JP2002348389A - Fluoropolymer ion-exchange membrane having wide ion- exchange capacity and its production method - Google Patents

Fluoropolymer ion-exchange membrane having wide ion- exchange capacity and its production method

Info

Publication number
JP2002348389A
JP2002348389A JP2001153926A JP2001153926A JP2002348389A JP 2002348389 A JP2002348389 A JP 2002348389A JP 2001153926 A JP2001153926 A JP 2001153926A JP 2001153926 A JP2001153926 A JP 2001153926A JP 2002348389 A JP2002348389 A JP 2002348389A
Authority
JP
Japan
Prior art keywords
membrane
ion
exchange membrane
long
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001153926A
Other languages
Japanese (ja)
Other versions
JP5105340B2 (en
Inventor
Masaru Yoshida
勝 吉田
Takeshi Suwa
武 諏訪
Yosuke Morita
洋右 森田
Masaharu Asano
雅春 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2001153926A priority Critical patent/JP5105340B2/en
Publication of JP2002348389A publication Critical patent/JP2002348389A/en
Application granted granted Critical
Publication of JP5105340B2 publication Critical patent/JP5105340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a fluoropolymer ion-exchange membrane which is prepared at a low cost, has an ion-exchange capacity with a wide range and a high oxidation resistance, and is especially suitable for a fuel cell. SOLUTION: This fluoropolymer ion-exchange membrane mainly comprises a long-chain branched polytetrafluoroethylene structure and has oxyhydrofluorocarbon side chains having sulfo groups, represented by [-OCH2 CF2 CF2 SO3 H], and bonded thereto. The membrane is of a proton-exchange type and has an ion-exchange capacity of 0.5-2.0 meq/g, a tensile strength in the water-containing state of 5-25 MPa, and an electrical conductivity at 25 deg.C of 0.05-0.25 Ω<-1> .cm<-1> . The production method for the ion-exchange membrane is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池に適した固体
高分子電解質膜としてのみならず、広く隔膜としての性
能を備え、かつ、耐酸化性の優れたフッ素系高分子イオ
ン交換膜及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorine-containing polymer ion-exchange membrane having not only a solid polymer electrolyte membrane suitable for a fuel cell but also a membrane, and having excellent oxidation resistance. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】固体高分子電解質型イオン交換膜を用い
た燃料電池は作動温度が100℃以下と低く、そのエネ
ルギー密度が高いことから、電気自動車の電源や簡易補
助電源として期待されている。この燃料電池においては
固体高分子電解質であるイオン交換膜、白金系の触媒、
ガス拡散電極、及び高分子電解質膜と電極の接合体など
の重要な要素技術がある。しかし、この中でも燃料電池
用としての良好な特性を有する高分子イオン交換膜の開
発は最も重要な技術の一つである。
2. Description of the Related Art A fuel cell using a solid polymer electrolyte type ion exchange membrane has a low operating temperature of 100 ° C. or less and a high energy density, and is therefore expected to be used as a power source for electric vehicles and a simple auxiliary power source. In this fuel cell, an ion exchange membrane which is a solid polymer electrolyte, a platinum-based catalyst,
There are important element technologies such as gas diffusion electrodes and polymer electrolyte membrane-electrode assemblies. However, among these, the development of a polymer ion exchange membrane having good characteristics for use in fuel cells is one of the most important technologies.

【0003】高分子イオン交換膜型燃料電池において
は、イオン交換膜は両面にガス拡散電極が接合されてお
り、膜と電極とは実質的に一体構造になっている。この
ため、イオン交換膜はプロトンを伝導するための電解質
として作用し、また、加圧下においても燃料である水素
やメタノールと酸化剤とを直接混合させないための隔膜
としての役割も有する。このようなイオン交換膜として
は、電解質としてプロトンの移動速度が大きくイオン交
換容量が高いこと、大きな電流を長期間流すので膜の化
学的な安定性、特に、膜の劣化の主因となる水酸化ラジ
カル等に対する耐性(耐酸化性)が優れていること、電
気抵抗を低く保持するために保水性が一定で高いことが
要求される。一方、隔膜としての役割から、膜の力学的
な強度が強いこと及び寸法安定性が優れていること、燃
料である水素ガスや酸素ガスについて過剰なガス透過性
を有しないこと、これらの特性に長期間の耐久性がある
ことなどが要求される。
[0003] In a polymer ion exchange membrane fuel cell, a gas diffusion electrode is bonded to both sides of the ion exchange membrane, and the membrane and the electrode have a substantially integral structure. For this reason, the ion exchange membrane acts as an electrolyte for conducting protons, and also has a role as a diaphragm for preventing the fuel or hydrogen or methanol from directly mixing with the oxidant even under pressure. Such an ion exchange membrane has a high proton exchange rate as an electrolyte, a high ion exchange capacity, and a large current flowing for a long period of time. It is required that resistance to radicals and the like (oxidation resistance) be excellent, and that water retention be constant and high in order to keep electric resistance low. On the other hand, from the role of the membrane, the membrane has high mechanical strength and excellent dimensional stability, and does not have excessive gas permeability for hydrogen gas or oxygen gas as a fuel. It is required to have long-term durability.

【0004】初期の高分子イオン交換膜型燃料電池で
は、スチレンとジビニルベンゼンの共重合で製造した炭
化水素系高分子イオン交換膜が使用された。しかし、こ
のイオン交換膜は耐酸化性に起因する耐久性が非常に劣
っていたため実用性に乏しく、その後はデュポン社によ
り開発された炭化フッ素系(フッ素系)高分子のパーフ
ルオロスルホン酸膜「ナフィオン(デュポン社登録商
標)」等が一般に用いられてきた。
[0004] In the early polymer ion exchange membrane fuel cells, hydrocarbon polymer ion exchange membranes produced by copolymerization of styrene and divinylbenzene were used. However, this ion exchange membrane was poor in durability due to its extremely poor durability due to oxidation resistance, and was poor in practical use. Thereafter, a fluorocarbon (fluorine) polymer perfluorosulfonic acid membrane developed by DuPont, Inc. Nafion (registered trademark of DuPont) "and the like have been generally used.

【0005】しかしながら、「ナフィオン」等の従来の
フッ素系高分子イオン交換膜は、化学的な耐久性や安定
性には優れているが、イオン交換容量が1meq/g前後と
小さいために十分な電気出力が得られず、また、保水性
が不十分でイオン交換膜の乾燥が生じてプロトン伝導性
が低下したり、電極触媒での燃料ガスや酸化剤のガスの
反応が阻害されたりすることがあった。また、ナフィオ
ンなどのフッ素系高分子イオン交換膜はモノマーの合成
が困難かつ複雑であり、また、これを重合してポリマー
膜を製造する工程も複雑なため非常に高価であり、プロ
トン交換膜型燃料電池を自動車などへ搭載して実用化す
る場合の大きな障害になっている。そのため、前記ナフ
ィオン等に替わる低コストで高性能な電解質膜を開発す
る努力がおこなわれてきた。
However, conventional fluorine-based polymer ion-exchange membranes such as "Nafion" have excellent chemical durability and stability, but have a small ion exchange capacity of about 1 meq / g, which is insufficient. Electric output is not obtained, and the water retention is insufficient, drying of the ion exchange membrane occurs and proton conductivity decreases, and the reaction of fuel gas and oxidant gas at the electrode catalyst is inhibited. was there. Also, fluorine-based polymer ion-exchange membranes such as Nafion are difficult and complicated to synthesize monomers, and the process of polymerizing them to produce a polymer membrane is also complicated. This is a major obstacle to putting a fuel cell into a vehicle or the like for practical use. For this reason, efforts have been made to develop a low-cost, high-performance electrolyte membrane that replaces Nafion and the like.

【0006】上記の他にも、従来のフッ素系高分子イオ
ン交換膜では架橋構造が導入できないために、イオン交
換容量を大きくすることができなかった。すなわち、イ
オン交換容量を大きくしようとしてスルホン酸基を多く
導入しようとすると、高分子鎖中に架橋構造がないため
に膜強度が著しく低下し、容易に破損するようになる。
したがって、従来のフッ素系高分子のイオン交換膜では
スルホン酸基の量を膜強度が保持される程度に抑える必
要があり、このためイオン交換容量の比較的小さなもの
しかできなかった。これは燃料電池用などの大きな電流
を流すイオン交換膜としては必要な性能を備えたもので
はなかった。
In addition to the above, the conventional fluorine-based polymer ion-exchange membrane cannot introduce a cross-linked structure, so that the ion-exchange capacity cannot be increased. That is, if an attempt is made to increase the ion exchange capacity and to introduce a large amount of sulfonic acid groups, the membrane strength is remarkably reduced due to the absence of a crosslinked structure in the polymer chain, and the polymer is easily broken.
Therefore, in the conventional ion exchange membrane made of a fluorine-based polymer, the amount of sulfonic acid groups needs to be suppressed to such an extent that the membrane strength is maintained, so that only a relatively small ion exchange capacity can be obtained. This does not have the required performance as an ion exchange membrane for flowing a large current such as for a fuel cell.

【0007】また、本発明と密接に関連する放射線グラ
フト重合法では、フッ素系高分子膜にスルホン酸基を導
入することができるモノマーをグラフトして、固体高分
子電解質膜を作製する試みがなされている。しかし、フ
ッ素系高分子膜ではグラフト反応を行うために電子線や
γ線などの放射線を照射した場合に、照射による劣化の
ために著しい膜強度の低下が認められ、また、グラフト
率も極めて低いものしか得られない。このため、放射線
グラフト法でフッ素系イオン交換膜を作製した場合、膜
は非常にもろく、かつ、イオン交換容量の極めて低い膜
しか作製できず、電池膜として実用上使用に耐えない場
合がほとんどであった。
Further, in the radiation graft polymerization method closely related to the present invention, an attempt has been made to produce a solid polymer electrolyte membrane by grafting a monomer capable of introducing a sulfonic acid group into a fluorine-based polymer membrane. ing. However, when irradiating radiation such as electron beam or γ-ray to perform a graft reaction in a fluoropolymer film, a significant decrease in film strength due to deterioration due to irradiation is observed, and the graft ratio is also extremely low. You can only get things. For this reason, when a fluorine-based ion-exchange membrane is produced by a radiation grafting method, the membrane is very fragile, and only a membrane having an extremely low ion-exchange capacity can be produced. In many cases, the membrane cannot be practically used as a battery membrane. there were.

【0008】例えば、ポリテトラフルオロエチレン(PT
FE)あるいはPTFE−六フッ化プロピレン共重合体(FE
P)あるいはPTFE−パーフルオロアルキルビニルエーテ
ル共重合体(PFA)等では、放射線を照射した際に高分
子主鎖の著しい切断がおこることが知られている。FEP
膜にスチレンを放射線グラフト重合させ、これにスルホ
ン酸基を導入した固体高分子電解質膜を用いて作製した
電池においては、電池運転直後から、膜の分解によるス
ルホン酸基の脱離や膜の膨潤が起こり、この結果、電池
内部抵抗が上昇し、数十時間の短時間運転においても電
池性能の大幅な低下が起こると報告されている(Electr
ochimica Acta40,345 (1995))。
For example, polytetrafluoroethylene (PT
FE) or PTFE-propylene hexafluoride copolymer (FE
In the case of P) or PTFE-perfluoroalkylvinyl ether copolymer (PFA) or the like, it is known that remarkable cleavage of the polymer main chain occurs upon irradiation with radiation. FEP
In a battery fabricated using a solid polymer electrolyte membrane in which styrene is radiation-grafted and sulfonic acid groups are introduced into the membrane, sulfonic acid groups are desorbed and the membrane swells due to decomposition of the membrane immediately after battery operation. It has been reported that as a result, the internal resistance of the battery increases, and the battery performance significantly decreases even in short-time operation for several tens of hours (Electr
ochimica Acta 40, 345 (1995)).

【0009】これに対し、高分子の主鎖に一部オレフィ
ン炭化水素構造を含むフッ素系高分子の場合、放射線照
射による主鎖の切断は大きく低下する。例えば、炭化水
素構造を含むエチレン−テトラフルオロエチレン共重合
体膜にスチレンモノマーを放射線グラフト反応により導
入し、次いでスルホン化することにより合成したイオン
交換膜は燃料電池用イオン交換膜として機能する(特開
平9-102322)。しかし、欠点として高分子膜の主鎖やポ
リスチレングラフト鎖が炭化水素で構成されているた
め、膜に大きな電流を長時間流すと発生する水酸化ラジ
カル等によって、炭化水素鎖部やポリスチレングラフト
鎖部の酸化劣化が起こり、膜のイオン交換能が大幅に低
下する。さらに、この炭化水素構造を多く含むイオン交
換膜を固体電解質膜に用いるとガス拡散電極の触媒層に
十分な撥水性がない場合には、特に燃料電池反応で水が
生成する正極で、電極が湿り過ぎることに起因する出力
低下が起こる問題が指摘されている(特開平11-11131
0)。
On the other hand, in the case of a fluorine-based polymer in which the main chain of the polymer partially contains an olefin hydrocarbon structure, the breakage of the main chain due to irradiation is greatly reduced. For example, an ion exchange membrane synthesized by introducing a styrene monomer into an ethylene-tetrafluoroethylene copolymer membrane containing a hydrocarbon structure by a radiation grafting reaction and then sulfonating it functions as an ion exchange membrane for a fuel cell. Kaihei 9-102322). However, as a drawback, the main chain and polystyrene graft chain of the polymer film are composed of hydrocarbons. Hydrocarbon radicals and polystyrene graft chains are generated by hydroxyl radicals generated when a large current is applied to the film for a long time. Of the membrane occurs, and the ion exchange capacity of the membrane is greatly reduced. Further, when the ion exchange membrane containing a large amount of the hydrocarbon structure is used for the solid electrolyte membrane, particularly when the catalyst layer of the gas diffusion electrode does not have sufficient water repellency, the positive electrode generates water in a fuel cell reaction. It has been pointed out that there is a problem that the output is reduced due to excessive wetness (Japanese Patent Laid-Open No. 11-11131).
0).

【0010】[0010]

【発明が解決しようとする課題】フッ素化された炭素骨
格の主鎖をもつ高分子、特にポリテトラフルオロエチレ
ン(PTFE)を主体とするイオン交換膜では、架橋構造の
導入が困難であったために、実際上、イオン交換容量を
大きくすることができなかった。また、グラフト反応を
行うためにγ線や電子線などの放射線をこれらの膜に照
射すると分子鎖の切断などによって膜強度の著しい低下
が認められ、さらに、グラフト率も低いものしか得られ
なかった。このため、放射線グラフトによってイオン伝
導性を有するフッ素系高分子膜を作製した場合、膜強度
が低く、また、イオン交換容量が小さいため電解質膜や
隔膜として十分に必要な性能を備えたものではなかっ
た。さらに、PTFEのようなフッ素系高分子にスチレンの
ような炭化水素系のモノマーをグラフトした場合、大き
な電流が流れると発生する水酸化ラジカルによってスチ
レングラフト鎖が劣化し、長時間使用した場合、膜のイ
オン交換能が消失することが知られている。これらのこ
とから、放射線グラフトによるフッ素系高分子、特に、
PTFEを主体とした燃料電池用イオン交換膜は実用上、使
用に耐えないものであった。
SUMMARY OF THE INVENTION It has been difficult to introduce a crosslinked structure in a polymer having a fluorinated carbon skeleton main chain, particularly an ion exchange membrane mainly composed of polytetrafluoroethylene (PTFE). In fact, the ion exchange capacity could not be increased. In addition, when these films were irradiated with radiation such as γ-rays or electron beams in order to carry out a graft reaction, a significant decrease in the film strength was observed due to breakage of molecular chains, and further, only those having a low graft ratio were obtained. . For this reason, when a fluorine-based polymer membrane having ion conductivity is produced by radiation grafting, the membrane strength is low, and the ion exchange capacity is small, so that the membrane does not have sufficient performance as an electrolyte membrane or a diaphragm. Was. Furthermore, when a hydrocarbon-based monomer such as styrene is grafted to a fluorine-based polymer such as PTFE, the hydroxyl radicals generated when a large current flows degrade the styrene graft chain. It is known that the ion-exchange capacity of is lost. From these, the fluoropolymer by radiation grafting, especially,
Ion exchange membranes for fuel cells mainly composed of PTFE were not practically usable.

【0011】[0011]

【課題を解決するための手段】本発明は、このような従
来技術の問題点を克服するためになされたものであり、
放射線グラフトによるフッ素系高分子イオン交換膜にお
いて、固体高分子電解質としての特性に優れ、かつ、耐
酸化性の優れた膜を安価に提供するするものである。す
なわち、長鎖分岐型ポリテトラフルオロエチレン構造を
主体とし、これにスルホン酸基を有するオキシハイドロ
フルオロカーボン側鎖 である[−OCH2CF2CF2SO
3H] が結合したフッ素系高分子イオン交換膜から成
り、かつ、このイオン交換膜のイオン交換容量が0.5
〜2.0 meq/g、含水状態におけるイオン交換膜
の引張り破断強度が5〜25MPa、25℃での電気伝導
度が0.05〜0.25Ω-1・cm-1であることを特徴
とする優れたフッ素系高分子イオン交換膜を提供するこ
とであり、また、放射線グラフト法によって長鎖分岐型
ポリテトラフルオロエチレン膜に特定のハイドロフルオ
ロビニルエーテルモノマーをグラフトし、これにスルホ
ン酸基を導入することによってフッ素系高分子イオン交
換膜を製造する方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to overcome such problems of the prior art.
An object of the present invention is to provide a fluorine-based polymer ion-exchange membrane obtained by radiation grafting, which has excellent properties as a solid polymer electrolyte and has excellent oxidation resistance at low cost. That is, [—OCH 2 CF 2 CF 2 SO 2] is an oxyhydrofluorocarbon side chain having a long chain branched polytetrafluoroethylene structure as a main component and having a sulfonic acid group.
3 H] -bonded fluoropolymer ion exchange membrane, and the ion exchange capacity of the ion exchange membrane is 0.5.
2.02.0 meq / g, tensile rupture strength of the ion exchange membrane in a water-containing state of 5-25 MPa, and electric conductivity at 25 ° C. of 0.05-0.25 Ω −1 · cm −1. To provide an excellent fluorine-based polymer ion-exchange membrane, and to graft a specific hydrofluorovinyl ether monomer onto a long-chain branched polytetrafluoroethylene membrane by a radiation grafting method and introduce sulfonic acid groups into the graft. To provide a method for producing a fluorinated polymer ion exchange membrane.

【0012】即ち、ポリテトラフルオロエチレン(PTF
E)に高温放射線照射を行なって長鎖分岐型PTEFとし、
引き続きこれに放射線照射して各種のモノマーをグラフ
トし、さらに、グラフト鎖へのスルホン酸基の導入につ
いて研究を進めた結果、フッ素系高分子イオン交換膜に
おける最大の欠点であるイオン交換容量が小さく、か
つ、容量範囲が狭いこと、また、炭化水素モノマーをグ
ラフトしたPTFE系イオン交換膜における最大の欠点であ
る耐酸化性が低いこと、さらに、放射線グラフトPTFE膜
に見られる膜強度の大幅な低下など、これらの問題をす
べて解決することができた。また、含水率や電気伝導度
も含めた各特性を適切で広い範囲内に制御することがで
きるPTFE系高分子イオン交換膜を発明するに至った。
That is, polytetrafluoroethylene (PTF
E) is irradiated with high-temperature radiation to obtain a long-chain branched PTEF,
This was followed by irradiation to graft various monomers and further research into the introduction of sulfonic acid groups into the graft chains.As a result, the ion exchange capacity, the biggest drawback of fluorine-based polymer ion exchange membranes, was small. And, the capacity range is narrow, the oxidation resistance which is the biggest drawback of the PTFE ion exchange membrane grafted with hydrocarbon monomer is low, and the membrane strength seen in the radiation grafted PTFE membrane is greatly reduced. All of these problems could be solved. Further, they have invented a PTFE-based polymer ion-exchange membrane capable of appropriately controlling each property including the water content and the electric conductivity within a wide range.

【0013】ここで長鎖分岐型PTFEとは、下記の式The long-chain branched PTFE is represented by the following formula:

【化1】及びEmbedded image and

【化2】で示されるくり返し単位を有するフッ素系高分
子、及び
A fluorine-containing polymer having a repeating unit represented by the following formula:

【化1】とAnd

【化2】が結合したものを繰り返し単位とするフッ素系
高分子の混合物を指す。
Refers to a mixture of fluoropolymers having a repeating unit as a bond.

【0014】[0014]

【化1】 Embedded image

【0015】[0015]

【化2】 Embedded image

【0016】このような長鎖分岐型PTFEは、PTFEを30
0〜365℃の温度範囲、10-3〜10Torrの減圧下、
または、10-3〜2Torrの酸素分圧の不活性ガス中でγ
線や電子線の放射線を5〜500kGy照射して作製す
ることができる。不活性ガスとしては窒素、アルゴン、
ヘリウムガスなどを用いる。PTFE膜を上記の条件下で照
射しても長鎖分岐型PTFE膜を作製できるが、シンターし
たブロック状のPTFEを同様の条件下で照射し、削り出す
ことによっても長鎖分岐型PTFE膜を得ることができる。
長鎖分岐型PTFEは、その分子構造から見ても無定型部分
が多く、グラフト率が低いという欠点を解決できる。例
えば、グラフトモノマーとしてスチレンを用いた場合、
通常のPTFEに比較し、長鎖分岐型PTFEはグラフト率を著
しく増加させることができ、このため通常のPTFEの2〜
10倍のスルホン酸基を長鎖分岐型PTFEに導入できる
(特願2000-170450)。本発明によるフッ素系高分子イオ
ン交換膜は、PTFEの高温放射線照射によって得られた長
鎖分岐型ポリテトラフルオロエチレン構造を主体とし、
これにスルホン酸基を有するオキシハイドロフルオロカ
ーボン側鎖である [−OCH2CF2CF2SO3H] が結
合したフッ素系高分子イオン交換膜から成る。上記の長
鎖分岐型PTFE膜に、10-3torr以下の減圧下、または、不
活性ガス中、室温で再び電子線やγ線を5〜500kG
y照射した後、酸素ガスを除去したハイドロフルオロビ
ニルエーテルモノマーであるCF2=CFOCH2CF2
CF2SR、CF2=CFOCH2CF2CF2SO2R、C
2=CFOCH2CF2CF2SX、および/またはCF
2=CFOCH2CF2CF2SO2X(ここで、R:−CH
3、または、−C(CH3)3、および、X:−Cl、また
は、−F)を加えて反応させて、長鎖分岐型PTFE膜に該
モノマーをグラフトする。この時、1,1,2-トリクロロト
リフルオロエタンなどの溶媒を用いて該モノマーを希釈
してもよい。グラフト温度は不活性ガス下、−78℃〜
100℃あるいは溶媒の沸点以下の温度範囲で該モノマ
ー単独、または該モノマーを溶媒で希釈した溶液中で行
なう。酸素の存在はグラフト反応を阻害するため、これ
ら一連の操作はアルゴンガスや窒素ガスなどの不活性ガ
ス中で、また、モノマーやモノマーを溶媒に溶かした溶
液は常法の処理(凍結脱気やバブリング)で酸素を除去
した状態で使用する。放射線の線量はグラフト率(実施
例2の式(1)参照)と比例関係にあり、線量が多いほ
どグラフト率は高くなるが、グラフト率が100重量%
(wt%)以上になると徐々に飽和してくる。グラフト率に
関しては長鎖分岐型PTFEに対し、5〜200wt%、より
好ましくは15〜150wt%である。長鎖分岐型PTFEに
放射線グラフトを行う場合に、上記ハイドロフルオロビ
ニルエーテルモノマーに対しテトラフルオロエチレンを
コモノマー(共単量体)として用い、グラフト鎖中に2
3〜80wt%のテトラフルオロエチレン単位が導入され
たフッ素系高分子イオン交換膜を製造することができ
る。これは該グラフト鎖を導入する際に、例えば、溶媒
に溶かした上記のハイドロフルオロビニルエーテルモノ
マー1モルに対してテトラフルオロエチレンコモノマー
2モル相当を反応容器内に導入して反応させると、高分
解能NMR分析から約2:3の比率で共グラフトしている
ことが分かる。このように、該ハイドロフルオロビニル
エーテルモノマーとテトラフルオロエチレンコモノマー
の仕込み組成比を変えることによって、長鎖分岐型PTFE
膜のグラフト鎖中に23〜80wt%のテトラフルオロエ
チレン単位が導入されたものが好ましい。上記グラフト
鎖中に、さらに、ジビニルベンゼンによる共重合によっ
て架橋構造を有するフッ素系高分子イオン交換膜を製造
することができる。これは上記の長鎖分岐型PTFEに放射
線グラフトを行う場合に、上記のハイドロフルオロビニ
ルエーテルモノマー、ないしは、ハイドロフルオロビニ
ルエーテルモノマーとテトラフルオロエチレンコモノマ
ーの加算した量に対し1〜10wt%の架橋助剤であるジ
ビニルベンゼンを加えて反応を行うことによって得られ
る。長鎖分岐型PTFEのグラフト鎖中に架橋構造を導入す
ることによって、本フッ素系高分子イオン交換膜の耐酸
化性を向上させることができる。
[0016] Such a long-chain branched PTFE is obtained by adding PTFE to 30.
Under a temperature range of 0 to 365 ° C. and a reduced pressure of 10 −3 to 10 Torr,
Or γ in an inert gas at an oxygen partial pressure of 10 −3 to 2 Torr
It can be manufactured by irradiating radiation of 5 rays or 500 kGy with an electron beam or an electron beam. Inert gases such as nitrogen, argon,
Helium gas or the like is used. A long-chain branched PTFE membrane can be produced by irradiating a PTFE membrane under the above conditions.However, a long-chain branched PTFE membrane can also be produced by irradiating a sintered block-shaped PTFE under the same conditions and shaving it. Obtainable.
The long-chain branched PTFE has many amorphous portions even in view of its molecular structure, and can solve the drawback of low graft ratio. For example, when styrene is used as a graft monomer,
Compared with normal PTFE, long-chain branched PTFE can significantly increase the graft ratio, and therefore has a 2-
Ten times as many sulfonic acid groups can be introduced into long-chain branched PTFE (Japanese Patent Application No. 2000-170450). The fluorine-based polymer ion exchange membrane according to the present invention is mainly composed of a long-chain branched polytetrafluoroethylene structure obtained by irradiating high-temperature radiation of PTFE,
It is composed of a fluorine-based polymer ion-exchange membrane to which [—OCH 2 CF 2 CF 2 SO 3 H] which is an oxyhydrofluorocarbon side chain having a sulfonic acid group is bonded. The above long-chain branched PTFE membrane is again exposed to an electron beam or γ-ray at a pressure of 10 −3 torr or less or at room temperature in an inert gas at 5 to 500 kG.
After irradiating with y, CF 2 CFCFOCH 2 CF 2 which is a hydrofluorovinyl ether monomer from which oxygen gas has been removed
CF 2 SR, CF 2 = CFOCH 2 CF 2 CF 2 SO 2 R, C
F 2 CFCFOCH 2 CF 2 CF 2 SX and / or CF
2 = CFOCH 2 CF 2 CF 2 SO 2 X (where R: -CH
3 or, -C (CH 3) 3, and,, X: -Cl, or, is reacted by addition of -F), grafting the monomer to the branched long chain PTFE film. At this time, the monomer may be diluted using a solvent such as 1,1,2-trichlorotrifluoroethane. Grafting temperature is -78 ° C under inert gas.
The reaction is carried out at a temperature of 100 ° C. or below the boiling point of the solvent in the monomer alone or in a solution obtained by diluting the monomer with the solvent. Since the presence of oxygen inhibits the grafting reaction, these series of operations are performed in an inert gas such as argon gas or nitrogen gas. Use with oxygen removed by bubbling. The radiation dose is proportional to the graft rate (see equation (1) in Example 2), and the higher the dose, the higher the graft rate, but the graft rate is 100% by weight.
(wt%), it gradually becomes saturated. The graft ratio is 5 to 200% by weight, more preferably 15 to 150% by weight, based on the long-chain branched PTFE. When performing radiation grafting on a long-chain branched PTFE, tetrafluoroethylene is used as a comonomer (comonomer) for the above hydrofluorovinyl ether monomer, and 2
A fluorine-based polymer ion-exchange membrane into which 3-80 wt% of tetrafluoroethylene units are introduced can be produced. This is because, when the graft chain is introduced, for example, 2 mol of tetrafluoroethylene comonomer equivalent to 1 mol of the above-mentioned hydrofluorovinyl ether monomer dissolved in a solvent is introduced into a reaction vessel and allowed to react, whereby high-resolution NMR is achieved. The analysis shows that the co-grafting was at a ratio of about 2: 3. Thus, by changing the charged composition ratio of the hydrofluorovinyl ether monomer and the tetrafluoroethylene comonomer, long-chain branched PTFE
It is preferable that 23 to 80% by weight of a tetrafluoroethylene unit is introduced into the graft chain of the membrane. A fluorine-based polymer ion-exchange membrane having a crosslinked structure can be further produced by copolymerization with divinylbenzene in the graft chain. This is when the above-mentioned long-chain branched PTFE is subjected to radiation grafting, the above-mentioned hydrofluorovinyl ether monomer, or 1 to 10% by weight of a crosslinking aid with respect to the total amount of the hydrofluorovinyl ether monomer and the tetrafluoroethylene comonomer. It is obtained by adding a certain divinylbenzene and performing a reaction. By introducing a crosslinked structure into the grafted chain of long-chain branched PTFE, the oxidation resistance of the present fluoropolymer ion exchange membrane can be improved.

【0017】引き続き、得られた長鎖分岐型PTFE膜の
グラフト鎖中の−SR基や−SO2R基(R:−CH3
または、−C(CH3)3)、ないしは、−SX基や−SO2
X基(X:−Cl、または、−F)をスルホン酸基であ
る [−SO3H] に変えて、スルホン酸基を有するオキ
シハイドロフルオロカーボン側鎖 である[−OCH2CF
2CF2SO3H] が導入されたフッ素系高分子イオン交
換膜を特徴とする。
Subsequently, the —SR group or —SO 2 R group (R: —CH 3 , R—CH 3) in the graft chain of the obtained long-chain branched PTFE film is obtained.
Or —C (CH 3 ) 3 ) or —SX group or —SO 2
X group (X: -Cl, or, -F) changed to a sulfonic acid group [-SO 3 H], a oxyhydrofluorocarbon side chains having sulfonic acid groups [-OCH 2 CF
[2 CF 2 SO 3 H] is introduced.

【0018】例えば、グラフト鎖中に−SCH3基や−
SC(CH33基をもつグラフト長鎖分岐型PTFE膜
は、1,1,2-トリクロロトリフルオロエタン溶媒中、85〜
125℃の温度で塩素ガスと反応させて−SCl基とし、
引き続き、同溶媒中にトリフルオロ酢酸と水の存在させ
て−SO2Cl基とする。これを、さらに、NaOH溶液につ
づいて硫酸溶液で処理して−SO2OH基とする。また、−
SC(CH33基をもつグラフト長鎖分岐型PTFE膜
は、アセトニトリル・HOF試薬で酸化し、引き続き、ト
リフッ化ブロム(BrF3)で−SO2F基に変換する。
これを、NaOH溶液につづいて硫酸溶液で処理して−SO2
OH基とする。また、−SClや−SF基をもつグラフト
長鎖分岐型PTFE膜は、アセトニトリル・HOF試薬で酸化
して−SO2F基に変換し、さらに、NaOH溶液につづい
て硫酸溶液で処理して−SO2OH基とする。これらの方法
によって、上記の得られた長鎖分岐型PTFE膜のグラフ
ト鎖中の−SR基や−SO2R基、ないしは、−SX基や
−SO2X基をスルホン酸基(−SO 2OH)に変えて、ス
ルホン酸基を有するオキシハイドロフルオロカーボン側
鎖である [−OCH2CF2CF2SO3H] を有するフッ
素系高分子イオン交換膜を得ることができる。
For example, in the graft chain, -SCHThreeGroup or-
SC (CHThree)ThreeGrafted long-chain branched PTFE membranes
Is 85 to 1,1,2-trichlorotrifluoroethane solvent.
Reacted with chlorine gas at a temperature of 125 ° C. to form an —SCl group,
Subsequently, trifluoroacetic acid and water were allowed to exist in the same solvent.
-SOTwoCl group. Add this to NaOH solution
And treated with sulfuric acid solutionTwoOH group. Also,-
SC (CHThree)ThreeGrafted long-chain branched PTFE membranes
Is oxidized with acetonitrile-HOF reagent and subsequently
Bromofluoride (BrFThree) At -SOTwoConvert to F group.
This is treated with a sulfuric acid solution followed by a NaOH solution to give -SOTwo
OH group. In addition, grafts having -SCl or -SF groups
Long chain branched PTFE membrane is oxidized with acetonitrile / HOF reagent
And -SOTwoConverted to F group, followed by NaOH solution
And treated with sulfuric acid solutionTwoOH group. These methods
Is a graph of the long-chain branched PTFE film obtained above.
-SR group or -SO in the chainTwoR group or -SX group or
-SOTwoX group is a sulfonic acid group (—SO TwoOH)
Oxyhydrofluorocarbon side with sulfonic acid group
A chain [-OCHTwoCFTwoCFTwoSOThreeH]
An element-based polymer ion exchange membrane can be obtained.

【0019】[0019]

【発明の実施の形態】本発明によるフッ素系高分子イオ
ン交換膜は、上記のハイドロフルオロビニルエーテルモ
ノマー、ないしは、ハイドロフルオロビニルエーテルモ
ノマーとテトラフルオロエチレンコモノマーのグラフト
量によってイオン交換容量(実施例2の式(2)参照)
を変えることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The fluorine-based polymer ion-exchange membrane according to the present invention has an ion-exchange capacity (formula of Example 2) based on the graft amount of the above-mentioned hydrofluorovinyl ether monomer or hydrofluorovinyl ether monomer and tetrafluoroethylene comonomer. (See (2))
Can be changed.

【0020】ハイドロフルオロビニルエーテルモノマー
の単独グラフトの場合、例えば、CF2=CFOCH2
2CF2SFモノマーを用いて長鎖分岐型PTFEにグラフ
トした後、スルホン酸基を導入したものでは、グラフト
率が17%でイオン交換容量が約0.5meq/g、グラ
フト率50%で約1.2meq/g、グラフト率100%で約
1.8 meq/g、グラフト率150%で約2.2 meq
/gの膜が得られる。ここでイオン交換膜のイオン交換
容量とは、乾燥イオン交換膜の重量1g当たりの交換基
量(meq/g)である(実施例2参照)。
In the case of a single graft of a hydrofluorovinyl ether monomer, for example, CF 2 CFCFOCH 2 C
After grafting onto long-chain branched PTFE using F 2 CF 2 SF monomer and then introducing a sulfonic acid group, the graft ratio was 17%, the ion exchange capacity was about 0.5 meq / g, and the graft ratio was 50%. About 1.2 meq / g, about 1.8 meq / g at a graft rate of 100%, and about 2.2 meq at a graft rate of 150%.
/ G of film is obtained. Here, the ion exchange capacity of the ion exchange membrane is the amount of exchange groups (meq / g) per 1 g of the weight of the dry ion exchange membrane (see Example 2).

【0021】また、ハイドロフルオロビニルエーテルモ
ノマーとテトラフルオロエチレンコモノマーの共グラフ
トでは、モノマー仕込みモル比が1:2の場合、グラフ
ト率が30%でイオン交換容量が約0.5meq/g、グ
ラフト率80%で約1.0meq/g、グラフト率160%で
約1.4meq/gの膜が得られる。
In the cografting of a hydrofluorovinyl ether monomer and a tetrafluoroethylene comonomer, when the charged monomer ratio is 1: 2, the graft ratio is 30%, the ion exchange capacity is about 0.5 meq / g, and the graft ratio is 80. % And about 1.4 meq / g at a graft ratio of 160%.

【0022】しかし、グラフト率を150%以上にすると、
徐々に含水時の膜の力学的強度が低下し始める。これら
のことから、本発明の膜のイオン交換容量は0.3me
q/g〜2.5meq/g、好ましくは、グラフト率や
膜強度を考慮してイオン交換容量は0.5meq/g〜
2.0meq/gである。
However, when the graft ratio is set to 150% or more,
Gradually, the mechanical strength of the film when hydrated begins to decrease. From these, the ion exchange capacity of the membrane of the present invention is 0.3 me.
q / g to 2.5 meq / g, preferably 0.5 to 0.5 meq / g in consideration of the graft ratio and membrane strength.
2.0 meq / g.

【0023】本発明のフッ素系高分子イオン交換膜では
導入されたスルホン酸基の量、および、
In the fluoropolymer ion exchange membrane of the present invention, the amount of the introduced sulfonic acid group, and

【化1】や[Formula 1]

【化2】における分子末端の2重結合がスルホン化反応
時に一部転化した−COOH基の量によって、フッ素系
高分子の含水率(実施例2参照)を制御できる。この膜
を燃料電池用イオン交換膜として使用する場合、含水率
が低すぎると酸素や水素の圧力が低い場合や酸素源とし
て空気を用いた場合に出力電圧が低下し、高電流密度や
高出力が維持できない。また、運転条件のわずかな変化
によって電気伝導度やガス透過係数が変わり好ましくな
い。したがって、イオン交換膜が乾燥状態になりにく
く、ガス透過係数や電気伝導度の変化が比較的少ないこ
とが必要である。本発明のイオン交換膜の含水率は10
〜80wt%の範囲で制御できる。一般的にはイオン交
換容量が増すにつれて含水率も増大するが、本発明のイ
オン交換膜は含水率を変化させることができることか
ら、膜の含水率は10〜100wt%、好ましくは10
〜80wt%である。本発明によるフッ素系高分子では
高いイオン交換容量にも拘わらず、長鎖分岐型PTFEの絡
み合いと長鎖分岐両末端での結合により膜の膨潤による
含水率の増大も抑制され、適度の膜強度を維持できる。
ここで膜の含水状態とは、室温の精製水中に24時間以上
イオン交換膜を保存しておいた状態のもので、含水率
(実施例2の式(3)参照)とは水中に保存しておいた
イオン交換膜の重量とこの膜を60℃にて16時間、真空
乾燥した時の膜の重量百分率である。従来、フッ素系の
イオン交換膜では膜の力学的強度や寸法安定性の点から
イオン交換容量が1meq/g前後のものしか実用に供
することができなかった。これはフッ素系の高分子、特
にPTFEでは一般に架橋構造を導入することが困難であ
り、このためPTFE膜ではPTFEの結晶部によって主に膜強
度が保たれている。このため多量のグラフト鎖やスルホ
ン酸基を導入するとPTFE膜の強度が急激に低下し、使用
に耐えなくなる。これに対して、本発明の長鎖分岐型PT
FE構造のフッ素系高分子は長鎖分岐の絡み合いや長鎖分
岐両末端の結合によってイオン交換容量が2.0meq
/g程度まで多量のグラフト鎖やスルホン酸基を導入し
ても、膜の力学特性や寸法安定性が保たれているため実
用に供することができる(実施例2、3)。イオン交換
容量が2.0meq/g以上の膜も作製可能であるが膜
の力学特性が低下し、膜の寸法安定性が低下する。これ
らのことから、本発明におけるフッ素系高分子イオン交
換膜は、0.5〜2.0meq/gのイオン交換容量を
有し、かつ、含水状態における膜材料の引張り破断強度
が3〜25MPa、より好ましくは5〜25MPaである。こ
のときの、膜材料の引張り伸びは15%以上、より好ま
しくは30%以上である。高いイオン交換容量と膜の力
学的特性の優れた膜は実用上極めて重要な発明である。
膜の力学特性から、グラフト率に関しては5〜200w
t%、より好ましくは15〜150wt%である。燃料電
池用高分子イオン交換膜は電気伝導度が高いものほど電
気抵抗が小さく、電解質膜としての性能は高い。そし
て、25℃におけるイオン交換膜の電気伝導度(実施例
2の式(4)参照)が0.05Ω-1・cm-1以下である
と燃料電池としての出力性能が著しく低下する場合が多
いため、イオン交換膜の電気伝導度は0.05Ω-1・c
-1以上、より高性能のイオン交換膜では0.10Ω-1
・cm -1以上であることが必要である。一方、通常のフ
ッ素系イオン交換膜では25℃におけるイオン交換膜の
電気伝導度が0.12Ω-1・cm-1以上ではイオン交換
膜の強度が低下することが知られている。すなわち、イ
オン交換膜の交換容量を増大させ、電気伝導度をあまり
大きくすると、膜の強度が低下するという不都合が生じ
る。しかし、本発明によるイオン交換膜では25℃にお
けるイオン交換膜の電気伝導度が0.11Ω-1・cm-1にお
いても大きな膜強度が保持されることが明らかとなった
〈実施例2〉。これは長鎖分岐型PTFEの長鎖分岐末端で
の結合や分子の絡み合いによる効果と長鎖分岐とグラフ
ト鎖であるオキシハイドロフルオロカーボン側鎖の絡み
合いよる効果と思われる。これらのことから本発明のフ
ッ素系高分子イオン交換膜は25℃での電気伝導度が
0.03〜0.25Ω-1・cm-1、好ましくは0.05
〜0.25Ω-1・cm-1のものである。
The double bond at the terminal of the molecule is a sulfonation reaction
Depending on the amount of -COOH groups that have been partially converted,
The water content of the polymer (see Example 2) can be controlled. This membrane
When used as an ion exchange membrane for fuel cells, the water content
If the pressure is too low, the oxygen or hydrogen
When using air, the output voltage drops and high current density and
High output cannot be maintained. Also, slight changes in operating conditions
The electrical conductivity and gas permeability coefficient change depending on
No. Therefore, the ion exchange membrane is less likely to dry.
The change in gas permeability and electrical conductivity is relatively small.
Is necessary. The water content of the ion exchange membrane of the present invention is 10
It can be controlled in the range of ~ 80 wt%. Generally ion exchange
As the exchange capacity increases, the water content also increases,
Can on-exchange membranes change moisture content?
The water content of the membrane is 10 to 100 wt%, preferably 10 to 100 wt%.
8080 wt%. In the fluoropolymer according to the present invention
Despite high ion exchange capacity, long chain branched PTFE entanglement
Due to membrane swelling due to binding and binding at both ends of long chain branch
An increase in the water content is also suppressed, and an appropriate film strength can be maintained.
Here, the water-containing state of the membrane means that the
Ion-exchange membrane is stored and its moisture content is
(Refer to the formula (3) in Example 2)
Vacuum the weight of the ion exchange membrane at 60 ° C. for 16 hours.
It is the weight percentage of the membrane when dried. Conventionally, fluorine-based
For ion exchange membranes, from the viewpoint of mechanical strength and dimensional stability of the membrane
Only those with an ion exchange capacity of around 1 meq / g are available for practical use.
I couldn't. This is a fluorine-based polymer,
In general, it is difficult to introduce a crosslinked structure with PTFE.
For this reason, the PTFE crystal part is mainly used to strengthen the PTFE membrane.
Degree is maintained. Therefore, a large amount of graft chains and sulfo
When the acid group is introduced, the strength of the PTFE membrane drops sharply,
Become intolerable. In contrast, the long-chain branched PT of the present invention
Fluorine polymer with FE structure has long chain branch entanglement and long chain component
Ion exchange capacity of 2.0 meq due to the bond at both ends
/ G to introduce a large amount of graft chains and sulfonic acid groups
However, the mechanical properties and dimensional stability of the membrane are maintained,
(Examples 2, 3). Ion exchange
A film with a capacity of 2.0 meq / g or more can be produced
Of the film, and the dimensional stability of the film decreases. this
From these facts, the fluorinated polymer ion exchange in the present invention
The exchange membrane has an ion exchange capacity of 0.5 to 2.0 meq / g.
Tensile rupture strength of the membrane material in a water-containing state
Is 3 to 25 MPa, more preferably 5 to 25 MPa. This
, The tensile elongation of the film material is more than 15%, more preferable.
Or more than 30%. High ion exchange capacity and membrane power
A film having excellent chemical properties is a very important invention for practical use.
From the mechanical properties of the membrane, the graft ratio was 5 to 200 watts.
t%, more preferably 15 to 150 wt%. Fuel electricity
The higher the conductivity of a polymer ion exchange membrane for a pond, the more
Low air resistance and high performance as an electrolyte membrane. Soshi
The electrical conductivity of the ion exchange membrane at 25 ° C. (Example
Equation (4) of 2) is 0.05Ω-1・ Cm-1Is less than
And the output performance of the fuel cell
Therefore, the electrical conductivity of the ion exchange membrane is 0.05Ω-1・ C
m-1As described above, 0.10Ω is used for a higher performance ion exchange membrane.-1
・ Cm -1It is necessary to be above. On the other hand,
In the case of a nitrogen-based ion exchange membrane,
Electric conductivity is 0.12Ω-1・ Cm-1Above is ion exchange
It is known that the strength of the film decreases. That is,
Increase the exchange capacity of the on-exchange membrane and reduce the electrical conductivity
If it is increased, the strength of the membrane will be reduced.
You. However, the ion exchange membrane according to the present invention has a temperature of 25 ° C.
Conductivity of ion exchange membrane is 0.11Ω-1・ Cm-1In
It is clear that high film strength is maintained even if
<Example 2>. This is the long-chain branched PTFE
Effects and effects of long chain branching and graphs
Entanglement of oxyhydrofluorocarbon side chains
It seems to be an effect that fits. From these facts, the present invention
Nitrogen-based polymer ion exchange membrane has electrical conductivity at 25 ° C.
0.03-0.25Ω-1・ Cm-1, Preferably 0.05
~ 0.25Ω-1・ Cm-1belongs to.

【0024】イオン交換膜の特性を上げるために、イオ
ン交換膜の厚みを薄くすることも考えられる。しかし現
状では、あまり薄いイオン交換膜では破損しやすく、イ
オン交換膜自体の製作も難しいのが実状である。また、
イオン交換膜内に含まれる水の絶対量も少なくなるため
イオン交換膜が乾燥しやすく、高性能を長時間維持する
ことができなくなる場合も考えられる。したがって、通
常では30〜500μm厚の範囲のイオン交換膜が使わ
れている。本発明の場合、膜厚は特に限定されないが
50μm〜300μmの範囲のものが有効である。長鎖
分岐型PTFEに炭化水素系のスチレンをグラフトした後、
ポリスチレングラフト鎖をスルホン化して得た高分子イ
オン交換膜の耐酸化性は極めて低い。例えば、長鎖分岐
型PTFEにグラフト率100%でスチレンをグラフトし、その
後スルホン化した長鎖分岐型PTFE−グラフトポリスチレ
ン高分子イオン交換膜は100℃の3%過酸化水素水溶液
中、5〜15分でイオン交換膜が劣化しイオン交換容量
がほぼゼロとなる。これに対し、本発明によるフッ素系
高分子イオン交換膜はポリスチレングラフト鎖のように
三級炭素についた水素がなく、また、スルホン基がつい
た炭素にはフッ素原子が結合しているため耐酸化性がき
わめて高く、100℃の3%過酸化水素水溶液中に24時間置
いてもイオン交換容量はほとんど変化しない。
It is conceivable to reduce the thickness of the ion exchange membrane in order to improve the characteristics of the ion exchange membrane. However, at present, an extremely thin ion exchange membrane is easily damaged, and it is actually difficult to manufacture the ion exchange membrane itself. Also,
Since the absolute amount of water contained in the ion-exchange membrane is also reduced, the ion-exchange membrane is likely to dry, and it may not be possible to maintain high performance for a long time. Therefore, usually, an ion exchange membrane having a thickness in the range of 30 to 500 μm is used. In the case of the present invention, the film thickness is not particularly limited,
Those having a range of 50 μm to 300 μm are effective. After grafting hydrocarbon styrene to long-chain branched PTFE,
The oxidation resistance of a polymer ion exchange membrane obtained by sulfonating a polystyrene graft chain is extremely low. For example, a long-chain branched PTFE-grafted polystyrene polymer ion-exchange membrane obtained by grafting styrene to a long-chain branched PTFE at a graft ratio of 100%, and then sulfonating the same, in a 3% aqueous hydrogen peroxide solution at 100 ° C. for 5 to 15 In a minute, the ion exchange membrane deteriorates and the ion exchange capacity becomes almost zero. In contrast, the fluorinated polymer ion-exchange membrane according to the present invention has no hydrogen attached to tertiary carbon like a polystyrene graft chain, and has a fluorine atom bonded to carbon with a sulfone group, so it is oxidation-resistant. The ion exchange capacity hardly changes even when placed in a 3% hydrogen peroxide aqueous solution at 100 ° C for 24 hours.

【0025】以上のように、本発明のフッ素系高分子イ
オン交換膜は膜としての重要な各特性、すなわち、イオ
ン交換容量は広い範囲である0.5〜2.0meq/
g、膜強度は5〜25MPa、含水率は10〜80wt
%、25℃における電気伝導度は0.05〜0.25Ω
-1・cm-1の各々の数値範囲内に制御して作製すること
ができる。特性をこれらの限られた範囲内に制御できる
ことも本発明の特徴である。
As described above, the fluorinated polymer ion exchange membrane of the present invention has important characteristics as a membrane, that is, the ion exchange capacity is in a wide range of 0.5 to 2.0 meq /.
g, film strength is 5-25MPa, water content is 10-80wt
%, Electric conductivity at 25 ° C. is 0.05 to 0.25Ω.
It can be manufactured by controlling each numerical value range of −1 · cm −1 . It is also a feature of the present invention that the characteristics can be controlled within these limited ranges.

【0026】ハイドロフルオロビニルエーテルモノマー
やこのモノマーとテトラフルオロエチレンモノマーをグ
ラフトする場合に、電子線やγ線の代わりにヘリウム、
炭素、窒素、酸素、ネオン、アルゴン、クリプトン、キ
セノン、または、金などの重イオンで長鎖分岐型ポリテ
トラフルオロエチレン膜の厚さを十分に貫通するエネル
ギーを有する上記イオンビームを照射し、上記の各モノ
マーをグラフト後、スルホン化してフッ素系高分子イオ
ン交換膜を作製することができる。重イオンビームを照
射した長鎖分岐型PTFE膜を用いると、重イオンの飛
跡に沿ってラジカルが生成し、ここに密なグラフト鎖が
生成する。この飛跡は膜を貫通しているため、同じ線量
のγ線や電子線を用いた場合よりもより有効にイオンが
移動し、電気伝導度が高い膜が生成できる。50μm厚
の膜ならば、ヘリウムイオンは8MeV以上、炭素イオ
ンは40MeV以上、ネオンイオンは80MeV以上、
アルゴンイオンは180MeV以上であり、同じく10
0μm厚の膜ならば、ヘリウムイオンは12MeV以
上、炭素イオンは62MeV以上、ネオンイオンは13
0MeV以上、アルゴンイオンは300MeV以上が望
ましい。照射量は1×108〜1×1013個/cm2の範
囲が好ましい。
When grafting a hydrofluorovinyl ether monomer or this monomer with a tetrafluoroethylene monomer, helium,
Carbon, nitrogen, oxygen, neon, argon, krypton, xenon, or a heavy ion such as gold is irradiated with the ion beam having energy enough to penetrate the thickness of the long-chain branched polytetrafluoroethylene film, After grafting each of the above monomers, a sulfonated polymer ion-exchange membrane can be prepared by sulfonation. When a long-chain branched PTFE film irradiated with a heavy ion beam is used, radicals are generated along the tracks of heavy ions, and dense graft chains are generated there. Since these tracks penetrate the film, ions can move more effectively than when using the same dose of γ-rays or electron beams, and a film having high electric conductivity can be generated. If the film has a thickness of 50 μm, helium ions are 8 MeV or more, carbon ions are 40 MeV or more, neon ions are 80 MeV or more,
Argon ions are 180 MeV or more, and 10
For a 0 μm thick film, helium ions are 12 MeV or more, carbon ions are 62 MeV or more, and neon ions are 13 MeV or more.
Desirably, 0 MeV or more and argon ions are 300 MeV or more. The irradiation amount is preferably in the range of 1 × 10 8 to 1 × 10 13 / cm 2 .

【0027】上述の一連の操作、反応によって本発明に
係わるフッ素系高分子イオン交換膜が作製されることを
特徴とする。以下、本発明を実施例及び比較例により説
明するが、本発明はこれに限定されるものではない。
A fluorine-based polymer ion-exchange membrane according to the present invention is produced by the series of operations and reactions described above. Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0028】[0028]

【実施例】(実施例1)長鎖分岐型PTFEシートを得るた
めに以下の照射を行った。厚さ50μm又は100μm
で数平均分子量 1×107のポリテトラフロオロエチレ
ン(PTFE)シートの各10cm×10cmをヒーター付き
のSUS製オートクレーブ照射容器(内径7cmφ×30cmH)
に入れ、容器内を10-3Torr程度に脱気してアルゴンガ
スに置換した。その後、電気ヒータで加熱してPTFEシー
トの温度を340℃として、60Co−γ線を線量率3k
Gy/hで線量90kGy(30h)又は線量 180
kGy(60h)照射した。照射後、容器を冷却して高
温照射PTFEシートを取り出した。
EXAMPLES (Example 1) The following irradiation was performed to obtain a long-chain branched PTFE sheet. 50μm or 100μm thick
A 10 cm x 10 cm polytetrafluoroethylene (PTFE) sheet having a number average molecular weight of 1 x 10 7 was applied to a SUS autoclave irradiation vessel equipped with a heater (inner diameter 7 cmφ x 30 cmH).
, And the inside of the vessel was degassed to about 10 -3 Torr and replaced with argon gas. Then, the temperature of the PTFE sheet is raised to 340 ° C. by heating with an electric heater, and the dose rate of 60 Co-γ rays is 3 k.
A dose of 90 kGy (30 h) or a dose of 180 in Gy / h
Irradiated with kGy (60 h). After irradiation, the container was cooled and the high temperature irradiated PTFE sheet was taken out.

【0029】また、厚さ50μm又は100μmで数平
均分子量 1×107のポリテトラフロオロエチレン(PTF
E)シートの10cm×6cmをSUS枠で固定し、電子線入射
用の50μm厚のチタン箔の窓の付いた加熱型のSUS製
照射容器(内径8cm×80cmx10cmH)に入れ、容器内を1
-3Torr程度に脱気してアルゴンガスに置換した。その
後、電気ヒータで加熱してPTFEシートの温度を335〜
340℃として、ごくわすかにアルゴンガスを流しなが
ら電子線2MV(電流0.5mA(線量率0.5kGy
/s))照射した。線量は100kGy(200s)又
は200kGy(400s)とした。照射後、容器を冷
却して高温照射PTFEシートを取り出した。得られた長鎖
分岐型PTFE膜の特性を表1に示す。
A polytetrafluoroethylene (PTF) having a thickness of 50 μm or 100 μm and a number average molecular weight of 1 × 10 7 is used.
E) 10cm x 6cm of the sheet is fixed with a SUS frame, put into a heating type SUS irradiation container (inner diameter 8cm x 80cm x 10cmH) with a 50μm thick titanium foil window for electron beam incidence,
It was degassed to about 0 -3 Torr and replaced with argon gas. Then, heat with an electric heater to raise the temperature of the PTFE sheet to 335-350.
At 340 ° C., electron beam 2MV (current 0.5 mA (dose rate 0.5 kGy) while flowing argon gas slightly
/ S)) Irradiation. The dose was 100 kGy (200 s) or 200 kGy (400 s). After irradiation, the container was cooled and the high temperature irradiated PTFE sheet was taken out. Table 1 shows the properties of the obtained long-chain branched PTFE membrane.

【0030】高温照射で得られた長鎖分岐型PTFEは引張
試験においてネッキングを起こさず、通常の架橋ゴムの
ような切断挙動を示す。また、膜の透明性が上がってい
ることや膜の融点が低下していることから、長鎖分岐型
PTFE中の結晶サイズがもとのPTFEよりもかなり小さくな
っていることを示している。また、線量を多くすること
で、引張強度が向上した。これは線量を多くすることで
長鎖分岐型PTFE鎖同士の結合が密になり、膜の強度
が増大したと思われる。また、γ線照射と電子線照射で
は、ほぼ同じ長鎖分岐型PTFEが生成していることが分か
る。
The long-chain branched PTFE obtained by irradiation at a high temperature does not cause necking in a tensile test and shows a cutting behavior like an ordinary crosslinked rubber. In addition, since the transparency of the film has increased and the melting point of the film has decreased, the long-chain branched type
This shows that the crystal size in the PTFE is much smaller than the original PTFE. Also, the tensile strength was improved by increasing the dose. This is considered to be due to the fact that by increasing the dose, the bonds between the long-chain branched PTFE chains became denser, and the strength of the membrane was increased. In addition, it can be seen that the same long-chain branched PTFE is generated by γ-ray irradiation and electron beam irradiation.

【0031】(比較例1)照射していない厚さ100μm
のPTFE膜の特性を表1に示す。
(Comparative Example 1) Unirradiated thickness 100 μm
Table 1 shows the characteristics of the PTFE membrane.

【0032】[0032]

【表1】 [Table 1]

【0033】(実施例2)実施例1のγ線を90kGy
照射して得た長鎖分岐型PTFE膜(厚さ50μm)をコッ
ク付きのガラス製セパラブル容器(内径3cmφ×15cmH)に
入れて脱気後アルゴンガスで置換した。この状態で長鎖
分岐型PTFEに、再び、γ線(線量率1×10 4Gy/h)を45
kGy室温で照射した。引き続いて、3回の凍結脱気に
よって酸素を除きアルゴンガス置換したハイドロフルオ
ロビニルエーテルモノマーであるCF2=CFOCH2
2CF2SCH3を0℃の照射された長鎖分岐型PTFE膜の
入ったガラス容器に、膜が浸されるまで導入した。0℃
で24時間反応させた後、室温にして24時間反応させた。
その後、THFを加え、冷やしたn-ペンタンで洗浄し、乾
燥した。下記式(1)によって求めたグラフト率は65%
であった。このグラフトした長鎖分岐型PTFE膜を1,1,2-
トリクロロトリフルオロエタン溶媒中、125℃の温度で
塩素ガスと反応させ、さらに引き続き、同溶媒中にトリ
フルオロ酢酸と水の存在させて100℃、6時間反応させ
た。得られた膜をTHFで洗浄し、乾燥後、さらに、60℃
のNaOH溶液にで12時間処理後、硫酸溶液で処理した。本
実施例で得られた膜のイオン交換容量、含水率、電気伝
導度、引張り破断強度、および、耐酸化性を表2に示
す。
(Embodiment 2) The γ-ray of Embodiment 1 was applied at 90 kGy.
The long-chain branched PTFE membrane (thickness: 50 μm)
In a glass separable container with a hole (inner diameter 3cmφ × 15cmH)
After being charged and degassed, the atmosphere was replaced with argon gas. Long chain in this state
Once again, γ-rays (dose rate 1 × 10 FourGy / h) 45
Irradiation at room temperature kGy. Successively, three freeze degassing
Therefore, the hydrofluoric acid was purged with argon gas except oxygen.
CF which is a vinyl ether monomerTwo= CFOCHTwoC
FTwoCFTwoSCHThreeOf the long-chain branched PTFE membrane irradiated at 0 ° C
The glass container was introduced until the membrane was immersed. 0 ℃
And then allowed to react at room temperature for 24 hours.
After that, THF was added, washed with cold n-pentane, and dried.
Dried. The graft ratio determined by the following formula (1) is 65%
Met. The grafted long-chain branched PTFE membrane is 1,1,2-
At a temperature of 125 ° C in trichlorotrifluoroethane solvent
Reaction with chlorine gas, followed by trituration in the same solvent
React in the presence of fluoroacetic acid and water at 100 ° C for 6 hours
Was. The obtained membrane was washed with THF, dried, and then further dried at 60 ° C.
Was treated with a NaOH solution for 12 hours and then treated with a sulfuric acid solution. Book
The ion exchange capacity, water content, and electrical conductivity of the membrane obtained in the examples
Table 2 shows conductivity, tensile strength at break, and oxidation resistance.
You.

【0034】なお、長鎖分岐型ポリテトラフルオロエチ
レンを主鎖部、ハイドロフルオロビニルエーテルの重合
した部分をグラフト鎖部とすると、主鎖部に対するグラ
フト鎖部の重量比は、一般に次式のグラフト率(Xdg(wt
%))として表される。
Assuming that the long-chain branched polytetrafluoroethylene is the main chain and the polymerized portion of hydrofluorovinyl ether is the graft chain, the weight ratio of the graft chain to the main chain is generally represented by the following formula: (X dg (wt
%)).

【0035】 X=100・(Wt−W0)/W0 (1) W0:グラフト前のPTFE膜の重さ(g) Wt:グラフト後のPTFE膜(乾燥状態)の重さ(g) また、 膜のイオン交換容量(Iex(meq/g))は次式で
表される。
X = 100 · (W t −W 0 ) / W 0 (1) W 0 : weight of PTFE membrane before graft (g) W t : weight of PTFE membrane (dry state) after graft ( g) The ion exchange capacity (I ex (meq / g)) of the membrane is expressed by the following equation.

【0036】 Iex=n(SO3H)obs /Wd (2) n(SO3H)obs:イオン交換膜のスルホン酸基濃度(mM/
g) Wd :イオン交換膜の乾燥重量(g) n(SO3H)obsの測定は、膜を1M(1モル)硫酸溶液中に
50℃で4時間浸漬し、交換基をすべて−SO3 H型とした。
その後、3MのNaCl水溶液中50℃、4時間浸漬して−SO3
Na型とし、置換されたプロトン(H+)を0.2NのNaOHで中
和滴定しスルホン酸基濃度を求めた。また、室温で水中
に保存しておいたSO3H型のイオン交換膜を水中から取出
し軽くふき取った後の膜の重量をWs(g)とし、その
後、この膜を60℃にて16時間、真空乾燥した時の膜
の重量Wd(g)を乾燥重量とした。また、測定値W
s 、Wd から次式により含水率が求められる。
I ex = n (SO 3 H) obs / W d (2) n (SO 3 H) obs : sulfonic acid group concentration of the ion exchange membrane (mM /
g) W d : Dry weight of ion-exchange membrane (g) n (SO 3 H) obs was measured by placing the membrane in a 1 M (1 mol) sulfuric acid solution.
It was immersed at 50 ° C. for 4 hours to make all the exchange groups —SO 3 H type.
After that, it was immersed in a 3M NaCl aqueous solution at 50 ° C. for 4 hours to obtain —SO 3
It was made into Na type, and the substituted proton (H + ) was neutralized and titrated with 0.2N NaOH to determine the sulfonic acid group concentration. Further, the weight of the membrane after taking out the SO 3 H type ion exchange membrane stored in water at room temperature and gently wiping it was defined as W s (g), and then the membrane was kept at 60 ° C. for 16 hours. The weight W d (g) of the film after vacuum drying was defined as the dry weight. Also, the measured value W
The water content is determined from s and Wd by the following equation.

【0037】 含水率(%)= 100・(Ws−Wd)/Wd (3) イオン交換膜の電気伝導性は、交流法による測定(新実
験化学講座19、高分子化学〈II〉、p.992,丸善)で、
通常の膜抵抗測定セルとヒュ−レットパッカード製のLC
Rメータ、E-4925Aを使用して膜抵抗(Rm)の測定を行っ
た。1M硫酸水溶液をセルに満たして膜の有無による白
金電極間(距離5mm)の抵抗を測定し、膜の電気伝導度
(比伝導度)は次式を用いて算出した。
Water content (%) = 100 · (Ws−W d ) / W d (3) The electric conductivity of the ion exchange membrane was measured by an AC method (New Experimental Chemistry Course 19, Polymer Chemistry <II>, p.992, Maruzen)
Normal membrane resistance measuring cell and LC made by Hewlett Packard
The film resistance (Rm) was measured using an R meter and E-4925A. The cell was filled with a 1 M sulfuric acid aqueous solution, and the resistance between the platinum electrodes (distance: 5 mm) was measured depending on the presence or absence of the membrane, and the electrical conductivity (specific conductivity) of the membrane was calculated using the following equation.

【0038】 κ=(1/Rm)・(d/S)(Ω-1cm-1) (4) κ:膜の電気伝導度((Ω‐1cm‐1) d:イオン交換膜の厚み(cm) S:イオン交換膜の通電面積(cm2 ) 電気伝導度測定値の比較のために、直流法でMark W.Ver
brugge,Robert F.Hill等(J. Electrochem. Soc.,.137,
3770-3777(1990))と類似のセル及びポテンショスタッ
ト、関数発生器を用いて測定した。交流法と直流法の測
定値には良い相関性が見られた。下記表2の値は交流法
による測定値である。また、引張り試験は引張り速度20
0mm/minで、試料片の大きさはJIS−4号ダンベル相当
(含水時)を用いた。さらに、耐酸化性の測定は試料膜
を100℃の3%過酸化水素溶液中に入れ、24時間後の重
量変化、および、イオン交換容量を測定した。
Κ = (1 / Rm) · (d / S) (Ω −1 cm −1 ) (4) κ: Electric conductivity of the membrane ((Ω− 1 cm− 1 ) d: Thickness of ion exchange membrane (Cm) S: Current-carrying area of ion exchange membrane (cm 2 ) For comparison of measured values of electric conductivity, Mark W. Ver.
brugge, Robert F. Hill et al. (J. Electrochem. Soc.,. 137 ,
3770-3777 (1990)), a potentiostat, and a function generator. Good correlation was found between the measured values of the AC and DC methods. The values in Table 2 below are values measured by the AC method. The tensile test was performed at a pulling speed of 20.
At 0 mm / min, the size of the sample was equivalent to JIS-4 dumbbell (when wet). Further, the oxidation resistance was measured by placing the sample membrane in a 3% hydrogen peroxide solution at 100 ° C. and measuring the weight change and the ion exchange capacity after 24 hours.

【0039】(実施例3)実施例1のγ線を90kGy照
射して得た長鎖分岐型PTFE膜(厚さ50μm)をコック
付きの耐圧ガラス製セパラブル容器(内径3cmφ×15cmH)
に入れて脱気後アルゴンガスで置換した。この状態で長
鎖分岐型PTFEに、再び、γ線(線量率10kGy/h)を
60kGy室温で照射した。禁止剤を除いたテトラフル
オロエチレンガスをこの照射された長鎖分岐型PTFE膜の
入ったガラス容器に導入し1気圧とした。
Example 3 A long-chain branched PTFE membrane (thickness: 50 μm) obtained by irradiating 90 kGy with the γ-ray of Example 1 is a pressure-resistant glass separable container equipped with a cock (inner diameter: 3 cmφ × 15 cmH).
And then replaced with argon gas. In this state, the long-chain branched PTFE was again irradiated with γ-rays (dose rate: 10 kGy / h) at room temperature of 60 kGy. The tetrafluoroethylene gas from which the inhibitor was removed was introduced into the glass container containing the irradiated long-chain branched PTFE membrane, and the pressure was adjusted to 1 atm.

【0040】引き続いて、3回の凍結脱気によって酸素
を除きアルゴンガス置換したハイドロフルオロビニルエ
ーテルモノマーであるCF2=CFOCH2CF2CF2
O2Fと溶媒である1,1,2-トリクロロトリフルオロエタン
の溶液(容積比で約1:1)をこのガラス容器に、膜が
浸されるまで導入した。容器内を攪拌し、テトラフルオ
ロエチレンガスをほぼ1気圧付近に保ちながら室温で48
時間反応させた。その後、膜をアセトンで洗浄し、乾燥
した。グラフト率は98%であった。
Subsequently, CF 2 CFCFOCH 2 CF 2 CF 2 S, which is a hydrofluorovinyl ether monomer from which oxygen has been removed and the argon gas has been replaced by freezing and deaeration three times, is used.
A solution of O 2 F and the solvent 1,1,2-trichlorotrifluoroethane (about 1: 1 by volume) was introduced into the glass container until the membrane was immersed. Stir the inside of the container, and keep the tetrafluoroethylene gas at about 1 atm.
Allowed to react for hours. Thereafter, the membrane was washed with acetone and dried. The graft ratio was 98%.

【0041】このグラフトした長鎖分岐型PTFE膜を60℃
のNaOH溶液にで12時間処理し、さらに、硫酸溶液で処理
した。本実施例で得られた膜のイオン交換容量、含水
率、電気伝導度、引張り破断強度、および、耐酸化性を
表2に示す。
The grafted long-chain branched PTFE membrane is heated at 60 ° C.
For 12 hours and then with a sulfuric acid solution. Table 2 shows the ion exchange capacity, water content, electric conductivity, tensile strength at break, and oxidation resistance of the membrane obtained in this example.

【0042】実施例2,3で得られたイオン交換膜のイ
オン交換容量は1meq/g以上と従来のフッ素系高分
子イオン交換膜に比べて高い。また、膜の含水時の引張
り強度は10MPa以上の値であり、高分子イオン交換膜と
しては十分な強度を有している。
The ion exchange capacity of the ion exchange membranes obtained in Examples 2 and 3 is 1 meq / g or more, which is higher than that of the conventional fluorine-based polymer ion exchange membrane. The membrane has a tensile strength of 10 MPa or more when containing water, and has a sufficient strength as a polymer ion exchange membrane.

【0043】(比較例2及び3)表2に示したナフィオ
ン 115、ナフィオン 117について測定されたイオン交換
容量、含水率、電気伝導度、引張り破断強度、および、
耐酸化性の結果を比較例2、3に示す。
(Comparative Examples 2 and 3) The ion exchange capacity, water content, electric conductivity, tensile breaking strength, and Nafion 115 and Nafion 117 shown in Table 2 were measured.
The results of the oxidation resistance are shown in Comparative Examples 2 and 3.

【0044】(比較例4)実施例1のγ線を90kGy
照射して得た長鎖分岐型PTFE膜(厚さ50μm)をコッ
ク付きのガラス製セパラブル容器(内径3cmφx15cmH)に
入れて脱気後アルゴンガスで置換した。この状態で長鎖
分岐型PTFEに、再び、γ線(線量率10kGy/h)を4
5kGy室温で照射した。アルゴンガスのバブリングに
よって酸素を除きアルゴンガス置換したスチレンモノマ
ーを照射された長鎖分岐型PTFE膜の入ったガラス容器
に、膜が浸されるまで導入した。容器内を攪拌し、60℃
で6時間反応させた。その後、膜をトルエン、続いてア
セトンで洗浄し、乾燥した。グラフト率は93%であっ
た。このグラフト膜を0.5Mクロルスルホン酸(1,2-
ジクロロエタン溶媒)に浸漬し60℃、24時間スルホ
ン化反応を行った.その後、この膜を水洗いしてスルホ
ン酸基とした。本比較例で得られた膜のイオン交換容
量、含水率、電気伝導度、引張り破断強度、および、耐
酸化性を表2に示す。
(Comparative Example 4) The gamma ray of Example 1 was applied at 90 kGy.
The long-chain branched PTFE membrane (thickness: 50 μm) obtained by irradiation was placed in a separable glass container (inner diameter: 3 cmφ × 15 cmH) equipped with a cock, degassed, and replaced with argon gas. In this state, γ-ray (dose rate 10 kGy / h) was again applied to the long-chain branched PTFE for 4 times.
Irradiation at 5 kGy room temperature. The styrene monomer, which had been purged with oxygen gas and purged with argon gas by bubbling with argon gas, was introduced into a glass container containing a long-chain branched PTFE membrane that had been irradiated until the membrane was immersed. Stir the inside of the container, 60 ℃
For 6 hours. Thereafter, the membrane was washed with toluene, followed by acetone and dried. The graft ratio was 93%. This graft membrane was treated with 0.5M chlorosulfonic acid (1,2-
(Dichloroethane solvent) and a sulfonation reaction was performed at 60 ° C. for 24 hours. Thereafter, the membrane was washed with water to obtain sulfonic acid groups. Table 2 shows the ion exchange capacity, water content, electric conductivity, tensile strength at break, and oxidation resistance of the membrane obtained in this comparative example.

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】本発明のフッ素樹脂イオン交換膜は、イ
オン交換容量が0.5〜2.0meq/g、含水状態に
おける膜材料の引張り破断強度が5〜25MPa、25
℃における電気伝導度が0.05〜0.25Ω-1・cm
-1、かつ、非常に高い耐酸化性を有するものである。低
コストで広い範囲のイオン交換容量、高い耐酸化性と膜
強度のフッ素系高分子イオン交換膜である。本発明のイ
オン交換膜は、特に燃料電池膜に適している。また、安
価で耐久性のある電解膜やイオン交換膜として有用であ
る。
The fluororesin ion exchange membrane of the present invention has an ion exchange capacity of 0.5 to 2.0 meq / g and a tensile strength at break of 5 to 25 MPa, 25
The electric conductivity at ℃ is 0.05 to 0.25Ω -1 · cm
-1 and very high oxidation resistance. It is a low cost fluoropolymer ion exchange membrane with a wide range of ion exchange capacity, high oxidation resistance and membrane strength. The ion exchange membrane of the present invention is particularly suitable for a fuel cell membrane. Further, it is useful as an inexpensive and durable electrolytic membrane or ion exchange membrane.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 27:22 C08L 27:22 (72)発明者 森田 洋右 群馬県高崎市綿貫町1233番地 日本原子力 研究所高崎研究所内 (72)発明者 浅野 雅春 群馬県高崎市綿貫町1233番地 日本原子力 研究所高崎研究所内 Fターム(参考) 4F071 AA27 AA77 AG05 AG14 FA02 FA05 FB01 FC01 FD02 4J026 AA26 BA16 DB02 DB06 DB09 DB36 FA05 FA08 GA02 GA08 5H026 AA06 BB00 BB01 BB10 CX05 EE19 HH00 HH05 HH08 HH09──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 27:22 C08L 27:22 (72) Inventor Hirota Morita 1233 Watanukicho, Takasaki-shi, Gunma Japan Atomic Energy Research Institute Inside the Takasaki Research Institute (72) Inventor Masaharu Asano 1233 Watanuki-cho, Takasaki City, Gunma Prefecture Japan Atomic Energy Research Institute Takasaki Research Institute F-term (reference) 4F071 AA27 AA77 AG05 AG14 FA02 FA05 FB01 FC01 FD02 4J026 AA26 BA16 DB02 DB06 DB09 DB36 FA05 FA08 GA02 GA08 5H026 AA06 BB00 BB01 BB10 CX05 EE19 HH00 HH05 HH08 HH09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 長鎖分岐型ポリテトラフルオロエチレン
構造を主体とし、これにスルホン酸基を有するオキシハ
イドロフルオロカーボン側鎖である [−OCH2CF2
2SO3H] が結合したフッ素系高分子イオン交換膜か
ら成り、かつ、このイオン交換膜のイオン交換容量が
0.5〜2.0 meq/g、含水状態におけるイオン
交換膜の引張り破断強度が5〜25MPa、電気伝導度が
0.05〜0.25Ω-1・cm-1あることを特徴とする
フッ素系高分子イオン交換膜。
1. An oxyhydrofluorocarbon side chain mainly having a long-chain branched polytetrafluoroethylene structure and having a sulfonic acid group, [—OCH 2 CF 2 C]
F 2 SO 3 H] -bonded fluorine-based polymer ion-exchange membrane, and the ion-exchange membrane has an ion-exchange capacity of 0.5 to 2.0 meq / g and a tensile fracture of the ion-exchange membrane in a water-containing state. A fluorine-based polymer ion-exchange membrane having a strength of 5 to 25 MPa and an electric conductivity of 0.05 to 0.25 Ω -1 · cm -1 .
【請求項2】 ポリテトラフルオロエチレン膜を300
〜365℃の温度範囲、10-3〜10Torrの減圧下、ま
たは、不活性ガス雰囲気下で、電子線やγ線の放射線を
5〜500kGy照射して長鎖分岐型ポリテトラフルオ
ロエチレン膜を作製し、当該膜に再び電子線やγ線を室
温、不活性ガス中で5〜500kGy照射した後、不活
性ガス下、ハイドロフルオロビニルエーテルモノマーで
あるCF 2=CFOCH2CF2CF2SR、CF2=CF
OCH2CF2CF2SO2R、CF2=CFOCH2CF2
2SX、および/または、CF2=CFOCH2CF2
2SO2X(ここで、R:−CH3、または、−C(C
3)3、および、X:−Cl、または、−F)を−78
℃〜100℃あるいは溶媒の沸点以下の温度範囲で該モ
ノマー単独、または該モノマーを溶媒で希釈した溶液中
でグラフト反応させて長鎖分岐型ポリテトラフルオロエ
チレン膜に該モノマーによるグラフト鎖を導入し、さら
に、このグラフト鎖にスルホン酸基を導入することから
成ることを特徴とするフッ素系高分子イオン交換膜の製
造方法。
2. A polytetrafluoroethylene film having a thickness of 300
Temperature range of ~ 365 ° C, 10-3Under reduced pressure of ~ 10 Torr,
Or, in an inert gas atmosphere,
Irradiation of 5-500 kGy for long-chain branched polytetrafluoro
A polyethylene film is prepared, and electron beams and gamma rays are applied to the film again.
Inert after irradiating 5-500 kGy in an inert gas at a temperature
Hydrophilic vinyl ether monomer under neutral gas
Some CF Two= CFOCHTwoCFTwoCFTwoSR, CFTwo= CF
OCHTwoCFTwoCFTwoSOTwoR, CFTwo= CFOCHTwoCFTwoC
FTwoSX and / or CFTwo= CFOCHTwoCFTwoC
F TwoSOTwoX (where R: -CHThree, Or -C (C
HThree)ThreeAnd X: -Cl or -F) by -78
C. to 100.degree. C. or below the boiling point of the solvent.
Nomer alone or in a solution obtained by diluting the monomer with a solvent
With a long chain branched polytetrafluoroethylene
A graft chain of the monomer is introduced into the ethylene film, and
Introducing a sulfonic acid group into this graft chain
Manufacture of a fluorinated polymer ion exchange membrane characterized by comprising
Construction method.
【請求項3】 長鎖分岐型ポリテトラフルオロエチレン
に該グラフト鎖を導入する際に、該ハイドロフルオロビ
ニルエーテルモノマーに対しテトラフルオロエチレンを
コモノマー(共単量体)として用い、グラフト鎖中に2
3〜80重量%(wt%)のテトラフルオロエチレン単位が
導入されることを特徴とする請求項2記載の製造方法。
3. When introducing the graft chain into long-chain branched polytetrafluoroethylene, tetrafluoroethylene is used as a comonomer with respect to the hydrofluorovinyl ether monomer, and 2
3. The process according to claim 2, wherein from 3 to 80% by weight (wt%) of tetrafluoroethylene units are introduced.
【請求項4】 長鎖分岐型ポリテトラフルオロエチレン
の該グラフト鎖中に、ジビニルベンゼンによる共重合に
よって架橋構造を有する請求項1に記載のフッ素系高分
子イオン交換膜。
4. The fluorinated polymer ion exchange membrane according to claim 1, wherein the graft chain of the long-chain branched polytetrafluoroethylene has a crosslinked structure by copolymerization with divinylbenzene.
【請求項5】 長鎖分岐型ポリテトラフルオロエチレン
に該グラフト鎖を導入する際に、該ハイドロフルオロビ
ニルエーテルモノマーの量、ないしは、ハイドロフルオ
ロビニルエーテルモノマーとテトラフルオロエチレンコ
モノマーを加算した量に対し1〜10wt%の架橋助剤で
あるジビニルベンゼンを用いることを特徴とする請求項
2または3に記載のフッ素系高分子イオン交換膜の製造
方法。
5. When introducing the graft chain into the long-chain branched polytetrafluoroethylene, the amount of the hydrofluorovinyl ether monomer or the sum of the amount of the hydrofluorovinyl ether monomer and the tetrafluoroethylene comonomer is 1 to 5. The method for producing a fluorinated polymer ion-exchange membrane according to claim 2 or 3, wherein 10 wt% of a crosslinking aid, divinylbenzene, is used.
【請求項6】 長鎖分岐型ポリテトラフルオロエチレン
に該グラフト鎖を導入する際に、電子線やγ線の代わり
にヘリウム、炭素、窒素、酸素、ネオン、アルゴン、ク
リプトン、キセノン、金の重イオンで長鎖分岐型ポリテ
トラフルオロエチレン膜の厚さを十分に貫通するエネル
ギーを有するイオンビームを照射して該モノマーやコモ
ノマーをグラフトすることを特徴とする請求項2、3ま
たは5に記載の製造方法。
6. When introducing the graft chain into long-chain branched polytetrafluoroethylene, the weight of helium, carbon, nitrogen, oxygen, neon, argon, krypton, xenon, and gold is substituted for electron beam and γ-ray. The monomer or comonomer is grafted by irradiating an ion beam having energy enough to penetrate the thickness of the long-chain branched polytetrafluoroethylene film with ions to graft the monomer or comonomer. Production method.
JP2001153926A 2001-05-23 2001-05-23 Fluorine polymer ion exchange membrane having wide ion exchange capacity and method for producing the same Expired - Fee Related JP5105340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001153926A JP5105340B2 (en) 2001-05-23 2001-05-23 Fluorine polymer ion exchange membrane having wide ion exchange capacity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001153926A JP5105340B2 (en) 2001-05-23 2001-05-23 Fluorine polymer ion exchange membrane having wide ion exchange capacity and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002348389A true JP2002348389A (en) 2002-12-04
JP5105340B2 JP5105340B2 (en) 2012-12-26

Family

ID=18998358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001153926A Expired - Fee Related JP5105340B2 (en) 2001-05-23 2001-05-23 Fluorine polymer ion exchange membrane having wide ion exchange capacity and method for producing the same

Country Status (1)

Country Link
JP (1) JP5105340B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038620A (en) * 2003-07-15 2005-02-10 Toshiba Corp Electrolyte membrane for alcohol type fuel cell, membrane electrode junction for alcohol type fuel cell, alcohol type fuel cell, and manufacturing method of electrolyte membrane for alcohol type fuel cell
JP2005078849A (en) * 2003-08-28 2005-03-24 Japan Atom Energy Res Inst Forming method for nano structure control polymer ion-exchange membrane
JP2005209408A (en) * 2004-01-20 2005-08-04 Hitachi Cable Ltd Electrolyte membrane for fuel cell, its manufacturing method, and fuel cell
JP2006008970A (en) * 2003-08-28 2006-01-12 Japan Atom Energy Res Inst Process for producing nano-space controlled polymer ion-exchange membrane
WO2006046620A1 (en) * 2004-10-27 2006-05-04 Asahi Glass Company, Limited Electrolyte material, electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
WO2006090898A1 (en) * 2005-02-24 2006-08-31 Japan Atomic Energy Agency Functional membrane and process for production thereof, and electrolyte membrane for fuel cell and process for production thereof
WO2008093570A1 (en) * 2007-01-31 2008-08-07 Asahi Glass Company, Limited Ion-exchange membrane for alkali chloride electrolysis
EP1596453A4 (en) * 2003-01-20 2008-08-27 Asahi Glass Co Ltd Process for production of electrolyte material for solid polymer fuel cells and membrane electrode assembly for solid polymer fuel cells
CN101906215B (en) * 2009-06-04 2012-04-11 杨大伟 Manufacturing method of high-strength composite proton exchange membrane
US8173325B2 (en) 2005-02-25 2012-05-08 Japan Atomic Energy Agency Functional membrane and electrolyte membrane for fuel cells and method for producing the same
US8329766B2 (en) 2005-02-24 2012-12-11 Japan Atomic Energy Agency Functional membrane and production method thereof, and electrolyte membrane for use in fuel cell and production method thereof
JP2014005471A (en) * 2001-12-06 2014-01-16 Gore Enterprise Holdings Inc Ionomer of low equivalent weight
JP2016510688A (en) * 2013-03-04 2016-04-11 アーケマ・インコーポレイテッド Long-chain branched fluoropolymer membrane
US11905350B2 (en) 2019-09-09 2024-02-20 Compact Membrane Systems, Inc. Gas permeable fluoropolymers and ionomers

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032289A (en) * 1973-07-21 1975-03-28
JPS52151684A (en) * 1976-06-14 1977-12-16 Toyo Soda Mfg Co Ltd Production of cation exchange membrane
JPS5823813A (en) * 1982-06-07 1983-02-12 Japan Atom Energy Res Inst Preparation of graft copolymer for ion exchange membrane
JPH06116423A (en) * 1992-10-05 1994-04-26 Rei Tec:Kk Modified polytetrafluoroethylene and production thereof
JPH06342665A (en) * 1993-03-18 1994-12-13 Asahi Chem Ind Co Ltd Ion exchange membrane for proton exchange membrane type fuel cell
JP2000159914A (en) * 1998-11-25 2000-06-13 Hitachi Cable Ltd Modified fluororesin molded product and its production
JP2000260223A (en) * 1999-03-09 2000-09-22 Asahi Chem Ind Co Ltd High strength electrolytic film precursor
JP2001048923A (en) * 1999-06-04 2001-02-20 Reitekku:Kk Functional polytetrafluoroethylene resin and its production
JP2001348439A (en) * 2000-06-07 2001-12-18 Japan Atom Energy Res Inst Ion-exchange membrane of fluororesin having widely ranging ion-exchange capacity, and process for preparation thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032289A (en) * 1973-07-21 1975-03-28
JPS52151684A (en) * 1976-06-14 1977-12-16 Toyo Soda Mfg Co Ltd Production of cation exchange membrane
JPS5823813A (en) * 1982-06-07 1983-02-12 Japan Atom Energy Res Inst Preparation of graft copolymer for ion exchange membrane
JPH06116423A (en) * 1992-10-05 1994-04-26 Rei Tec:Kk Modified polytetrafluoroethylene and production thereof
JPH06342665A (en) * 1993-03-18 1994-12-13 Asahi Chem Ind Co Ltd Ion exchange membrane for proton exchange membrane type fuel cell
JP2000159914A (en) * 1998-11-25 2000-06-13 Hitachi Cable Ltd Modified fluororesin molded product and its production
JP2000260223A (en) * 1999-03-09 2000-09-22 Asahi Chem Ind Co Ltd High strength electrolytic film precursor
JP2001048923A (en) * 1999-06-04 2001-02-20 Reitekku:Kk Functional polytetrafluoroethylene resin and its production
JP2001348439A (en) * 2000-06-07 2001-12-18 Japan Atom Energy Res Inst Ion-exchange membrane of fluororesin having widely ranging ion-exchange capacity, and process for preparation thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005471A (en) * 2001-12-06 2014-01-16 Gore Enterprise Holdings Inc Ionomer of low equivalent weight
US8198394B2 (en) 2003-01-20 2012-06-12 Asahi Glass Company, Limited Process for producing electrolyte material for polymer electrolyte fuel cells, and membrane-electrode assembly for polymer electrolyte fuel cells
EP1596453A4 (en) * 2003-01-20 2008-08-27 Asahi Glass Co Ltd Process for production of electrolyte material for solid polymer fuel cells and membrane electrode assembly for solid polymer fuel cells
US7557178B2 (en) 2003-01-20 2009-07-07 Asahi Glass Company, Limited Process for producing electrolyte material for polymer electrolyte fuel cells, and membrane-electrode assembly for polymer electrolyte fuel cells
JP2005038620A (en) * 2003-07-15 2005-02-10 Toshiba Corp Electrolyte membrane for alcohol type fuel cell, membrane electrode junction for alcohol type fuel cell, alcohol type fuel cell, and manufacturing method of electrolyte membrane for alcohol type fuel cell
JP4670073B2 (en) * 2003-08-28 2011-04-13 独立行政法人 日本原子力研究開発機構 Method for producing nano space control polymer ion exchange membrane
JP2005078849A (en) * 2003-08-28 2005-03-24 Japan Atom Energy Res Inst Forming method for nano structure control polymer ion-exchange membrane
JP2006008970A (en) * 2003-08-28 2006-01-12 Japan Atom Energy Res Inst Process for producing nano-space controlled polymer ion-exchange membrane
JP4576620B2 (en) * 2003-08-28 2010-11-10 独立行政法人 日本原子力研究開発機構 Method for producing nanostructure control polymer ion exchange membrane
JP2005209408A (en) * 2004-01-20 2005-08-04 Hitachi Cable Ltd Electrolyte membrane for fuel cell, its manufacturing method, and fuel cell
WO2006046620A1 (en) * 2004-10-27 2006-05-04 Asahi Glass Company, Limited Electrolyte material, electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
US7910236B2 (en) 2004-10-27 2011-03-22 Asahi Glass Company, Limited Electrolyte material, electrolyte membrane and membrane-electrolyte assembly for polymer electrolyte fuel cells
JP5261937B2 (en) * 2004-10-27 2013-08-14 旭硝子株式会社 Manufacturing method of electrolyte membrane
JP4858719B2 (en) * 2005-02-24 2012-01-18 トヨタ自動車株式会社 Method for producing functional membrane and method for producing electrolyte membrane for fuel cell
DE112006000450B4 (en) * 2005-02-24 2012-03-29 Toyota Jidosha Kabushiki Kaisha Functional membrane, e.g. An electrolyte membrane for use in a fuel cell, and manufacturing method thereof
WO2006090898A1 (en) * 2005-02-24 2006-08-31 Japan Atomic Energy Agency Functional membrane and process for production thereof, and electrolyte membrane for fuel cell and process for production thereof
US8329766B2 (en) 2005-02-24 2012-12-11 Japan Atomic Energy Agency Functional membrane and production method thereof, and electrolyte membrane for use in fuel cell and production method thereof
US8173325B2 (en) 2005-02-25 2012-05-08 Japan Atomic Energy Agency Functional membrane and electrolyte membrane for fuel cells and method for producing the same
WO2008093570A1 (en) * 2007-01-31 2008-08-07 Asahi Glass Company, Limited Ion-exchange membrane for alkali chloride electrolysis
JP5212114B2 (en) * 2007-01-31 2013-06-19 旭硝子株式会社 Ion exchange membrane for alkali chloride electrolysis
US8394865B2 (en) 2007-01-31 2013-03-12 Asahi Glass Company, Limited Ion-exchange membrane for alkaline chloride electrolysis
CN101906215B (en) * 2009-06-04 2012-04-11 杨大伟 Manufacturing method of high-strength composite proton exchange membrane
JP2016510688A (en) * 2013-03-04 2016-04-11 アーケマ・インコーポレイテッド Long-chain branched fluoropolymer membrane
EP2964370A4 (en) * 2013-03-04 2016-10-19 Arkema Inc Long chain branched fluoropolymer membranes
US11065587B2 (en) 2013-03-04 2021-07-20 Arkema Inc. Long chain branched fluoropolymer membranes
US11905350B2 (en) 2019-09-09 2024-02-20 Compact Membrane Systems, Inc. Gas permeable fluoropolymers and ionomers

Also Published As

Publication number Publication date
JP5105340B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP4568848B2 (en) Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same
US7803846B2 (en) Highly durable polymer electrolytic membrane for a fuel cell having a cross-linked structure
US8232353B2 (en) Processes for producing nano-space controlled polymer ion-exchange membranes
JP5137174B2 (en) Method for producing polymer electrolyte membrane for fuel cell with silane cross-linked structure
EP1806371B1 (en) Electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
JP4953113B2 (en) Fluoropolymer ion exchange membrane having excellent oxidation resistance and high ion exchange capacity and method for producing the same
JP3739713B2 (en) Method for producing a fluorine-based polymer ion exchange membrane having excellent oxidation resistance and a wide range of ion exchange amounts
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
JP5105340B2 (en) Fluorine polymer ion exchange membrane having wide ion exchange capacity and method for producing the same
WO2008023801A1 (en) Polymer electrolyte membrane composed of aromatic polymer membrane base and method for producing the same
JP4997625B2 (en) Method for producing polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP3972125B2 (en) Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane
JP4986219B2 (en) Electrolyte membrane
JP3932338B2 (en) Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane
JP4576620B2 (en) Method for producing nanostructure control polymer ion exchange membrane
JP4219656B2 (en) Electrolyte membrane for fuel cell
JP4429851B2 (en) Durable electrolyte membrane
JP2004010744A (en) Fluorine-based macromolecular copolymer having large ion-exchanging capacity and oxidation resistance, and method for producing the same
WO2007102418A1 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
JP2004300360A (en) Method for producing electrolyte membrane for fuel cell comprising graft polymer ion-exchange membrane
JP2005142014A (en) Electrolyte membrane for fuel cells superior in acid resistance
JP4814860B2 (en) Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate
JP5158309B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
WO2006064762A1 (en) Electrolyte film with excellent adhesion to electrode

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

R150 Certificate of patent or registration of utility model

Ref document number: 5105340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees