JP2001348439A - Ion-exchange membrane of fluororesin having widely ranging ion-exchange capacity, and process for preparation thereof - Google Patents

Ion-exchange membrane of fluororesin having widely ranging ion-exchange capacity, and process for preparation thereof

Info

Publication number
JP2001348439A
JP2001348439A JP2000170450A JP2000170450A JP2001348439A JP 2001348439 A JP2001348439 A JP 2001348439A JP 2000170450 A JP2000170450 A JP 2000170450A JP 2000170450 A JP2000170450 A JP 2000170450A JP 2001348439 A JP2001348439 A JP 2001348439A
Authority
JP
Japan
Prior art keywords
ion
membrane
ion exchange
exchange membrane
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000170450A
Other languages
Japanese (ja)
Other versions
JP4568848B2 (en
Inventor
Takeshi Suwa
武 諏訪
Yosuke Morita
洋右 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2000170450A priority Critical patent/JP4568848B2/en
Publication of JP2001348439A publication Critical patent/JP2001348439A/en
Application granted granted Critical
Publication of JP4568848B2 publication Critical patent/JP4568848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an ion-exchange membrane of a fluororesin having a widely ranging ion-exchange capacity, especially an ion-exchange membrane for fuel cells. SOLUTION: The polymer ion-exchange membrane comprises a fluorine-based polymer material having a main body of a long chain-branched polytetrafluoroethylene structure bonded with a polystyrene graft side chain having sulfonic acid groups and also has an ion-exchange capacity of 0.5 to 4 meq/g and a tensile strength at break in the hydrous state of ranging from 1 to 25 MPa. The process for the preparation thereof comprises forming a long chain-branched polytetrafluoroethylene membrane which is irradiated in the range of a radiation dose of 5 to 300 kGy by using a radiation of an electron ray or gamma ray at a specific temperature and under a specific oxygen partial pressure, irradiating again the radiation of an electron ray or gamma ray onto the above membrane, introducing a polystyrene graft side chain by the grafting of styrene onto the irradiated polytetrafluoroethylene membrane in a liquid styrene monomer or in a styrene monomer solution diluted with a solvent, and introducing sulfonic acid groups onto the above polystyrene graft side chain.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池での使用
に適した固体高分子電解質膜としてのみならず、広く隔
膜としての性能を備えたフッ素樹脂イオン交換膜及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorine resin ion exchange membrane having a performance not only as a solid polymer electrolyte membrane suitable for use in a fuel cell but also as a membrane, and a method for producing the same.

【0002】[0002]

【従来の技術】固体高分子電解質型イオン交換膜を用い
た燃料電池は、作動温度が100℃以下と低く、そのエ
ネルギー密度が高いことから、電気自動車の電源や簡易
補助電源として広く実用化が期待されている。この燃料
電池においては固体高分子電解質であるイオン交換膜、
白金系の触媒、ガス拡散電極、及び高分子電解質膜と電
極の接合体などに関する重要な要素技術がある。しか
し、この中でも燃料電池としての良好な特性を有する高
分子イオン交換膜の開発は最も重要な技術の一つであ
る。
2. Description of the Related Art A fuel cell using a solid polymer electrolyte type ion exchange membrane has a low operating temperature of 100 ° C. or less and a high energy density, so that it is widely used as a power source for electric vehicles and a simple auxiliary power source. Expected. In this fuel cell, an ion exchange membrane which is a solid polymer electrolyte,
There are important element technologies related to a platinum-based catalyst, a gas diffusion electrode, and a polymer electrolyte membrane-electrode assembly. However, among them, development of a polymer ion exchange membrane having good characteristics as a fuel cell is one of the most important technologies.

【0003】高分子イオン交換膜型燃料電池において
は、イオン交換膜は両面にガス拡散電極が複合されてお
り、膜と電極とは実質的に一体構造になっている。この
ため、イオン交換膜はプロトンを伝導するための電解質
として作用し、また、加圧下においても燃料である水素
やメタノールと酸化剤とを直接混合させないための隔膜
としての役割も有する。このようなイオン交換膜として
は、電解質としてプロトンの移動速度が大きくイオン交
換容量が高いこと、電気抵抗を低く保持するために保水
性が一定でかつ高いことが要求される。一方、隔膜とし
ての役割から、膜の力学的な強度が大きいこと、及び寸
法安定性が優れていること、長期の使用に対する化学的
な安定性に優れていること、燃料である水素ガスや酸化
剤である酸素ガスに対して過剰なガス透過性を有しない
ことなどが要求される。
In a polymer ion exchange membrane fuel cell, a gas diffusion electrode is compounded on both sides of the ion exchange membrane, and the membrane and the electrode have a substantially integral structure. For this reason, the ion exchange membrane acts as an electrolyte for conducting protons, and also has a role as a diaphragm for preventing the fuel or hydrogen or methanol from directly mixing with the oxidant even under pressure. Such an ion-exchange membrane is required to have a high proton exchange rate as an electrolyte, a high ion-exchange capacity, and a constant and high water retention to keep the electric resistance low. On the other hand, from the role of the membrane, the membrane has high mechanical strength, excellent dimensional stability, excellent chemical stability for long-term use, hydrogen gas and oxidation as fuel. It is required not to have excessive gas permeability to oxygen gas as an agent.

【0004】初期の高分子イオン交換膜型燃料電池で
は、スチレンとジビニルベンゼンの共重合で製造した炭
化水素系樹脂のイオン交換膜が使用された。しかし、こ
のイオン交換膜は、耐久性が非常に低いため実用性に乏
しく、そのためその後はデュポン社によって開発された
フッ素樹脂系のパーフルオロスルホン酸膜「ナフィオン
(デュポン社登録商標)」等が一般に用いられてきた。
In the early polymer ion exchange membrane fuel cells, an ion exchange membrane of a hydrocarbon resin produced by copolymerization of styrene and divinylbenzene was used. However, this ion-exchange membrane has very low durability and is therefore impractical. For this reason, a fluororesin-based perfluorosulfonic acid membrane “Nafion (registered trademark)” developed by DuPont and the like are generally used thereafter. Has been used.

【0005】しかしながら、「ナフィオン」等の従来の
フッ素樹脂系イオン交換膜は、化学的な耐久性や安定性
には優れているが、イオン交換容量が1meq/g前後
と小さいために膜の電気抵抗が高くて十分な出力が得ら
れず、保水性が不十分でイオン交換膜の乾燥が生じてプ
ロトン伝導性が低下したり、電極触媒での燃料ガスや酸
化剤のガス反応が阻害されたりすることがあった。
[0005] However, conventional fluororesin-based ion exchange membranes such as "Nafion" are excellent in chemical durability and stability, but have a small ion exchange capacity of about 1 meq / g, so that the electric charge of the membrane is low. High output due to high resistance, insufficient water retention and drying of the ion exchange membrane, resulting in reduced proton conductivity, and hindering the gas reaction of fuel gas and oxidant at the electrode catalyst There was something to do.

【0006】さらに、フッ素樹脂系イオン交換膜はモノ
マーの合成から出発するために、製造工程が多くなり、
従って高価であり、プロトン交換膜型燃料電池を自動車
に搭載して実用化する場合の大きな障害になる。そのた
め、前記「ナフィオン」等に替わる低コストの電解質膜
を開発する努力が行われてきた。
Further, since the fluororesin-based ion-exchange membrane starts from the synthesis of a monomer, the number of production steps increases,
Therefore, it is expensive and poses a major obstacle when the proton exchange membrane fuel cell is mounted on an automobile and put to practical use. For this reason, efforts have been made to develop a low-cost electrolyte membrane that replaces the aforementioned “Nafion” and the like.

【0007】また、本発明と密接に関連する放射線グラ
フト重合法では、フッ素樹脂系の膜にスルホン酸基を導
入することができる側鎖を導入して、固体高分子電解質
膜を作製する試みがなされている。しかし、主鎖を形成
する重合体がオレフィン炭化水素を含まないフルオロカ
ーボン重合体のみの高分子膜では、グラフト反応を行う
ためのに電子線やγ線などの放射線を照射した場合に著
しい膜強度の低下が認められる。さらに、スルホン化反
応を経過した後には一層の膜強度の低下が起こる。この
ため、放射線を用いたグラフト法で、主鎖のすべてがフ
ッ素化された高分子膜からイオン伝導性を有する膜を作
製した場合、膜は非常に脆く、電池作製中あるいは電池
運転中に膜の劣化や破壊が起こり、電池の作製は事実
上、不可能であった。
In the radiation graft polymerization method closely related to the present invention, an attempt has been made to produce a solid polymer electrolyte membrane by introducing a side chain capable of introducing a sulfonic acid group into a fluororesin-based membrane. It has been done. However, in the case of a polymer film in which the polymer forming the main chain is only a fluorocarbon polymer containing no olefin hydrocarbons, when a radiation such as an electron beam or γ-ray is irradiated to perform a graft reaction, a remarkable film strength is obtained. A decrease is observed. Further, after the sulfonation reaction, the film strength further decreases. For this reason, when a membrane having ion conductivity is produced from a polymer membrane in which all of the main chain is fluorinated by the grafting method using radiation, the membrane is very brittle, and the membrane is formed during battery production or battery operation. Deterioration and destruction of the battery occurred, and the production of the battery was practically impossible.

【0008】例えば、ポリテトラフルオロエチレン(P
TFE)あるいはPTFE−六フッ化プロピレン共重合
体(FEP)あるいはPTFE−パーフルオロアルキル
ビニルエーテル共重合体(PFA)等では、放射線を照
射した際に高分子主鎖の著しい切断が起こることが知ら
れている。PTFE−六フッ化プロピレン共重合体(F
EP)にスチレンを放射線グラフト重合させ、これにス
ルホン酸基を導入した固体高分子電解質膜を用いて作製
した電池においては、電池運転直後から、膜の分解によ
るスルホン酸基の脱離が起こり、この結果、電池内部抵
抗が上昇し、数十時間の運転においても電池性能の大幅
な低下が起こると報告されている(Electroch
emica Acta, 40, 345(199
5))。
For example, polytetrafluoroethylene (P
In the case of TFE), PTFE-propylene hexafluoride copolymer (FEP) or PTFE-perfluoroalkylvinyl ether copolymer (PFA), etc., it is known that remarkable cleavage of the polymer main chain occurs upon irradiation with radiation. ing. PTFE-propylene hexafluoride copolymer (F
In a battery prepared by using a solid polymer electrolyte membrane obtained by subjecting styrene to radiation graft polymerization of EP) and introducing a sulfonic acid group to the styrene, sulfonic acid groups are desorbed due to decomposition of the membrane immediately after the battery operation. As a result, it has been reported that the internal resistance of the battery increases, and that the battery performance significantly decreases even after several tens of hours of operation (Electroch).
emica Acta, 40, 345 (199
5)).

【0009】さらにフッ素樹脂系のイオン交換膜では、
架橋の導入が困難であったために、イオン交換容量を大
きくすることができなかった。すなわち、イオン交換容
量を大きくしようとしてグラフト側鎖やスルホン酸基を
多く導入しようとすると、高分子鎖中に架橋構造がない
ために膜が水によって大きく膨潤して膜強度が著しく低
下し、容易に破損するようになる。従って、フッ素樹脂
系のイオン交換膜ではグラフト側鎖やスルホン酸基の量
を膜強度や寸法を保つ程度に抑える必要があり、このた
めイオン交換容量の比較的小さなものしかできなかっ
た。これは燃料電池などの電解質膜として、大きな電流
が流れる場合にはイオン交換膜としての必要な性能を備
えたものではなかった。
Further, in a fluororesin-based ion exchange membrane,
Due to the difficulty in introducing the crosslinks, the ion exchange capacity could not be increased. That is, when an attempt is made to introduce a large amount of graft side chains or sulfonic acid groups in order to increase the ion exchange capacity, the membrane is greatly swollen by water because of no cross-linking structure in the polymer chain, and the membrane strength is remarkably reduced. Will be damaged. Therefore, it is necessary to suppress the amount of graft side chains and sulfonic acid groups in a fluororesin-based ion exchange membrane to such an extent that the strength and dimensions of the membrane are maintained. Therefore, only a relatively small ion exchange capacity can be obtained. This does not provide the required performance as an ion exchange membrane when a large current flows as an electrolyte membrane of a fuel cell or the like.

【0010】これに対し、主鎖を形成する重合体がオレ
フィン炭化水素を含むフルオロカーボン重合体の場合、
放射線照射により主鎖の切断は起こらない。例えば、特
開平9−102322号によれば、エチレン−テトラフ
ルオロエチレン共重合体樹脂フィルムに炭化水素系モノ
マーであるスチレンを放射線グラフト重合により導入
し、次いでスルホン化することにより合成したイオン交
換膜は燃料電池用イオン交換膜として機能する。しか
し、欠点として主鎖にオレフィン系炭化水素を含むので
含水率が非常に高くなり、これに伴って膜強度が著しく
低下することである。さらに、このイオン交換膜を固体
電解質膜に用いるとガス拡散電極の触媒層に十分な撥水
性がない場合には、特に燃料電池反応で水が生成する正
極で、電極が湿り過ぎることに起因する出力低下が起こ
る問題が指摘されている(特開平11−11131
0)。
On the other hand, when the polymer forming the main chain is a fluorocarbon polymer containing an olefinic hydrocarbon,
Radiation does not cause backbone breakage. For example, according to JP-A-9-102322, an ion-exchange membrane synthesized by introducing styrene, which is a hydrocarbon-based monomer, into an ethylene-tetrafluoroethylene copolymer resin film by radiation graft polymerization and then sulfonating the same is disclosed in Functions as an ion exchange membrane for fuel cells. However, a disadvantage is that the olefinic hydrocarbon is contained in the main chain, so that the water content becomes extremely high, and accordingly, the film strength is remarkably reduced. Furthermore, when this ion exchange membrane is used as a solid electrolyte membrane, if the catalyst layer of the gas diffusion electrode does not have sufficient water repellency, the electrode is excessively wet, particularly in a positive electrode in which water is generated in a fuel cell reaction. It has been pointed out that there is a problem that the output is reduced (Japanese Patent Laid-Open No. 11-11131).
0).

【0011】一方、フッ素樹脂の放射線改質について、
近年、以下のような特許が報告されている。従来、高分
子主鎖がフルオロカーボン重合体のみの場合、例えば、
ポリテトラフルオロエチレン(PTFE)あるいは六フ
ッ化プロピレン共重合体(FEP)あるいはPTFE−
パーフルオロアルキルビニルエーテル共重合体(PF
A)等では、放射線に対して典型的な分解型高分子であ
ると考えられてきた。しかし、これらのフッ素系樹脂に
おいても、結晶融点以上の特定の条件下で放射線照射を
行うと架橋がおこるとされている。特開平6−1164
23号には、放射線架橋によりゴム弾性を有するPTF
Eが得られることが記載されている。さらに、特開平1
1−49867号では、PTFE−六フッ化プロピレン
共重合体(FEP)あるいはPTFE−パーフルオロア
ルキルビニルエーテル共重合体(PFA)に関しても結
晶融点付近の温度で放射線を照射すると架橋するとされ
ている。
On the other hand, regarding radiation modification of fluororesin,
In recent years, the following patents have been reported. Conventionally, when the polymer main chain is only a fluorocarbon polymer, for example,
Polytetrafluoroethylene (PTFE) or propylene hexafluoride copolymer (FEP) or PTFE-
Perfluoroalkyl vinyl ether copolymer (PF
A) and others have been considered to be degradable polymers typical for radiation. However, even in these fluorine-based resins, it is said that crosslinking occurs when irradiation is performed under specific conditions at or above the crystal melting point. JP-A-6-1164
No. 23 has PTF which has rubber elasticity by radiation crosslinking.
It is described that E is obtained. Further, Japanese Unexamined Patent Application Publication No.
According to JP-A-49867, PTFE-propylene hexafluoride propylene copolymer (FEP) or PTFE-perfluoroalkylvinyl ether copolymer (PFA) is also crosslinked when irradiated at a temperature near the crystal melting point.

【0012】[0012]

【発明が解決しようとする課題】上記のように、すべて
フッ素化された炭素骨格の主鎖をもつ高分子、特にポリ
テトラフルオロエチレン(PTFE)を主体とするイオ
ン交換膜では、放射線や架橋助剤による架橋構造の導入
が困難であったために、実際上、イオン交換容量を大き
くすることができなかった。また、グラフトするために
γ線などの放射線をこれらの膜に照射すると膜強度の著
しい低下が認められた。さらに、グラフト反応、スルホ
ン化反応を経過した後には一層の膜強度の低下が起こ
る。このため、放射線グラフト反応によって、フッ素樹
脂を用いて高いイオン伝導性を有する膜を作製した場
合、膜は非常に脆く、燃料電池作製中あるいは燃料電池
運転中に破壊が起こる。また、膜強度の大きなイオン交
換膜を作ろうとすると、イオン交換容量が小さく電解質
膜や隔膜としての十分に必要な性能を備えたものではな
かった。これらのことから、放射線グラフト法を用いて
フッ素樹脂、特にPTFEを主体とした燃料電池用イオ
ン交換膜の作製は事実上不可能であると考えられてき
た。
As described above, in an ion exchange membrane mainly composed of a polymer having a main chain of an all-fluorinated carbon skeleton, particularly polytetrafluoroethylene (PTFE), radiation or crosslinking Since it was difficult to introduce a crosslinked structure with the agent, the ion exchange capacity could not actually be increased. In addition, when these films were irradiated with radiation such as γ-rays for grafting, a significant decrease in film strength was observed. Further, after the graft reaction and the sulfonation reaction, the film strength is further reduced. For this reason, when a film having high ion conductivity is produced using a fluororesin by a radiation grafting reaction, the film is very brittle and breaks during production of the fuel cell or operation of the fuel cell. Further, when an ion-exchange membrane having a large membrane strength is to be produced, the ion-exchange capacity is small and does not have sufficient performance as an electrolyte membrane or a diaphragm. From these facts, it has been considered that it is practically impossible to produce an ion exchange membrane for a fuel cell mainly composed of a fluororesin, particularly PTFE, using a radiation grafting method.

【0013】本発明は、このような従来技術の問題点を
解決、解消するためになされたものであり、フッ素樹脂
イオン交換膜において、固体高分子電解質としての特性
に優れ、かつ、隔膜としての性能も損なわないイオン交
換膜を安価に提供するものである。すなわち、イオン交
換膜において、フッ素樹脂を用いてイオン交換容量を
0.5〜4meq/gまで広い範囲に制御できること、
高いイオン交換容量においても膜の力学的強度を保って
いること、電気伝導度、含水率を適当な範囲内に制御す
ることにより、固体高分子電解質としてのイオン交換膜
を提供することを目的としている。
The present invention has been made in order to solve and solve the problems of the prior art. In a fluororesin ion exchange membrane, it has excellent characteristics as a solid polymer electrolyte, and has an excellent function as a diaphragm. It is intended to provide an inexpensive ion exchange membrane that does not impair the performance. That is, in the ion exchange membrane, the ion exchange capacity can be controlled in a wide range from 0.5 to 4 meq / g using a fluororesin;
The purpose is to provide an ion exchange membrane as a solid polymer electrolyte by maintaining the mechanical strength of the membrane even at a high ion exchange capacity, and controlling the electrical conductivity and water content within appropriate ranges. I have.

【0014】[0014]

【課題を解決するための手段】ポリテトラフルオロエチ
レン(PTFE)について、高温放射線照射による改質
を行い、引き続きこれに対する放射線グラフト反応によ
る側鎖の導入やスルホン酸基の導入について研究を進め
た結果、PTFEイオン交換膜における最大の欠点であ
るイオン交換容量が小さいこと、また、含水時における
膜強度が大幅に低下することなどをすべて解決すること
ができた。また含水率や電気伝導度も含めた各特性を適
切な範囲内に制御することができるフッ素樹脂イオン交
換膜を発明するに至った。
[Means for Solving the Problems] Polytetrafluoroethylene (PTFE) was modified by irradiation with high-temperature radiation, and the results of research on the introduction of side chains and the introduction of sulfonic acid groups by radiation grafting reaction on this were continued. It was possible to solve all of the biggest drawbacks of the PTFE ion exchange membrane, such as a small ion exchange capacity and a significant decrease in membrane strength when containing water. Further, they have invented a fluororesin ion exchange membrane capable of controlling various properties including water content and electric conductivity within an appropriate range.

【0015】本発明は、固体高分子電解質としての特性
に優れ、かつ、隔膜としての性能も損なわない高分子イ
オン交換膜において、このイオン交換膜が長鎖分岐型P
TFE構造を主体とし、これにスルホン酸基を有するポ
リスチレングラフト側鎖が結合したフッ素系重合体から
成り、かつ、このイオン交換膜のイオン交換容量が0.
5〜4meq/g、含水状態における膜の引張り破断強
度が1〜25MPaの範囲内であることを特徴とするフ
ッ素樹脂イオン交換膜である。
The present invention relates to a polymer ion exchange membrane which is excellent in characteristics as a solid polymer electrolyte and does not impair the performance as a membrane.
It is composed of a fluorine-based polymer mainly composed of a TFE structure and having a polystyrene graft side chain having a sulfonic acid group bonded thereto, and the ion exchange capacity of the ion exchange membrane is 0.1%.
A fluororesin ion exchange membrane characterized in that the membrane has a tensile strength at break of 5 to 4 meq / g in a water-containing state within a range of 1 to 25 MPa.

【0016】ここで長鎖分岐型PTFEとは、下記式
(1)の繰り返し単位を有するフッ素系重合体;下記式
(2)の繰り返し単位を有するフッ素系重合体;及び下
記式(1)及び(2)の両繰り返し単位を混合して有す
るフッ素系重合体;ならびにこれらのフッ素系重合体の
2以上の混合物;を指す。
Here, the long-chain branched PTFE is a fluorine-containing polymer having a repeating unit of the following formula (1); a fluorine-containing polymer having a repeating unit of the following formula (2); (2) a fluorine-based polymer having a mixture of both repeating units; and a mixture of two or more of these fluorine-based polymers.

【0017】[0017]

【化1】 Embedded image

【0018】[0018]

【化2】 Embedded image

【0019】これはPTFEを溶融状態などの高温で照
射して反応させた場合、固体高分解能19Fの核磁気共鳴
測定から三級炭素
This is because when PTFE is irradiated and reacted at a high temperature such as a molten state, a tertiary carbon is obtained from a solid-state high-resolution 19 F nuclear magnetic resonance measurement.

【0020】[0020]

【化3】 Embedded image

【0021】の存在が認められ、この数がPTFE鎖同
士の架橋点の数と考えられてきた(Radiation
Physics and Chemistry,p1
65,54, 1999)。しかし、50kGyから1
MGyのγ線を340℃の高温で照射したPTFEのク
リープ試験において、1MGy照射PTFEは、未照射
のものより永久歪み(変形量)が大きくなること、ま
た、100kGy以上の照射線量では、架橋密度の高い
と思われる照射線量の多いものほど永久歪みが大きいこ
とが分かった(実施例1)。通常、架橋高分子では架橋
したものは未架橋のものに比べ、クリープ試験による材
料の歪み(変形量)が小さく、また、架橋した材料でも
架橋密度が高いほど歪みは小さい。このことから、この
ような高温照射で生成したPTFEはPTFE鎖同士が
分子鎖中で直接結合した架橋によって生成した網目構造
ではなく、長鎖分岐型の構造であり、分岐鎖の絡み合い
や分岐鎖末端での結合によりできていることが分かる。
PTFEの溶融状態では放射線によるPTFEの切断や
結合反応はPTFE全体に均一に起きていること、ま
た、固体高分解能19Fの核磁気共鳴測定の三級炭素
The number of PTFE chains was considered to be the number of cross-linking points between PTFE chains (Radiation).
Physics and Chemistry, p1
65, 54 , 1999). However, from 50 kGy to 1
In a creep test of PTFE irradiated with γ-rays of MGy at a high temperature of 340 ° C., the permanent distortion (deformation amount) of 1MGy-irradiated PTFE is larger than that of non-irradiated PTFE. It was found that the larger the irradiation dose, which is considered to be higher, the larger the permanent distortion (Example 1). In general, a crosslinked polymer has a smaller distortion (deformation amount) of the material by a creep test than an uncrosslinked polymer, and the higher the crosslink density of a crosslinked material, the smaller the distortion. Therefore, PTFE generated by such high-temperature irradiation is not a network structure formed by cross-linking in which PTFE chains are directly bonded to each other in a molecular chain, but a long-chain branched structure. It can be seen that the bond is formed at the terminal.
In the molten state of PTFE, the cleavage and binding reaction of PTFE caused by radiation occur uniformly throughout the PTFE, and tertiary carbon in solid-state high-resolution 19 F nuclear magnetic resonance measurement.

【0022】[0022]

【化4】 Embedded image

【0023】量から100kGy照射したPTFEはお
よそ2500CF2単位当たり1個の長鎖分岐が生成し
ている。これらのことから、本発明におけるフッ素樹脂
を主体とするプロトン交換型イオン交換膜は式(1)及
び(2)で構成された単位を繰り返し単位とする化学構
造を有するものである。このようなPTFEの構造をこ
の明細書においては「長鎖分岐型ポリテトラフルオロエ
チレン(PTFE)」と称する。
From the amount, PTFE irradiated with 100 kGy has one long chain branch per 2500 CF 2 units. From these facts, the proton exchange type ion exchange membrane mainly composed of the fluororesin in the present invention has a chemical structure in which the unit represented by the formulas (1) and (2) is a repeating unit. Such a structure of PTFE is referred to as “long-chain branched polytetrafluoroethylene (PTFE)” in this specification.

【0024】この長鎖分岐型PTFEにおける長鎖分岐
の絡み合いさらには分岐鎖末端での結合の導入により、
フッ素樹脂膜の強度を殆ど低下させることなくイオン交
換容量を高めることができる。すなわち、フッ素樹脂系
イオン交換膜における最大の欠点であるイオン交換容量
を高くできないという制約を解決できると考えた。従来
のグラフト法は、単にPTFE膜に放射線を照射し、ス
チレンをグラフトするものであった。これに対し、本発
明のフッ素樹脂イオン交換膜の製造方法は、予め300
〜365℃の温度でPTFE膜に放射線を照射し、PT
FEに長鎖分岐と分岐末端での結合の導入を行い、その
後、さらに室温付近で放射線照射を行いスチレンのグラ
フトを行った。この場合、通常のPTFEに比較し、長
鎖分岐型PTFEは同一の放射線量においてグラフト率
が著しく増加するという新発見をした(図1参照)。こ
れは高温における放射線照射により、PTFE膜中にグ
ラフト反応の場が増大したことによるものと考えられ
る。
In this long-chain branched PTFE, the entanglement of long-chain branches and the introduction of a bond at the terminal of the branched chain enable
The ion exchange capacity can be increased without substantially reducing the strength of the fluororesin membrane. That is, the present inventors considered that the limitation that the ion exchange capacity, which is the greatest defect of the fluororesin-based ion exchange membrane, cannot be increased can be solved. The conventional grafting method simply involves irradiating the PTFE membrane with radiation and grafting styrene. On the other hand, the method for producing a fluororesin ion exchange membrane of the present invention has a 300
Irradiate the PTFE membrane with radiation at a temperature of
The FE was introduced with a long-chain branch and a bond at the branch end, and then irradiated with radiation near room temperature to graft styrene. In this case, a new discovery was found that the graft ratio of the long-chain branched PTFE was significantly increased at the same radiation dose as compared with ordinary PTFE (see FIG. 1). This is considered to be due to the fact that the field of the graft reaction in the PTFE film was increased by the irradiation at a high temperature.

【0025】上記のように本発明において、グラフト率
(長鎖分岐型PTFE構造を主鎖部、ポリスチレン側鎖
をグラフト鎖部とすると、乾燥時における主鎖部に対す
るグラフト鎖部の百分率)が5〜150wt%のものが
容易に作製できる。このように、本発明ではポリスチレ
ンの高グラフト率のフッ素樹脂が得られることから、ス
ルホン酸基の導入量、すなわち、イオン交換容量を容易
に高めることが可能になった。スルホン酸基を導入した
イオン交換膜として、本発明のフッ素樹脂イオン交換膜
のイオン交換容量が0.5〜4meq/g、好ましくは
1.0〜4meq/g、より好ましくは1.3〜3me
q/gであることを特徴とする。ここイオン交換膜のイ
オン交換容量とは、乾燥イオン交換膜の重量1g当たり
の交換基量(meq/g)である。
As described above, in the present invention, the graft ratio (percentage of the graft chain portion to the main chain portion when dried, where the long chain branched PTFE structure is the main chain portion and the polystyrene side chain is the graft chain portion) is 5.の も の 150 wt% can be easily produced. As described above, in the present invention, since a fluororesin having a high graft ratio of polystyrene is obtained, the amount of sulfonic acid groups introduced, that is, the ion exchange capacity can be easily increased. As the ion exchange membrane into which the sulfonic acid group is introduced, the ion exchange capacity of the fluororesin ion exchange membrane of the present invention is 0.5 to 4 meq / g, preferably 1.0 to 4 meq / g, and more preferably 1.3 to 3 me.
q / g. Here, the ion exchange capacity of the ion exchange membrane is the amount of exchange groups (meq / g) per 1 g of the weight of the dry ion exchange membrane.

【0026】本発明によるフッ素樹脂イオン交換膜は、
上記式(1)の繰り返し単位を有するフッ素系重合体;
上記式(2)の繰り返し単位を有するフッ素系重合体;
及び上記式(1)及び(2)の両繰り返し単位を混合し
て有するフッ素系重合体;ならびにこれらのフッ素系重
合体の2以上の混合物;に対して、スチレンのグラフト
及びスルホン酸基導入により得られた対応する下記式
(5)の繰り返し単位を有するフッ素系重合体;下記式
(6)の繰り返し単位を有するフッ素系重合体;及び下
記式(5)及び(6)の両繰り返し単位を混合して有す
るフッ素系重合体;ならびにこれらのフッ素系重合体の
2以上の混合物;から成るイオン交換膜である。
The fluororesin ion exchange membrane according to the present invention comprises:
A fluoropolymer having a repeating unit of the above formula (1);
A fluoropolymer having a repeating unit of the above formula (2);
And a fluorinated polymer having a mixture of both repeating units of the above formulas (1) and (2); and a mixture of two or more of these fluorinated polymers; by grafting styrene and introducing a sulfonic acid group. The resulting fluoropolymer having a repeating unit of the following formula (5); a fluoropolymer having a repeating unit of the following formula (6); and both repeating units of the following formulas (5) and (6): An ion-exchange membrane comprising: a fluorine-containing polymer having a mixture; and a mixture of two or more of these fluorine-containing polymers.

【0027】[0027]

【化5】 Embedded image

【0028】[0028]

【化6】 Embedded image

【0029】また、長鎖分岐型PTFE膜に45kGy
照射してスチレンをグラフトさせて作製した膜は、含水
時において十分に使用に耐える強度を有する膜となった
が、通常のPTFEに45kGy照射してスチレンをグ
ラフトさせて作製した膜は含水時において非常に弱く、
イオン交換膜として取り扱うことができないことが分か
った。すなわち、本発明によるフッ素樹脂では高いイオ
ン交換容量にも拘わらず、PTFE長鎖分岐の絡み合い
と分岐末端での結合により膜の膨潤による含水率の増大
も抑制され、適度の膜強度を維持できることを見出し
た。ここで膜の含水状態とは、室温の精製水中に24時
間以上イオン交換膜を保存しておいた状態のものであ
り、そして含水率とは水中に保存しておいたイオン交換
膜の重量とこの膜を60℃にて16時間、真空乾燥した
時の膜の重量とから実施例に記した式(10)によって
計算される百分率である。
Also, 45 kGy was applied to the long-chain branched PTFE membrane.
The film produced by irradiation and grafting styrene became a film having sufficient strength to withstand use when wet, but the film produced by irradiating 45 kGy to normal PTFE and grafting styrene was used when wet. Very weak,
It turned out that it cannot be handled as an ion exchange membrane. That is, despite the high ion exchange capacity of the fluororesin according to the present invention, the entanglement of PTFE long-chain branches and the binding at the branch end also suppress the increase in water content due to swelling of the membrane, and maintain an appropriate membrane strength. I found it. Here, the water-containing state of the membrane is a state in which the ion-exchange membrane is stored in purified water at room temperature for 24 hours or more, and the water content is the weight of the ion-exchange membrane stored in the water. It is a percentage calculated from the weight of the film when the film was vacuum-dried at 60 ° C. for 16 hours by the formula (10) described in Examples.

【0030】従来、フッ素樹脂系のイオン交換膜では膜
の力学的強度や寸法安定性の点からイオン交換容量が1
meq/g前後のものしか実用に供することができなか
った。これはフッ素系の樹脂、特にPTFEでは一般に
架橋を導入することが困難であり、このイオン交換膜で
はPTFEの結晶部分によって主に膜強度が保たれてい
る。このため多量のグラフト側鎖やスルホン酸基を導入
するとPTFE樹脂の強度が急激に低下し、使用に耐え
られなくなる。これに対して、本発明の長鎖分岐型PT
FE構造のフッ素樹脂は長鎖分岐の絡み合いや長鎖分岐
末端の結合によってイオン交換容量が4meq/gまで
多量のグラフト側鎖やスルホン酸基を導入しても、膜の
力学的特性や寸法安定性が保たれているため実用に供す
ることができる(例えば実施例10、11参照)。イオ
ン交換容量が4meq/g以上の膜も作製可能であるが
膜の力学特性が低下し、実用的な使用に耐えないと判断
された。これらのことから、本発明におけるフッ素樹脂
イオン交換膜は、上記のイオン交換容量を有し、、か
つ、含水状態における膜材料の引張り破断強度が1〜2
5MPa、より好ましくは5〜20MPaであることを
特徴とする。このときの膜材料の引張り伸びは15%以
上、より好ましくは30%以上であることを特徴とす
る。これらの力学的強度はイオン交換膜として実用的に
使用するのに十分な強度である。また、膜の力学特性か
ら、グラフト率に関しては5〜150wt%、より好ま
しくは20〜70wt%であることを特徴とする。
Conventionally, ion exchange capacity of a fluororesin-based ion exchange membrane is 1 in terms of mechanical strength and dimensional stability of the membrane.
Only those having meq / g were practically usable. This is because it is generally difficult to introduce crosslinks with a fluorine-based resin, especially PTFE, and in this ion exchange membrane, the membrane strength is mainly maintained by the crystal part of PTFE. For this reason, when a large amount of graft side chains or sulfonic acid groups are introduced, the strength of the PTFE resin is rapidly reduced, and the resin cannot be used. In contrast, the long-chain branched PT of the present invention
Fluorine resin with FE structure has mechanical properties and dimensional stability even when a large amount of grafted side chains or sulfonic acid groups are introduced up to 4 meq / g due to entanglement of long-chain branches or binding of long-chain branches. Since the properties are maintained, it can be put to practical use (for example, see Examples 10 and 11). Although it is possible to produce a membrane having an ion exchange capacity of 4 meq / g or more, the mechanical properties of the membrane deteriorated, and it was judged that the membrane could not withstand practical use. From these facts, the fluororesin ion exchange membrane of the present invention has the above-mentioned ion exchange capacity, and has a tensile rupture strength of 1 to 2 in a water-containing state.
It is characterized by being 5 MPa, more preferably 5 to 20 MPa. At this time, the film material has a tensile elongation of 15% or more, more preferably 30% or more. These mechanical strengths are sufficient for practical use as an ion exchange membrane. Further, from the mechanical properties of the film, the graft ratio is characterized by being 5 to 150 wt%, more preferably 20 to 70 wt%.

【0031】また、本発明によるフッ素樹脂イオン交換
膜は、その一改変態様として、上記のポリスチレン側鎖
において、ポリスチレン構造中にポリスチレンに対し1
〜25wt%のα−メチルスチレン、ジビニルベンゼン
共重合や架橋体構造、また、ポリスチレングラフト鎖中
にポリスチレンに対し1〜15wt%のトリアリルイソ
シアヌレートやトリアリルシアヌレート等の多官能性架
橋助剤によって架橋した構造を有することを特徴とす
る。
The fluororesin ion-exchange membrane according to the present invention is, as a modified embodiment thereof, one of the above polystyrene side chains in the polystyrene structure.
2525 wt% α-methylstyrene, divinylbenzene copolymer or crosslinked structure, and polyfunctional cross-linking aid such as triallyl isocyanurate or triallyl cyanurate in a polystyrene graft chain in an amount of 1 to 15 wt% based on polystyrene Characterized by having a crosslinked structure.

【0032】本発明のフッ素樹脂イオン交換膜では、導
入された長鎖分岐の量、及びスルホン酸基の量、ならび
に式(1)や(2)における分子末端の二重結合が反応
した−OH基の量によって、フッ素樹脂の含水量を制御
できる。この膜を燃料電池用イオン交換膜として使用す
る場合、含水率が低すぎると酸素や水素の圧力が低い場
合や酸素源として空気を用いた場合の出力電圧が低下
し、高電流密度や高出力が維持できない。また、運転条
件の僅かな変化によって電気伝導度やガス透過係数が変
わり好ましくない。従って、イオン交換膜が乾燥状態に
なりにくく、ガス透過係数や電気伝導度の変化が比較的
少ないことが必要である。本発明のイオン交換膜の含水
率は、10〜150wt%で任意に制御できる。一般的
には、イオン交換容量が増すに連れて含水率も増大する
が、PTFE膜を予め放射線照射によって長鎖分岐の導
入量を制御することにより、同一交換容量のイオン交換
膜であっても含水率を変えることができる。本発明のイ
オン交換膜は含水率を大幅に変えることができることか
ら、膜の含水率は10〜150wt%、好ましくは20
〜100wt%であることを特徴とする。
In the fluororesin ion exchange membrane of the present invention, the amount of the introduced long-chain branch, the amount of the sulfonic acid group, and the —OH where the double bond at the molecular terminal in the formulas (1) and (2) reacts. The water content of the fluororesin can be controlled by the amount of the group. When this membrane is used as an ion exchange membrane for a fuel cell, if the water content is too low, the output voltage decreases when the pressure of oxygen or hydrogen is low or when air is used as an oxygen source, resulting in high current density and high output. Cannot be maintained. Also, a slight change in the operating conditions undesirably changes the electric conductivity and the gas permeability coefficient. Therefore, it is necessary that the ion-exchange membrane hardly becomes a dry state and the change in gas permeability coefficient and electric conductivity is relatively small. The water content of the ion exchange membrane of the present invention can be arbitrarily controlled at 10 to 150 wt%. In general, as the ion exchange capacity increases, the water content also increases. However, by controlling the introduction amount of long-chain branches by irradiating the PTFE membrane in advance, even if the ion exchange membranes have the same exchange capacity, The moisture content can be varied. Since the water content of the ion exchange membrane of the present invention can be greatly changed, the water content of the membrane is 10 to 150 wt%, preferably 20 wt%.
-100 wt%.

【0033】燃料電池用高分子イオン交換膜は電気伝導
度が高いものほど電気抵抗が小さく、電解質膜としての
性能は高い。そして、25℃におけるイオン交換膜の電
気伝導度が0.05Ω-1・cm-1以下であると、燃料電
池としての出力性能が著しく低下する場合が多いため、
イオン交換膜の電気伝導度は0.05Ω-1・cm-1
上、より高性能のイオン交換膜では0.15Ω-1・cm
-1以上である必要がある。一方、通常のフッ素樹脂イオ
ン交換膜では25℃におけるイオン交換膜の電気伝導度
が0.12Ω-1・cm-1以上ではイオン交換膜の強度が
低下することが知られている。すなわち、イオン交換膜
の交換容量を増大させ、電気伝導度をあまり大きくする
と、膜の強度が低下するという不都合が生じる〔膜の電
気伝導度は実施例に示した式(11)参照〕。しかし、
本発明によるイオン交換膜では25℃における交換容量
2.8meq/g,電気伝導度0.166Ω-1・cm-1
においても膜強度がそれほど低下しないことが本発明者
によって明らかにされた(実施例8)。これはポリテト
ラフルオロエチレン膜を予め放射線によって長鎖分岐型
に改質していることによるもので、高いイオン交換容量
膜を実用的に使用するために極めて重要な発明である。
本発明のイオン交換膜は、25℃での電気伝導度が0.
05〜0.3Ω-1・cm-1、好ましくは0.15〜0.
3Ω-1・cm-1であることを特徴とする。
The higher the electrical conductivity of the polymer ion exchange membrane for a fuel cell, the lower the electrical resistance and the higher the performance as an electrolyte membrane. When the electrical conductivity of the ion exchange membrane at 25 ° C. is 0.05 Ω −1 · cm −1 or less, the output performance as a fuel cell often decreases significantly,
Electrical conductivity of the ion-exchange membrane is 0.05? -1 · cm -1 or more, the higher performance of the ion exchange membrane 0.15Ω -1 · cm
Must be -1 or more. On the other hand, it is known that the strength of the ion exchange membrane is reduced when the electric conductivity of the ion exchange membrane at 25 ° C. is 0.12 Ω −1 · cm −1 or more in a normal fluororesin ion exchange membrane. That is, if the exchange capacity of the ion-exchange membrane is increased and the electric conductivity is made too high, there is a disadvantage that the strength of the membrane is reduced (for the electric conductivity of the membrane, see the formula (11) shown in the embodiment). But,
In the ion exchange membrane according to the present invention, the exchange capacity at 25 ° C. is 2.8 meq / g, and the electric conductivity is 0.166 Ω −1 · cm −1.
It was clarified by the present inventors that the film strength did not decrease so much in Example 8 (Example 8). This is due to the fact that the polytetrafluoroethylene membrane is previously modified into a long-chain branched type by radiation, and is a very important invention for practical use of a high ion exchange capacity membrane.
The ion exchange membrane of the present invention has an electrical conductivity of 0.2 at 25 ° C.
0.5 to 0.3 Ω -1 · cm -1 , preferably 0.15 to 0.
It is characterized by being 3Ω -1 · cm -1 .

【0034】本発明のイオン交換膜は、上記の各特性
を、イオン交換容量は0.5〜4meq/g、膜強度は
1〜25MPa、含水率は10〜150wt%、25℃
における電気伝導度は0.05〜0.3Ω-1・cm-1
各々の数値範囲内に制御して作製することができる。特
性をこれらの限られた範囲内に任意に制御できることも
本発明の特徴である。
The ion-exchange membrane of the present invention has the above-mentioned properties, an ion exchange capacity of 0.5 to 4 meq / g, a membrane strength of 1 to 25 MPa, a water content of 10 to 150 wt%, and 25 ° C.
Can be manufactured by controlling the electric conductivity in each of the numerical ranges of 0.05 to 0.3 Ω -1 · cm -1 . It is also a feature of the present invention that the characteristics can be arbitrarily controlled within these limited ranges.

【0035】イオン交換膜の特性を上げるために、イオ
ン交換膜の厚みを薄くすることも考えられる。しかし現
状では、余り薄いイオン交換膜では破損し易く、イオン
交換膜自体の製作も難しいのが実状である。また、イオ
ン交換膜内に含まれる水の絶対量も少なくなるためイオ
ン交換膜が乾燥し易く、高性能を長時間維持することが
できなくなる場合も考えられる。従って、通常では50
〜300μm厚の範囲のイオン交換膜が使われている。
本発明の場合、膜厚は特に限定されないが50μm〜3
00μmの範囲のものが好適である。
It is conceivable to reduce the thickness of the ion exchange membrane in order to improve the characteristics of the ion exchange membrane. However, at present, an ion exchange membrane that is too thin is easily damaged, and it is difficult to manufacture the ion exchange membrane itself. Further, since the absolute amount of water contained in the ion exchange membrane is also reduced, the ion exchange membrane is likely to dry, and it may be impossible to maintain high performance for a long time. Therefore, usually 50
Ion exchange membranes in the range of ~ 300 [mu] m thickness are used.
In the case of the present invention, the film thickness is not particularly limited, but is 50 μm to 3 μm.
Those having a range of 00 μm are preferred.

【0036】本発明は、フッ素樹脂系イオン交換膜の製
造についての一態様において、以下に記載の方法に従っ
て長鎖分岐型PTFE膜の作製とこれに引き続くポリス
チレンのグラフト側鎖の導入、さらに、スルホン酸基の
導入とから構成されるフッ素樹脂系イオン交換膜の製造
方法を特徴とする。
The present invention relates to an embodiment of the production of a fluororesin-based ion exchange membrane, in which a long-chain branched PTFE membrane is produced according to the method described below, followed by introduction of a polystyrene graft side chain, The method is characterized by a method for producing a fluororesin-based ion-exchange membrane comprising the introduction of an acid group.

【0037】まず、長鎖分岐型PTFE膜の作製では、
30〜300μmの膜厚のPTFEを330〜350℃
間の任意の一定温度や300〜365℃間の可変温度
で、酸素分圧10Torr以下の範囲内の不活性ガス中
や減圧下で、電子線やγ線の放射線を5kGy〜300
kGy照射して作製する。この範囲内の照射温度や線量
を選択することによって、生成される長鎖分岐型PTF
E膜の特性を変えることができる。例えば、200kG
yの線量を選べば、5kGy照射の場合よりも長鎖分岐
の数の多いもの、すなわち、膜強度の比較的大きな長鎖
分岐型PTFE膜を得ることができる。これは長鎖分岐
数が多いことによる分岐の絡み合いや分岐同士の化学的
な結合によって強度の高い長鎖分岐型PTFE膜を得る
ことができるためである。
First, in producing a long-chain branched PTFE membrane,
PTFE having a film thickness of 30 to 300 μm at 330 to 350 ° C.
Irradiation of electron beams or γ-rays in an inert gas within a range of 10 Torr or less of oxygen or under reduced pressure at an arbitrary constant temperature between 300 and 365 ° C. or at a variable temperature between 300 and 365 ° C.
It is manufactured by irradiation with kGy. By selecting the irradiation temperature and dose within this range, the long-chain branched PTF generated
The characteristics of the E film can be changed. For example, 200kG
If the dose of y is selected, a long-chain branched PTFE film having a larger number of long-chain branches than that of 5 kGy irradiation, that is, a relatively large film strength can be obtained. This is because a long-chain branched PTFE membrane having high strength can be obtained by entanglement of branches due to a large number of long-chain branches and chemical bonding between the branches.

【0038】引き続いて、グラフト側鎖の導入では、上
記の膜に室温で再びγ線や電子線を5〜100kGy照
射(いわゆる前照射)後、スチレンモノマー及び溶媒の
沸点以下の温度範囲、通常40〜60℃でスチレン単
独、またはスチレンモノマーをベンゼンなどの溶媒で希
釈した溶液中でグラフト反応させて、ポリスチレングラ
フト側鎖を導入する。酸素の存在はグラフト反応を阻害
するため、これら一連の操作はアルゴンガスや窒素ガス
などの不活性ガス中で、また、アルゴンあるいは窒素ガ
スで液中の酸素を除去した状態で行う必要がある。グラ
フト量は、線量(活性種の数)に比例し、線量の高い方
がより多くのグラフト側鎖を生成する。温度40〜60
℃で1〜24時間反応させた後、反応溶液中からグラフ
ト膜を取り出し、40℃のトルエン中に一晩浸漬してス
チレン及びスチレンホモポリマーを抽出除去する。この
後、40℃で真空乾燥する。
Subsequently, for the introduction of a graft side chain, the above film is again irradiated with γ-rays or electron beams at room temperature at 5 to 100 kGy (so-called pre-irradiation), and then subjected to a temperature range below the boiling point of the styrene monomer and the solvent, usually 40 ° C. Grafting reaction is performed at -60 ° C in a solution obtained by diluting styrene alone or a styrene monomer with a solvent such as benzene to introduce a polystyrene graft side chain. Since the presence of oxygen inhibits the graft reaction, these series of operations must be performed in an inert gas such as an argon gas or a nitrogen gas, or in a state where oxygen in the liquid has been removed with an argon or a nitrogen gas. The amount of grafting is proportional to the dose (the number of active species), with higher doses producing more graft side chains. Temperature 40-60
After the reaction at 1 ° C. for 1 to 24 hours, the graft membrane is taken out of the reaction solution and immersed in toluene at 40 ° C. overnight to extract and remove styrene and styrene homopolymer. Thereafter, vacuum drying is performed at 40 ° C.

【0039】このグラフト反応でスチレンモノマーと共
にα−メチルスチレン、ジビニルベンゼンをコモノマー
として1〜25wt%加えてグラフト側鎖を共重合や架
橋構造としたもの、架橋助剤として、ポリスチレンに対
し1〜15wt%のトリアリルシアヌレートやトリアリ
ルイソシアヌレートを加えてポリスチレンに架橋構造を
導入したものも有効である。
In the grafting reaction, α-methylstyrene and divinylbenzene are added together with styrene monomer in an amount of 1 to 25% by weight as a comonomer to form a graft side chain in a copolymerized or crosslinked structure. % Of triallyl cyanurate or triallyl isocyanurate is also effective.

【0040】さらに、スルホン酸基の導入では、上記グ
ラフト膜のポリスチレン側鎖にスルホン酸基を導入して
イオン交換膜を作製する。スルホン化条件は、室温〜6
0℃、2〜24時間、テトラクロロメタン、クロロホル
ム、ジクロロメタン、1,2−ジクロロエタン、1,
1,2,2−テトラクロロエタンなどを溶媒として用い
て0.2〜0.5mol/Lのクロルスルホン酸を反応
させる。所定時間反応後、膜を取出し十分に水洗いして
溶媒及び未反応クロルスルホン酸を除去する。この時に
加水分解が起こりスルホン酸基が生成しイオン交換膜と
なる。
Further, in the introduction of a sulfonic acid group, an ion exchange membrane is prepared by introducing a sulfonic acid group into a polystyrene side chain of the graft membrane. Sulfonation conditions are from room temperature to 6
0 ° C., 2 to 24 hours, tetrachloromethane, chloroform, dichloromethane, 1,2-dichloroethane, 1,
Using 1,2,2-tetrachloroethane or the like as a solvent, 0.2 to 0.5 mol / L of chlorosulfonic acid is reacted. After reacting for a predetermined time, the membrane is taken out and sufficiently washed with water to remove the solvent and unreacted chlorosulfonic acid. At this time, hydrolysis occurs and sulfonic acid groups are formed to form an ion exchange membrane.

【0041】また、スチレンや上記のコモノマーをグラ
フトする場合に、γ線や電子線の代わりに重イオンビー
ムを照射した長鎖分岐型PTFE膜を用いると、重イオ
ンの飛跡に沿ってラジカルが生成し、ここに密なグラフ
ト鎖が生成する。この飛跡は膜を貫通しているため、こ
の飛跡に沿って生成したグラフト鎖に付いたイオン交換
基を通して同じ吸収線量のγ線や電子線を用いた場合よ
りもより有効にイオンが移動し電気伝導度は高くなる。
50μm厚の膜ならば、ヘリウムイオンは8MeV以
上、炭素イオンは40MeV以上、ネオンイオンは80
MeV以上、アルゴンイオンは180MeV以上であ
り、同じく100μm厚の膜ならば、ヘリウムイオンは
12MeV以上、炭素イオンは62MeV以上、ネオン
イオンは130MeV以上、アルゴンイオンは300M
eV以上が望ましい。照射量は1×1010〜1×1013
個/cm2の範囲が好ましい。
When styrene or the above comonomer is grafted, if a long-chain branched PTFE film irradiated with a heavy ion beam instead of a γ-ray or an electron beam is used, radicals are generated along the tracks of the heavy ions. Here, dense graft chains are formed. Since these tracks penetrate the membrane, ions move more efficiently through ion-exchange groups attached to the graft chains formed along the tracks than when using γ-rays or electron beams with the same absorbed dose. Conductivity increases.
For a film having a thickness of 50 μm, helium ions are 8 MeV or more, carbon ions are 40 MeV or more, and neon ions are 80 MeV or more.
MeV or more, argon ion is 180 MeV or more. Similarly, if the film is 100 μm thick, helium ion is 12 MeV or more, carbon ion is 62 MeV or more, neon ion is 130 MeV or more, and argon ion is 300 M
eV or more is desirable. The irradiation amount is 1 × 10 10 to 1 × 10 13
Pcs / cm 2 is preferred.

【0042】上述の一連の操作、反応によって本発明に
係わるフッ素樹脂イオン交換膜が作製され得る。
The fluororesin ion exchange membrane according to the present invention can be manufactured by the above-described series of operations and reactions.

【0043】[0043]

【実施例】以下、本発明をいくつかの実施例及び比較例
により説明するが、これらは例示の目的で挙げられるも
のであり、本発明の範囲は、これらの実施例に示された
具体的な事項に限定されるものではない。
EXAMPLES The present invention will be described below with reference to some examples and comparative examples, which are given for illustrative purposes only, and the scope of the present invention is not limited to the specific examples shown in these examples. It is not limited to a simple matter.

【0044】実施例1及び比較例1 厚さ500μmで数平均分子量1×107のポリテトラ
フルオロエチレン(PTFE)シートの10cm×10
cmの片を加熱型の照射容器にいれ、容器内を10-3
orr程度に脱気してアルゴンガスに置換した。その
後、電気ヒータで加熱してPTFEシートの温度を33
5〜345℃として、電子線2MeVを線量50;10
0;300;500kGyまたは1MGy照射した。照
射後、容器を冷却して高温照射PTFEシートを取り出
した。
Example 1 and Comparative Example 1 A polytetrafluoroethylene (PTFE) sheet having a thickness of 500 μm and a number average molecular weight of 1 × 10 7 was 10 cm × 10
cm pieces into a heating type irradiation container, and the inside of the container is 10 -3 T
It was degassed to about orr and replaced with argon gas. Then, the temperature of the PTFE sheet is increased by 33 with an electric heater.
Assuming a temperature of 5 to 345 ° C, an electron beam of 2 MeV is applied at a dose of 50;
0; 300; 500 kGy or 1 MGy. After the irradiation, the container was cooled and the high-temperature irradiated PTFE sheet was taken out.

【0045】得られたシートのクリープ特性を表1に示
す。この試験において、比較の目的で未照射(線量0)
試料の特性も測定した(比較例1)。測定法は、AST
M−D621−64(1996)に準拠した。比較例1
で示した未照射試料よりも1MGyの照射試料で、永久
歪みがかえって大きな値となった。また、線量100k
Gy以上の照射では、線量が大きくなるほど永久歪みが
大きくなっていく。通常、架橋型高分子では架橋したも
のは未架橋のものに比べ、クリープ試験における永久歪
みが小さく、また、架橋密度が高いほど(照射線量が高
いほど)永久歪みは小さい。このことから、このような
高温照射で生成したPTFEはPTFE鎖同士が分子鎖
中で直接結合した架橋によって生成した網目構造ではな
く、長鎖分岐型の構造であり、分岐鎖の絡み合いや分岐
鎖末端での結合によってできていることが分かる。この
ように、長鎖分岐型PTFEではポリマー主鎖に結合し
た長鎖分岐が絡み合い、また、分岐の末端で結合ができ
ているため、ある線量以上に照射すると長鎖分岐が短く
なり、絡み合いの度合いが減少する。このためクリープ
試験における歪み量が大きくなる。
Table 1 shows the creep characteristics of the obtained sheet. Unirradiated (0 dose) for comparison purposes in this test
The characteristics of the sample were also measured (Comparative Example 1). The measurement method is AST
M-D621-64 (1996). Comparative Example 1
In the irradiated sample of 1 MGy as compared with the non-irradiated sample indicated by, the permanent distortion was rather large. In addition, dose 100k
In the irradiation of Gy or more, the permanent strain increases as the dose increases. In general, a crosslinked polymer having a crosslinked polymer has a smaller permanent set in a creep test than an uncrosslinked polymer, and has a smaller permanent set as the crosslink density is higher (as the irradiation dose is higher). Therefore, PTFE generated by such high-temperature irradiation is not a network structure formed by cross-linking in which PTFE chains are directly bonded to each other in a molecular chain, but a long-chain branched structure. It can be seen that the bond is formed at the terminal. As described above, in the long-chain branched PTFE, the long-chain branches bonded to the polymer main chain are entangled with each other, and the bonds are formed at the ends of the branches. The degree decreases. For this reason, the strain amount in the creep test increases.

【0046】[0046]

【表1】 [Table 1]

【0047】実施例2−3及び比較例2 厚さ50μmのPTFE(数平均分子量1×107)の
10cm×4cmのシート2枚を加熱型の照射容器にい
れ、容器内を10-3Torr程度に脱気してアルゴンガ
スに置換した。この時、意図的にごく少量の酸素を入れ
た場合も用意した。その後、試料を電気ヒータで加熱し
て、PTFEシートの温度を340℃として60Co−γ
線を60kGy(線量率3kGy/hで20時間)照射
した。照射後、容器を冷却して高温照射PTFEのシー
トを取り出した。
Example 2-3 and Comparative Example 2 Two 10 cm × 4 cm sheets of PTFE (number average molecular weight: 1 × 10 7 ) having a thickness of 50 μm were placed in a heating type irradiation vessel, and the inside of the vessel was placed at 10 −3 Torr. It was degassed to a degree and replaced with argon gas. At this time, a case where a very small amount of oxygen was intentionally added was also prepared. Thereafter, the sample was heated by an electric heater, the temperature of the PTFE sheet was set to 340 ° C., and 60 Co-γ
The line was irradiated at 60 kGy (dose rate 3 kGy / h for 20 hours). After irradiation, the container was cooled and a sheet of high-temperature irradiated PTFE was taken out.

【0048】高温照射したPTFE中の酸素原子含有量
を表2に示す。酸素原子含有量はPTFEのシートを直
径約40mmの円形に切り取り、蛍光X線分析装置(理
学電気工業製)の試料ホルダーに固定した。シートの直
径30mmの面積に電子線を管電圧40kV、管電流7
0mAで当て、試料から放出される原子の固有X線の強
度から各原子の含有量を求めた。この際に、比較の目的
で、未照射のPTFEシート試料中の元素含有量も測定
した(比較例2)。
Table 2 shows the oxygen atom content in the PTFE irradiated at a high temperature. The oxygen atom content was obtained by cutting a PTFE sheet into a circle having a diameter of about 40 mm and fixing it to a sample holder of a fluorescent X-ray analyzer (manufactured by Rigaku Denki Kogyo). An electron beam is applied to a sheet having an area of 30 mm in diameter at a tube voltage of 40 kV and a tube current of 7 mm.
At 0 mA, the content of each atom was determined from the intensity of the intrinsic X-ray of the atom emitted from the sample. At this time, for comparison purposes, the element content in the unirradiated PTFE sheet sample was also measured (Comparative Example 2).

【0049】照射時の雰囲気に酸素を入れることによっ
て、高温照射したPTFE中に酸素原子が導入される。
酸素原子は、PTFE主鎖が放射線で切断された末端に
結合し、長鎖分岐の付け根に導入されるか、または、分
岐末端に導入されると考えられる。
By introducing oxygen into the atmosphere at the time of irradiation, oxygen atoms are introduced into the PTFE irradiated at a high temperature.
It is believed that the oxygen atom attaches to the end of the PTFE backbone that has been cut by radiation and is introduced at the base of the long chain branch or at the branch end.

【0050】[0050]

【表2】 [Table 2]

【0051】実施例4 60 Co−γ線を0〜210kGy照射して得た長鎖分岐
型PTFE膜(厚さ50μmと100μm)を脱気後、
再び、γ線を15〜45kGy前照射して60℃でスチ
レンをグラフトさせた。種々のグラフト条件下で得られ
たグラフト率とグラフト時間の関係を図1にグラフで示
す。グラフト率は下記式(7)で求めた。この図から明
らかなように、長鎖分岐を導入していない従来のPTF
E膜(0kGy)へのグラフト率は22時間でも20%
程度であるが、135kGyの照射した膜では90%と
著しく増大した。しかし、更に線量を増した210kG
yの照射では長鎖分岐型PTFE鎖同士の結合が密にな
り、膜の強度は増大するが、スチレンが膜の中に入りに
くくなるため初期のグラフト速度は大幅に抑制される。
また、グラフト反応のための前照射線量を15kGyか
ら45kGyに多くすると、グラフト率は前照射線量と
ともに増大する。この例において、高温照射してないP
TFE(0kGy)のグラフト実験を比較例3とする。
Example 4 A long-chain branched PTFE film (thicknesses of 50 μm and 100 μm) obtained by irradiating 60 Co-γ rays with 0 to 210 kGy was degassed.
Again, γ-rays were pre-irradiated at 15 to 45 kGy to graft styrene at 60 ° C. The relationship between the grafting rate and the grafting time obtained under various grafting conditions is shown graphically in FIG. The graft ratio was determined by the following equation (7). As is apparent from this figure, the conventional PTF having no long-chain branch introduced therein.
Graft ratio to E film (0 kGy) is 20% even in 22 hours
Although the degree was large, the film irradiated with 135 kGy increased remarkably to 90%. However, the dose was increased to 210kG
The irradiation with y makes the bonds between the long-chain branched PTFE chains denser and increases the strength of the membrane, but the styrene hardly enters the membrane, so that the initial grafting speed is greatly suppressed.
When the pre-irradiation dose for the graft reaction is increased from 15 kGy to 45 kGy, the graft ratio increases with the pre-irradiation dose. In this example, the non-hot irradiated P
A graft experiment of TFE (0 kGy) is referred to as Comparative Example 3.

【0052】なお、グラフト率は長鎖分岐型ポリテトラ
フルオロエチレン構造を主鎖部、ポリスチレン鎖をグラ
フト側鎖部とすると、主鎖部に対するグラフト側鎖部の
重量比(wt%)は、一般に次式(7)のグラフト率
(Xdg)として表される。
Assuming that the graft ratio is a long-chain branched polytetrafluoroethylene structure as a main chain and a polystyrene chain as a graft side chain, the weight ratio (wt%) of the graft side chain to the main chain is generally It is expressed as a graft ratio (X dg ) of the following formula (7).

【0053】 Xdg(wt%)=100・(Wt−W0)/W0 (7 ) W0:グラフト前のPTFE膜の重さ(g) Wt:グラフト後のPTFE膜(乾燥状態)の重さ
(g)実施例5〜11及び比較例4〜6 上記のグラフト膜を0.2M〜0.5Mクロルスルホン
酸(1,2−ジクロロエタン溶媒)に浸漬し、室温〜6
0℃、6〜24時間スルホン化反応を行った。その後、
この膜を水洗いしてスルホン酸基とした。本反応は50
℃、20時間でスルホン化度はほぼ100%に達した。
すなわち、イオン交換容量とグラフト率からグラフトし
たスチレン単位1つにほぼ1個のスルホン酸基が結合し
ていることが分かった。なお、60℃、6時間でスルホ
ン化度は50%前後であった。本実施例で得られた膜の
イオン交換容量、含水率、膜厚、及び電気伝導度(比電
導度)を表3に示す。
X dg (wt%) = 100 · (W t −W 0 ) / W 0 (7) W 0 : Weight of PTFE film before grafting (g) W t : PTFE film after grafting (dry state) 5 ) Examples 5 to 11 and Comparative Examples 4 to 6 The above graft membranes were immersed in 0.2 M to 0.5 M chlorosulfonic acid (1,2-dichloroethane solvent),
The sulfonation reaction was performed at 0 ° C. for 6 to 24 hours. afterwards,
This membrane was washed with water to obtain sulfonic acid groups. The reaction is 50
At 20 ° C. for 20 hours, the degree of sulfonation reached almost 100%.
That is, it was found from the ion exchange capacity and the graft ratio that almost one sulfonic acid group was bonded to one grafted styrene unit. The degree of sulfonation at 60 ° C. for 6 hours was around 50%. Table 3 shows the ion exchange capacity, water content, film thickness, and electrical conductivity (specific conductivity) of the membrane obtained in this example.

【0054】本実施例で得られたイオン交換膜のイオン
交換容量は1〜3meq/gと非常に高い。また、膜の
含水時の力学特性、特に、引張り強度はイオン交換容量
1.1meq/g(スチレングラフト率が66%で含水
率13%)のものが8.4MPa、イオン交換容量2.
6meq/g(スチレングラフト率が68%で含水率6
8%)のものが7.1MPaであった。
The ion exchange capacity of the ion exchange membrane obtained in this example is as high as 1 to 3 meq / g. Further, the mechanical properties of the membrane when it contains water, in particular, the tensile strength is 8.4 MPa for an ion exchange capacity of 1.1 meq / g (a styrene graft ratio of 66% and a water content of 13%), and an ion exchange capacity of 2.
6 meq / g (styrene grafting ratio 68%, water content 6
8%) was 7.1 MPa.

【0055】上記のように、1,2−ジクロロエタンを
溶媒にした場合、スルホン化率Xds(%)は、60℃、
6時間で概略50%、50℃、20時間で概略100%
であった。溶媒の選択に当たっては、スチレングラフト
膜の溶媒中への膨潤性、スルホン化反応速度、沸点等取
扱い易さ等が重要である。スルホン化反応速度は溶媒に
よって異なるが大きな違いは認められなかった。テトラ
クロロメタン、クロロホルム及びジクロロメタン等の炭
素数一個の溶媒はいずれも沸点が低いので温度を高くす
ると蒸気圧が高くなり、扱いに難点がある。特にクロロ
ホルムは膨潤性、スルホン化反応速度ともに優れている
が、沸点が低く扱いにくい。炭素数2個の溶媒である
1,2−ジクロロエタンと1、1,2,2−テトラクロ
ロエタンで比較した場合、スチレングラフト膜の膨潤性
は、後者の方が大きいが、スルホン化反応速度は幾分前
者の方が大きく、膨潤性とスルホン化反応速度は必ずし
も対応しないことが分かった。
As described above, when 1,2-dichloroethane is used as the solvent, the sulfonation rate X ds (%) is 60 ° C.
Approximately 50% in 6 hours, approximately 100% in 50 ° C, 20 hours
Met. In selecting a solvent, swellability of the styrene graft membrane in the solvent, sulfonation reaction rate, ease of handling such as boiling point, and the like are important. The sulfonation reaction rate varied depending on the solvent, but no significant difference was observed. Since solvents having one carbon atom such as tetrachloromethane, chloroform, and dichloromethane all have a low boiling point, when the temperature is increased, the vapor pressure increases, and there is a difficulty in handling. In particular, chloroform is excellent in both swellability and sulfonation reaction rate, but has a low boiling point and is difficult to handle. When 1,2-dichloroethane, which is a solvent having two carbon atoms, is compared with 1,1,2,2-tetrachloroethane, the swellability of the styrene graft membrane is larger in the latter, but the sulfonation reaction rate is higher. The former was larger, indicating that the swellability and the sulfonation reaction rate did not always correspond.

【0056】なお、スルホン化率Xds(%)は次式
(8)で表される。 Xds(%)=100・n(SO3H)obs/n(SO3H)cal (8) n(SO3H)obs、n(SO3H)calは、それぞれスル
ホン酸基濃度(ミリモル、mM)の実測値と計算値であ
る。計算値n(SO3H)calは、グラフトしたスチレン
基全てのパラ位にスルホン酸基が1個入ると仮定する
と、グラフト率X dg及びグラフト後の膜の重さWtを用
いて次式(9)で表される。
The sulfonation rate Xds(%) Is the following formula
It is represented by (8). Xds(%) = 100 · n (SOThreeH)obs/ N (SOThreeH)cal (8) n (SOThreeH)obs, N (SOThreeH)calAre
The measured and calculated values of the phonic acid group concentration (mmol, mM)
You. Calculated value n (SOThreeH)calIs the grafted styrene
Assume that one sulfonic acid group is in all para positions
And the graft ratio X dgAnd weight W of the membrane after graftingtFor
And is expressed by the following equation (9).

【0057】 n(SO3H)cal(mM)=Xdg・Wt/M(Xdg+100) (9) M=104.15(スチレンの分子量) 実測値n(SO3H)obsの測定は、1M硫酸溶液中に5
0℃、4時間浸漬し、全ての交換基を−SO3H型とし
た。その後、3MのNaCl水溶液中に50℃、4時間
浸漬し、−SO3Na型とし、置換されたプロトン
(H+)を0.2NのNaOHで中和滴定しスルホン酸
基濃度を求めた。また、スルホン化膜の乾燥重量W
dは、−SO3H型の場合に次式(10)で表される。 Wd(SO3H)cal(g)=Wt+n(SO3H)cal・80 =Wt[1+80・Xdg/M(Xdg+100)] (10) 従って、イオン交換膜のイオン交換容量(mM/g)は
グラフト率Xdgから次式(11)を用いて簡単に予測で
きる。
N (SO 3 H) cal (mM) = X dg · W t / M (X dg +100) (9) M = 104.15 (molecular weight of styrene) Measurement of measured value n (SO 3 H) obs Is 5 in 1M sulfuric acid solution.
It was immersed at 0 ° C. for 4 hours to make all the exchange groups —SO 3 H type. Thereafter, it was immersed in a 3 M aqueous NaCl solution at 50 ° C. for 4 hours to form a —SO 3 Na type, and the substituted proton (H + ) was neutralized and titrated with 0.2 N NaOH to determine the sulfonic acid group concentration. Also, the dry weight W of the sulfonated membrane
d is expressed by the following equation (10) when the -SO 3 H form. W d (SO 3 H) cal (g) = W t + n (SO 3 H) cal · 80 = W t [1 + 80 · X dg / M (X dg +100)] (10) Therefore, ion exchange of the ion exchange membrane The capacity (mM / g) can be easily predicted from the graft ratio X dg using the following equation (11).

【0058】 n(SO3H)cal/Wd(SO3H)cal=1000/[100M/Xdg+ (M+80)] (11) グラフト率が10、30、50、100、150%の場
合、イオン交換容量は、それぞれ、0.82、1.8
8、2.55、3.47、3.94mM/gと予測され
た。
N (SO 3 H) cal / W d (SO 3 H) cal = 1000 / [100M / X dg + (M + 80)] (11) When the graft ratio is 10, 30, 50, 100, 150% , The ion exchange capacities are 0.82 and 1.8, respectively.
8, 2.55, 3.47, 3.94 mM / g.

【0059】以上のように、イオン交換膜のイオン交換
容量は、上記の計算によってスチレン側鎖の量(グラフ
ト率)とスルホン酸基の量によることが明らかである。
この予測と実験とによって得られた結果は非常に良く一
致し、0.5〜4meq/gの範囲で任意に制御できる
ことを確認した。
As described above, it is apparent from the above calculation that the ion exchange capacity of the ion exchange membrane depends on the amount of styrene side chains (graft ratio) and the amount of sulfonic acid groups.
The results obtained by the prediction and the experiment agreed very well, and it was confirmed that the control could be arbitrarily performed in the range of 0.5 to 4 meq / g.

【0060】イオン交換容量の実測値は、式(11)か
ら明らかなように、イオン交換膜にスルホン酸基濃度と
乾燥重量を測定して求めた。室温で水中に保存しておい
たSO3H型のイオン交換膜を水中から取出し軽く拭き
取った後の膜の重量をWs(g)とし、その後、この膜
を60℃にて16時間、真空乾燥した時の膜の重量Wd
(g)を乾燥重量とした。イオン交換容量はn(SO3
H)obs/Wd(meq/g)である。
The measured value of the ion exchange capacity was determined by measuring the sulfonic acid group concentration and the dry weight of the ion exchange membrane, as is apparent from the equation (11). The SO 3 H type ion-exchange membrane stored in water at room temperature was taken out of the water and gently wiped, and the weight of the membrane was designated as W s (g). Thereafter, the membrane was vacuumed at 60 ° C. for 16 hours. Weight of membrane W d when dried
(G) was taken as the dry weight. The ion exchange capacity is n (SO 3
H) obs / W d (meq / g).

【0061】また、測定値Ws、Wdから次式(12)に
より含水率が求められる。 含水率(wt%)=100・(Ws−Wd)/Wd (12 ) また、イオン交換膜の電気伝導度は、交流法による測定
(新実験化学講座19、高分子化学〈II〉、p.99
2、丸善)で、通常の膜抵抗測定セルとヒューレットパ
ッカード製のLCRメータ(E−4925A)を使用し
て膜抵抗の測定を行った。1M硫酸水溶液をセルに満た
して膜の有無による白金電極間(距離0.5mm)の抵
抗を測定し、膜の電気伝導度(比電導度)は次式(1
3)を用いて算出した。
From the measured values W s and W d , the water content can be obtained by the following equation (12). Water content (wt%) = 100 · (W s −W d ) / W d (12) The electric conductivity of the ion exchange membrane was measured by an AC method (New Experimental Chemistry Course 19, Polymer Chemistry <II>). , P.99
2, Maruzen), the film resistance was measured using an ordinary film resistance measurement cell and an LCR meter (E-4925A) manufactured by Hewlett-Packard. A cell was filled with a 1 M aqueous sulfuric acid solution, and the resistance between the platinum electrodes (distance 0.5 mm) was measured depending on the presence or absence of the membrane. The electrical conductivity (specific conductivity) of the membrane was expressed by the following equation (1).
Calculated using 3).

【0062】 κ=(1/Rm)・(d/S) (Ω-1cm-1) (11) κ=比伝導度(Ω-1cm-1) d=イオン交換膜の厚み(cm) S=イオン交換膜の通電面積(cm2) さらに比較のために直流法でMark W. Verb
rugge,Robert,F. Hill等(J.
Electrochem. Soc.,137, pp
3770−3777(1990))と類似のセル及びポ
テンショスタット、関数発生器を用いて測定した。両者
の測定値には良い相関性が見られた。表3は前者による
交流法の値を示す。また表3に示したDow800、ナ
フィオン115、ナフィオン117について測定された
イオン交換容量、含水率、膜厚、及び電気伝導度(比電
導度)は比較の目的のために挙げたものであり、これら
は比較例4〜6である。
Κ = (1 / R m ) · (d / S) (Ω −1 cm −1 ) (11) κ = specific conductivity (Ω −1 cm −1 ) d = thickness of ion exchange membrane (cm) S) Current carrying area of the ion exchange membrane (cm 2 ) For comparison, Mark W.C. Verb
Rugge, Robert, F.R. Hill et al.
Electrochem. Soc. , 137 , pp
3770-3777 (1990)) and a potentiostat, a function generator. Good correlation was found between the measured values. Table 3 shows the values of the former AC method. The ion exchange capacity, water content, film thickness, and electrical conductivity (specific conductivity) measured for Dow 800, Nafion 115, and Nafion 117 shown in Table 3 are for comparison purposes. Are Comparative Examples 4 to 6.

【0063】[0063]

【表3】 [Table 3]

【0064】[0064]

【発明の効果】本発明のフッ素樹脂イオン交換膜は、長
鎖分岐型ポリテトラフルオロエチレン構造を主体とし、
イオン交換容量が0.5〜4meq/g、含水状態にお
ける膜材料の引張り破断強度1〜25MPa、含水率が
10〜150wt%、25℃における電気伝導度が0.
05〜0.3Ω-1cm-1、の範囲内であるイオン交換膜
で、優れた特性を持つものである。低コストで作製可能
な広い範囲のイオン交換容量、特に従来にない高いイオ
ン交換容量と強い膜強度のフッ素樹脂イオン交換膜であ
る。本発明のイオン交換膜は、特に燃料電池用途に適し
ている。
The fluororesin ion exchange membrane of the present invention is mainly composed of a long-chain branched polytetrafluoroethylene structure,
The ion exchange capacity is 0.5 to 4 meq / g, the tensile rupture strength of the membrane material in a water-containing state is 1 to 25 MPa, the water content is 10 to 150 wt%, and the electrical conductivity at 25 ° C. is 0.
An ion-exchange membrane having an excellent characteristic within the range of 0.5 to 0.3 Ω -1 cm -1 . This is a fluororesin ion exchange membrane having a wide range of ion exchange capacities that can be produced at low cost, especially a high ion exchange capacity and strong membrane strength that have never been seen before. The ion exchange membrane of the present invention is particularly suitable for fuel cell applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 高温照射、及び未照射ポリテトラフルオロエ
チレン膜へのスチレンのグラフト率に及ぼす前照射線量
の影響を示すグラフ(実施例4及び比較例3参照)。各
記号の注釈に書いてある初めの線量は高温照射量であ
り、後の線量はグラフト反応のための前照射線量であ
る。
FIG. 1 is a graph showing the effect of a pre-irradiation dose on the graft ratio of styrene to a high-temperature irradiated and unirradiated polytetrafluoroethylene film (see Example 4 and Comparative Example 3). The first dose in the legend for each symbol is the hot dose, the later dose is the pre-dose for the graft reaction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/02 H01M 8/02 P 8/10 8/10 // C08L 51:06 C08L 51:06 Fターム(参考) 4F071 AA22X AA27 AA27X AA77X AA78X AF06Y AF16Y AF37Y AH15 FA01 FA05 FB01 FB05 FB06 FB07 FC01 FD02 FD04 4F073 AA06 AA32 BA16 BB01 CA41 CA42 CA51 CA65 EA31 EA32 EA59 FA05 HA06 4J026 AA26 BA05 BA06 BA07 BB01 BB03 DB02 DB23 DB29 DB36 EA09 GA01 GA02 GA06 GA08 5G301 CD01 CE00 CE01 5H026 AA06 CX05 EE18 EE19 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/02 H01M 8/02 P 8/10 8/10 // C08L 51:06 C08L 51:06 F term (Reference) 4F071 AA22X AA27 AA27X AA77X AA78X AF06Y AF16Y AF37Y AH15 FA01 FA05 FB01 FB05 FB06 FB07 FC01 FD02 FD04 4F073 AA06 AA32 BA16 BB01 CA41 CA42 CA51 CA65 EA31 EA32 BA02 DB01 GA03 GA06 GA08 5G301 CD01 CE00 CE01 5H026 AA06 CX05 EE18 EE19

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 長鎖分岐型ポリテトラフルオロエチレン
構造を主体とし、これにスルフォン酸基を有するポリス
チレングラフト側鎖が結合したフッ素系重合体材料から
成り、0.5〜4meq/gのイオン交換容量を有し、
かつ含水状態において1〜25MPaの範囲の引張り破
断強度を有することを特徴とする高分子イオン交換膜。
1. Ion exchange of 0.5 to 4 meq / g consisting of a long chain branched polytetrafluoroethylene structure and a fluorinated polymer material having a polystyrene graft side chain having a sulfonic acid group bonded thereto. Has the capacity,
A polymer ion exchange membrane having a tensile breaking strength in the range of 1 to 25 MPa in a water-containing state.
【請求項2】 含水率10〜150重量%(wt%)及
び温度25℃での電気伝導度が0.05〜0.3Ω-1
cm-1の範囲内であることを特徴とする請求項1に記載
の高分子イオン交換膜。
2. An electric conductivity at a water content of 10 to 150% by weight (wt%) and a temperature of 25 ° C. is 0.05 to 0.3Ω −1 ·.
2. The polymer ion exchange membrane according to claim 1, wherein the molecular weight is within a range of cm -1 .
【請求項3】 該ポリスチレングラフト側鎖中に、α−
メチルスチレンとの共重合、ジビニルベンゼンとの共重
合、トリアリルシアヌレートによる架橋構造及びトリア
リルイソシアヌレートによる架橋構造のうちの1または
それ以上を有することを特徴とする請求項1または2に
記載の高分子イオン交換膜。
3. The method according to claim 1, wherein α-
The copolymer according to claim 1 or 2, wherein the copolymer has one or more of copolymerization with methylstyrene, copolymerization with divinylbenzene, a crosslinked structure by triallyl cyanurate and a crosslinked structure by triallyl isocyanurate. Polymer ion exchange membrane.
【請求項4】 ポリテトラフルオロエチレン膜を300
〜365℃の温度範囲及び10Torr以下の酸素分圧
範囲の雰囲気条件下で電子線またはγ線の放射線を用い
て5〜300kGyの線量範囲内で照射して長鎖分岐型
ポリテトラフルオロエチレン膜を作製し、引き続き当該
膜に再び電子線またはγ線の放射線を室温、不活性ガス
中で5〜100kGyの線量範囲で照射し、液体スチレ
ンモノマー中で室温からスチレンモノマーの沸点以下の
温度範囲内、またはスチレンモノマーを溶媒で希釈した
溶液中で室温から該溶媒の沸点以下の温度範囲内で、上
記照射済ポリテトラフルオロエチレン膜にスチレンをグ
ラフト反応させてポリスチレングラフト側鎖を導入し、
更に該ポリスチレングラフト側鎖にスルホン酸基を導入
することから成ることを特徴とするイオン交換膜の製造
方法。
4. A polytetrafluoroethylene film having a thickness of 300
A long-chain branched polytetrafluoroethylene film is obtained by irradiating a long-chain branched polytetrafluoroethylene film by using an electron beam or a γ-ray radiation within a dose range of 5 to 300 kGy under an atmosphere condition of a temperature range of up to 365 ° C. and an oxygen partial pressure range of 10 Torr or less. After that, the film is irradiated again with an electron beam or γ-ray radiation in an inert gas at a dose range of 5 to 100 kGy in an inert gas, and in a temperature range from room temperature to a boiling point of the styrene monomer or lower in a liquid styrene monomer, Or a styrene monomer in a solution diluted with a solvent in a temperature range from room temperature to the boiling point of the solvent or less, to introduce a polystyrene graft side chain by performing a styrene graft reaction on the irradiated polytetrafluoroethylene film,
A method for producing an ion exchange membrane, further comprising introducing a sulfonic acid group into the polystyrene graft side chain.
【請求項5】 ポリスチレングラフト側鎖を導入する際
に、スチレンモノマーに対し1〜25wt%のα−メチ
ルスチレン及び/またはジビニルベンゼンをコモノマー
として用いることを特徴とする請求項4に記載のイオン
交換膜の製造方法。
5. The ion exchange according to claim 4, wherein when introducing the polystyrene graft side chain, 1 to 25% by weight of α-methylstyrene and / or divinylbenzene with respect to the styrene monomer is used as a comonomer. Manufacturing method of membrane.
【請求項6】 ポリスチレングラフト側鎖を導入する際
に、スチレンモノマーに対し1〜15wt%のトリアリ
ルシアヌレート及び/またはトリアリルイソシアヌレー
トを架橋助剤として用いることを特徴とする請求項4ま
たは5に記載のイオン交換膜の製造方法。
6. The method according to claim 4, wherein when introducing the polystyrene graft side chain, 1 to 15 wt% of triallyl cyanurate and / or triallyl isocyanurate relative to the styrene monomer is used as a crosslinking aid. 6. The method for producing an ion exchange membrane according to 5.
【請求項7】 スチレンモノマーのグラフト反応のため
の電子線またはγ線による照射の代わりに、ヘリウム、
炭素イオン、窒素イオン、酸素イオン、ネオンイオンま
たはアルゴンイオンの重イオンビームであって、該長鎖
分岐型ポリテトラフルオロエチレン膜の厚さを十分に貫
通するエネルギーを有する重イオンビームを照射量が被
照射膜面1cm2当たり1×1010〜1×1013個の範
囲で該長鎖分岐型ポリテトラフルオロエチレン膜を照射
することを特徴とする請求項4〜6のいずれか1項に記
載のイオン交換膜の製造方法。
7. Instead of irradiation by electron beam or gamma ray for graft reaction of styrene monomer, helium,
A heavy ion beam of a carbon ion, a nitrogen ion, an oxygen ion, a neon ion, or an argon ion, the irradiation amount of which is a heavy ion beam having energy sufficiently penetrating the thickness of the long-chain branched polytetrafluoroethylene film. according to any one of claims 4-6, characterized in that irradiation with long chain branched polytetrafluoroethylene membrane with the irradiated film surface 1 cm 2 per 1 × 10 10 ~1 × 10 13 pieces of range A method for producing an ion exchange membrane.
JP2000170450A 2000-06-07 2000-06-07 Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same Expired - Fee Related JP4568848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000170450A JP4568848B2 (en) 2000-06-07 2000-06-07 Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000170450A JP4568848B2 (en) 2000-06-07 2000-06-07 Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001348439A true JP2001348439A (en) 2001-12-18
JP4568848B2 JP4568848B2 (en) 2010-10-27

Family

ID=18673170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000170450A Expired - Fee Related JP4568848B2 (en) 2000-06-07 2000-06-07 Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same

Country Status (1)

Country Link
JP (1) JP4568848B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348389A (en) * 2001-05-23 2002-12-04 Japan Atom Energy Res Inst Fluoropolymer ion-exchange membrane having wide ion- exchange capacity and its production method
JP2003082129A (en) * 2001-09-17 2003-03-19 Japan Atom Energy Res Inst Fluoropolymer ion-exchange membrane having excellent oxidation resistance and high ion exchange capacity, and its production process
JP2004010744A (en) * 2002-06-06 2004-01-15 Japan Atom Energy Res Inst Fluorine-based macromolecular copolymer having large ion-exchanging capacity and oxidation resistance, and method for producing the same
WO2004010525A1 (en) * 2002-07-22 2004-01-29 Sony Corporation Catalyst electrode, process for producing the same, electrochemical device, and process for producing the same
JP2005078849A (en) * 2003-08-28 2005-03-24 Japan Atom Energy Res Inst Forming method for nano structure control polymer ion-exchange membrane
JP2005353581A (en) * 2004-05-10 2005-12-22 Toray Ind Inc Electrolyte membrane, membrane-electrode composite, and polymer electrolyte fuel cell
JP2006008970A (en) * 2003-08-28 2006-01-12 Japan Atom Energy Res Inst Process for producing nano-space controlled polymer ion-exchange membrane
JP2006140086A (en) * 2004-11-15 2006-06-01 Nitto Denko Corp Electrolyte membrane superior in oxidation resistance
WO2006090898A1 (en) * 2005-02-24 2006-08-31 Japan Atomic Energy Agency Functional membrane and process for production thereof, and electrolyte membrane for fuel cell and process for production thereof
JP2006233086A (en) * 2005-02-25 2006-09-07 Japan Atomic Energy Agency Functional membrane, method for producing electrolytic membrane for fuel battery, and electrolytic membrane for fuel battery
JP2006291059A (en) * 2005-04-12 2006-10-26 Shin Etsu Chem Co Ltd Solid polymer electrolyte membrane, method for producing the same and fuel cell
JP2006313659A (en) * 2005-05-06 2006-11-16 Shin Etsu Chem Co Ltd Solid polyelectrolyte film and its manufacturing method, and fuel cell
EP1742286A1 (en) * 2005-06-10 2007-01-10 Japan Atomic Energy Agency Crosslinked polymer electrolyte fuel cell membranes and their producing process
JP2007066852A (en) * 2005-09-02 2007-03-15 Samsung Yokohama Research Institute Co Ltd Polymer electrolyte film for fuel cell, and fuel cell
JP2007077272A (en) * 2005-09-14 2007-03-29 Nitto Denko Corp Method for preparation of proton conductive membrane
JP2007510028A (en) * 2003-10-30 2007-04-19 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウ Radical-bonded PTFE polymer powder and method for producing the same
JP2007115435A (en) * 2005-10-18 2007-05-10 Nitto Denko Corp Electrolyte film and direct methanol solid polymer fuel cell
JP2007157428A (en) * 2005-12-02 2007-06-21 Nitto Denko Corp Polymer electrolyte membrane and method of manufacturing same
JP2007194019A (en) * 2006-01-18 2007-08-02 Asahi Kasei Chemicals Corp Cross-linked electrolyte film and its manufacturing method
WO2007142031A1 (en) 2006-06-09 2007-12-13 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
US20080033069A1 (en) * 2003-08-28 2008-02-07 Japan Atomic Energy Research Institute Processes for producing nano-space controlled polymer ion-exchange membranes
JP2008031463A (en) * 2006-07-04 2008-02-14 Sumitomo Chemical Co Ltd Polymer electrolyte emulsion and use thereof
WO2008041622A1 (en) 2006-09-29 2008-04-10 Fujifilm Corporation Membrane electrode assembly and method for producing the same
WO2008081896A1 (en) 2006-12-28 2008-07-10 Nitto Denko Corporation Electrolyte membrane
DE102008008097A1 (en) 2007-02-08 2008-08-14 Japan Atomic Energy Agency Crosslinked aromatic polymer electrolyte diaphragm for use in polymer electrolyte gas cell, has aromatic polymer film substrate, which has aromatic rings where groups of sulphonic acid are introduced
JP2009067844A (en) * 2007-09-11 2009-04-02 Japan Atomic Energy Agency Highly proton-conductive polymer electrolyte membrane having excellent mechanical strength and method for producing the same
DE112007002012T5 (en) 2006-08-24 2009-07-02 Japan Atomic Energy Agency Polymer electrolyte membrane based on an aromatic polymer membrane and process for its preparation
DE102010006563A1 (en) 2009-02-03 2010-09-30 Japan Atomic Energy Agency Polymer electrolyte membrane comprising an alkyl ether graft chain and process for its preparation
WO2011046233A1 (en) * 2009-10-16 2011-04-21 住友化学株式会社 Polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
US8329766B2 (en) 2005-02-24 2012-12-11 Japan Atomic Energy Agency Functional membrane and production method thereof, and electrolyte membrane for use in fuel cell and production method thereof
WO2023101308A1 (en) * 2021-11-30 2023-06-08 코오롱인더스트리 주식회사 Reinforced composite membrane, and membrane-electrode assembly and fuel cell which comprise same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823813A (en) * 1982-06-07 1983-02-12 Japan Atom Energy Res Inst Preparation of graft copolymer for ion exchange membrane
JPH06116423A (en) * 1992-10-05 1994-04-26 Rei Tec:Kk Modified polytetrafluoroethylene and production thereof
JPH08506613A (en) * 1993-02-24 1996-07-16 ユニベルスィテ リーブル ドウ ブリュッセル Single film membrane, its manufacturing method and its use
JPH11121020A (en) * 1997-06-16 1999-04-30 Solvay & Cie Manufacture of ion exchange membrane usable as separator in fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823813A (en) * 1982-06-07 1983-02-12 Japan Atom Energy Res Inst Preparation of graft copolymer for ion exchange membrane
JPH06116423A (en) * 1992-10-05 1994-04-26 Rei Tec:Kk Modified polytetrafluoroethylene and production thereof
JPH08506613A (en) * 1993-02-24 1996-07-16 ユニベルスィテ リーブル ドウ ブリュッセル Single film membrane, its manufacturing method and its use
JPH11121020A (en) * 1997-06-16 1999-04-30 Solvay & Cie Manufacture of ion exchange membrane usable as separator in fuel cell

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348389A (en) * 2001-05-23 2002-12-04 Japan Atom Energy Res Inst Fluoropolymer ion-exchange membrane having wide ion- exchange capacity and its production method
JP2003082129A (en) * 2001-09-17 2003-03-19 Japan Atom Energy Res Inst Fluoropolymer ion-exchange membrane having excellent oxidation resistance and high ion exchange capacity, and its production process
JP2004010744A (en) * 2002-06-06 2004-01-15 Japan Atom Energy Res Inst Fluorine-based macromolecular copolymer having large ion-exchanging capacity and oxidation resistance, and method for producing the same
WO2004010525A1 (en) * 2002-07-22 2004-01-29 Sony Corporation Catalyst electrode, process for producing the same, electrochemical device, and process for producing the same
US7241528B2 (en) 2002-07-22 2007-07-10 Sony Corporation Catalytic electrodes and production process thereof, and electrochemical devices and fabrication process thereof
US20080033069A1 (en) * 2003-08-28 2008-02-07 Japan Atomic Energy Research Institute Processes for producing nano-space controlled polymer ion-exchange membranes
JP2005078849A (en) * 2003-08-28 2005-03-24 Japan Atom Energy Res Inst Forming method for nano structure control polymer ion-exchange membrane
JP4670073B2 (en) * 2003-08-28 2011-04-13 独立行政法人 日本原子力研究開発機構 Method for producing nano space control polymer ion exchange membrane
JP4576620B2 (en) * 2003-08-28 2010-11-10 独立行政法人 日本原子力研究開発機構 Method for producing nanostructure control polymer ion exchange membrane
US8232353B2 (en) * 2003-08-28 2012-07-31 Japan Atomic Energy Research Institute Processes for producing nano-space controlled polymer ion-exchange membranes
JP2006008970A (en) * 2003-08-28 2006-01-12 Japan Atom Energy Res Inst Process for producing nano-space controlled polymer ion-exchange membrane
JP2007510028A (en) * 2003-10-30 2007-04-19 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウ Radical-bonded PTFE polymer powder and method for producing the same
JP4843496B2 (en) * 2003-10-30 2011-12-21 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウ Radical-bonded PTFE polymer powder and method for producing the same
JP2005353581A (en) * 2004-05-10 2005-12-22 Toray Ind Inc Electrolyte membrane, membrane-electrode composite, and polymer electrolyte fuel cell
US7919537B2 (en) * 2004-11-15 2011-04-05 Japan Atomic Energy Agency Methods for producing a polymer electrolyte membrane having improved oxidation resistance
JP2006140086A (en) * 2004-11-15 2006-06-01 Nitto Denko Corp Electrolyte membrane superior in oxidation resistance
US8329766B2 (en) 2005-02-24 2012-12-11 Japan Atomic Energy Agency Functional membrane and production method thereof, and electrolyte membrane for use in fuel cell and production method thereof
WO2006090898A1 (en) * 2005-02-24 2006-08-31 Japan Atomic Energy Agency Functional membrane and process for production thereof, and electrolyte membrane for fuel cell and process for production thereof
DE112006000450B4 (en) * 2005-02-24 2012-03-29 Toyota Jidosha Kabushiki Kaisha Functional membrane, e.g. An electrolyte membrane for use in a fuel cell, and manufacturing method thereof
JP4858719B2 (en) * 2005-02-24 2012-01-18 トヨタ自動車株式会社 Method for producing functional membrane and method for producing electrolyte membrane for fuel cell
JP2006233086A (en) * 2005-02-25 2006-09-07 Japan Atomic Energy Agency Functional membrane, method for producing electrolytic membrane for fuel battery, and electrolytic membrane for fuel battery
US8173325B2 (en) 2005-02-25 2012-05-08 Japan Atomic Energy Agency Functional membrane and electrolyte membrane for fuel cells and method for producing the same
JP4747241B2 (en) * 2005-02-25 2011-08-17 独立行政法人 日本原子力研究開発機構 Functional membrane, method for producing electrolyte membrane for fuel cell, and electrolyte membrane for fuel cell
JP4514643B2 (en) * 2005-04-12 2010-07-28 信越化学工業株式会社 Solid polymer electrolyte membrane for direct methanol fuel cell, method for producing the same, and direct methanol fuel cell
US7629393B2 (en) 2005-04-12 2009-12-08 Shin-Etsu Chemical Co., Ltd. Solid polymer electrolyte membrane and process for producing the same, and fuel cell
JP2006291059A (en) * 2005-04-12 2006-10-26 Shin Etsu Chem Co Ltd Solid polymer electrolyte membrane, method for producing the same and fuel cell
JP2006313659A (en) * 2005-05-06 2006-11-16 Shin Etsu Chem Co Ltd Solid polyelectrolyte film and its manufacturing method, and fuel cell
US8183304B2 (en) 2005-05-06 2012-05-22 Shin-Etsu Chemical Co., Ltd. Process for producing solid polyelectrolyte film by graft-polymerizing polymerizable monomer with fluororesin film, solid polyelectrolyte film obtainable by the process, and fuel cell
EP1742286A1 (en) * 2005-06-10 2007-01-10 Japan Atomic Energy Agency Crosslinked polymer electrolyte fuel cell membranes and their producing process
JP2007066852A (en) * 2005-09-02 2007-03-15 Samsung Yokohama Research Institute Co Ltd Polymer electrolyte film for fuel cell, and fuel cell
JP2007077272A (en) * 2005-09-14 2007-03-29 Nitto Denko Corp Method for preparation of proton conductive membrane
JP2007115435A (en) * 2005-10-18 2007-05-10 Nitto Denko Corp Electrolyte film and direct methanol solid polymer fuel cell
JP2007157428A (en) * 2005-12-02 2007-06-21 Nitto Denko Corp Polymer electrolyte membrane and method of manufacturing same
JP2007194019A (en) * 2006-01-18 2007-08-02 Asahi Kasei Chemicals Corp Cross-linked electrolyte film and its manufacturing method
US9083026B2 (en) 2006-06-09 2015-07-14 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
WO2007142031A1 (en) 2006-06-09 2007-12-13 Shin-Etsu Chemical Co., Ltd. Electrolyte membrane-electrode assembly for direct methanol fuel cell
JP2008031463A (en) * 2006-07-04 2008-02-14 Sumitomo Chemical Co Ltd Polymer electrolyte emulsion and use thereof
DE112007002012T5 (en) 2006-08-24 2009-07-02 Japan Atomic Energy Agency Polymer electrolyte membrane based on an aromatic polymer membrane and process for its preparation
WO2008041622A1 (en) 2006-09-29 2008-04-10 Fujifilm Corporation Membrane electrode assembly and method for producing the same
US8133635B2 (en) 2006-12-28 2012-03-13 Nitto Denko Corporation Electrolyte membrane
WO2008081896A1 (en) 2006-12-28 2008-07-10 Nitto Denko Corporation Electrolyte membrane
US7714027B2 (en) 2007-02-08 2010-05-11 Japan Atomic Energy Agency Crosslinked aromatic polymer electrolyte membrane and method for producing same
DE102008008097A1 (en) 2007-02-08 2008-08-14 Japan Atomic Energy Agency Crosslinked aromatic polymer electrolyte diaphragm for use in polymer electrolyte gas cell, has aromatic polymer film substrate, which has aromatic rings where groups of sulphonic acid are introduced
JP2009067844A (en) * 2007-09-11 2009-04-02 Japan Atomic Energy Agency Highly proton-conductive polymer electrolyte membrane having excellent mechanical strength and method for producing the same
US8470895B2 (en) 2009-02-03 2013-06-25 Japan Atomic Energy Agency Polymer electrolyte membrane comprising alkylether graft chain and method of producing the same
DE102010006563A1 (en) 2009-02-03 2010-09-30 Japan Atomic Energy Agency Polymer electrolyte membrane comprising an alkyl ether graft chain and process for its preparation
US9379405B2 (en) 2009-02-03 2016-06-28 Kanagawa University Polymer electrolyte membrane having alkylether graft chain
WO2011046233A1 (en) * 2009-10-16 2011-04-21 住友化学株式会社 Polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
CN102640338A (en) * 2009-10-16 2012-08-15 住友化学株式会社 polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
WO2023101308A1 (en) * 2021-11-30 2023-06-08 코오롱인더스트리 주식회사 Reinforced composite membrane, and membrane-electrode assembly and fuel cell which comprise same

Also Published As

Publication number Publication date
JP4568848B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4568848B2 (en) Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same
JP4682358B2 (en) Method for producing functional inorganic / graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
WO2008044405A1 (en) Polymer electrolyte film for fuel cell which has silane crosslinked structure, and electrode assembly for fuel cell comprising the polymer electrolyte film
JP3739713B2 (en) Method for producing a fluorine-based polymer ion exchange membrane having excellent oxidation resistance and a wide range of ion exchange amounts
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
JP4953113B2 (en) Fluoropolymer ion exchange membrane having excellent oxidation resistance and high ion exchange capacity and method for producing the same
JP4997625B2 (en) Method for producing polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP4986219B2 (en) Electrolyte membrane
JP5105340B2 (en) Fluorine polymer ion exchange membrane having wide ion exchange capacity and method for producing the same
JP3972125B2 (en) Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane
JP3932338B2 (en) Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane
JP4576620B2 (en) Method for producing nanostructure control polymer ion exchange membrane
JP4822389B2 (en) Electrolyte membrane with excellent oxidation resistance
JP4429851B2 (en) Durable electrolyte membrane
JP4219656B2 (en) Electrolyte membrane for fuel cell
JP2008195748A (en) Crosslinked aromatic polymer electrolyte membrane and its manufacturing method
JP2005063778A (en) Electrolyte film for fuel cell excellent in oxidation resistance
WO2007102418A1 (en) Solid polymer electrolyte membrane for fuel cell and fuel cell
KR20080019284A (en) Solid polyelectrolyte membrane, process for production thereof, and fuel cells
JP2004300360A (en) Method for producing electrolyte membrane for fuel cell comprising graft polymer ion-exchange membrane
JP2005142014A (en) Electrolyte membrane for fuel cells superior in acid resistance
JP4683181B2 (en) Method for producing solid polymer electrolyte membrane for fuel cell
JP4814860B2 (en) Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate
JP5158309B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees