WO2007102418A1 - Solid polymer electrolyte membrane for fuel cell and fuel cell - Google Patents

Solid polymer electrolyte membrane for fuel cell and fuel cell Download PDF

Info

Publication number
WO2007102418A1
WO2007102418A1 PCT/JP2007/054011 JP2007054011W WO2007102418A1 WO 2007102418 A1 WO2007102418 A1 WO 2007102418A1 JP 2007054011 W JP2007054011 W JP 2007054011W WO 2007102418 A1 WO2007102418 A1 WO 2007102418A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
solid polymer
polymer electrolyte
fuel cell
graft
Prior art date
Application number
PCT/JP2007/054011
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Tsukada
Toshio Ohba
Nobuo Kawada
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2007102418A1 publication Critical patent/WO2007102418A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid polymer electrolyte membrane for a fuel cell and a fuel cell.
  • Fuel cells using solid polymer electrolyte type ion exchange membranes have been widely put into practical use as power sources for electric vehicles and simple auxiliary power sources because of their high energy density, with operating temperatures as low as 100 ° C or lower. Expected.
  • this fuel cell there are important elemental technologies relating to solid polymer electrolyte membranes, platinum-based catalysts, gas diffusion electrodes, and polymer electrolyte membrane-electrode assemblies.
  • solid polymer electrolyte membranes with good characteristics as fuel cells is one of the most important technologies.
  • electrolyte membrane fuel cell gas diffusion electrodes are combined on both sides of the electrolyte membrane, and the membrane and the electrode have a substantially integrated structure.
  • the electrolyte membrane acts as an electrolyte for conducting protons, and also has a role as a diaphragm for preventing hydrogen or methanol as a fuel and an oxidizing agent from being directly mixed even under pressure.
  • Such an electrolyte membrane is required to have a high proton exchange rate and high ion exchange capacity as an electrolyte, and a constant and high water holding capacity in order to keep electric resistance low.
  • fluororesin-based electrolyte membranes such as “Nafion” have excellent chemical durability and stability, but in direct methanol fuel cells (D MFC) using methanol as fuel, methanol Causes a crossover phenomenon that passes through the electrolyte membrane, resulting in low output There was a problem. Furthermore, since the fluororesin-based electrolyte membrane starts from the synthetic ability of the monomer, it has a problem in that it requires a large number of manufacturing steps and increases the cost, which is a major obstacle to practical use.
  • D MFC direct methanol fuel cells
  • styrene Z dibutene benzene co-graft membranes that are co-graft polymerized by simultaneously charging two or more types of graft raw materials such as styrene and dibutene benzene and fluorine resin irradiated with radiation are: Although proton conductivity is equivalent to or higher than that of “naphth ion” and methanol permeability is lower than that of “naphth ion”, an electrolyte membrane can be obtained, but further reduction of methanol permeability is required.
  • an object of the present invention is to provide a solid polymer electrolyte membrane and a fuel cell produced by a radiation graft polymerization method and having both high proton conductivity and low methanol permeability.
  • the present inventors have found that the polymerizable monomer is adjusted so that the number of graft chain units is 30 or less on the resin film irradiated with radiation. It is found that a solid polymer electrolyte membrane having both high proton conductivity and low methanol permeability can be obtained by sulfonating after graft polymerization of the polymer. It came.
  • the present invention provides the following solid polymer electrolyte membrane for fuel cell and fuel cell.
  • a solid polymer for a fuel cell characterized in that a polymerized monomer is graft-polymerized on a resin film irradiated with radiation so that the graft chain has a Nut number of 30 or less and is sulfonated. Electrolyte membrane.
  • a fuel cell wherein the solid polymer electrolyte membrane according to claim 1 is provided between a fuel electrode and an air electrode.
  • the invention's effect [0009]
  • the solid polymer electrolyte membrane produced by the radiation grafting of the present invention exhibits high ionic conductivity and low methanol permeability. Therefore, the electrolyte membrane for fuel cells, particularly for direct methanol fuel cells. Suitable as electrolyte membrane.
  • the solid polymer electrolyte membrane for a fuel cell of the present invention is such that the number of graft chain units is 30 or less, preferably 5 to 25, more preferably 10 to 20 on the resin film irradiated with radiation.
  • the resin film polytetrafluoroethylene, tetrafluoroethylene perfluoroalkyl butyl ether copolymer is used.
  • Fluorine resin films such as tetrafluoroethylene monohexafluoropropylene copolymer and ethylene-tetrafluoroethylene copolymer, or hydrocarbon resin films such as polyethylene and polypropylene. It is done.
  • the absorbed dose of radiation applied to the resin film is increased.
  • This is possible by controlling the grafting ratio of the polymerizable monomer to a certain ratio (usually 60% or less, more preferably 20 to 50%, still more preferably 30 to 40%) after generating a large amount of radicals. become.
  • the control of the graft ratio include a method of adjusting the polymerizable monomer concentration, oxygen concentration, etc. during graft polymerization.
  • styrene monomer such as styrene, ⁇ -methylstyrene, ⁇ funoleite rostyrene, styrene sulphonic acid, sodium styrene sulphonate, and the like, which are preferably monofunctional polymerizable monomers, is desirable.
  • Acrylic monomers such as sodium acrylamidomethylpropanesulfonate can also be used alone or in appropriate combination. It is also possible to use a polyfunctional polymerizable monomer in combination.
  • Radiation graft polymerization is a method in which radicals are generated by irradiating a resin film with radiation, and a polymerizable monomer is grafted using the radical as a graft point. Radiation is preliminarily applied to the main chain of the resin film. Then, after generating radicals that will be the starting point of grafting, the pre-irradiation method in which the resin is brought into contact with the monomer to carry out the grafting reaction, and simultaneous irradiation with radiation in the coexistence of the polymerizable monomer and the resin film Although there is an irradiation method, in the present invention, A deviation method can also be adopted. In this case, the film thickness of the resin film is not particularly limited. Repulsive force 15-: LOO / zm Especially, the force of 25-60 / zm is preferable!
  • Examples of the radiation irradiated for graft polymerization in the present invention include ⁇ -rays, X-rays, electron beams, ion beams, ultraviolet rays, and the like.
  • ⁇ -rays and electrons are used because of the ease of radical generation. Lines are preferred.
  • the absorbed dose of radiation is greater than or equal to lOkGy.
  • the absorbed dose is 20 to 300 kGy, and more desirably, the absorbed dose is 150 to 250 kGy. If it is less than 10 kGy, the number of monomer units in the graft chain must be increased in order to obtain the desired ionic conductivity with less radical generation. If it exceeds 300 kGy, the mechanical properties such as elongation and strength of the resin film may deteriorate.
  • the irradiation with radiation is preferably performed in an inert gas atmosphere such as helium, nitrogen, and argon gas.
  • the oxygen concentration in the gas is preferably lOOppm or less, particularly preferably 50ppm or less. There is no need to do this in the absence of oxygen.
  • the amount of polymerizable monomer grafted on the irradiated resin is 100 mass% of the resin final, whereas the polymerization '14 monomer is 1,000,000 to 100,000 mass%. It is preferable to use 4,000 to 20,000 parts by mass. If the amount of the monomer is too small, the contact may be insufficient. If the amount is too large, the monomer may not be used efficiently.
  • a polymerization initiator such as azobisisoptyl-tolyl may be appropriately used as long as the object of the present invention is not impaired.
  • a solvent can be used at the time of the grafting reaction, and it is preferable to use a solvent that uniformly dissolves the monomer, for example, ketones such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate and the like.
  • Esters alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, ethers such as tetrahydrofuran, dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, benzene, toluene, xylene, etc.
  • Aromatic hydrocarbons, aliphatic or alicyclic hydrocarbons such as n-heptane, n-hexane, and cyclohexane, or a mixed solvent thereof can be used.
  • the monomer Z solvent (mass ratio) is preferably 0.01 to 1. If the monomer Z solvent (mass ratio) is greater than 1, it will be difficult to adjust the number of monomer units in the graft chain, and if less than 0.01, The graft rate may be too low. A more desirable range is 0.03 to 0.5.
  • the reaction conditions for the graft polymerization are preferably 0 to 100 ° C, particularly 40 to 80 ° C, and 1 to 40 hours, particularly 4 to 20 hours. It can be carried out in an inert gas atmosphere such as nitrogen or argon, or at an oxygen concentration of 0.01 to 20 Vol%.
  • a solid polymer electrolyte membrane can be obtained by graft polymerization of a polymerizable monomer to a resin film irradiated with radiation and further sulfonation.
  • the grafted membrane can be introduced with chlorosulfonic acid groups by immersing it in monodichloroethane chlorosulfonate.
  • the membrane reacted with chlorosulfonic acid can be sulfonated by reacting in an aqueous solution of sodium hydroxide or sodium hydroxide to form an alkali salt of sulfonic acid, followed by acid treatment with hydrochloric acid or the like.
  • the solid polymer electrolyte membrane of the present invention can be used as a solid polymer electrolyte membrane provided between a fuel electrode and an air electrode of a fuel cell, and a catalyst layer on both sides of the solid polymer electrolyte membrane.
  • a fuel cell that is suitably used as an electrolyte membrane for a direct methanol fuel cell and excellent in battery characteristics without a methanol crossover.
  • the configuration of the fuel electrode and the air electrode, the material, and the configuration of the fuel cell can be known.
  • the number of graft chain units is the force determined by 13 CN MR.
  • EDF E ethylene-tetrafluoroethylene copolymer
  • Graft rate [(film weight after grafting-film weight before grafting) before Z grafting Film mass] ⁇ ⁇ (%)
  • the film weight after grafting was the weight after the grafted film was washed once with toluene and three times with acetone and dried under reduced pressure at 60 ° C for 2 hours.
  • the average number of styrene units per graft chain of the styrene graft chain determined by 13 C NMR was 20.
  • the graft polymerized membrane is immersed in a mixed solution of 30 g of chlorosulfonic acid and 70 g of 1,2-dichloroethane, heated at 50 ° C for 2 hours, and then immersed in a 1N aqueous solution of caustic potassium at 90 ° C for 2 hours for hydrolysis. Subsequently, after being immersed in 2N hydrochloric acid at 90 ° C. for 2 hours, it was washed 3 times with pure water to obtain a solid polymer electrolyte membrane containing sulfonic acid groups. Table 1 shows the results of measuring the characteristics of the electrolyte membrane by the following method.
  • the resistance in the longitudinal direction of the strip sample was measured at room temperature by the 4-terminal AC impedance method.
  • EDF E ethylene-tetrafluoroethylene copolymer
  • Graft rate [(film weight after grafting-film weight before grafting) Z film weight before grafting] X 100 (%)
  • the film weight after grafting was the weight after the grafted film was washed once with toluene and three times with acetone and dried under reduced pressure at 60 ° C for 2 hours.
  • the average number of styrene units per graft chain of the styrene graft chain determined by 13 C NMR was about 170.
  • the graft polymerized membrane is immersed in a mixed solution of 30 g of chlorosulfonic acid and 70 g of 1,2-dichloroethane, heated at 50 ° C for 2 hours, and then immersed in a 1N aqueous solution of caustic potassium at 90 ° C for 2 hours for hydrolysis. Subsequently, after being immersed in 2N hydrochloric acid at 90 ° C. for 2 hours, it was washed 3 times with pure water to obtain a solid polymer electrolyte membrane containing sulfonic acid groups. Table 1 shows the results of measurement by the method of Example 1 for the characteristics of this electrolyte membrane.
  • Example 1 The ethylene-tetrafluoroethylene copolymer used in Example 1 was irradiated with 0.1 g at room temperature under a nitrogen atmosphere at an acceleration voltage of 10 kV electron beams on both sides at 2 kGy each, and immediately after that, 20.0 g of styrene and dibutenebenzene were used. 2. Immerse it in a 30ml container equipped with 4g of a three-way cock, publish nitrogen for 15 minutes at room temperature, and then heat at 60 ° C for 16 hours. The graft ratio determined in the same manner as in Example 1 was 52%.
  • the graft polymerized membrane is immersed in a mixed solution of 30 g of chlorosulfonic acid and 70 g of 1,2-dichloroethane, heated at 50 ° C for 2 hours, and then immersed in a 1N aqueous solution of caustic potassium at 90 ° C for 2 hours for hydrolysis. Subsequently, after being immersed in 2N hydrochloric acid at 90 ° C. for 2 hours, it was washed 3 times with pure water to obtain a solid polymer electrolyte membrane containing sulfonic acid groups. Table 1 shows the results of measurement by the method of Example 1 for the characteristics of this electrolyte membrane.

Abstract

Disclosed is a solid polymer electrolyte membrane for fuel cells which is characterized by being obtained by graft-polymerizing a polymerizable monomer to a resin film irradiated with a radiation in such a manner that the number of units of the graft chain is not more than 30, and then sulfonating the resulting film. Since the solid polymer electrolyte membrane produced by such a radiation graft polymerization has high ion conductivity and low methanol permeability, it is suitable as an electrolyte membrane for fuel cells, especially an electrolyte membrane for direct methanol fuel cells.

Description

明 細 書  Specification
燃料電池用固体高分子電解質膜及び燃料電池  Solid polymer electrolyte membrane for fuel cell and fuel cell
技術分野  Technical field
[0001] 本発明は、燃料電池用固体高分子電解質膜及び燃料電池に関する。  The present invention relates to a solid polymer electrolyte membrane for a fuel cell and a fuel cell.
背景技術  Background art
[0002] 固体高分子電解質型イオン交換膜を用いた燃料電池は、作動温度が 100°C以下 と低ぐそのエネルギー密度が高いことから、電気自動車の電源や簡易補助電源とし て広く実用化が期待されている。この燃料電池においては、固体高分子電解質膜、 白金系の触媒、ガス拡散電極、及び高分子電解質膜と電極の接合体などに関する 重要な要素技術がある。しかし、この中でも燃料電池としての良好な特性を有する固 体高分子電解質膜の開発は最も重要な技術の一つである。  [0002] Fuel cells using solid polymer electrolyte type ion exchange membranes have been widely put into practical use as power sources for electric vehicles and simple auxiliary power sources because of their high energy density, with operating temperatures as low as 100 ° C or lower. Expected. In this fuel cell, there are important elemental technologies relating to solid polymer electrolyte membranes, platinum-based catalysts, gas diffusion electrodes, and polymer electrolyte membrane-electrode assemblies. However, the development of solid polymer electrolyte membranes with good characteristics as fuel cells is one of the most important technologies.
[0003] 固体高分子電解質膜型燃料電池にお!ヽては、電解質膜の両面にガス拡散電極が 複合されており、膜と電極とは実質的に一体構造になっている。このため、電解質膜 はプロトンを伝導するための電解質として作用し、また、加圧下においても燃料であ る水素やメタノールと酸化剤とを直接混合させないための隔膜としての役割も有する 。このような電解質膜としては、電解質としてプロトンの移動速度が大きぐイオン交換 容量が高いこと、電気抵抗を低く保持するために保水性が一定で、かつ高いことが 要求される。一方、隔膜としての役割から、膜の力学的な強度が大きいこと、及び寸 法安定性が優れて ヽること、長期の使用に対する化学的な安定性に優れて ヽること 、燃料である水素ガスやメタノール、酸化剤である酸素ガスに対して透過性を有しな いことなどが要求される。  [0003] In a solid polymer electrolyte membrane fuel cell, gas diffusion electrodes are combined on both sides of the electrolyte membrane, and the membrane and the electrode have a substantially integrated structure. For this reason, the electrolyte membrane acts as an electrolyte for conducting protons, and also has a role as a diaphragm for preventing hydrogen or methanol as a fuel and an oxidizing agent from being directly mixed even under pressure. Such an electrolyte membrane is required to have a high proton exchange rate and high ion exchange capacity as an electrolyte, and a constant and high water holding capacity in order to keep electric resistance low. On the other hand, due to its role as a diaphragm, its mechanical strength is high, its dimensional stability is excellent, its chemical stability for long-term use is excellent, and hydrogen as a fuel It is required not to be permeable to gas, methanol, or oxygen gas, which is an oxidant.
[0004] このような固体高分子電解質膜として、デュポン社によって開発されたフッ素榭脂 系のパーフルォロスルホン酸膜「ナフイオン (デュポン社登録商標)」等が一般に用い られてさた。  [0004] As such a solid polymer electrolyte membrane, a fluorine resin-based perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont and the like has been generally used.
しかしながら、「ナフイオン」等の従来のフッ素榭脂系電解質膜は、化学的な耐久性 や安定性には優れて ヽるが、メタノールを燃料とする直接メタノール型燃料電池 (D MFC)では、メタノールが電解質膜を通過するクロスオーバー現象が生じ、出力が低 下する問題があった。更に、フッ素榭脂系電解質膜は、モノマーの合成力ゝら出発する ために、製造工程が多ぐコストが高くなる問題があり、実用化する場合の大きな障害 になっている。 However, conventional fluororesin-based electrolyte membranes such as “Nafion” have excellent chemical durability and stability, but in direct methanol fuel cells (D MFC) using methanol as fuel, methanol Causes a crossover phenomenon that passes through the electrolyte membrane, resulting in low output There was a problem. Furthermore, since the fluororesin-based electrolyte membrane starts from the synthetic ability of the monomer, it has a problem in that it requires a large number of manufacturing steps and increases the cost, which is a major obstacle to practical use.
そのため、前記「ナフイオン」等に替わる固体高分子電解質膜を作製するための技 術が検討され、そのような技術の一つとして、フッ素系榭脂に、スチレンなどの炭化水 素系モノマーや、炭化水素を一部含むフッ素系モノマーを放射線グラフト重合した電 解質膜の作製が検討されている(特開 2001— 348439号公報、特開 2002— 3133 64号公報、特開 2003— 82129号公報等参照)。  For this reason, a technique for producing a solid polymer electrolyte membrane replacing the “naphth ion” or the like has been studied. As one of such techniques, a fluorocarbon resin, a hydrocarbon monomer such as styrene, Preparation of an electrolyte membrane obtained by radiation graft polymerization of a fluorine-based monomer partially containing hydrocarbons (JP 2001-348439 A, JP 2002 3133 64 A, JP 2003-82129 A). Etc.).
[0005] これらの放射線グラフト重合において、スチレンとジビュルベンゼンなどの 2種類以 上のグラフト原材料と放射線を照射したフッ素榭脂を同時に仕込んで共グラフト重合 したスチレン Zジビュルベンゼン共グラフト膜は、「ナフイオン」と同等あるいはそれを 凌ぐプロトン伝導度で、メタノール透過度が「ナフイオン」よりも低 、電解質膜を得るこ とが可能であるものの、更なるメタノール透過度の低減が要求されている。し力しなが ら、このようなスチレン Zジビュルベンゼン共グラフト膜のメタノール透過度を小さくし ようとして、架橋剤であるジビュルベンゼン量の増量や、グラフト率の低減を行うと、メ タノール透過度は低減するものの、同時にプロトン伝導度が著しく低下してしまうため 、高いプロトン伝導度と低いメタノール透過度を併せ持つ固体高分子電解質膜を得 ることができな 、と!/、う問題があった。 [0005] In these radiation graft polymerizations, styrene Z dibutene benzene co-graft membranes that are co-graft polymerized by simultaneously charging two or more types of graft raw materials such as styrene and dibutene benzene and fluorine resin irradiated with radiation are: Although proton conductivity is equivalent to or higher than that of “naphth ion” and methanol permeability is lower than that of “naphth ion”, an electrolyte membrane can be obtained, but further reduction of methanol permeability is required. However, in order to reduce the methanol permeability of such a styrene Z dibutene benzene co-graft membrane, if the amount of dibutene benzene as a cross-linking agent is increased or the graft ratio is reduced, methanol is reduced. Although the permeability decreases, at the same time, the proton conductivity significantly decreases, so it is impossible to obtain a solid polymer electrolyte membrane having both high proton conductivity and low methanol permeability! there were.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 従って、本発明は、放射線グラフト重合法により製造され、高いプロトン伝導度と低 メタノール透過度を併せ持つ固体高分子電解質膜及び燃料電池を提供することを目 的とする。 [0006] Accordingly, an object of the present invention is to provide a solid polymer electrolyte membrane and a fuel cell produced by a radiation graft polymerization method and having both high proton conductivity and low methanol permeability.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは、上記目的を達成するために鋭意検討を行った結果、放射線を照射 した榭脂フィルムに、グラフト鎖のュ-ット数が 30以下になるように重合性モノマーを グラフト重合させた後、スルホンィ匕することにより、高いプロトン伝導度と低いメタノー ル透過度を併せ持つ固体高分子電解質膜が得られることを見出し、本発明をなすに 至った。 [0007] As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that the polymerizable monomer is adjusted so that the number of graft chain units is 30 or less on the resin film irradiated with radiation. It is found that a solid polymer electrolyte membrane having both high proton conductivity and low methanol permeability can be obtained by sulfonating after graft polymerization of the polymer. It came.
従って、本発明は、下記燃料電池用固体高分子電解質膜及び燃料電池を提供す る。  Accordingly, the present invention provides the following solid polymer electrolyte membrane for fuel cell and fuel cell.
請求項 1: Claim 1:
放射線を照射した榭脂フィルムに、グラフト鎖のュ-ット数が 30以下になるように重 合性モノマーをグラフト重合させると共に、スルホンィ匕してなることを特徴とする燃料 電池用固体高分子電解質膜。  A solid polymer for a fuel cell, characterized in that a polymerized monomer is graft-polymerized on a resin film irradiated with radiation so that the graft chain has a Nut number of 30 or less and is sulfonated. Electrolyte membrane.
請求項 2 : Claim 2:
榭脂フィルム力 ポリテトラフルォロエチレン、テトラフルォロエチレン パーフルォ 口アルキルビュルエーテル系共重合体、テトラフルォロエチレン一へキサフルォロプ ロピレン系共重合体及びエチレンーテトラフルォロエチレン共重合体力 選ばれるフ ッ素榭脂フィルムの少なくとも 1種である請求項 1記載の固体高分子電解質膜。 請求項 3 :  Resin film strength Polytetrafluoroethylene, tetrafluoroethylene perfluorinated alkyl butyl ether copolymer, tetrafluoroethylene monohexafluoropropylene copolymer and ethylene-tetrafluoroethylene copolymer strength 2. The solid polymer electrolyte membrane according to claim 1, which is at least one type of fluorine resin film selected. Claim 3:
重合性モノマーがスチレン系モノマーである請求項 1又は 2記載の固体高分子電 解質膜。  3. The solid polymer electrolyte membrane according to claim 1, wherein the polymerizable monomer is a styrene monomer.
請求項 4 : Claim 4:
榭脂フィルムに照射する放射線の吸収線量が lOkGy以上で、グラフト率が 60%以 下であることを特徴とする請求項 1, 2又は 3記載の固体高分子電解質膜。  4. The solid polymer electrolyte membrane according to claim 1, 2 or 3, wherein the absorbed dose of radiation applied to the resin film is not less than lOkGy and the graft ratio is not more than 60%.
請求項 5 : Claim 5:
放射線が電子線であることを特徴とする請求項 1乃至 4のいずれか 1項記載の固体 高分子電解質膜。  The solid polymer electrolyte membrane according to any one of claims 1 to 4, wherein the radiation is an electron beam.
請求項 6 : Claim 6:
請求項 1乃至 5のいずれか 1項記載の固体高分子電解質膜が燃料極と空気極との 間に設けられて ヽることを特徴とする燃料電池。  6. A fuel cell, wherein the solid polymer electrolyte membrane according to claim 1 is provided between a fuel electrode and an air electrode.
請求項 7 : Claim 7:
メタノールを燃料とするダイレクトメタノール型であることを特徴とする請求項 6記載 の燃料電池。  7. The fuel cell according to claim 6, wherein the fuel cell is a direct methanol type using methanol as a fuel.
発明の効果 [0009] 本発明の放射線グラフトにより製造された固体高分子電解質膜は、高いイオン伝導 度を示し、かつメタノール透過度が低いため、燃料電池用の電解質膜、特にダイレク トメタノール型燃料電池用の電解質膜として適している。 The invention's effect [0009] The solid polymer electrolyte membrane produced by the radiation grafting of the present invention exhibits high ionic conductivity and low methanol permeability. Therefore, the electrolyte membrane for fuel cells, particularly for direct methanol fuel cells. Suitable as electrolyte membrane.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の燃料電池用固体高分子電解質膜は、放射線を照射した榭脂フィルムに、 グラフト鎖のユニット数が 30以下、好ましくは 5〜25、更に好ましくは 10〜20になるよ うに重合性モノマーをグラフト重合させると共に、スルホン化してなるものである力 こ の場合、榭脂フィルムとしては、ポリテトラフルォロエチレン、テトラフルォロエチレン パーフルォロアルキルビュルエーテル系共重合体、テトラフルォロエチレン一へキ サフルォロプロピレン系共重合体及びエチレンーテトラフルォロエチレン共重合体等 のフッ素系榭脂フィルム又はポリエチレン、ポリプロピレンなどの炭化水素系榭脂フィ ルムが挙げられる。 [0010] The solid polymer electrolyte membrane for a fuel cell of the present invention is such that the number of graft chain units is 30 or less, preferably 5 to 25, more preferably 10 to 20 on the resin film irradiated with radiation. In this case, as the resin film, polytetrafluoroethylene, tetrafluoroethylene perfluoroalkyl butyl ether copolymer is used. Fluorine resin films such as tetrafluoroethylene monohexafluoropropylene copolymer and ethylene-tetrafluoroethylene copolymer, or hydrocarbon resin films such as polyethylene and polypropylene. It is done.
[0011] 一方、放射線を照射した榭脂フィルムに、グラフト鎖のユニット数が 30以下になるよ うに重合性モノマーをグラフト重合させるには、榭脂フィルムに照射する放射線の吸 収線量を高くし、ラジカルを多量に発生した後に、重合性モノマーのグラフト率を一 定割合 (通常 60%以下、より好ましくは 20〜50%、更に好ましくは 30〜40%)となる ように制御することにより可能になる。グラフト率の制御には、例えば、グラフト重合時 の重合性モノマー濃度、酸素濃度などを調整する方法が挙げられる。  [0011] On the other hand, in order to graft polymerize a polymerizable monomer so that the number of graft chain units is 30 or less on a resin film irradiated with radiation, the absorbed dose of radiation applied to the resin film is increased. This is possible by controlling the grafting ratio of the polymerizable monomer to a certain ratio (usually 60% or less, more preferably 20 to 50%, still more preferably 30 to 40%) after generating a large amount of radicals. become. Examples of the control of the graft ratio include a method of adjusting the polymerizable monomer concentration, oxygen concentration, etc. during graft polymerization.
[0012] 重合性モノマーとしては一官能重合性モノマーが好ましぐスチレン、 α—メチルス チレン、 ρ フノレ才ロスチレン、スチレンスノレホン酸、スチレンスノレホン酸ナトリウム等 のスチレン系モノマーが望まし 、が、アクリルアミドメチルプロパンスルホン酸ナトリウ ムなどのアクリル系モノマーも単独で、もしくは適宜組み合わせて使用できる。多官能 重合性モノマーを併用することも可能である。  [0012] As the polymerizable monomer, a styrene monomer such as styrene, α-methylstyrene, ρ funoleite rostyrene, styrene sulphonic acid, sodium styrene sulphonate, and the like, which are preferably monofunctional polymerizable monomers, is desirable. Acrylic monomers such as sodium acrylamidomethylpropanesulfonate can also be used alone or in appropriate combination. It is also possible to use a polyfunctional polymerizable monomer in combination.
[0013] 放射線グラフト重合は、榭脂フィルムに放射線を照射することでラジカルを生成し、 そこをグラフト点として重合性モノマーをグラフトする方法である力 榭脂フィルムの主 鎖に予め放射線を照射して、グラフトの起点となるラジカルを生成させた後、榭脂フィ ルムをモノマーと接触させてグラフト反応を行う前照射法と、重合性モノマーと榭脂フ イルムの共存下に放射線を照射する同時照射法とがあるが、本発明においては、い ずれの方法をも採用できる。なお、この場合、榭脂フィルムの膜厚は特に限定されな ヽ力 15〜: LOO /z m 特に 25〜60 /z mであること力 ^好まし!/、。 Radiation graft polymerization is a method in which radicals are generated by irradiating a resin film with radiation, and a polymerizable monomer is grafted using the radical as a graft point. Radiation is preliminarily applied to the main chain of the resin film. Then, after generating radicals that will be the starting point of grafting, the pre-irradiation method in which the resin is brought into contact with the monomer to carry out the grafting reaction, and simultaneous irradiation with radiation in the coexistence of the polymerizable monomer and the resin film Although there is an irradiation method, in the present invention, A deviation method can also be adopted. In this case, the film thickness of the resin film is not particularly limited. Repulsive force 15-: LOO / zm Especially, the force of 25-60 / zm is preferable!
[0014] 本発明でグラフト重合させるために照射する放射線としては、 γ線、 X線、電子線、 イオンビーム、紫外線等が例示されるが、特に、ラジカル生成の容易さから γ線、電 子線が好ましい。 Examples of the radiation irradiated for graft polymerization in the present invention include γ-rays, X-rays, electron beams, ion beams, ultraviolet rays, and the like. In particular, γ-rays and electrons are used because of the ease of radical generation. Lines are preferred.
[0015] 放射線の吸収線量は、 lOkGy以上になるように照射されることが好ましぐ望ましい 吸収線量 ίま 20〜300kGy、更【こ望まし ヽ吸収線量 ίま 150〜250kGyである。 10kG y未満であると、ラジカル生成量が少なぐ所望のイオン伝導度を得るには、グラフト 鎖のモノマーユニット数を多くしなくてはならない。 300kGyを超えると榭脂フィルムの 伸び、強度などの機械特性が低下する場合がある。  [0015] It is preferable that the absorbed dose of radiation is greater than or equal to lOkGy. Desirably, the absorbed dose is 20 to 300 kGy, and more desirably, the absorbed dose is 150 to 250 kGy. If it is less than 10 kGy, the number of monomer units in the graft chain must be increased in order to obtain the desired ionic conductivity with less radical generation. If it exceeds 300 kGy, the mechanical properties such as elongation and strength of the resin film may deteriorate.
[0016] 更に、放射線の照射は、ヘリウム、窒素、アルゴンガス等の不活性ガス雰囲気中で 行うのが好ましぐ該ガス中の酸素濃度は lOOppm以下、特に 50ppm以下が好まし いが、必ずしも酸素不在下で行う必要はない。  [0016] Further, the irradiation with radiation is preferably performed in an inert gas atmosphere such as helium, nitrogen, and argon gas. The oxygen concentration in the gas is preferably lOOppm or less, particularly preferably 50ppm or less. There is no need to do this in the absence of oxygen.
[0017] ここで、放射線を照射した榭脂にグラフトする重合性モノマーの使用量は、榭脂フィ ノレム 100質量咅 こ対して重合' 14モノマーを 1, 000〜100, 000質量咅^特【こ 4, 00 0〜20, 000質量部使用することが好ましい。モノマーが少なすぎると接触が不十分 になる場合があり、多すぎるとモノマーが効率的に使用できなくなるおそれがある。  [0017] Here, the amount of polymerizable monomer grafted on the irradiated resin is 100 mass% of the resin final, whereas the polymerization '14 monomer is 1,000,000 to 100,000 mass%. It is preferable to use 4,000 to 20,000 parts by mass. If the amount of the monomer is too small, the contact may be insufficient. If the amount is too large, the monomer may not be used efficiently.
[0018] これら重合性モノマーをグラフト重合するに際しては、ァゾビスイソプチル-トリルな どの重合開始剤を本発明の目的を損なわない範囲で適宜用いてもよい。  [0018] In graft polymerization of these polymerizable monomers, a polymerization initiator such as azobisisoptyl-tolyl may be appropriately used as long as the object of the present invention is not impaired.
[0019] 更に、グラフト反応時に溶媒を用いることができ、溶媒としては、モノマーを均一に 溶解するものが好ましぐ例えばアセトン、メチルェチルケトン等のケトン類、酢酸ェチ ル、酢酸ブチル等のエステル類、メチルアルコール、エチルアルコール、プロピルァ ルコール、ブチルアルコール等のアルコール類、テトラヒドロフラン、ジォキサン等の エーテル類、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、ベンゼン、 トルエン、キシレン等の芳香族炭化水素、 n—ヘプタン、 n—へキサン、シクロへキサ ン等の脂肪族又は脂環族炭化水素、あるいはこれらの混合溶媒を用いることができ る。モノマー Z溶媒 (質量比)は 0. 01〜1が望ましい。モノマー Z溶媒 (質量比)が 1 より大きいとグラフト鎖のモノマーユニット数の調整が困難になり、 0. 01より小さいと、 グラフト率が低くなりすぎる場合がある。更に望ましい範囲は 0. 03〜0. 5である。 [0019] Furthermore, a solvent can be used at the time of the grafting reaction, and it is preferable to use a solvent that uniformly dissolves the monomer, for example, ketones such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate and the like. Esters, alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, ethers such as tetrahydrofuran, dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, benzene, toluene, xylene, etc. Aromatic hydrocarbons, aliphatic or alicyclic hydrocarbons such as n-heptane, n-hexane, and cyclohexane, or a mixed solvent thereof can be used. The monomer Z solvent (mass ratio) is preferably 0.01 to 1. If the monomer Z solvent (mass ratio) is greater than 1, it will be difficult to adjust the number of monomer units in the graft chain, and if less than 0.01, The graft rate may be too low. A more desirable range is 0.03 to 0.5.
[0020] 上記グラフト重合の反応条件としては、 0〜100°C、特に 40〜80°Cの温度で 1〜4 0時間、特に 4〜20時間の反応時間とすることが好ましい。窒素、アルゴンなどの不 活性ガス雰囲気中、もしくは酸素濃度 0. 01〜20Vol%で行うことができる。  [0020] The reaction conditions for the graft polymerization are preferably 0 to 100 ° C, particularly 40 to 80 ° C, and 1 to 40 hours, particularly 4 to 20 hours. It can be carried out in an inert gas atmosphere such as nitrogen or argon, or at an oxygen concentration of 0.01 to 20 Vol%.
[0021] 上述したように、放射線を照射した榭脂フィルムに重合性モノマーをグラフト重合さ せ、更にスルホン化させることにより、固体高分子電解質膜を得ることができる。  As described above, a solid polymer electrolyte membrane can be obtained by graft polymerization of a polymerizable monomer to a resin film irradiated with radiation and further sulfonation.
[0022] グラフトした膜は、クロロスルホン酸一ジクロロエタン中に浸漬することによってクロ口 スルホン酸基を導入することができる。クロロスルホン酸と反応させた膜は、水酸化力 リウムゃ水酸ィ匕ナトリウム水溶液中で反応させ、スルホン酸アルカリ塩とし、引き続き 塩酸などで酸処理することによってスルホンィ匕することができる。  [0022] The grafted membrane can be introduced with chlorosulfonic acid groups by immersing it in monodichloroethane chlorosulfonate. The membrane reacted with chlorosulfonic acid can be sulfonated by reacting in an aqueous solution of sodium hydroxide or sodium hydroxide to form an alkali salt of sulfonic acid, followed by acid treatment with hydrochloric acid or the like.
[0023] 本発明の固体高分子電解質膜は、燃料電池の燃料極と空気極の間に設けられる 固体高分子電解質膜として使用できるものであり、固体高分子電解質膜の両面に触 媒層 '燃料拡散層及びセパレータを配置することで、特にダイレクトメタノール型燃料 電池用電解質膜として好適に使用されて、メタノールのクロスオーバーがなぐ電池 特性に優れた燃料電池を得ることが可能である。なお、燃料極、空気極の構成、材 質、燃料電池の構成は公知のものとすることができる。  [0023] The solid polymer electrolyte membrane of the present invention can be used as a solid polymer electrolyte membrane provided between a fuel electrode and an air electrode of a fuel cell, and a catalyst layer on both sides of the solid polymer electrolyte membrane. By disposing the fuel diffusion layer and the separator, it is possible to obtain a fuel cell that is suitably used as an electrolyte membrane for a direct methanol fuel cell and excellent in battery characteristics without a methanol crossover. The configuration of the fuel electrode and the air electrode, the material, and the configuration of the fuel cell can be known.
実施例  Example
[0024] 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の 実施例に制限されるものではない。なお、下記例でグラフト鎖のユニット数は13 C N MRにより求めた力 その具体的条件は、グラフト鎖末端部位におけるスチレンの C =C結合を定量し、グラフト鎖質量力 算出した。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the following examples, the number of graft chain units is the force determined by 13 CN MR. The specific conditions were determined by quantifying the C = C bond of styrene at the graft chain terminal site and calculating the graft chain mass force.
[0025] [実施例 1]  [Example 1]
縦 5cm,横 6cm,厚さ 50 mのエチレンーテトラフルォロエチレン共重合体(ETF E, Norton社製) 0. 12g〖こ室温、窒素雰囲気下、加速電圧 lOOkV電子線を両面に 各 20kGy照射した後、直ちに、スチレン 6g、トルエン 18gが仕込んである三方コック を付けた 30ml容器に浸漬し、室温で 15分窒素パブリングした後、 60°Cで 16時間加 熱し、グラフト率が 42%のスチレングラフト膜を得た。  5cm long, 6cm wide, 50m thick ethylene-tetrafluoroethylene copolymer (ETF E, manufactured by Norton) 0. 12g per room temperature, under nitrogen atmosphere, acceleration voltage lOOkV electron beam on both sides 20kGy each Immediately after irradiation, immerse in a 30 ml container equipped with a three-way cock containing 6 g of styrene and 18 g of toluene, publish nitrogen for 15 minutes at room temperature, and then heat at 60 ° C for 16 hours to obtain a graft rate of 42%. A styrene graft membrane was obtained.
グラフト率 = [ (グラフト後フィルム質量ーグラフト前フィルム質量) Zグラフト前 フィルム質量] χ ιοο (%) Graft rate = [(film weight after grafting-film weight before grafting) before Z grafting Film mass] χ ιοο (%)
なお、グラフト後フィルム質量はグラフト後のフィルムをトルエンで 1回、アセトンで 3 回洗浄し、 60°Cで 2時間減圧乾燥後の質量とした。  The film weight after grafting was the weight after the grafted film was washed once with toluene and three times with acetone and dried under reduced pressure at 60 ° C for 2 hours.
また、 13C NMRにより求めた上記スチレングラフト鎖のグラフト鎖一本当たりの平均 スチレンユニット数は 20であった。 The average number of styrene units per graft chain of the styrene graft chain determined by 13 C NMR was 20.
上記グラフト重合膜を、クロロスルホン酸 30gと 1, 2—ジクロロェタン 70gの混合液 に浸漬し、 50°Cで 2時間加熱後、 90°Cの 1N苛性カリ水溶液中に 2時間浸漬すること で加水分解し、続いて 90°Cの 2N塩酸に 2時間浸漬後、純水で 3回洗浄し、スルホン 酸基を含有する固体高分子電解質膜を得た。電解質膜の特性を下記の方法により 測定した結果を表 1に示す。  The graft polymerized membrane is immersed in a mixed solution of 30 g of chlorosulfonic acid and 70 g of 1,2-dichloroethane, heated at 50 ° C for 2 hours, and then immersed in a 1N aqueous solution of caustic potassium at 90 ° C for 2 hours for hydrolysis. Subsequently, after being immersed in 2N hydrochloric acid at 90 ° C. for 2 hours, it was washed 3 times with pure water to obtain a solid polymer electrolyte membrane containing sulfonic acid groups. Table 1 shows the results of measuring the characteristics of the electrolyte membrane by the following method.
[0026] 1.イオン交換容量 [0026] 1. Ion exchange capacity
H型電解質膜を 0. 02M水酸ィ匕ナトリウム水溶液中に 24h浸漬した後、膜を取り出 し、溶液を。. 02M塩酸で中和滴定することで求めた。  After immersing the H-type electrolyte membrane in 0.02M aqueous sodium hydroxide solution for 24 hours, remove the membrane and use the solution. Determined by neutralization titration with 02M hydrochloric acid.
2.含水率  2.Moisture content
室温純水浸漬後の含水膜質量と 100°C減圧乾燥後の乾燥膜質量の差力も求めた 含水率 = (含水膜質量-乾燥膜質量) Z乾燥膜質量 X 100 (%) The difference between the weight of the water-containing film after immersion in pure water at room temperature and the weight of the dried film after drying at 100 ° C under reduced pressure was also determined.
3.イオン伝導度 3. Ionic conductivity
インピーダンスアナライザー(ソーラトロン社製 1260)を使 、、 4端子交流インピーダ ンス法により室温で短冊状サンプル (幅 lcm)の長手方向の抵抗を測定して求めた。 Using an impedance analyzer (Solartron 1260), the resistance in the longitudinal direction of the strip sample (width lcm) was measured at room temperature by the 4-terminal AC impedance method.
4.メタノール透過係数 4.Methanol permeability coefficient
10Mメタノール水と純水を膜で隔離し、室温でメタノール水側力 膜を透過して純 水側に出てきたメタノール量をガスクロマトグラフィーで定量して求めた。  10M methanol water and pure water were separated by a membrane, and the amount of methanol that permeated the methanol water side membrane at the room temperature and exited to the pure water side was determined by gas chromatography.
[0027] [比較例 1] [0027] [Comparative Example 1]
縦 5cm,横 6cm,厚さ 50 mのエチレンーテトラフルォロエチレン共重合体(ETF E, Norton社製) 0. 12gに室温、窒素雰囲気下、加速電圧 lOOkV電子線を両面に 各 2kGy照射した後、直ちに、スチレン 20gが仕込んである三方コックを付けた 30ml 容器に浸漬し、室温で 15分窒素パブリングした後、 60°Cで 16時間加熱し、グラフト 率が 45%のスチレングラフト膜を得た。 5cm long, 6cm wide, 50m thick ethylene-tetrafluoroethylene copolymer (ETF E, manufactured by Norton) 0. 12g at room temperature in a nitrogen atmosphere, acceleration voltage lOOkV electron beam irradiated on both sides 2kGy each Immediately after that, it is immersed in a 30 ml container equipped with a three-way cock containing 20 g of styrene, and after nitrogen publishing at room temperature for 15 minutes, it is heated at 60 ° C for 16 hours to graft. A styrene graft membrane having a rate of 45% was obtained.
グラフト率 = [ (グラフト後フィルム質量ーグラフト前フィルム質量) Zグラフト前 フィルム質量] X 100 (%)  Graft rate = [(film weight after grafting-film weight before grafting) Z film weight before grafting] X 100 (%)
なお、グラフト後フィルム質量はグラフト後のフィルムをトルエンで 1回、アセトンで 3 回洗浄し、 60°Cで 2時間減圧乾燥後の質量とした。  The film weight after grafting was the weight after the grafted film was washed once with toluene and three times with acetone and dried under reduced pressure at 60 ° C for 2 hours.
また、 13C NMRにより求めた上記スチレングラフト鎖のグラフト鎖一本当たりの平均 スチレンユニット数は約 170であった。 The average number of styrene units per graft chain of the styrene graft chain determined by 13 C NMR was about 170.
上記グラフト重合膜を、クロロスルホン酸 30gと 1, 2—ジクロロェタン 70gの混合液 に浸漬し、 50°Cで 2時間加熱後、 90°Cの 1N苛性カリ水溶液中に 2時間浸漬すること で加水分解し、続いて 90°Cの 2N塩酸に 2時間浸漬後、純水で 3回洗浄し、スルホン 酸基を含有する固体高分子電解質膜を得た。この電解質膜の特性につ!、て実施例 1の方法で測定した結果を表 1に示す。  The graft polymerized membrane is immersed in a mixed solution of 30 g of chlorosulfonic acid and 70 g of 1,2-dichloroethane, heated at 50 ° C for 2 hours, and then immersed in a 1N aqueous solution of caustic potassium at 90 ° C for 2 hours for hydrolysis. Subsequently, after being immersed in 2N hydrochloric acid at 90 ° C. for 2 hours, it was washed 3 times with pure water to obtain a solid polymer electrolyte membrane containing sulfonic acid groups. Table 1 shows the results of measurement by the method of Example 1 for the characteristics of this electrolyte membrane.
[0028] 実施例 比較例 1の結果より、グラフト率がほぼ同じ場合、電子線の吸収線量が高 いグラフト膜は、グラフトしたモノマーのユニット数が少なぐイオン伝導度が同じで、メ タノール透過係数が小さ!/ヽことが確認できた。 Examples [0028] From the results of Comparative Example 1, when the graft ratio is almost the same, the graft membrane with a high absorbed dose of electron beams has the same ionic conductivity with a small number of grafted monomer units, and has a methanol permeability. It was confirmed that the coefficient was small! / ヽ.
[0029] [比較例 2] [0029] [Comparative Example 2]
実施例 1で用いたエチレンーテトラフルォロエチレン共重合体 0. 12gに室温、窒素 雰囲気下、加速電圧 lOOkV電子線を両面に各 2kGy照射した後、直ちに、スチレン 20. 0g、ジビュルベンゼン 2. 4gが仕込んである三方コックを付けた 30ml容器に浸 漬し、室温で 15分窒素パブリングした後、 60°Cで 16時間加熱した。実施例 1と同様 にして求めたグラフト率は 52%であった。  The ethylene-tetrafluoroethylene copolymer used in Example 1 was irradiated with 0.1 g at room temperature under a nitrogen atmosphere at an acceleration voltage of 10 kV electron beams on both sides at 2 kGy each, and immediately after that, 20.0 g of styrene and dibutenebenzene were used. 2. Immerse it in a 30ml container equipped with 4g of a three-way cock, publish nitrogen for 15 minutes at room temperature, and then heat at 60 ° C for 16 hours. The graft ratio determined in the same manner as in Example 1 was 52%.
上記グラフト重合膜を、クロロスルホン酸 30gと 1, 2—ジクロロェタン 70gの混合液 に浸漬し、 50°Cで 2時間加熱後、 90°Cの 1N苛性カリ水溶液中に 2時間浸漬すること で加水分解し、続いて 90°Cの 2N塩酸に 2時間浸漬後、純水で 3回洗浄し、スルホン 酸基を含有する固体高分子電解質膜を得た。この電解質膜の特性につ!、て実施例 1の方法で測定した結果を表 1に示す。  The graft polymerized membrane is immersed in a mixed solution of 30 g of chlorosulfonic acid and 70 g of 1,2-dichloroethane, heated at 50 ° C for 2 hours, and then immersed in a 1N aqueous solution of caustic potassium at 90 ° C for 2 hours for hydrolysis. Subsequently, after being immersed in 2N hydrochloric acid at 90 ° C. for 2 hours, it was washed 3 times with pure water to obtain a solid polymer electrolyte membrane containing sulfonic acid groups. Table 1 shows the results of measurement by the method of Example 1 for the characteristics of this electrolyte membrane.
[0030] [比較例 3] [0030] [Comparative Example 3]
ナフイオン 112 (デュポン社製)の特性にっ 、て実施例 1の方法で測定した結果を 表 1に示す。 According to the characteristics of Nafion 112 (manufactured by DuPont), the results measured by the method of Example 1 are Table 1 shows.
[表 1]
Figure imgf000010_0001
[table 1]
Figure imgf000010_0001

Claims

請求の範囲 The scope of the claims
[1] 放射線を照射した榭脂フィルムに、グラフト鎖のユニット数が 30以下になるように重 合性モノマーをグラフト重合させると共に、スルホンィ匕してなることを特徴とする燃料 電池用固体高分子電解質膜。  [1] A solid polymer for a fuel cell, characterized in that a polymerized monomer is graft-polymerized on a resin film irradiated with radiation so that the number of graft chain units is 30 or less and is sulfonated. Electrolyte membrane.
[2] 榭脂フィルム力 ポリテトラフルォロエチレン、テトラフルォロエチレン パーフルォ 口アルキルビュルエーテル系共重合体、テトラフルォロエチレン一へキサフルォロプ ロピレン系共重合体及びエチレンーテトラフルォロエチレン共重合体力 選ばれるフ ッ素榭脂フィルムの少なくとも 1種である請求項 1記載の固体高分子電解質膜。  [2] Resin film strength Polytetrafluoroethylene, tetrafluoroethylene, perfluoroalkyl alkyl ether, tetrafluoroethylene-hexafluoropropylene, and ethylene-tetrafluoroethylene 2. The solid polymer electrolyte membrane according to claim 1, which is at least one type of fluororesin film selected.
[3] 重合性モノマーがスチレン系モノマーである請求項 1又は 2記載の固体高分子電 解質膜。  [3] The polymer electrolyte membrane according to claim 1 or 2, wherein the polymerizable monomer is a styrene monomer.
[4] 榭脂フィルムに照射する放射線の吸収線量が lOkGy以上で、グラフト率が 60%以 下であることを特徴とする請求項 1, 2又は 3記載の固体高分子電解質膜。  [4] The solid polymer electrolyte membrane according to [1], [2] or [3], wherein the absorbed dose of radiation applied to the resin film is lOkGy or more and the graft ratio is 60% or less.
[5] 放射線が電子線であることを特徴とする請求項 1乃至 4のいずれか 1項記載の固体 高分子電解質膜。  5. The solid polymer electrolyte membrane according to any one of claims 1 to 4, wherein the radiation is an electron beam.
[6] 請求項 1乃至 5のいずれか 1項記載の固体高分子電解質膜が燃料極と空気極との 間に設けられて ヽることを特徴とする燃料電池。  [6] A fuel cell, wherein the solid polymer electrolyte membrane according to any one of claims 1 to 5 is provided between a fuel electrode and an air electrode.
[7] メタノールを燃料とするダイレクトメタノール型であることを特徴とする請求項 6記載 の燃料電池。 7. The fuel cell according to claim 6, wherein the fuel cell is a direct methanol type using methanol as a fuel.
PCT/JP2007/054011 2006-03-06 2007-03-02 Solid polymer electrolyte membrane for fuel cell and fuel cell WO2007102418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006059194A JP2009151938A (en) 2006-03-06 2006-03-06 Solid polymer electrolyte membrane for fuel cell and fuel cell
JP2006-059194 2006-03-06

Publications (1)

Publication Number Publication Date
WO2007102418A1 true WO2007102418A1 (en) 2007-09-13

Family

ID=38474849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054011 WO2007102418A1 (en) 2006-03-06 2007-03-02 Solid polymer electrolyte membrane for fuel cell and fuel cell

Country Status (2)

Country Link
JP (1) JP2009151938A (en)
WO (1) WO2007102418A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076579A1 (en) 2009-12-21 2011-06-30 Höganäs Ab (Publ) Stator element for a modulated pole machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6665418B2 (en) * 2015-03-31 2020-03-13 株式会社Ihi Method for producing electrolyte membrane
EP3187524A1 (en) * 2015-12-29 2017-07-05 Sabanci Üniversitesi Proton exchange membrane and a method for preparation thereof
JP6872765B2 (en) * 2016-07-22 2021-05-19 国立大学法人山口大学 Manufacturing method of mosaic charged film and mosaic charged film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313364A (en) * 2001-04-13 2002-10-25 Hitachi Cable Ltd Electrolyte film for use in fuel cell, film manufacturing method, and fuel cell
JP2005078871A (en) * 2003-08-29 2005-03-24 Shin Etsu Chem Co Ltd Manufacturing method of solid high polymer electrolyte membrane and fuel cell
JP2006059776A (en) * 2004-08-24 2006-03-02 Shin Etsu Chem Co Ltd Solid polymer electrolyte film for fuel cell and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313364A (en) * 2001-04-13 2002-10-25 Hitachi Cable Ltd Electrolyte film for use in fuel cell, film manufacturing method, and fuel cell
JP2005078871A (en) * 2003-08-29 2005-03-24 Shin Etsu Chem Co Ltd Manufacturing method of solid high polymer electrolyte membrane and fuel cell
JP2006059776A (en) * 2004-08-24 2006-03-02 Shin Etsu Chem Co Ltd Solid polymer electrolyte film for fuel cell and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076579A1 (en) 2009-12-21 2011-06-30 Höganäs Ab (Publ) Stator element for a modulated pole machine

Also Published As

Publication number Publication date
JP2009151938A (en) 2009-07-09

Similar Documents

Publication Publication Date Title
US8232353B2 (en) Processes for producing nano-space controlled polymer ion-exchange membranes
JP4568848B2 (en) Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
EP1806371A1 (en) Electrolyte material, electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
US7919537B2 (en) Methods for producing a polymer electrolyte membrane having improved oxidation resistance
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
JP4997625B2 (en) Method for producing polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP4986219B2 (en) Electrolyte membrane
JP5105340B2 (en) Fluorine polymer ion exchange membrane having wide ion exchange capacity and method for producing the same
JP4576620B2 (en) Method for producing nanostructure control polymer ion exchange membrane
WO2007102418A1 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
US8609743B2 (en) Method for producing electrolyte membrane for fuel cell and method for producing electrolyte membrane-electrode assembly for fuel cell
WO2006134801A1 (en) Solid polyelectrolyte membrane, process for production thereof, and fuel cells
JP5305283B2 (en) Production method of polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP2004158270A (en) Electrolyte membrane for fuel cell
JP5326288B2 (en) Solid polymer electrolyte membrane, method for producing the same, membrane electrode assembly for fuel cell, and fuel cell
JP4692714B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
EP2192646B1 (en) Solid polymer electrolyte membrane, method for production of solid polymer electrolyte membrane, and fuel cell
JP2008127534A (en) Method for producing functional membrane and method for producing electrolyte membrane for fuel battery
JP5158309B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
US20110070523A1 (en) Solid polymer electrolyte membrane, method for producing the same, membrane-electrode assembly for fuel cell, and fuel cell
JP5029797B2 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP4814860B2 (en) Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate
JP2008243393A (en) Forming method of solid polymer electrolyte membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP