.3−1は熱処理を行っていないETFEフィルムを使用しているが、ETFEを熱処理した後に放射線グラフトした膜の方が電流密度の大きい領域で高い電圧を得ており、熱処理によって電池特性が向上することが確認された。   Sample No. described above in FIG. The IV characteristic measured about MEA of 1-2, 2-2, 3-1 is shown. From the results of FIG. 3-1 uses an ETFE film that has not been heat-treated, but the radiation-grafted film obtained after heat-treating ETFE obtains a higher voltage in the region where the current density is larger, and the battery characteristics are improved by the heat treatment. It was confirmed.

実施例及び比較例のSample No.1−2、2−2、3−1のMEAについて測定したI−V特性を示すグラフである。Sample No. of Example and Comparative Example. It is a graph which shows the IV characteristic measured about MEA of 1-2, 2-2, 3-1.

Claims (6)

炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムに放射線を照射した後、ラジカル反応性モノマーをグラフト重合させることによって製造される燃料電池用の固体高分子電解質膜であって、前記炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムに、放射線照射前に加熱処理が施されてなることを特徴とする燃料電池用固体高分子電解質膜。   A solid polymer electrolyte membrane for fuel cells produced by irradiating a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer with radiation and then graft-polymerizing a radical reactive monomer A solid polymer for a fuel cell, wherein the film formed of a copolymer of the fluorocarbon vinyl monomer and the hydrocarbon vinyl monomer is subjected to a heat treatment before radiation irradiation. Electrolyte membrane. 炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体が、エチレン−四フッ化エチレン共重合体である請求項1記載の燃料電池用固体高分子電解質膜。   2. The solid polymer electrolyte membrane for a fuel cell according to claim 1, wherein the copolymer of the fluorocarbon vinyl monomer and the hydrocarbon vinyl monomer is an ethylene-tetrafluoroethylene copolymer. 加熱処理が、50〜260℃の温度による加熱処理であることを特徴とする請求項1又は2記載の燃料電池用固体高分子電解質膜。 The solid polymer electrolyte membrane for a fuel cell according to claim 1 or 2, wherein the heat treatment is a heat treatment at a temperature of 50 to 260 ° C. 炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムに放射線を照射した後、ラジカル反応性モノマーをグラフト重合させる燃料電池用の固体高分子電解質膜の製造方法において、前記炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体で形成されたフィルムを加熱処理した後、放射線を照射し、ラジカル反応性モノマーをグラフト重合させることを特徴とする燃料電池用固体高分子電解質膜の製造方法。   In a method for producing a solid polymer electrolyte membrane for a fuel cell in which a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer is irradiated with radiation and then a radical reactive monomer is graft polymerized. A fuel cell solid characterized by heat-treating a film formed of a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, and then irradiating with radiation to graft polymerize a radical reactive monomer. A method for producing a polymer electrolyte membrane. 炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体が、エチレン−四フッ化エチレン共重合体である請求項4記載の燃料電池用固体高分子電解質膜の製造方法。   The method for producing a solid polymer electrolyte membrane for a fuel cell according to claim 4, wherein the copolymer of the fluorocarbon vinyl monomer and the hydrocarbon vinyl monomer is an ethylene-tetrafluoroethylene copolymer. 加熱処理が、50〜260℃の温度による加熱処理であることを特徴とする請求項4又は5記載の燃料電池用固体高分子電解質膜の製造方法。
The method for producing a solid polymer electrolyte membrane for a fuel cell according to claim 4 or 5, wherein the heat treatment is a heat treatment at a temperature of 50 to 260 ° C.
JP2004192602A 2004-06-30 2004-06-30 Method for producing solid polymer electrolyte membrane for fuel cell Expired - Fee Related JP4692714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004192602A JP4692714B2 (en) 2004-06-30 2004-06-30 Method for producing solid polymer electrolyte membrane for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004192602A JP4692714B2 (en) 2004-06-30 2004-06-30 Method for producing solid polymer electrolyte membrane for fuel cell

Publications (2)

Publication Number Publication Date
JP2006019028A true JP2006019028A (en) 2006-01-19
JP4692714B2 JP4692714B2 (en) 2011-06-01

Family

ID=35793121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004192602A Expired - Fee Related JP4692714B2 (en) 2004-06-30 2004-06-30 Method for producing solid polymer electrolyte membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP4692714B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142031A1 (en) * 2006-06-09 2007-12-13 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
JP2007329064A (en) * 2006-06-09 2007-12-20 Shin Etsu Chem Co Ltd Electrolyte membrane/electrode assembly for direct methanol fuel cell
JP2008226533A (en) * 2007-03-09 2008-09-25 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Method of manufacturing proton exchange membrane having methanol suppression property and high selectivity coefficient
JP2008243393A (en) * 2007-03-26 2008-10-09 Shin Etsu Chem Co Ltd Forming method of solid polymer electrolyte membrane
JP2013008692A (en) * 2012-09-07 2013-01-10 Shin Etsu Chem Co Ltd Electrolyte membrane-electrode assembly for direct methanol fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102322A (en) * 1995-07-31 1997-04-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Solid polymeric electrolyte film for fuel cell and its manufacture
JPH11111310A (en) * 1997-09-30 1999-04-23 Aisin Seiki Co Ltd Solid polymer electrolyte film for fuel cell and manufacture thereof
JP2002124272A (en) * 2000-10-17 2002-04-26 Toyota Central Res & Dev Lab Inc Solid high-polymer electrolyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102322A (en) * 1995-07-31 1997-04-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Solid polymeric electrolyte film for fuel cell and its manufacture
JPH11111310A (en) * 1997-09-30 1999-04-23 Aisin Seiki Co Ltd Solid polymer electrolyte film for fuel cell and manufacture thereof
JP2002124272A (en) * 2000-10-17 2002-04-26 Toyota Central Res & Dev Lab Inc Solid high-polymer electrolyte

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142031A1 (en) * 2006-06-09 2007-12-13 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
JP2007329064A (en) * 2006-06-09 2007-12-20 Shin Etsu Chem Co Ltd Electrolyte membrane/electrode assembly for direct methanol fuel cell
JP2007329065A (en) * 2006-06-09 2007-12-20 Shin Etsu Chem Co Ltd Electrolyte membrane/electrode assembly for direct methanol fuel cell
EP2034547A1 (en) * 2006-06-09 2009-03-11 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
EP2034547A4 (en) * 2006-06-09 2011-07-27 Shinetsu Chemical Co Electrolyte membrane-electrode assembly for direct methanol fuel cell
US9083026B2 (en) 2006-06-09 2015-07-14 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
JP2008226533A (en) * 2007-03-09 2008-09-25 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Method of manufacturing proton exchange membrane having methanol suppression property and high selectivity coefficient
JP2008243393A (en) * 2007-03-26 2008-10-09 Shin Etsu Chem Co Ltd Forming method of solid polymer electrolyte membrane
JP2013008692A (en) * 2012-09-07 2013-01-10 Shin Etsu Chem Co Ltd Electrolyte membrane-electrode assembly for direct methanol fuel cell

Also Published As

Publication number Publication date
JP4692714B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4568848B2 (en) Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same
JP5702093B2 (en) Polymer membrane composition for fuel cell, polymer membrane produced using the same, membrane-electrode assembly containing the same, and fuel cell
JP2007141601A (en) Inorganic nano-particle composite cross-linking polymer electrolyte film, manufacturing method of the same, and film-electrode assembly using the same
JP4514643B2 (en) Solid polymer electrolyte membrane for direct methanol fuel cell, method for producing the same, and direct methanol fuel cell
JP2004059752A (en) Electrolyte membrane for fuel cell comprising crosslinked fluororesin base
JP4986219B2 (en) Electrolyte membrane
JP5158353B2 (en) Fuel cell electrolyte membrane and method for producing fuel cell electrolyte membrane / electrode assembly
JP5673922B2 (en) Cross-linked aromatic polymer electrolyte membrane, production method thereof, and polymer fuel cell using cross-linked aromatic polymer electrolyte membrane
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP2009151938A (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP5326288B2 (en) Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
JP4683181B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4434666B2 (en) Method for producing solid polymer electrolyte membrane and fuel cell
JP5316413B2 (en) Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell
JP4390047B2 (en) Solid polymer electrolyte membrane, method for producing the same, and fuel cell
JP2006307051A (en) Solid polymer electrolytic membrane and method for producing the same, and fuel battery
EP2202832B1 (en) Solid polymer electrolyte membrane, method for producing the same, membrane-electrode assembly for fuel cell, and fuel cell
JP5158309B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP5029797B2 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP5126483B2 (en) Method for producing solid polymer electrolyte membrane, solid polymer electrolyte membrane, fuel cell membrane / electrode assembly, and fuel cell
JP2008243393A (en) Forming method of solid polymer electrolyte membrane
JP2006316140A (en) Solid polymer electrolyte film, method for producing the same, and fuel cell
JP2010153186A (en) Proton conductive electrolyte membrane and membrane-electrode assembly using the same, and polymer electrolyte fuel cell
JP2006172858A (en) Electrolyte film with excellent adhesion to electrode
JP2008098178A (en) Manufacturing method of electrolyte membrane for fuel cell consisting of bridged fluororesin base material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees