JP4814860B2 - Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate - Google Patents

Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate Download PDF

Info

Publication number
JP4814860B2
JP4814860B2 JP2007281648A JP2007281648A JP4814860B2 JP 4814860 B2 JP4814860 B2 JP 4814860B2 JP 2007281648 A JP2007281648 A JP 2007281648A JP 2007281648 A JP2007281648 A JP 2007281648A JP 4814860 B2 JP4814860 B2 JP 4814860B2
Authority
JP
Japan
Prior art keywords
membrane
ion exchange
graft
fuel cell
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007281648A
Other languages
Japanese (ja)
Other versions
JP2008098178A (en
Inventor
知之 村上
総治 西山
隆司 和野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007281648A priority Critical patent/JP4814860B2/en
Publication of JP2008098178A publication Critical patent/JP2008098178A/en
Application granted granted Critical
Publication of JP4814860B2 publication Critical patent/JP4814860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子型燃料電池に適した高分子電解質膜としてのみならず、広く電解隔膜としての性能を備え、かつ、寸法安定性の優れたフッ素系高分子イオン交換膜に関する。   The present invention relates not only to a polymer electrolyte membrane suitable for a polymer electrolyte fuel cell, but also to a fluorine-based polymer ion exchange membrane having a wide range of performance as an electrolytic membrane and excellent in dimensional stability.

従来の技術Conventional technology

固体高分子型燃料電池は、そのエネルギー密度が高いことから、電気自動車、家庭用定置及び電子機器の電源として期待されている。この燃料電池においては電解質であるイオン交換膜は最も重要な部材の一つである。固体高分子型燃料電池においては、電解質膜は両面にガス拡散電極が接合されており、膜と電極とは実質的に一体構造になっている。このため、電解質膜はプロトンを伝導するための電解質として作用し、また、加圧下においても燃料である水素やメタノールと酸素を直接接触させないための隔膜としての役割も有する。このような電解質膜としては、プロトンの移動速度が大きくイオン交換容量が高いこと、大きな電流を長期間流すので膜の化学的な安定性、電気抵抗を低く保持するために保水性が一定で高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度が強いこと及び寸法安定性が優れていること、燃料である水素ガスや酸素ガスについて過剰なガス透過性を有しないこと、これらの特性に長期間の耐久性があることなどが要求される。   The polymer electrolyte fuel cell is expected as a power source for electric vehicles, household stationary devices and electronic devices because of its high energy density. In this fuel cell, an ion exchange membrane as an electrolyte is one of the most important members. In the polymer electrolyte fuel cell, gas diffusion electrodes are joined to both surfaces of the electrolyte membrane, and the membrane and the electrode are substantially integrated. For this reason, the electrolyte membrane acts as an electrolyte for conducting protons, and also has a role as a diaphragm for preventing hydrogen or methanol as a fuel from directly contacting oxygen even under pressure. Such an electrolyte membrane has a high proton transfer rate and a high ion exchange capacity, and since a large current flows for a long period of time, the water has a constant and high water retention in order to keep the membrane chemical stability and electrical resistance low. Is required. On the other hand, due to its role as a diaphragm, the mechanical strength of the membrane is strong and its dimensional stability is excellent, and it does not have excessive gas permeability with respect to hydrogen gas or oxygen gas as a fuel. Long-term durability is required.

この用途に適した膜として、デュポン社により開発されたフッ素系高分子のパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」等が一般に用いられてきた。   As a membrane suitable for this application, a fluoropolymer perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont and the like has been generally used.

しかしながら、「ナフィオン」等のフッ素系高分子イオン交換膜は、化学的な耐久性や安定性には優れているが、イオン交換容量が1meq/g前後と小さいために十分な電気出力が得られず、また、保水性が不十分でイオン交換膜の乾燥が生じてプロトン伝導性が低下したり、電極触媒での燃料ガスや酸化剤のガスの反応が阻害されたりすることがあった。また、ナフィオンなどのフッ素系高分子イオン交換膜はモノマーの合成が困難かつ複雑であり、また、これを重合してポリマー膜を製造する工程も複雑なため非常に高価であり、前記ナフィオン等に替わる低コストで高性能な電解質膜を開発する努力がおこなわれている。   However, fluorine-based polymer ion exchange membranes such as “Nafion” are excellent in chemical durability and stability, but their ion exchange capacity is as small as about 1 meq / g, so that sufficient electric output can be obtained. In addition, the water retention is insufficient and the ion exchange membrane is dried, resulting in a decrease in proton conductivity, or the reaction of the fuel gas or the oxidant gas in the electrode catalyst may be hindered. In addition, fluorine-based polymer ion exchange membranes such as Nafion are difficult and complicated to synthesize monomers, and the process for polymerizing them to produce polymer membranes is also very expensive. Efforts are being made to develop alternative low cost, high performance electrolyte membranes.

上記の他にも、従来のフッ素系高分子イオン交換膜では架橋構造が導入できていないために、イオン交換容量を大きくすることができなかった。すなわち、イオン交換容量を大きくしようとしてスルホン酸基を多く導入しようとすると、高分子鎖中に架橋構造がないために膜強度が著しく低下し、容易に破損するようになる。したがって、従来のフッ素系高分子のイオン交換膜ではスルホン酸基の量を膜強度が保持される程度に抑える必要があり、このためイオン交換容量の比較的小さなものしかできなかった。これは燃料電池用などの大きな電流を流すイオン交換膜としては必要な性能を備えたものではなかった。   In addition to the above, the conventional fluorine-based polymer ion exchange membrane has not been able to increase the ion exchange capacity because a crosslinked structure cannot be introduced. That is, if a large number of sulfonic acid groups are to be introduced in order to increase the ion exchange capacity, the membrane strength is remarkably lowered due to the absence of a crosslinked structure in the polymer chain, and the membrane is easily damaged. Therefore, in the conventional ion exchange membranes of fluoropolymers, it is necessary to suppress the amount of sulfonic acid groups to such an extent that the membrane strength is maintained, so that only a relatively small ion exchange capacity can be achieved. This was not provided with the performance required for an ion exchange membrane for passing a large current for a fuel cell or the like.

また、本発明と密接に関連する放射線グラフト重合法では、フッ素系高分子膜にスルホン酸基を導入することができるモノマーをグラフトして、固体高分子電解質膜を作製する試みがなされている。しかし、フッ素系高分子膜ではグラフト反応を行うために電子線やγ線などの放射線を照射した場合に、照射による劣化のために著しい膜強度の低下が認められ、また、グラフト率も極めて低いものしか得られない。このため、放射線グラフト法でフッ素系イオン交換膜を作製した場合、膜は非常にもろく、かつ、イオン交換容量の極めて低い膜しか作製できず、電池膜として実用上使用に耐えない場合がほとんどであった。   In the radiation graft polymerization method closely related to the present invention, an attempt has been made to produce a solid polymer electrolyte membrane by grafting a monomer capable of introducing a sulfonic acid group into a fluorine-based polymer membrane. However, when a fluorine-based polymer film is irradiated with radiation such as an electron beam or γ-ray to perform a graft reaction, a significant decrease in film strength is observed due to deterioration due to irradiation, and the graft rate is also extremely low. You can only get things. For this reason, when a fluorine-based ion exchange membrane is produced by the radiation graft method, the membrane is very fragile and only a membrane having an extremely low ion exchange capacity can be produced. there were.

例えば、ポリテトラフルオロエチレン(PTFE)あるいはPTFE−六フッ化プロピレン共重合体(FEP)あるいはPTFE−パーフルオロアルキルビニルエーテル共重合体(PFA)等では、放射線を照射した際に高分子主鎖の著しい切断がおこることが知られている。FEP膜にスチレンを放射線グラフト重合させ、これにスルホン酸基を導入した固体高分子電解質膜を用いて作製した電池においては、電池運転直後から、膜の分解によるスルホン酸基の脱離や膜の膨潤が起こり、この結果、電池内部抵抗が上昇し、数十時間の短時間運転においても電池性能の大幅な低下が起こると報告されている(Electrochimica Acta 40, 345 (1995))。これに対し、高分子の主鎖に一部オレフィン炭化水素構造を含むフッ素系高分子の場合、放射線照射による主鎖の切断は大きく低下する。例えば、炭化水素構造を含むエチレン−テトラフルオロエチレン共重合体膜にスチレンモノマーを放射線グラフト反応により導入し、次いでスルホン化することにより合成したイオン交換膜は燃料電池用イオン交換膜として機能する(特開平9−102322)。しかし、欠点として、架橋構造がない、もしくは少ないので、膜の膨潤度が大きく、組み立て時と運転中では寸法が異なり、膜の破損やシールが不十分となる。更に、メタノールを直接燃料とするダイレクトメタノール型燃料電池では、電解質膜が膨潤して、メタノールが正極へ拡散し、発電効率が著しく低下する。特開平9−102322にはグラフトするための放射線照射により、架橋構造を形成すると推察しているが、放射線量が1〜100kGyと少なく、充分架橋しているとは言えない。また、燃料電池の運転温度は現在、70℃近辺であるが、白金触媒の一酸化炭素被毒と得られた熱水を冷房に利用するために、将来的には100℃〜150℃といった高温運転が望まれている。   For example, in polytetrafluoroethylene (PTFE), PTFE-hexafluoropropylene copolymer (FEP), PTFE-perfluoroalkyl vinyl ether copolymer (PFA), etc., the main chain of the polymer is marked when irradiated with radiation. It is known that cutting occurs. In a battery produced by using a solid polymer electrolyte membrane in which styrene is radiation graft-polymerized on a FEP membrane and sulfonic acid groups are introduced into the FEP membrane, sulfonic acid groups are removed or the membrane Swelling occurs, and as a result, the internal resistance of the battery is increased, and it is reported that the battery performance is significantly deteriorated even in a short operation of several tens of hours (Electrochimica Acta 40, 345 (1995)). On the other hand, in the case of a fluorinated polymer partially containing an olefinic hydrocarbon structure in the polymer main chain, the cleavage of the main chain by irradiation is greatly reduced. For example, an ion exchange membrane synthesized by introducing a styrene monomer into an ethylene-tetrafluoroethylene copolymer membrane containing a hydrocarbon structure by a radiation graft reaction and then sulfonating functions as an ion exchange membrane for a fuel cell (special feature). Kaihei 9-102322). However, as a disadvantage, since there is no or little cross-linked structure, the degree of swelling of the membrane is large, the dimensions are different during assembly and operation, and membrane breakage and sealing are insufficient. Furthermore, in a direct methanol fuel cell using methanol as a direct fuel, the electrolyte membrane swells and methanol diffuses to the positive electrode, so that power generation efficiency is significantly reduced. In JP-A-9-102322, it is presumed that a crosslinked structure is formed by irradiation with radiation for grafting. However, the radiation dose is as low as 1 to 100 kGy, and it cannot be said that the structure is sufficiently crosslinked. Further, the operating temperature of the fuel cell is currently around 70 ° C., but in order to use the carbon monoxide poisoning of the platinum catalyst and the obtained hot water for cooling, in the future, a high temperature such as 100 ° C. to 150 ° C. Driving is desired.

本発明は、燃料電池の電解質膜の膨潤度を抑制し、長期間の運転中に、寸法変化を少なくして、膜の破損やシールの不具合を発生しなくすると共に、メタノールを直接燃料とするダイレクトメタノール型燃料電池における、メタノールが正極へ拡散し、発電効率が低下することを抑制する。本発明の課題は、更に、将来的には100℃〜150℃といった高温運転に適した電解質膜を提供することにある。   The present invention suppresses the degree of swelling of the electrolyte membrane of the fuel cell, reduces the dimensional change during long-term operation, and prevents the membrane from being damaged or causing a seal failure, and also uses methanol as a direct fuel. In the direct methanol fuel cell, methanol is prevented from diffusing to the positive electrode, thereby reducing power generation efficiency. It is another object of the present invention to provide an electrolyte membrane suitable for high-temperature operation such as 100 ° C. to 150 ° C. in the future.

本発明に使用できるフッ素高分子基材は、エチレン−テトラフルオロエチレン共重合体(以下、ETFEと略す)とポリフッ化ビニリデン(以下、PVDFと略す)である。本発明は積極的にETFEもしくはPVDF基材を架橋した上で、それら架橋基材にスチレン系モノマーを放射線グラフトして達成される。   The fluoropolymer substrate that can be used in the present invention is an ethylene-tetrafluoroethylene copolymer (hereinafter abbreviated as ETFE) and polyvinylidene fluoride (hereinafter abbreviated as PVDF). The present invention is achieved by positively cross-linking ETFE or PVDF base materials and then radiation-grafting styrenic monomers on the cross-linked base materials.

フッ素高分子基材に放射線量100kGy〜500kGyで放射線照射して、高度に架橋することによって、架橋基材からなる電解質膜を有する燃料電池の電池特性が顕著に向上する。放射線量が100kGy以下では架橋の効果が出現しにくい。また、500kGy以上では、基材の分解も無視できなくなり、メリットがない。   By irradiating the fluoropolymer substrate with a radiation dose of 100 kGy to 500 kGy and highly crosslinking, the cell characteristics of the fuel cell having an electrolyte membrane made of the crosslinked substrate are remarkably improved. When the radiation dose is 100 kGy or less, the effect of crosslinking hardly appears. Moreover, if it is 500 kGy or more, the decomposition of the base material cannot be ignored and there is no merit.

架橋からグラフトの工程が短期間でなされる場合は架橋のための照射で生成したラジカルがそのままグラフト重合に使用できるが、架橋後にすぐグラフト重合しない場合は、グラフト重合する前に、再度放射線照射して、ラジカルを作成しておく必要がある。   When the process from crosslinking to grafting is carried out in a short period of time, the radicals generated by irradiation for crosslinking can be used as they are for graft polymerization, but when graft polymerization is not performed immediately after crosslinking, irradiation is performed again before graft polymerization. It is necessary to create a radical.

架橋基材はその分子構造から見ても無定型部分が多く、フッ素系高分子膜においてグラフト率が低いという欠点を解決できる。例えば、グラフトモノマーとしてスチレンを用いた場合、未架橋の基材に比較し、架橋基材はグラフト率を増加させることができ、このため未架橋基材と比較して、2〜4倍のスルホン酸基を架橋基材に導入できる。   The cross-linked base material has many amorphous portions in view of its molecular structure, and can solve the disadvantage that the graft ratio is low in the fluoropolymer film. For example, when styrene is used as the graft monomer, the cross-linked base material can increase the graft ratio compared to an uncross-linked base material. Acid groups can be introduced into the crosslinked substrate.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明でのグラフト重合方法は、架橋後のフッ素高分子基材を放射線照射した後に、モノマーと接触させてグラフト重合させる前照射方法が採用できる。そして、酸素不在下で照射し、その後も酸素と接触させずにグラフト重合するポリマーラジカル法と、酸素と接触させた後、グラフト重合するパーオキサイド法の両方法のいずれも採用できる。本発明に使用するモノマーはスチレン系モノマーが使用できる。具体的にはスチレン、トリフルオロスチレンである。   As the graft polymerization method in the present invention, a pre-irradiation method in which the crosslinked fluoropolymer base material is irradiated with radiation and then brought into contact with a monomer to perform graft polymerization can be employed. Then, both of a polymer radical method in which irradiation is performed in the absence of oxygen and then graft polymerization without contact with oxygen and a peroxide method in which graft polymerization is performed after contact with oxygen can be employed. As the monomer used in the present invention, a styrene monomer can be used. Specifically, styrene and trifluorostyrene.

グラフト重合は不活性ガス下、通常は30℃〜150℃の温度範囲で該モノマー単独、または該モノマーを溶媒で希釈した溶液中で行なう。酸素の存在はグラフト反応を阻害するため、これら一連の操作はアルゴンガスや窒素ガスなどの不活性ガス中で、また、モノマーやモノマーを溶媒に溶かした溶液は常法の処理(凍結脱気やバブリング)で酸素を除去した状態で使用する。   Graft polymerization is carried out in an inert gas, usually in the temperature range of 30 ° C. to 150 ° C., in the monomer alone or in a solution obtained by diluting the monomer with a solvent. Since the presence of oxygen inhibits the grafting reaction, these series of operations are performed in an inert gas such as argon gas or nitrogen gas, and the monomer or a solution in which the monomer is dissolved in a solvent is treated in a conventional manner (freeze degassing or Use with oxygen removed by bubbling.

グラフトするための放射線量はグラフト率とほぼ比例関係にあり、線量が多いほどグラフト率は高くなるが、グラフト率が100重量%以上になると徐々に飽和してくる。グラフト率に関しては架橋基材に対し、5〜200wt%、より好ましくは15〜150wt%である。グラフト率を150%以上にすると、含水時の膜の力学的強度が低下する。ここで「グラフト率」とは、フッ素高分子基材にグラフトしたスチレン系モノマーの重量比(%)をいう。   The radiation dose for grafting is almost proportional to the graft rate, and the higher the dose, the higher the graft rate, but it gradually becomes saturated when the graft rate reaches 100% by weight or more. The graft ratio is 5 to 200 wt%, more preferably 15 to 150 wt%, based on the crosslinked base material. When the graft ratio is 150% or more, the mechanical strength of the membrane when it is hydrated decreases. Here, the “graft ratio” refers to the weight ratio (%) of the styrene monomer grafted onto the fluoropolymer substrate.

上記グラフト鎖中には、さらに、ジビニルベンゼンによる共重合によって架橋構造を有するフッ素系高分子イオン交換膜を製造することができる。これは上記の架橋基材に放射線グラフトを行う場合に、上記のスチレン系モノマー量に対し1〜10wt%の架橋助剤であるジビニルベンゼンを加えて反応を行うことによって得られる。架橋基材のグラフト鎖中に架橋構造を導入することによって、本フッ素系高分子イオン交換膜の耐酸化性を向上させることができる。この膜を燃料電池用イオン交換膜として使用する場合、含水率が低すぎると酸素や水素の圧力が低い場合や酸素源として空気を用いた場合に出力電圧が低下し、高電流密度や高出力が維持できない。また、運転条件のわずかな変化によって電気伝導度やガス透過係数が変わり好ましくない。したがって、イオン交換膜が乾燥状態になりにくく、ガス透過係数や電気伝導度の変化が比較的少ないことが必要である。   In the graft chain, a fluorine-based polymer ion exchange membrane having a crosslinked structure can be produced by copolymerization with divinylbenzene. This can be obtained by adding 1 to 10 wt% of divinylbenzene, which is a crosslinking aid, to the above styrene monomer amount when performing radiation grafting on the above-mentioned crosslinked base material. By introducing a crosslinked structure into the graft chain of the crosslinked substrate, the oxidation resistance of the present fluoropolymer ion exchange membrane can be improved. When this membrane is used as an ion exchange membrane for fuel cells, if the water content is too low, the output voltage decreases when the pressure of oxygen or hydrogen is low or when air is used as the oxygen source, resulting in high current density and high output. Cannot be maintained. In addition, slight changes in operating conditions change the electrical conductivity and gas permeability coefficient, which is not preferable. Therefore, it is necessary that the ion exchange membrane is not easily dried and the change in gas permeability coefficient and electrical conductivity is relatively small.

本発明のイオン交換膜の含水率は10〜80wt%の範囲で制御できる。一般的にはイオン交換容量が増すにつれて含水率も増大するが、本発明のイオン交換膜は含水率を変化させることができることから、膜の含水率は10〜100wt%、好ましくは10〜80wt%である。本発明によるフッ素系高分子では高いイオン交換容量にも拘わらず、架橋基材の絡み合いにより膜の膨潤による含水率の増大も抑制され、適度の膜強度を維持できる。ここで「膜の含水状態」とは、室温の水中に24時間以上イオン交換膜を保存しておいた状態のもので、「含水率」とは水中に保存しておいたイオン交換膜の重量とこの膜を60℃にて16時間、真空乾燥した時の膜の重量百分率である。   The water content of the ion exchange membrane of the present invention can be controlled in the range of 10 to 80 wt%. In general, the water content increases as the ion exchange capacity increases. However, since the water content of the ion exchange membrane of the present invention can be changed, the water content of the membrane is 10 to 100 wt%, preferably 10 to 80 wt%. It is. In the fluoropolymer according to the present invention, despite the high ion exchange capacity, an increase in the moisture content due to membrane swelling due to the entanglement of the crosslinked base material is suppressed, and an appropriate membrane strength can be maintained. Here, “the water content of the membrane” means a state where the ion exchange membrane has been stored for 24 hours or more in water at room temperature, and “the water content” means the weight of the ion exchange membrane stored in water. And the weight percentage of the film when the film was vacuum-dried at 60 ° C. for 16 hours.

未架橋基材からなるイオン交換膜では膜の力学的強度や寸法安定性の点からイオン交換容量が1meq/g前後のものしか実用に供することができなかった。未架橋基材では基材の結晶部によって主に膜強度が保たれている。このため多量のグラフト鎖やスルホン酸基を導入すると基材の強度が急激に低下し、使用に耐えなくなる。   Only an ion exchange membrane having an ion exchange capacity of around 1 meq / g could be put to practical use from the viewpoint of the mechanical strength and dimensional stability of the membrane. In the uncrosslinked base material, the film strength is mainly maintained by the crystal part of the base material. For this reason, when a large amount of graft chains and sulfonic acid groups are introduced, the strength of the base material is drastically lowered and it cannot be used.

これに対して、本発明の架橋基材構造のフッ素系高分子はイオン交換容量が2.0meq/g程度まで多量のグラフト鎖やスルホン酸基を導入しても、膜の力学特性や寸法安定性が保たれているため実用に供することができる。イオン交換容量が2.0meq/g以上の膜も作製可能であるが、膜の力学特性が低下し、膜の寸法安定性が低下する。これらのことから、本発明におけるフッ素系高分子イオン交換膜は、0.5〜2.0meq/gのイオン交換容量を有し、かつ、含水状態における膜材料の引張り破断強度が3〜25MPa、より好ましくは5〜25MPaである。このときの、膜材料の引張り伸びは15%以上、より好ましくは30%以上である。ここで「イオン交換容量(meq/g)」とは、電解質膜の中のイオンの流れやすさを表す指標であり、電解質膜1g当たりのスルホン基のミリ当量数である。   On the other hand, the fluoropolymer having a cross-linked substrate structure of the present invention can maintain the mechanical properties and dimensional stability of the membrane even when a large amount of graft chains and sulfonic acid groups are introduced up to an ion exchange capacity of about 2.0 meq / g. Since the property is maintained, it can be put to practical use. Although a membrane having an ion exchange capacity of 2.0 meq / g or more can be produced, the mechanical properties of the membrane are lowered and the dimensional stability of the membrane is lowered. From these, the fluorine-based polymer ion exchange membrane in the present invention has an ion exchange capacity of 0.5 to 2.0 meq / g, and the tensile breaking strength of the membrane material in a water-containing state is 3 to 25 MPa, More preferably, it is 5-25 MPa. At this time, the tensile elongation of the film material is 15% or more, more preferably 30% or more. Here, “ion exchange capacity (meq / g)” is an index representing the ease of ion flow in the electrolyte membrane, and is the number of milliequivalents of sulfone groups per 1 g of electrolyte membrane.

高いイオン交換容量と力学的特性の優れた膜は実用上極めて重要である。膜の力学特性から、グラフト率に関しては5〜200wt%、より好ましくは15〜150wt%である。   Membranes with high ion exchange capacity and excellent mechanical properties are extremely important for practical use. From the mechanical properties of the membrane, the graft ratio is 5 to 200 wt%, more preferably 15 to 150 wt%.

燃料電池用高分子イオン交換膜は電気伝導度が高いものほど電気抵抗が小さく、電解質膜としての性能は高い。そして、25℃におけるイオン交換膜の電気伝導度が0.05Ω−1・cm−1以下であると燃料電池としての出力性能が著しく低下する場合が多いため、イオン交換膜の電気伝導度は0.05Ω−1・cm−1以上、より高性能のイオン交換膜では0.10Ω−1・cm−1以上であることが必要である。一方、通常のフッ素系イオン交換膜では25℃におけるイオン交換膜の電気伝導度が0.12Ω−1・cm−1以上ではイオン交換膜の強度が低下することが知られている。すなわち、イオン交換膜の交換容量を増大させ、電気伝導度をあまり大きくすると、膜の強度が低下するという不都合が生じる。しかし、本発明によるイオン交換膜では25℃におけるイオン交換膜の電気伝導度が0.11Ω−1・cm−1においても大きな膜強度が保持されることが明らかとなった。これらのことから本発明のフッ素系高分子イオン交換膜は25℃での電気伝導度が0.03〜0.25Ω−1・cm−1、好ましくは0.05〜0.25Ω−1・cm−1のものである。 The higher the electric conductivity of the polymer ion exchange membrane for fuel cells, the lower the electric resistance, and the higher the performance as an electrolyte membrane. When the electric conductivity of the ion exchange membrane at 25 ° C. is 0.05Ω −1 · cm −1 or less, the output performance as a fuel cell often decreases significantly. 0.05Ω −1 · cm −1 or higher, and higher performance ion exchange membranes require 0.10 Ω −1 · cm −1 or higher. On the other hand, it is known that the strength of the ion exchange membrane is lowered when the electrical conductivity of the ion exchange membrane at 25 ° C. is 0.12 Ω −1 · cm −1 or more in a normal fluorine ion exchange membrane. That is, if the exchange capacity of the ion exchange membrane is increased and the electric conductivity is increased too much, there is a disadvantage that the strength of the membrane is lowered. However, it has been revealed that the ion exchange membrane according to the present invention maintains a high membrane strength even when the electric conductivity of the ion exchange membrane at 25 ° C. is 0.11 Ω −1 · cm −1 . From these facts, the fluoropolymer ion exchange membrane of the present invention has an electric conductivity at 25 ° C. of 0.03 to 0.25Ω −1 · cm −1 , preferably 0.05 to 0.25 Ω −1 · cm. -1 .

燃料電池の特性を挙げるために、イオン交換膜の厚みを薄くすることも考えられる。しかし現状では、あまり薄いイオン交換膜では破損しやすく、また、イオン交換膜内に含まれる水の絶対量も少なくなるためイオン交換膜が乾燥しやすく、高性能を長時間維持することができなくなる場合がある。したがって、通常では30〜200μm厚の範囲のイオン交換膜が使われている。本発明の場合、膜厚は特に限定されないが15μm〜200μmの範囲のものが有効である。   In order to improve the characteristics of the fuel cell, it is conceivable to reduce the thickness of the ion exchange membrane. However, at present, a thin ion exchange membrane is easily damaged, and since the absolute amount of water contained in the ion exchange membrane is small, the ion exchange membrane is easy to dry and cannot maintain high performance for a long time. There is a case. Therefore, an ion exchange membrane having a thickness of 30 to 200 μm is usually used. In the present invention, the film thickness is not particularly limited, but those in the range of 15 μm to 200 μm are effective.

以上のように、本発明のフッ素系高分子イオン交換膜は膜としての重要な各特性、すなわち、イオン交換容量は広い範囲である0.5〜2.0meq/g、膜強度は5〜25MPa、含水率は10〜80wt%、25℃における電気伝導度は0.05〜0.25Ω−1・cm−1の各々の数値範囲内に制御して作製することができる。特性をこれらの限られた範囲内に制御できることも本発明の特徴である。 As described above, the fluoropolymer ion exchange membrane of the present invention has important characteristics as a membrane, that is, the ion exchange capacity is in a wide range of 0.5 to 2.0 meq / g, and the membrane strength is 5 to 25 MPa. The water content is 10 to 80 wt%, and the electrical conductivity at 25 ° C. can be controlled within the respective numerical ranges of 0.05 to 0.25Ω −1 · cm −1 . It is also a feature of the present invention that the characteristics can be controlled within these limited ranges.

以下、本発明を実施例及び比較例により説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this.

なお、各測定値は以下の測定によって求めた。
(1)グラフト率
架橋フッ素高分子を主鎖部、スチレン系モノマーのグラフト重合した部分をグラフト鎖部とすると、主鎖部に対するグラフト鎖部の重量比は、次式のグラフト率(Xdg(wt%))として表される。
In addition, each measured value was calculated | required by the following measurements.
(1) Graft ratio When the cross-linked fluoropolymer is the main chain portion and the graft polymerized portion of the styrene monomer is the graft chain portion, the weight ratio of the graft chain portion to the main chain portion is the graft ratio (X dg ( wt%)).

dg=100(W−W)/W (1)
:グラフト前の架橋フッ素高分子フィルムの重さ(g)
:グラフト後のグラフト共重合体フィルム(乾燥状態)の重さ(g)
(2)イオン交換容量
膜のイオン交換容量(Iex(meq/g))は次式で表される。
X dg = 100 (W 2 -W 1) / W 1 (1)
W 1 : Weight of crosslinked fluoropolymer film before grafting (g)
W 2 : Weight of the graft copolymer film (dry state) after grafting (g)
(2) The ion exchange capacity (I ex (meq / g)) of the ion exchange capacity membrane is expressed by the following equation.

ex=n(酸基)obs/W (2)
n(酸基)obs:イオン交換膜の酸基濃度(mM/g)
:イオン交換膜の乾燥重量(g)
n(酸基)obsの測定は、完壁を期すため、膜を再度1M(1モル)硫酸溶液中に50℃で4時間浸漬し、完全に酸型(H型)とした。その後、3MのNaCl水溶液中50℃、4時間浸漬して−SONa型とし、置換されたプロトン(H)を0.2NのNaOHで中和滴定し酸基濃度を求めた。
I ex = n (acid group) obs / W d (2)
n (acid group) obs : Acid group concentration of the ion exchange membrane (mM / g)
W d : dry weight of ion exchange membrane (g)
For the measurement of n (acid group) obs , the membrane was again immersed in a 1 M (1 mol) sulfuric acid solution at 50 ° C. for 4 hours to completely complete the acid type (H type). Then, it was immersed in 3 M NaCl aqueous solution at 50 ° C. for 4 hours to form —SO 3 Na type, and the substituted proton (H + ) was neutralized and titrated with 0.2 N NaOH to determine the acid group concentration.

(3)電気伝導度
イオン交換膜の電気伝導性は、交流法による測定(新実験化学講座19、高分子化学<II>、p.992,丸善)で、通常の膜抵抗測定セルとヒューレットパッカード製のLCRメータ、E−4925Aを使用して膜抵抗(R)の測定を行った。1M硫酸水溶液をセルに満たして膜の有無による白金電極間(距離5mm)の抵抗を測定し、膜の電気伝導度(比伝導度)は次式を用いて算出した。
(3) Electrical conductivity The electrical conductivity of the ion exchange membrane was measured by an alternating current method (New Experimental Chemistry Course 19, Polymer Chemistry <II>, p. 992, Maruzen). made in LCR meter, using the E-4925A was measured film resistance (R m). The cell was filled with a 1M aqueous sulfuric acid solution, and the resistance between platinum electrodes (distance 5 mm) depending on the presence or absence of the film was measured. The electric conductivity (specific conductivity) of the film was calculated using the following equation.

κ=1/R・d/S(Ω−1cm−1) (3)
κ:膜の電気伝導度(Ω−1cm−1
d:イオン交換膜の厚み(cm)
S:イオン交換膜の通電面積(cm
電気伝導度測定値の比較のために、直流法でMark W. Verbrugge, Robert F. Hil1等(J. Electrochem. Soc., 137, 3770−3777(1990))と類似のセル及びポテンショスタット、関数発生器を用いて測定した。交流法と直流法の測定値には良い相関性が見られた。下記の表1の値は交流法による測定値である。
κ = 1 / R m · d / S (Ω −1 cm −1 ) (3)
κ: electrical conductivity of the film (Ω −1 cm −1 )
d: thickness of ion exchange membrane (cm)
S: Current-carrying area of the ion exchange membrane (cm 2 )
For comparison of electrical conductivity measurements, Mark W. Verbrugge, Robert F. et al. Measurement was performed using a cell, a potentiostat, and a function generator similar to those of Hil 1 et al. (J. Electrochem. Soc., 137, 3770-3777 (1990)). There was a good correlation between the measured values of the AC and DC methods. The values in Table 1 below are measured values by the AC method.

(4)耐酸化性(重量残存率%)
60℃で16時間真空乾燥後の重量をWとし、80℃の3%過酸化水素溶液に24時間処理した膜の乾燥後重量をWとする。
(4) Oxidation resistance (weight residual rate%)
The weight after vacuum drying at 60 ° C. for 16 hours is defined as W 3, and the weight after drying of a film treated with a 3% hydrogen peroxide solution at 80 ° C. for 24 hours is defined as W 4 .

耐酸化性=100(W/W
(5)高温高湿度雰囲気での強度
温度70℃、相対湿度95%の雰囲気中で、万能引張り試験機にて、引張り速度200mm/分で測定した。
Oxidation resistance = 100 (W 4 / W 3 )
(5) Measurement was performed at a tensile rate of 200 mm / min with an all-purpose tensile tester in an atmosphere having a strength temperature of 70 ° C. and a relative humidity of 95% in a high temperature and high humidity atmosphere.

(実施例1)
まず、厚さ50μmのETFEフィルムに空気中で電子線を300kGy照射して、架橋した。30℃で1週間放置後、再度空気中で電子線を30kGy照射してラジカルを生成した。すぐに、フラスコで予め脱気して酸素を除去したスチレンに浸漬し、窒素を毎分500cc流しながら70℃で90分間加熱してグラフト重合した。グラフト率は32%であった。次にスルホン基を導入するため、クロロスルホン酸35重量%のジクロロエタン溶液に30℃で1時間浸漬した。
Example 1
First, a 50 μm-thick ETFE film was crosslinked by irradiating it with 300 kGy of an electron beam in air. After leaving at 30 ° C. for 1 week, an electron beam was irradiated again in air for 30 kGy to generate radicals. Immediately, it was immersed in styrene from which oxygen had been removed in advance by a flask, and graft polymerization was carried out by heating at 70 ° C. for 90 minutes while flowing 500 cc of nitrogen per minute. The graft rate was 32%. Next, in order to introduce a sulfone group, it was immersed in a dichloroethane solution containing 35% by weight of chlorosulfonic acid at 30 ° C. for 1 hour.

(実施例2)
厚さ50μのPVDFフィルムに空気中で電子線を300kGy照射して、架橋した。30℃で1週間放置後、再度空気中で電子線を50kGy照射してラジカルを生成した。すぐに、フラスコで予め脱気して酸素を除去したトリフルオロスチレンに浸漬し、窒素を毎分500cc流しながら60℃で90分間加熱してグラフト重合した。グラフト率は29%であった。次にスルホン基を導入するため、クロロスルホン酸35重量%のジクロロエタン溶液に30℃で1時間浸漬した。
(Example 2)
A PVDF film having a thickness of 50 μm was irradiated with 300 kGy of an electron beam in the air to crosslink. After leaving at 30 ° C. for 1 week, radicals were generated again by irradiation with 50 kGy of electron beams in air. Immediately, the flask was immersed in trifluorostyrene from which oxygen had been removed by pre-aeration in a flask, and was graft-polymerized by heating at 60 ° C. for 90 minutes while flowing 500 cc of nitrogen per minute. The graft rate was 29%. Next, in order to introduce a sulfone group, it was immersed in a dichloroethane solution containing 35% by weight of chlorosulfonic acid at 30 ° C. for 1 hour.

(実施例3)
実施例1において、グラフトモノマーとして、スチレン98重量%、ジビニルベンゼン2重量%に変え、他は同様に操作した。グラフト率は33%であった。
(Example 3)
In Example 1, the graft monomer was changed to 98% by weight of styrene and 2% by weight of divinylbenzene, and the other operations were performed in the same manner. The graft rate was 33%.

(実施例4)
実施例1の架橋線量を150kGyにする以外は同様に操作した。グラフト率は32%であった。
Example 4
The same operation was performed except that the crosslinking dose of Example 1 was 150 kGy. The graft rate was 32%.

(比較例1)
実施例1において、架橋してない厚さ50μのETFEフィルムを使用し、他は同様に操作した。グラフト率は21%であった。
(Comparative Example 1)
In Example 1, an uncrosslinked ETFE film having a thickness of 50 μm was used, and the others were operated in the same manner. The graft rate was 21%.

(比較例2)
実施例1において、架橋してない厚さ50μのETFEフィルムを使用し、空気中での電子線照射を60kGyに変更すること以外は同様に操作した。グラフト率は31%であった。
(Comparative Example 2)
In Example 1, the same operation was performed except that an uncrosslinked ETFE film with a thickness of 50 μm was used and the electron beam irradiation in air was changed to 60 kGy. The graft rate was 31%.

Figure 0004814860
Figure 0004814860

本発明のフッ素樹脂イオン交換膜は、イオン交換容量が1.5〜2.0meq/g、70℃、95%RHにおける膜材料の引張り破断強度が9〜5MPa、25℃における電気伝導度が0.09〜0.11Ω−1・cm−1、かつ、非常に高い耐酸化性を有するものである。低コストで広い範囲のイオン交換容量、高い耐酸化性と膜強度のフッ素系高分子イオン交換膜である。本発明のイオン交換膜は、特に燃料電池膜に適している。また、安価で耐久性のある電解膜やイオン交換膜として有用である。 The fluororesin ion exchange membrane of the present invention has an ion exchange capacity of 1.5 to 2.0 meq / g, a membrane material tensile strength at 9 to 5 MPa at 70 ° C. and 95% RH, and an electrical conductivity at 25 ° C. of 0. 0.09 to 0.11 Ω −1 · cm −1 and very high oxidation resistance. It is a low-cost fluorine-based polymer ion exchange membrane with a wide range of ion exchange capacities, high oxidation resistance and membrane strength. The ion exchange membrane of the present invention is particularly suitable for a fuel cell membrane. Moreover, it is useful as an inexpensive and durable electrolytic membrane or ion exchange membrane.

Claims (2)

予め放射線照射により架橋したエチレン−テトラフルオロエチレン共重合体フィルムもしくはポリフッ化ビニリデンフィルムに、スチレン系モノマーを放射線グラフト共重合して、そのグラフト鎖にスルホン酸基を導入する、ダイレクトメタノール型燃料電池電解質膜の製造方法。   A direct methanol fuel cell electrolyte in which a styrene monomer is radiation graft copolymerized with an ethylene-tetrafluoroethylene copolymer film or polyvinylidene fluoride film previously cross-linked by radiation irradiation, and a sulfonic acid group is introduced into the graft chain. A method for producing a membrane. 架橋線量が100kGyから500kGyである、請求項1記載のダイレクトメタノール型燃料電池用電解質膜の製造方法。   The method for producing an electrolyte membrane for a direct methanol fuel cell according to claim 1, wherein the crosslinking dose is 100 kGy to 500 kGy.
JP2007281648A 2007-10-30 2007-10-30 Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate Expired - Fee Related JP4814860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007281648A JP4814860B2 (en) 2007-10-30 2007-10-30 Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007281648A JP4814860B2 (en) 2007-10-30 2007-10-30 Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002220636A Division JP4532812B2 (en) 2002-07-30 2002-07-30 Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate

Publications (2)

Publication Number Publication Date
JP2008098178A JP2008098178A (en) 2008-04-24
JP4814860B2 true JP4814860B2 (en) 2011-11-16

Family

ID=39380762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281648A Expired - Fee Related JP4814860B2 (en) 2007-10-30 2007-10-30 Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate

Country Status (1)

Country Link
JP (1) JP4814860B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102322A (en) * 1995-07-31 1997-04-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Solid polymeric electrolyte film for fuel cell and its manufacture
JPH11250921A (en) * 1998-02-27 1999-09-17 Aisin Seiki Co Ltd Solid polymer electrolyte fuel cell
JP4532812B2 (en) * 2002-07-30 2010-08-25 日東電工株式会社 Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate

Also Published As

Publication number Publication date
JP2008098178A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4568848B2 (en) Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
JP5137174B2 (en) Method for producing polymer electrolyte membrane for fuel cell with silane cross-linked structure
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
JP5545609B2 (en) POLYMER ELECTROLYTE MEMBRANE COMPRISING AROMATIC POLYMER MEMBRANE SUBSTRATE AND METHOD FOR PRODUCING THE SAME
JP2006344552A (en) Cross-link type electrolyte membrane and its manufacturing method
JP5376485B2 (en) POLYMER ELECTROLYTE MEMBRANE COMPRISING ALKYL GRAFT CHAIN AND PROCESS FOR PRODUCING THE SAME
JP4953113B2 (en) Fluoropolymer ion exchange membrane having excellent oxidation resistance and high ion exchange capacity and method for producing the same
JP4997625B2 (en) Method for producing polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP5333913B2 (en) POLYMER ELECTROLYTE MEMBRANE COMPRISING ALKYL ETHER GRAFT CHAIN AND METHOD FOR PRODUCING THE SAME
JP4986219B2 (en) Electrolyte membrane
JP4854284B2 (en) Method for producing polymer electrolyte membrane
JP3932338B2 (en) Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane
JP2002348389A (en) Fluoropolymer ion-exchange membrane having wide ion- exchange capacity and its production method
JP2004051685A (en) Electrolytic membrane comprising fluorine-containing polymer ion exchange membrane and used for fuel battery
JP4822389B2 (en) Electrolyte membrane with excellent oxidation resistance
JP4219656B2 (en) Electrolyte membrane for fuel cell
JP2006066174A (en) Electrolyte film for fuel cell with excellent acid resistance
JP2008195748A (en) Crosslinked aromatic polymer electrolyte membrane and its manufacturing method
JP2005063778A (en) Electrolyte film for fuel cell excellent in oxidation resistance
JP5641457B2 (en) POLYMER ELECTROLYTE MEMBRANE COMPRISING AROMATIC POLYMER MEMBRANE SUBSTRATE AND METHOD FOR PRODUCING THE SAME
JP5326288B2 (en) Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
WO2007102418A1 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP4814860B2 (en) Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees