JP3972125B2 - Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane - Google Patents

Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane Download PDF

Info

Publication number
JP3972125B2
JP3972125B2 JP2002207865A JP2002207865A JP3972125B2 JP 3972125 B2 JP3972125 B2 JP 3972125B2 JP 2002207865 A JP2002207865 A JP 2002207865A JP 2002207865 A JP2002207865 A JP 2002207865A JP 3972125 B2 JP3972125 B2 JP 3972125B2
Authority
JP
Japan
Prior art keywords
group
monomer
tetrafluoroethylene
ion exchange
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002207865A
Other languages
Japanese (ja)
Other versions
JP2004051685A (en
Inventor
勝 吉田
洋右 森田
武 諏訪
知之 村上
総治 西山
隆司 和野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002207865A priority Critical patent/JP3972125B2/en
Publication of JP2004051685A publication Critical patent/JP2004051685A/en
Application granted granted Critical
Publication of JP3972125B2 publication Critical patent/JP3972125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に適した固体高分子電解質膜で優れた耐酸化性と広範囲なイオン交換容量を有する含フッ素系高分子イオン交換膜及びその製造方法に関する。
【0002】
【従来の技術】
固体高分子電解質型イオン交換膜を用いた燃料電池はエネルギー密度が高いことから、電気自動車の電源や簡易補助電源として期待されている。この燃料電池では優れた特性を有する高分子イオン交換膜の開発は最も重要な技術の一つである。
【0003】
高分子イオン交換膜型燃料電池においては、イオン交換膜はプロトンを伝導するための電解質として作用し、また、燃料である水素やメタノールと酸化剤である空気(酸素)を直接混合させないための隔膜としての役割も有する。このようなイオン交換膜としては、電解質としてイオン交換容量が高いこと、長期間電流を通すので膜の化学的な安定性、特に、膜の劣化の主因となる水酸化ラジカル等に対する耐性(耐酸化性)が優れていること、電気抵抗を低く保持するために膜の保水性が一定で高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度や膜の寸法安定性が優れていること、水素ガス、メタノール又は酸素ガスについて過剰な透過性を有しないことなどが要求される。
【0004】
初期の高分子イオン交換膜型燃料電池では、スチレンとジビニルベンゼンの共重合で製造した炭化水素系高分子イオン交換膜が使用された。しかし、このイオン交換膜は耐酸化性に起因する耐久性が非常に劣っていたため実用性に乏しく、その後はデュポン社により開発されたパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」等が一般に用いられてきた。
【0005】
しかしながら、「ナフィオン」等の従来の含フッ素系高分子イオン交換膜は、化学的な耐久性や安定性には優れているが、イオン交換容量が1meq/g前後と小さく、また、保水性が不十分でイオン交換膜の乾燥が生じてプロトン伝導性が低下したり、あるいは、メタノールを燃料とする場合には膜の膨潤やメタノールのクロスオーバーが起きる。これは、イオン交換容量を大きくするため、スルホン酸基を多く導入しようとすると、高分子鎖中に架橋構造がないために膜強度が著しく低下し、容易に破損するようになる。したがって、従来の含フッ素系高分子のイオン交換膜ではスルホン酸基の量を膜強度が保持される程度に抑える必要があり、このためイオン交換容量が1meq/g程度ものしかできなかった。また、ナフィオンなどの含フッ素系高分子イオン交換膜はモノマーの合成が困難かつ複雑であり、また、これを重合してポリマー膜を製造する工程も複雑なため非常に高価であり、プロトン交換膜型燃料電池を自動車などへ搭載して実用化する場合の大きな障害になっている。そのため、前記ナフィオン等に替わる低コストで高性能な電解質膜を開発する努力がおこなわれてきた。
【0006】
また、本発明と密接に関連する放射線グラフト重合法では、含フッ素系高分子膜にスルホン酸基を導入することができるモノマーをグラフトして、固体高分子電解質膜を作製する試みがなされている。しかし、通常の含フッ素系高分子膜ではグラフト反応が膜の内部まで進行せず膜表面に限られるため、電解質膜としての特性が向上しない。また、電子線やγ線などの放射線を照射した場合に、通常のフッ素樹脂は主鎖切断反応が起きて劣化する。さらに、グラフトモノマーとして炭化水素系のモノマーでは耐酸化性が低いことが問題であった。例えば、エチレン−テトラフルオロエチレン共重合体にスチレンモノマーを放射線グラフト反応により導入し、次いでスルホン化することにより合成したイオン交換膜は燃料電池用イオン交換膜として機能する(特開平9−102322)。しかし、欠点としてスチレングラフト鎖が炭化水素で構成されているため、膜に長時間電流を通すとグラフト鎖部の酸化劣化が起こり、膜のイオン交換能が大幅に低下する。
【0007】
【発明が解決しようとする課題】
本発明は、上述のような従来技術の問題点を克服するためになされたものであり、放射線グラフトによる含フッ素系高分子イオン交換膜において、固体高分子電解質としての特性に優れ、かつ、耐酸化性の優れた膜を提供するものである。即ち、本発明は、含フッ素系高分子イオン交換膜における最大の欠点であるイオン交換容量が小さく、かつ、保水性が悪いこと、また、炭化水素モノマーをグラフトした含フッ素系イオン交換膜における最大の欠点である耐酸化性が低いことなどを解決課題とする。
【0008】
【課題を解決するための手段】
本発明は、広いイオン交換容量と優れた耐酸化性を有する含フッ素系高分子イオン交換膜であり、特に燃料電池に適したイオン交換膜を提供する。
【0009】
即ち、基材として、含フッ素系高分子をマトリックスとし、これに放射線照射して種々のモノマーをグラフトし、さらに、グラフト鎖へのスルホン酸基の導入について研究を進めた結果、官能基としてハロゲン基等を含んだフッ素系モノマーに選択することで、イオン交換容量などの各特性を適切で広い範囲内に制御することができる含フッ素系高分子イオン交換膜を発明するに至った。本発明では、ハロゲン基等を含んだフッ素系モノマーをグラフト重合させた後、亜硫酸塩若しくは亜硫酸水素塩溶液等でハロゲン基等をスルホン酸塩基とし、これをさらにスルホン酸基とすることを特徴とした含フッ素系高分子イオン交換膜を提供するものであり、かつ、このイオン交換膜のグラフト率が10〜150%、イオン交換容量が0.3〜3.0meq/gであることを特徴とする含フッ素系高分子イオン交換膜、及び、その製造方法を提供するものである。
【0010】
【発明の実施の形態】
本発明で使用できる基材ポリマーとして、ポリテトラフルオロエチレン(以下PTFEと略す)、テトラフルオロエチレン−六フッ化プロピレン共重合体(同FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(同PFA)、ポリフッ化ビニリデン(同PVDF)、及びエチレン−テトラフルオロエチレン共重合体(同ETFE)の架橋フィルムが適応できる。これらのフィルム基材は予め架橋しておくと、膜の耐熱性が向上する、架橋構造を導入することによりモノマーのグラフト率が向上する、さらに、グラフトのための照射による膜強度の低下を抑制することができるので、高温作動で高性能の燃料電池膜には好適である。
【0011】
架橋PTFEの製造方法は特開平6−116423に開示され、また、架橋FEPやPFAの製造方法はRadiation Physical Chemistry vol.42、NO.1/3、pp.139−142、1993に掲載されている。
【0012】
架橋構造をフィルム基材の分子構造に導入することによって無定型部分が多くなり、未架橋のPTFEのグラフト率が低いという欠点を解決できる。例えば、グラフトモノマーとしてスチレンを用いた場合、未架橋のPTFEに比較し、架橋PTFEはグラフト率を著しく増加させることができ、このため未架橋のPTFEの2〜10倍のスルホン酸基を架橋PTFEに導入できることを本発明者らはすでに見出した(特願2000−170450)。
【0013】
本発明による含フッ素系高分子イオン交換膜は、架橋PTFEやFEP,PFA,ETFE,PVDF等のフッ素系高分子に下記の(1)〜(11)の各モノマーを放射線照射によってグラフト重合させる。
(1)架橋構造を有するPTFE、FEP、PFA、PVDF、又はETFEフィルム基材から1つのフィルム基材を選び、次式:CF=CF(O−(CH1〜4)(Xはハロゲン基で−Br又は−Cl)のモノマーをフィルム基材に放射線グラフト重合させる。
(2)架橋構造を有するPTFE、FEP、PFA、PVDF、又はETFEフィルム基材から1つのフィルム基材を選び、次式:CF=CF(O−(CH1〜4)(Xはハロゲン基で−Br又は−Cl)のモノマーと、(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させる。
(3)架橋構造を有するFEP、PFA、PVDF、及びETFEフィルム基材から1つのフィルム基材を選び、(B)モノマー群:
d.CF=CF((CH1〜4)(Xはハロゲン基で−Br又は−Cl);
e.CF=CF(O−(CF1〜2);
f.CF=CF(OCH(CF1〜2
から選ばれた1種類以上のモノマーと、(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させる。
(4)架橋構造を有するPTFE、FEP、PFA、PVDF、及びETFEフィルム基材から1つのフィルム基材を選び、(C)モノマー群:
g.CF=CF(O−(CF1〜2SR)(R基は−H、−CH、又は−C(CH);
h.CF=CF(O−(CF1〜2SX)(Xはハロゲン基で−Br又は−Cl)
から選ばれた1種類以上のモノマーと、(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させる。
(5)架橋構造を有するPTFE、FEP、PFA、PVDF、及びETFEフィルム基材から1つのフィルム基材を選び、(D)モノマー群:
i.CF=CF(O−(CF1〜2SO)(R基は−H、−CH、又は−C(CH);
j.CF=CF(O−(CF1〜2SO)(Xはハロゲン基で−F又は−Cl)
から選ばれた1種類以上のモノマーと、(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させる。
(6)架橋構造を有するFEP、PFA、PVDF、及びETFEフィルム基材から1つのフィルム基材を選び、次式:CF=CF(OCH(CF1〜2)(Xはハロゲン基で−Br又は−Cl)のモノマーを放射線グラフト重合させる。
(7)架橋構造を有するFEP、PFA、PVDF、及びETFEフィルム基材から1つのフィルム基材を選び、()モノマー群:
.CF=CF(OCH(CF1〜2SR)(R基は−H、−CH、又は−C(CH);
.CF=CF(OCH(CF1〜2SX)(Xはハロゲン基で−Br又は−Cl)
から選ばれた1種類以上のモノマーを放射線グラフト重合させる。
(8)架橋構造を有するFEP、PFA、PVDF、及びETFEフィルム基材から1つのフィルム基材を選び、()モノマー群:
.CF=CF(OCH(CF1〜2SO)(R基は−H、−CH、又は−C(CH);
.CF=CF(OCH(CF1〜2SO)(Xはハロゲン基で−F又は−Cl)
から選ばれた1種類以上のモノマーを放射線グラフト重合させ、得られたグラフトフィルム中の−SO基及び−SO基をスルホン酸塩基[−SONa]とした後、スルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
(9)架橋構造を有するPTFE、FEP、PFA、PVDF、及びETFEフィルム基材から1つのフィルム基材を選び、()モノマー群:
.CF=CF(OCH(CF1〜2SR)(R基は−H、−CH、又は−C(CH);
.CF=CF(OCH(CF1〜2SX)(Xはハロゲン基で−Br又は−Cl)
から選ばれた1種類以上のモノマーと、(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させる。
(10)架橋構造を有するPTFE、FEP、PFA、PVDF、及びETFEフィルム基材から1つのフィルム基材を選び、()モノマー群:
.CF=CF(OCH(CF1〜2SO)(R基は−H、−CH、又は−C(CH);
.CF=CF(OCH(CF1〜2SO)(Xはハロゲン基で−F又は−Cl)
から選ばれた1種類以上のモノマーと、(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させ、得られた共グラフトフィルム中の−SO基及び−SO基をスルホン酸塩基[−SONa]とた後、スルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
(11)架橋構造を有するFEP、PFA、PVDF、及びETFEフィルム基材から1つのフィルム基材を選び、次式:
CF=CF(SO)(Xはハロゲン基で−F又は−Cl)
のモノマーと、(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させる。
(A)モノマー群の
a)炭素数4以下で、重合性二重結合を有する炭化水素系モノマーとしては、例えば、エチレン、プロピレン、ブテン−1、ブテン−2、イソブテンなどがある。
b)CH=CR(COOR)若しくはCF=CF(COOR)で、R=−H,−CH,−F、R=−H,−CH,−C,−C,−Cであるアクリル系モノマーとしては、例えば、CH=CH(COOH)、CH=CH(COOCH)、CH=C(CH)(COOH)、 CH=C(CH)(COOCH)、CH=CF(COOCH)、又は、CF=CF(COOCH)などがある。
c)炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマーとしては、例えば、CF=CF、CF=CHF、CF=CFCl、CF=CFBr、CF=CH、CHF=CHなどのフロオロエチレン系モノマー、CF=CFCFのフルオロプロピレン系モノマー、CF=CFCFCF(フルオロブテン−1)、CF=C(CF(フロオロイソブテン)、CFCF=CFCF(フルオロブテン−2)、CF=CFCF=CF(フルオロブタジエン)、CFCl=CFCF=CFCl、 CF=CClCCl=CF(クロロフルオロブタジエン)のフルオロブテン系モノマーなど、及び、CF=CFCHCHのハイドロフルオロビニル系モノマーやCF=CFOCHCHのハイドロフルオロビニルエーテル系モノマーなどがある。
【0014】
これら(1)〜(11)の各モノマーは、フレオン112(CCl2FCCl2F)、フレオン113(CCl2FCClF2)、n−ヘキサン、アルコール、t−ブタノール、ベンゼン、トルエン、ヘキサフルオロベンゼン、クロロエタンやクロロメタン系溶媒などの溶媒で該モノマーを希釈したものを用いても良い。ガス状のモノマーを用いるときは、不活性なガスを用いてモノマーガスの分圧を1〜50気圧とし、液体状モノマー溶液と接触させ、かつ、この溶液を攪拌しながらグラフト重合すると良い。
【0015】
架橋構造を有するPTFE、FEP、PFA、PVDF、又はETFEフィルム基材への上記モノマーのグラフト重合は、これらの架橋フィルム基材に電子線、γ線やX線を室温、不活性ガス中で5〜500kGy照射した後、不活性ガスのバブリングや凍結脱気で酸素ガスを除いたモノマー溶液中にこの照射した架橋フィルム基材を浸漬する。
【0016】
グラフト重合は、これらの架橋フィルム基材を放射線照射後モノマーとグラフト反応させる、いわゆる前照射法か、又は架橋フィルム基材とモノマーを同時に放射線照射してグラフトさせる、いわゆる同時照射法のいずれかの方法によってもよい。
【0017】
グラフト重合温度は、モノマーや溶媒の沸点以下の温度で、通常0℃〜100℃で行なうのがよい。酸素の存在はグラフト反応を阻害するため、これら一連の操作はアルゴンガスや窒素ガスなどの不活性ガス中で、また、モノマーやモノマーを溶媒に溶かした溶液は常法の処理(バブリングや凍結脱気)で酸素を除去した状態で使用する。
【0018】
上記のフッ素系モノマーであるCF2=CF((CH2141)(X1はハロゲン基で−Br又は−Cl)、CF2=CF(O−(CF2121)、CF2=CF(OCH2(CF2121)、CF2=CF(OCH2(CF212SR3)(R3基は−H、−CH3、又は−C(CH33)、或いはCF2=CF(OCH2(CF212SX1)などはほとんど単独グラフト重合しない。しかし、これらは上記の(A)モノマー群のa.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー、b.アクリル系モノマー、及びc.炭素数4以下で、共重合性を有するフッ化炭素系モノマーとは共グラフト重合する。これらの共グラフトにおいて、グラフト温度において特にフッ素系モノマーが液体で(A)モノマー群のモノマーが気体である場合は、交互共グラフトする。この場合はフッ素系モノマーに対する(A)モノマー群の仕込み比を、例えば、モル比で1:0.05〜0.95などと大幅に変えても交互共グラフト鎖が得られる。
【0019】
本発明で使用できる基材ポリマーとして、上述したように請求項に応じて架橋構造を有するPTFE、FEP、PFA、PVDF、及びETFEが適用できるが、架橋構造を有しないFEP、PFA、PVDF、及びETFEフィルム基材も適応できる。架橋構造を有しないFEP、PFA、PVDF、及びETFEフィルム基材では放射線グラフトするための線量は50kGy以下にしないと、基材の強度低下を来たす。
【0020】
グラフト率(実施例の式(1)参照)は放射線の線量とほぼ比例関係にあり、線量が多いほどグラフト率は高くなるが、グラフト率は徐々に飽和してくる。グラフト率は架橋フィルム基材に対し、10〜150%、より好ましくは15〜100%である。
【0021】
上記(1)〜(11)で得られたグラフトまたは共グラフト架橋フィルムにスルホン酸基を導入するには、例えば、亜硫酸ナトリウム(Na2SO3)若しくは亜硫酸水素ナトリウム(NaHSO3)の水溶液、又は亜硫酸ナトリウム若しくは亜硫酸水素ナトリウムの水とアルコールの溶液中で反応させて、スルホン酸ナトリウム[−SO3Na]とし、引き続き、得られた[−SO3Na]基を硫酸溶液でスルホン酸基[−SO3H]として、含フッ素系高分子イオン交換膜が得られる。亜硫酸塩若しくは亜硫酸水素塩としてはLi塩、Na塩、K塩が良い。亜硫酸塩若しくは亜硫酸水素塩の水溶液、又は、亜硫酸塩若しくは亜硫酸水素塩の水とアルコールの溶液中の濃度は、室温における亜硫酸塩や亜硫酸水素塩の飽和濃度以下が良い。また、アルコールとしてはアルコールやブチルアルコールなどが良い。
【0022】
グラフトまたは共グラフト架橋フィルム基材に対する上記のスルホン化反応温度は室温〜200℃で、より好ましくは80℃〜160℃である。膜の厚さが20(m〜500(mであるとき、反応時間は5〜60分である。反応に際しては、水溶液で最高で50気圧程度になるので、耐圧のオートクレーブを用い、水/アルコール溶液系では安全上、空気を除いて窒素置換し、温度の上限も160℃が望ましい。
【0023】
引き続いて、得られたグラフト鎖中のスルホン酸塩基[−SO3Na]を1N〜2N硫酸溶液中、60℃でスルホン酸基[−SO3H]とする。
本発明による含フッ素系高分子イオン交換膜はグラフト量と導入されたスルホン酸基の量によって、この膜のイオン交換容量を変えることができる。イオン交換容量とは、乾燥イオン交換膜の重量1g当たりのイオン交換基量(meq/g)である。グラフトモノマーの種類にもよるが、グラフト率が10%で以下ではイオン交換容量が0.3meq/g、以下であり、グラフト率が150%以上では膜の膨潤が大きくなる。すなわち、グラフト率を高くしてイオン交換基を多く導入すれば、イオン交換容量は高くなる。しかし、イオン交換基量を多くしすぎると、含水時に膜が膨潤して膜の強度が低下する。これらのことから、本発明による含フッ素系高分子イオン交換膜のイオン交換容量は0.3meq/g〜3.0meq/g、より好ましくは、0.5meq/g〜2.0meq/gである。
【0024】
本発明の含フッ素系高分子イオン交換膜では導入されたスルホン酸基の量やグラフトモノマーの分子構造によって、本発明の含フッ素系高分子の含水率を制御できる。この膜を燃料電池用イオン交換膜として使用する場合、含水率が低すぎると運転条件のわずかな変化によって電気伝導度やガス透過係数が変わり好ましくない。従来のナフィオン膜はほとんどが−(CF2)−で構成されているために、80℃以上の高い温度で電池を作動させると水原子が膜中に不足し、膜の導電率が急速に低下する。これに対し、本発明のイオン交換膜はグラフト鎖にスルホン酸基の他にカルボキシル基などの親水基や炭化水素構造を導入することができるため、含水率は主にスルホン酸基の量によるが10〜80重量(wt)%の範囲で含水率を制御できる。一般的にはイオン交換容量が増すにつれて含水率も増大するが、本発明のイオン交換膜は含水率を制御できることから、膜の含水率は10〜80wt%、好ましくは20〜60wt%とすることができる。
【0025】
また、本発明の含フッ素系高分子膜は架橋構造やフッ素樹脂主鎖末端の絡み合いよってイオン交換容量が3.0meq/g程度まで多量のスルホン酸基を導入しても、膜の力学特性や寸法安定性が保たれ、実用に供することができる。高いイオン交換容量と膜の力学的特性の優れた膜は実用上極めて重要な発明である。
【0026】
高分子イオン交換膜は、イオン交換容量とも関係する電気伝導度が高いものほど電気抵抗が小さく、電解質膜としての性能は良い。しかし、25℃におけるイオン交換膜の電気伝導度が0.05(Ω・cm)-1以下であると燃料電池としての出力性能が著しく低下する場合が多いため、イオン交換膜の電気伝導度は0.05(Ω・cm)-1以上、より高性能のイオン交換膜では0.10(Ω・cm)-1以上に設計されていることが多い。本発明によるイオン交換膜では25℃におけるイオン交換膜の電気伝導度がナフィオン膜と同等かそれよりも高い値が得られた。
【0027】
イオン交換膜の電気伝導度を上げるために、イオン交換膜の厚みを薄くすることも考えられる。しかし現状では、あまり薄いイオン交換膜では破損しやすく、イオン交換膜自体の製作も難しいのが実状である。したがって、通常では30〜200μm厚の範囲のイオン交換膜が使われている。本発明の場合、膜厚は10〜500μm、好ましくは20μm〜100μmの範囲のものが有効である。
【0028】
燃料電池膜においては、現在、燃料の候補の一つとして考えられているメタノールがあるが、パーフルオロスルホン酸膜であるナフィオン膜(デュポン社)は分子間の架橋構造がないためにメタノールによって大きく膨潤し、燃料であるメタノールが電池膜を通してアノード(燃料極)からカソード(空気極)へと拡散する燃料のクロスオーバーが、発電効率を低下させるとして大きな問題となっている。しかし、本発明による含フッ素系高分子膜では高いイオン交換容量にも拘わらず、基材分子鎖やグラフト鎖の架橋構造や絡み合いにより、80℃の温度においてもメタノールを含めたアルコール類による膜の膨潤はほとんど認められない。このため、改質器を用いずにメタノールを直接燃料とするダイレクト・メタノール型燃料電池(Direct methanol Fuel cell)の膜として有用である。
【0029】
燃料電池膜においては、膜の耐酸化性は膜の耐久性(寿命)に関係する極めて重要な特性である。これは電池稼働中に発生するOHラジカル等がイオン交換膜を攻撃して、膜を劣化させるものである。架橋フッ素樹脂膜に炭化水素系のスチレンをグラフトした後、ポリスチレングラフト鎖をスルホン化して得た高分子イオン交換膜の耐酸化性は極めて低い。例えば、グラフト率100%のポリスチレン鎖をスルホン化したポリスチレングラフト架橋フッ素樹脂イオン交換膜は80℃の3%過酸化水素水溶液中、約60分でイオン交換膜が劣化しイオン交換容量がほぼ半分となる。これは、OHラジカルの攻撃によって、ポリスチレン鎖が容易に分解するためである。これに対し、本発明による含フッ素系高分子イオン交換膜はグラフト鎖が含フッ素系モノマーの重合体、ないしは、含フッ素系モノマーと炭化水素系モノマーの主に交互共重合体であるために、フッ素化合物の優れた耐性が発揮されるため耐酸化性がきわめて高く、80℃の3%過酸化水素水溶液中に24時間以上置いてもイオン交換容量はほとんど変化しない。
【0030】
以上のように、本発明の含フッ素系高分子イオン交換膜は優れた耐酸化性や耐メタノール性を有すると共に、膜としての重要な特性、すなわち、イオン交換容量0.3〜3.0meq/gを広い範囲に制御できることが本発明の特徴である。
以下、本発明を実施例及び比較例により説明するが、本発明はこれに限定されるものではない。
【0031】
【実施例】
以下、本発明を実施例及び比較例により説明するが、本発明はこれに限定されるものではない。なお、各測定値は以下の測定によって求めた。
(1)グラフト率
フィルム基材を主鎖部、フッ素モノマーやこれらと炭化水素系モノマー等とのグラフト重合した部分をグラフト鎖部とすると、主鎖部に対するグラフト鎖部の重量比は、次式のグラフト率(Xdg(wt%))として表される。
【0032】
dg=100(W2−W1)/W1 (1)
1:グラフト前のフィルム基材の重さ(g)
2:グラフト後のフィルム(乾燥状態)の重さ(g)
(2)イオン交換容量
膜のイオン交換容量(Iex(meq/g))は次式で表される。
【0033】
ex=n(酸基)obs/Wd (2)
n(酸基)obs:スルホン化グラフトフィルム(イオン交換膜)の酸基濃度(mM/g)
d :スルホン化グラフトフィルム(イオン交換膜)の乾燥重量(g)
n(酸基)obsの測定は、完璧を期すため、膜を再度1M(1モル)硫酸溶液中に50℃で4時間浸漬し、完全に酸型(H型)とした。その後、3MのNaCl水溶液中50℃、4時間浸漬して−SO3Na型とし、置換されたプロトン(H+)を0.2NのNaOHで中和滴定し酸基濃度を求めた。
(3)含水率
室温で水中に保存しておいたH型のイオン交換膜を水中から取出し軽くふき取った後(約1分後)の膜の重量をWs(g)とし、その後、この膜を60℃にて16時間、真空乾燥した時の膜の重量Wd(g)を乾燥重量とすると、Ws 、Wd から次式により含水率が求められる。
【0034】
含水率(%)=100・(Ws−Wd)/Wd (3)
(4)電気伝導度
イオン交換膜の電気伝導性は、交流法による測定(新実験化学講座19、高分子化学〈II〉、p.992,丸善)で、通常の膜抵抗測定セルとヒュ−レットパッカード製のLCRメータ、E−4925Aを使用して膜抵抗(Rm)の測定を行った。1M硫酸水溶液をセルに満たして膜の有無による白金電極間(距離5mm)の抵抗を測定し、膜の電気伝導度(比伝導度)は次式を用いて算出した。
【0035】
κ=1/Rm・d/S (Ω-1cm-1) (4)
κ:膜の電気伝導度((Ω-1cm-1
d:イオン交換膜の厚み(cm)
S:イオン交換膜の通電面積(cm2
電気伝導度測定値の比較のために、直流法でMark W.Verbrugge,Robert F.Hill等(J.Electrochem.Soc.,.137,3770−3777(1990))と類似のセル及びポテンショスタット、関数発生器を用いて測定した。交流法と直流法の測定値には良い相関性が見られた。下記の表1の値は交流法による測定値である。
(5)耐酸化性(重量残存率%)
60℃で16時間真空乾燥後のイオン交換膜の重量をW3とし、80℃の3%過酸化水素溶液に24時間処理したイオン交換膜の乾燥後重量をW4とする。
耐酸化性=100(W4/W3
(実施例1)
架橋したポリテトラフルオロエチレン(PTFE)フィルムを得るために以下の照射を行った。厚さ50μmのPTFEフィルム(日東電工製、品番No.900)の10cm角をヒーター付きのSUS製オートクレーブ照射容器(内径7cmφx高さ30cm)に入れ、容器内を10-3Torrに脱気してアルゴンガスに置換した。その後、電気ヒーターで加熱してPTFEフィルムの温度を340℃として、60Co−γ線を線量率3kGy/hで線量90kGy(30時間)照射した。照射後、容器を冷却してPTFEフィルムを取り出した。この高温照射で得られた架橋PTFEフィルムは、フィルムの透明性が上がっていることから、結晶サイズが未架橋PTFEよりもかなり小さくなっていることを示している。この架橋PTFEフィルムの引張り強度は18MPa、破断伸びは320%(引張り速度200mm/min(試料片ダンベル状4号型(JIS−K6251−1993))、DSC測定による融解温度は312℃であった。
【0036】
この架橋PTFEフィルムをコック付きのガラス製セパラブル容器(内径3cmφx15cm高さ)に入れて脱気後アルゴンガスで置換した。この状態で架橋PTFEフィルム(4cm2)に、再び、γ線(線量率10kGy/h)を40kGy室温で照射した。引き続き、2−ブロモエトキシトリフルオロエチレン(CF2=CF(O(CH22Br))をアルゴンガスのバブリングによって空気を除いた後、照射された架橋PTFEフィルムの入ったガラス容器中にフィルムが浸されるまで導入した。容器を密閉し、60℃にして24時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。式(1)によって求めたグラフト率は42%であった。得られた膜の全反射赤外スペクトルを測定した結果、波数619、790cm-1にBr基の吸収が存在した。
【0037】
このグラフト架橋PTFEフィルム(膜)を耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(Na2SO3)の20重量%(wt%)水溶液を加えて、溶液に膜を浸し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを135℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取り出し、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量(式(2))、含水率(式(3))、及び、電気伝導度(式(4))を下記の表1に示す。
【0038】
(実施例2)
実施例1と同様にγ線を90kGy照射して得た架橋PTFEフィルム(4cm2)をコック付きのガラス製セパラブル容器(内径3cmφx15cm高さ)に入れて脱気後アルゴンガスで置換した。この状態で再び、γ線(線量率10kGy/h)を40kGy室温で照射した。照射後、容器を真空脱気し、アルゴンガスのバブリングで空気を除いた2−クロルエトキシトリフルオロエチレン(CF2=CF(O(CH22Cl))をフィルムが浸されるまで導入し、さらに、5気圧に調整したテトラフルオロエチレン(CF2=CF2)ガスを反応容器に接続し、容器内を5気圧とした。磁気スターラーで溶液を攪拌しながら、50℃で24時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。得られたグラフト率は72%であった。
【0039】
この共グラフト架橋PTFE膜を耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(Na2SO3)の20wt%水溶液にイソプロパノール(1:3(水))を加えた溶液で膜を浸し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを120℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取りだし、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を表1に示す。
【0040】
(実施例3)
室温、空気中で電子線を100kGy照射して架橋した厚さ50μmのエチレン−テトラフルオロエチレン共重合体(ETFE)フィルム(4cm2)をコック付きのSUS製耐圧オートクレーブ(内径4cmφx12cmH)に入れて脱気後アルゴンガスで置換した。この状態で再び、γ線(線量率10kGy/h)を60kGy、室温で照射した。照射後、容器を減圧にして、アルゴンガスのバブリングで空気を除いたCF2=CF((CH22Br)をETFEフィルムが浸される量まで入れ、さらに、2気圧程度に調整したイソブテン(CH2=C(CH32)ガスを反応容器に接続した。溶液を攪拌しながら、室温で48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。得られたグラフト率は62%であった。
【0041】
この共グラフトETFE膜を耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(Na2SO3)の20wt%水溶液にイソプロパノール(1:3(水))を加えた溶液で膜を浸し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを120℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取りだし、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を表1に示す。
【0042】
(実施例4)
厚さ50μmのテトラフルオロエチレン−六フッ化プロピレン共重合体(FEP)フィルムの(3cmx3cm)を20メッシュの2枚のカーボン布ではさみ、ヒーター付きのSUS製オートクレーブ照射容器(内径7cmφx高さ30cm)に入れ、容器内を10-3Torrに脱気してアルゴンガスに置換した。その後、電気ヒータで加熱してFEPフィルムの温度を305℃として、60Co−γ線を線量率3kGy/hで線量90kGy(30時間)照射した。照射後、容器を冷却して架橋FEPフィルムを取り出した。架橋FEPフィルム4cm2をコック付きのガラス製セパラブル容器(内径3cmφx15cmH)に入れて脱気後アルゴンガスで置換した。この状態でFEPフィルムに、再び、γ線(線量率10kGy/h)を60kGy室温で照射した。引き続き、2−クロル−1,1,2,2−テトラフルオロエトキシトリフルオロエチレン(CF2=CF(O(CF22Cl))をアルゴンガスのバブリングによって空気を除いた後、ガラス容器中の架橋FEPフィルムが浸されるまで導入した。さらに、2気圧程度に調整したイソブテン(CH2=C(CH32)ガスを反応容器に接続した。容器を密閉し、溶液を攪拌しながら、60℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。得られたグラフト率は68%であった。
【0043】
この共グラフトFEP膜を耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(Na2SO3)の20wt%水溶液を加えて、溶液に膜を浸漬し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを135℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取りだし、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を表1に示す。
【0044】
(実施例5)
室温、空気中で電子線を100kGy照射して架橋した厚さ50μmのポリフッ化ビニリデン(PVDF)フィルム(4cm2)をコック付きのSUS製耐圧オートクレーブ(内径4cmφx12cmH)に入れて脱気後アルゴンガスで置換した。この状態で再び、γ線(線量率10kGy/h)を60kGy室温で照射した。引き続き、2−ブロモ−1,1,2,2−テトラフルオロエトキシトリフルオロエチレン(CF2=CF(OCH2(CF22Br))とアクリル酸(CH2=CHCOOH)をモル比で2:1に混合したトルエン溶液(トルエンとモノマー溶液の容量比は2:1)をアルゴンガスのバブリングによって空気を除いた後、照射された架橋PVDFフィルムの入ったガラス容器中にフィルムが浸されるまで導入した。容器を密閉し、60℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。グラフト率は48%であった。
【0045】
この共グラフトPVDF膜を耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(Na2SO3)の20wt%水溶液にイソプロパノール(1:3(水))を加えた溶液で膜を浸し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを120℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取り出し、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を表1に示す。
【0046】
(実施例6)
室温、空気中で電子線を100kGy照射して架橋した厚さ50μmのPVDFフィルム(4cm2)をコック付きのSUS製耐圧オートクレーブ(内径4cmφx12cmH)に入れて脱気後アルゴンガスで置換した。この状態で再び、γ線(線量率10kGy/h)を60kGy室温で照射した。照射後、容器を減圧にして、アルゴンガスのバブリングで酸素を除いたハイドロフルオロビニルエーテルモノマーであるCF2=CF(OCH2(CF22SCH3)を架橋PVDFの入ったガラス容器に、このフィルムが浸されるまで導入した。さらに、5気圧程度に調整したテトラフルオロエチレン(CF2=CF2)ガスを反応容器に接続した。容器を密閉し、溶液を攪拌しながら、50℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。グラフト率は62%であった。
【0047】
この共グラフトPVDF膜を1,1,2−トリクロロトリフルオロエタン溶媒中、125℃の温度で塩素ガスと反応させ、さらに引き続き、同溶媒中にトリフルオロ酢酸と水の存在させて100℃、6時間反応させた。得られた膜をTHFで洗浄し、乾燥後、さらに、60℃のNaOH溶液にで12時間処理後、硫酸溶液で処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、電気伝導度、および、耐酸化性を表1に示す。
【0048】
(実施例7)
実施例1と同様にγ線を90kGy照射して得た架橋PTFEフィルム(4cm2)をコック付きのガラス製セパラブル容器(内径3cmφx15cm高さ)に入れて脱気後アルゴンガスで置換した。この状態で再び、γ線(線量率10kGy/h)を60kGy室温で照射した。引き続いて、3回の凍結脱気によって酸素を除きアルゴンガス置換したハイドロフルオロビニルエーテルモノマーであるCF2=CF(OCH2(CF22SO2F)を架橋PTFEの入ったガラス容器に、このPTFEフィルムが浸されるまで導入した。さらに、さらに、5気圧程度に調整したテトラフルオロエチレン(CF2=CF2)ガスを反応容器に接続した。容器を密閉し、溶液を攪拌しながら、50℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。グラフト率は65%であった。
【0049】
この共グラフトPTFE膜を2NのメタノールNaOH溶液で12時間処理後、硫酸溶液で処理した。本実施例で得られた膜のイオン交換容量、含水率、電気伝導度、および、耐酸化性を表1に示す。
【0050】
(実施例8)
まず架橋FEPを得るため、厚さ50μmのFEPフィルム(3cmx3cm)を20メッシュの2枚のカーボン布ではさみ、ヒーター付きのSUS製オートクレーブ照射容器(内径7cmφx高さ30cm)に入れ、容器内を10-3Torrに脱気してアルゴンガスに置換した。その後、電気ヒータで加熱してFEPフィルムの温度を305℃として、60Co−γ線を線量率3kGy/hで線量90kGy(30時間)照射した。照射後、容器を冷却して架橋FEPフィルムを取り出した。架橋FEPフィルム4cm2をコック付きのガラス製セパラブル容器(内径3cmφx15cmH)に入れて脱気後アルゴンガスで置換した。この状態でFEPフィルムに、再び、γ線(線量率10kGy/h)を60kGy室温で照射した。引き続いて、3−クロル−2,2,3,3−テトラフルオロプロピオキシトリフルオロエチレン(CF2=CF(OCH2(CF22Cl))をアルゴンガスのバブリングで空気を除いたものを架橋FEPの入ったガラス容器に、フィルムが浸されるまで導入した。60℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。グラフト率は23%であった。
【0051】
この共グラフトFEP膜を耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(Na2SO3)の20wt%水溶液を加えて、溶液に膜を浸漬し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを135℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取りだし、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を表1に示す。
【0052】
(実施例9)
実施例1と同様にγ線を90kGy照射して得た架橋PTFEフィルム(4cm2)をコック付きのガラス製セパラブル容器(内径3cmφx15cm高さ)に入れて脱気後アルゴンガスで置換した。この状態で再び、γ線(線量率10kGy/h)を60kGy室温で照射した。引き続いて、3回の凍結脱気によって酸素を除きアルゴンガス置換したハイドロフルオロビニルエーテルモノマーであるCF2=CF(OCH2(CF22SCH3)を架橋PTFEの入ったガラス容器に、このPTFEフィルムが浸されるまで導入した。さらに、さらに、5気圧程度に調整したテトラフルオロエチレン(CF2=CF2)ガスを反応容器に接続した。容器を密閉し、溶液を攪拌しながら、50℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。グラフト率は52%であった。
【0053】
この共グラフトPTFE膜を1,1,2−トリクロロトリフルオロエタン溶媒中、125℃の温度で塩素ガスと反応させ、さらに引き続き、同溶媒中にトリフルオロ酢酸と水の存在させて100℃、6時間反応させた。得られた膜をTHFで洗浄し、乾燥後、さらに、60℃のNaOH溶液にで12時間処理後、硫酸溶液で処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、電気伝導度、および、耐酸化性を表1に示す。
【0054】
(実施例10)
室温、空気中で電子線を100kGy照射して架橋した厚さ50μmのETFEフィルム(4cm2)を、コック付きの耐圧ガラス製セパラブル容器(内径3cmφx15cm高さ)に入れて脱気後アルゴンガスで置換した。この状態でETFEに、再び、γ線(線量率10kGy/h)を60kGy室温で照射した。バブリングによって酸素を除きアルゴンガス置換した1,2,2−トリフルオロエチレンスルホニルフルオライド(CF2=CFSO2F)とメチル−1,2,2−トリフルオロアクリレート(CF2=CFCOOCH3)の混合溶液(容量比で約3:2)を、このガラス容器中の架橋ETFEが浸されるまで導入した。容器内を攪拌し、イソブテン(CH2=C(CH32)ガスをこの架橋ETFEフィルムの入ったガラス容器に導入し2気圧とした。この状態で攪拌し、60℃で48時間反応させた。その後、グラフト共重合膜をトルエン、続いてアセトンで洗浄し、乾燥した。グラフト率は71%であった。
【0055】
この共グラフト共重ETFE膜を2NのメタノールKOH溶液で12時間処理後、硫酸溶液で処理した。本実施例で得られた膜のイオン交換容量、含水率、電気伝導度、、および、耐酸化性を表1に示す。
【0056】
(実施例11)
架橋していない厚さ50μmのETFEフィルム(4cm2)をコック付きのSUS製耐圧オートクレーブ(内径4cmφx12cmH)に入れて脱気後アルゴンガスで置換した。この状態で再び、γ線(線量率10kGy/h)を30kGy室温で照射した。引き続いて、2−ブロモ−1,1,2,2−テトラフルオロエトキシトリフルオロエチレン(CF2=CF(OCF2CF2Br))をアルゴンガスのバブリングによって空気を除いた後、ETFEフィルムの入ったガラス容器中にフィルムが浸されるまで導入した。さらに、2気圧程度に調整したイソブテン(CH2=C(CH32)ガスを反応容器に接続した。容器を密閉し、溶液を攪拌しながら、50℃にして48時間反応させた。反応後、トルエン、ついでアセトンで洗浄し、乾燥した。得られたグラフト率は28%であった。得られた膜の全反射赤外スペクトルを測定した結果、波数619、790cm-1にBr基の吸収が存在した。
【0057】
この共グラフトETFE膜を耐圧オートクレーブに入れ、これに亜硫酸ナトリウム(Na2SO3)の20wt%水溶液にイソプロパノール(1:3(水))を加えた溶液で膜を浸し、簡単にバブリングして空気を窒素に置換した。このオートクレーブを120℃のオイルバスに入れ、30分間反応させた。冷却後、膜をオートクレーブから取りだし、水洗し、2Nの硫酸溶液中、60℃で4時間処理した。本実施例で得られた膜のグラフト率、イオン交換容量、含水率、および、電気伝導度を下記の表1に示す。
【0058】
(実施例12)
膜のアルコールによる膨潤度を測定した。実施例1およびナフィオン117を3Nの硫酸溶液に浸漬し、スルホン酸基をH型とした。そして、室温水に浸漬し、湿潤状態で寸法を測定した。次に膜をメタノール、イソプロパノール(IPA)の各アルコール溶液に浸けて60℃、3時間保持し、その後、室温まで一夜放冷した後、膜の寸法変化を測定した。その結果を図1に示す。本実施例で得られた膜は、ナフィオン膜に比べメタノールなどによる膜の膨潤がほとんど認められないので、直接メタノール型燃料電池の膜材料としてきわめて有効である。
図1及び表1より本発明の有効性が実証された。
【0059】
(比較例1,2)
下記の表1に示したナフィオン 115、ナフィオン 117(デュポン社製)について測定されたイオン交換容量、含水率、および、電気伝導度の結果を表1の比較例1、2に示す。
【0060】
(比較例3)
実施例1で得た架橋PTFEフィルム(厚さ50μm)をコック付きのガラス製セパラブル容器(内径3cmφx15cmH)に入れて脱気後アルゴンガスで置換した。この状態で架橋PTFEフィルムに、再び、γ線(線量率10kGy/h)を45kGy室温で照射した。アルゴンガスのバブリングによって酸素を除きアルゴンガス置換したスチレンモノマーを架橋PTFEフィルムの入ったガラス容器に、膜が浸漬されるまで導入した。容器内を攪拌し、60℃で6時間反応させた。その後、グラフト共重合膜をトルエン、続いてアセトンで洗浄し、乾燥した。グラフト率は93%であった。このグラフト重合膜を0.5Mクロルスルホン酸(1,2−ジクロロエタン溶媒)に浸漬し60℃、24時間スルホン化反応を行った。その後、この膜を水洗いしてスルホン酸基とした。
【0061】
(比較例4)
実施例1で得られた架橋FEPフィルム(厚さ約50μm)をコック付きのガラス製セパラブル容器(内径3cmφx15cmH)に入れて脱気後アルゴンガスで置換した。、再び、γ線(線量率10kGy/h)を45kGy室温で照射した。アルゴンガスのバブリングによって酸素を除きアルゴンガス置換したスチレンモノマーを照射されたFEPフィルムの入ったガラス容器に、膜が浸されるまで導入した。容器内を攪拌し、60℃で6時間反応させた。その後、膜をトルエン、続いてアセトンで洗浄し、乾燥した。グラフト率は78%であった。このグラフト共重合体を0.5Mクロルスルホン酸(1,2−ジクロロエタン溶媒)に浸漬し60℃、24時間スルホン化反応を行った。その後、この膜を水洗いしてスルホン酸基とした。
【0062】
【表1】

Figure 0003972125
【0063】
【発明の効果】
本発明の含フッ素樹脂イオン交換膜は広い範囲のイオン交換容量と優れた耐メタノール特性、及び高い耐酸化性を有する高分子イオン交換膜を提供するものである。
【0064】
本発明のイオン交換膜は、特に燃料電池膜に適している。また、安価で耐久性のある電解膜やイオン交換膜として有用である。
【図面の簡単な説明】
【図1】アルコールと水の混合溶媒による膜の膨潤性を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluorine-containing polymer ion exchange membrane having excellent oxidation resistance and a wide range of ion exchange capacity as a solid polymer electrolyte membrane suitable for a fuel cell, and a method for producing the same.
[0002]
[Prior art]
A fuel cell using a solid polymer electrolyte type ion exchange membrane is expected to be used as a power source for electric vehicles and a simple auxiliary power source because of its high energy density. In this fuel cell, the development of a polymer ion exchange membrane having excellent characteristics is one of the most important technologies.
[0003]
In a polymer ion exchange membrane fuel cell, the ion exchange membrane acts as an electrolyte for conducting protons, and the membrane prevents hydrogen or methanol as fuel and air (oxygen) as oxidant from being directly mixed. It also has a role. As such an ion exchange membrane, the ion exchange capacity is high as an electrolyte, and the chemical stability of the membrane because a current is passed for a long time, in particular, resistance to hydroxyl radicals and the like which are the main cause of membrane degradation (oxidation resistance) In order to keep the electrical resistance low, it is required that the water retention of the film is constant and high. On the other hand, from the role of the diaphragm, it is required that the mechanical strength of the membrane and the dimensional stability of the membrane are excellent, and that hydrogen gas, methanol or oxygen gas does not have excessive permeability.
[0004]
Early polymer ion exchange membrane fuel cells used hydrocarbon polymer ion exchange membranes produced by copolymerization of styrene and divinylbenzene. However, this ion exchange membrane has poor durability due to oxidation resistance, so it is not practical. After that, a perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont is available. It has been used in general.
[0005]
However, conventional fluorine-containing polymer ion exchange membranes such as “Nafion” are excellent in chemical durability and stability, but the ion exchange capacity is as small as about 1 meq / g, and the water retention is low. Insufficient drying of the ion exchange membrane causes proton conductivity to decrease, or when methanol is used as fuel, membrane swelling or methanol crossover occurs. In order to increase the ion exchange capacity, if a large number of sulfonic acid groups are to be introduced, the membrane strength is remarkably lowered due to the absence of a crosslinked structure in the polymer chain, and the membrane easily breaks. Therefore, in the conventional fluorine-containing polymer ion exchange membrane, it is necessary to suppress the amount of sulfonic acid groups to such an extent that the membrane strength is maintained, so that the ion exchange capacity is only about 1 meq / g. In addition, fluorine-containing polymer ion exchange membranes such as Nafion are difficult and complicated to synthesize monomers, and the process for producing polymer membranes by polymerizing them is also very expensive, and proton exchange membranes This is a major obstacle when the fuel cell is put into practical use by being mounted on an automobile or the like. Therefore, efforts have been made to develop a low-cost and high-performance electrolyte membrane that replaces Nafion and the like.
[0006]
In addition, in the radiation graft polymerization method closely related to the present invention, an attempt is made to produce a solid polymer electrolyte membrane by grafting a monomer capable of introducing a sulfonic acid group into a fluorine-containing polymer membrane. . However, in a normal fluorine-containing polymer film, the graft reaction does not proceed to the inside of the film and is limited to the film surface, so the characteristics as an electrolyte film are not improved. In addition, when irradiated with radiation such as electron beams or γ rays, ordinary fluororesins are deteriorated by a main chain scission reaction. Furthermore, a hydrocarbon monomer as a graft monomer has a problem of low oxidation resistance. For example, an ion exchange membrane synthesized by introducing a styrene monomer into an ethylene-tetrafluoroethylene copolymer by a radiation graft reaction and then sulfonating functions as an ion exchange membrane for a fuel cell (JP-A-9-102322). However, as a disadvantage, since the styrene graft chain is composed of hydrocarbons, if a current is passed through the membrane for a long time, the graft chain portion undergoes oxidative degradation, and the ion exchange capacity of the membrane is greatly reduced.
[0007]
[Problems to be solved by the invention]
The present invention has been made in order to overcome the above-mentioned problems of the prior art. In a fluorine-containing polymer ion exchange membrane by radiation grafting, the present invention has excellent characteristics as a solid polymer electrolyte, and is resistant to acid. The present invention provides a film having excellent chemical properties. That is, the present invention has a small ion exchange capacity and a poor water retention, which are the biggest drawbacks of the fluorine-containing polymer ion exchange membrane, and the maximum in the fluorine-containing ion exchange membrane grafted with a hydrocarbon monomer. The problem to be solved is low oxidation resistance, which is a drawback of the above.
[0008]
[Means for Solving the Problems]
The present invention is a fluorine-containing polymer ion exchange membrane having a wide ion exchange capacity and excellent oxidation resistance, and provides an ion exchange membrane particularly suitable for a fuel cell.
[0009]
That is, as a base material, a fluorine-containing polymer was used as a matrix, and this was irradiated with radiation to graft various monomers. By selecting a fluorine-based monomer containing a group or the like, the inventors have invented a fluorine-containing polymer ion-exchange membrane capable of appropriately controlling each characteristic such as ion exchange capacity within a wide range. In the present invention, after graft polymerization of a fluorine-based monomer containing a halogen group or the like, the halogen group or the like is converted into a sulfonate group in a sulfite or bisulfite solution or the like, and this is further converted into a sulfonate group. And a graft ratio of the ion exchange membrane of 10 to 150% and an ion exchange capacity of 0.3 to 3.0 meq / g. The present invention provides a fluorine-containing polymer ion exchange membrane and a method for producing the same.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As the base polymer that can be used in the present invention, polytetrafluoroethylene (hereinafter abbreviated as PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (same FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (same as above). Crosslinked films of PFA), polyvinylidene fluoride (same PVDF), and ethylene-tetrafluoroethylene copolymer (same ETFE) can be applied. If these film bases are cross-linked in advance, the heat resistance of the film will be improved, and the grafting rate of the monomer will be improved by introducing a cross-linked structure. Therefore, it is suitable for high-performance fuel cell membranes that operate at high temperatures.
[0011]
A method for producing crosslinked PTFE is disclosed in JP-A-6-116423, and a method for producing crosslinked FEP and PFA is disclosed in Radiation Physical Chemistry vol. 42, NO. 1/3, pp. 139-142, 1993.
[0012]
By introducing a crosslinked structure into the molecular structure of the film substrate, the amorphous part increases and the disadvantage that the graft ratio of uncrosslinked PTFE is low can be solved. For example, when styrene is used as the graft monomer, the cross-linked PTFE can remarkably increase the graft ratio compared to uncross-linked PTFE. Therefore, 2 to 10 times the sulfonic acid group of the non-cross-linked PTFE is cross-linked PTFE. The present inventors have already found that it can be introduced into Japanese Patent Application No. 2000-170450.
[0013]
In the fluorine-containing polymer ion exchange membrane according to the present invention, the following monomers (1) to (11) are graft-polymerized to a fluorine-based polymer such as cross-linked PTFE, FEP, PFA, ETFE, and PVDF by radiation irradiation.
(1) One film substrate is selected from PTFE, FEP, PFA, PVDF, or ETFE film substrate having a crosslinked structure, and the following formula: CF 2 = CF (O- (CH 2 ) 1-4 X 1 ) (X 1 Is a radiation graft polymerization of a halogen group -Br or -Cl) monomer onto a film substrate.
(2) One film substrate is selected from PTFE, FEP, PFA, PVDF, or ETFE film substrate having a crosslinked structure, and the following formula: CF 2 = CF (O- (CH 2 ) 1-4 X 1 ) (X 1 Is a halogen group -Br or -Cl) monomer, and (A) monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. CH 2 = CR 1 (COOR 2 Or CF 2 = CF (COOR 2 ) And R 1 Is -H, -CH 3 , -F and R 2 Is -H, -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 An acrylic monomer that is
c. Fluorocarbon monomer having 4 or less carbon atoms and a copolymerizable double bond
One or more monomers selected from the above are co-grafted by irradiation.
(3) One film substrate is selected from FEP, PFA, PVDF, and ETFE film substrate having a crosslinked structure, and (B) monomer group:
d. CF 2 = CF ((CH 2 ) 1-4 X 1 ) (X 1 Is a halogen group -Br or -Cl);
e. CF 2 = CF (O- (CF 2 ) 1-2 X 1 );
f. CF 2 = CF (OCH 2 (CF 2 ) 1-2 X 1 )
One or more monomers selected from: (A) monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. CH 2 = CR 1 (COOR 2 Or CF 2 = CF (COOR 2 ) And R 1 Is -H, -CH 3 , -F and R 2 Is -H, -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 An acrylic monomer that is
c. Fluorocarbon monomer having 4 or less carbon atoms and a copolymerizable double bond
One or more monomers selected from the above are co-grafted by irradiation.
(4) One film substrate is selected from PTFE, FEP, PFA, PVDF, and ETFE film substrate having a crosslinked structure, and (C) monomer group:
g. CF 2 = CF (O- (CF 2 ) 1-2 SR 3 ) (R 3 The groups are -H and -CH 3 Or -C (CH 3 ) 3 );
h. CF 2 = CF (O- (CF 2 ) 1-2 SX 1 ) (X 1 Is a halogen group -Br or -Cl)
One or more monomers selected from: (A) monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. CH 2 = CR 1 (COOR 2 Or CF 2 = CF (COOR 2 ) And R 1 Is -H, -CH 3 , -F and R 2 Is -H, -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 An acrylic monomer that is
c. Fluorocarbon monomer having 4 or less carbon atoms and a copolymerizable double bond
One or more monomers selected from the above are co-grafted by irradiation.
(5) One film substrate is selected from PTFE, FEP, PFA, PVDF, and ETFE film substrate having a crosslinked structure, and (D) monomer group:
i. CF 2 = CF (O- (CF 2 ) 1-2 SO 2 R 3 ) (R 3 The groups are -H and -CH 3 Or -C (CH 3 ) 3 );
j. CF 2 = CF (O- (CF 2 ) 1-2 SO 2 X 2 ) (X 2 Is a halogen group -F or -Cl)
One or more monomers selected from: (A) monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. CH 2 = CR 1 (COOR 2 Or CF 2 = CF (COOR 2 ) And R 1 Is -H, -CH 3 , -F and R 2 Is -H, -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 An acrylic monomer that is
c. Fluorocarbon monomer having 4 or less carbon atoms and a copolymerizable double bond
One or more monomers selected from the above are co-grafted by irradiation.
(6) One film substrate is selected from FEP, PFA, PVDF, and ETFE film substrate having a crosslinked structure, and the following formula: CF 2 = CF (OCH 2 (CF 2 ) 1-2 X 1 ) (X 1 Is a radiation graft polymerization of a monomer of -Br or -Cl) with a halogen group.
(7) Select one film substrate from FEP, PFA, PVDF, and ETFE film substrate having a crosslinked structure, E ) Monomer group:
k . CF 2 = CF (OCH 2 (CF 2 ) 1-2 SR 3 ) (R 3 The groups are -H and -CH 3 Or -C (CH 3 ) 3 );
l . CF 2 = CF (OCH 2 (CF 2 ) 1-2 SX 1 ) (X 1 Is a halogen group -Br or -Cl)
One or more monomers selected from the above are subjected to radiation graft polymerization.
(8) Select one film substrate from FEP, PFA, PVDF, and ETFE film substrate having a crosslinked structure, F ) Monomer group:
m . CF 2 = CF (OCH 2 (CF 2 ) 1-2 SO 2 R 3 ) (R 3 The groups are -H and -CH 3 Or -C (CH 3 ) 3 );
n . CF 2 = CF (OCH 2 (CF 2 ) 1-2 SO 2 X 2 ) (X 2 Is a halogen group -F or -Cl)
Radiation graft polymerization of one or more monomers selected from the group consisting of —SO in the resulting graft film 2 R 3 Group and -SO 2 X 2 Group is a sulfonate group [-SO 3 Na] followed by a sulfonic acid group [—SO 3 H] a fluorine-containing polymer ion exchange membrane.
(9) Select one film substrate from PTFE, FEP, PFA, PVDF, and ETFE film substrate having a crosslinked structure, E ) Monomer group:
k . CF 2 = CF (OCH 2 (CF 2 ) 1-2 SR 3 ) (R 3 The groups are -H and -CH 3 Or -C (CH 3 ) 3 );
l . CF 2 = CF (OCH 2 (CF 2 ) 1-2 SX 1 ) (X 1 Is a halogen group -Br or -Cl)
One or more monomers selected from: (A) monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. CH 2 = CR 1 (COOR 2 Or CF 2 = CF (COOR 2 ) And R 1 Is -H, -CH 3 , -F and R 2 Is -H, -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 An acrylic monomer that is
c. Fluorocarbon monomer having 4 or less carbon atoms and a copolymerizable double bond
One or more monomers selected from the above are co-grafted by irradiation.
(10) Select one film substrate from PTFE, FEP, PFA, PVDF, and ETFE film substrate having a crosslinked structure, F ) Monomer group:
m . CF 2 = CF (OCH 2 (CF 2 ) 1-2 SO 2 R 3 ) (R 3 The groups are -H and -CH 3 Or -C (CH 3 ) 3 );
n . CF 2 = CF (OCH 2 (CF 2 ) 1-2 SO 2 X 2 ) (X 2 Is a halogen group -F or -Cl)
One or more monomers selected from: (A) monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. CH 2 = CR 1 (COOR 2 Or CF 2 = CF (COOR 2 ) And R 1 Is -H, -CH 3 , -F and R 2 Is -H, -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 An acrylic monomer that is
c. Fluorocarbon monomer having 4 or less carbon atoms and a copolymerizable double bond
One or more monomers selected from the group consisting of co-graft polymerization by irradiation and —SO in the obtained co-graft film 2 R 3 Group and -SO 2 X 2 Group is a sulfonate group [-SO 3 Na] followed by a sulfonic acid group [—SO 3 H] a fluorine-containing polymer ion exchange membrane.
(11) Select one film substrate from FEP, PFA, PVDF, and ETFE film substrate having a crosslinked structure, and the following formula:
CF 2 = CF (SO 2 X 2 ) (X 2 Is a halogen group -F or -Cl)
And (A) monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. CH 2 = CR 1 (COOR 2 Or CF 2 = CF (COOR 2 ) And R 1 Is -H, -CH 3 , -F and R 2 Is -H, -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 An acrylic monomer that is
c. Fluorocarbon monomer having 4 or less carbon atoms and a copolymerizable double bond
One or more monomers selected from the above are co-grafted by irradiation.
(A) of the monomer group
a) Examples of the hydrocarbon monomer having 4 or less carbon atoms and having a polymerizable double bond include ethylene, propylene, butene-1, butene-2, and isobutene.
b) CH 2 = CR 1 (COOR 2 Or CF 2 = CF (COOR 2 ) And R 1 = -H, -CH 3 , -F, R 2 = -H, -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 As an acrylic monomer which is, for example, CH 2 = CH (COOH), CH 2 = CH (COOCH 3 ), CH 2 = C (CH 3 ) (COOH), CH 2 = C (CH 3 ) (COOCH 3 ), CH 2 = CF (COOCH 3 ) Or CF 2 = CF (COOCH 3 )and so on.
c) As a fluorocarbon monomer having 4 or less carbon atoms and having a copolymerizable double bond, for example, CF 2 = CF 2 , CF 2 = CHF, CF 2 = CFCl, CF 2 = CFBr, CF 2 = CH 2 , CHF = CH 2 Fluoroethylene monomers such as CF 2 = CFCF 3 Fluoropropylene monomer, CF 2 = CFCF 2 CF 3 (Fluorobutene-1), CF 2 = C (CF 3 ) 2 (Fluoroisobutene), CF 3 CF = CFCF 3 (Fluorobutene-2), CF 2 = CFCF = CF 2 (Fluorobutadiene), CFCl = CFCF = CFCl, CF 2 = CClCCl = CF 2 (Chlorofluorobutadiene) fluorobutene monomer and the like, and CF 2 = CFCH 2 CH 3 Hydrofluorovinyl monomers and CF 2 = CFOCH 2 CH 3 Hydrofluorovinyl ether monomers.
[0014]
Each of these monomers (1) to (11) has Freon 112 (CCl 2 FCCl 2 F), Freon 113 (CCl 2 FCClF 2 ), N-hexane, alcohol, t-butanol, benzene, toluene, hexafluorobenzene, chloroethane, or a solvent such as chloromethane solvent may be used to dilute the monomer. When a gaseous monomer is used, an inert gas is used, and the partial pressure of the monomer gas is set to 1 to 50 atm. The monomer monomer is brought into contact with the liquid monomer solution, and this solution is preferably graft-polymerized while stirring.
[0015]
Graft polymerization of the above monomers onto PTFE, FEP, PFA, PVDF, or ETFE film base materials having a cross-linked structure is carried out by subjecting these cross-linked film base materials to electron beams, γ rays and X-rays at room temperature in an inert gas. After irradiation with ˜500 kGy, the irradiated crosslinked film substrate is immersed in a monomer solution from which oxygen gas has been removed by bubbling of inert gas or freeze degassing.
[0016]
Graft polymerization is either a so-called pre-irradiation method in which these crosslinked film substrates are grafted with a monomer after irradiation, or a so-called simultaneous irradiation method in which a crosslinked film substrate and a monomer are simultaneously irradiated and grafted. It may be by a method.
[0017]
The graft polymerization temperature is preferably a temperature not higher than the boiling point of the monomer or solvent, and usually 0 to 100 ° C. Since the presence of oxygen inhibits the grafting reaction, these series of operations are performed in an inert gas such as argon gas or nitrogen gas, and the monomer or a solution in which the monomer is dissolved in a solvent is treated in a conventional manner (such as bubbling or freeze desorption). Use with the oxygen removed.
[0018]
CF as the above fluorine monomer 2 = CF ((CH 2 ) 1 ~ Four X 1 ) (X 1 Is a halogen group -Br or -Cl), CF 2 = CF (O- (CF 2 ) 1 ~ 2 X 1 ), CF 2 = CF (OCH 2 (CF 2 ) 1 ~ 2 X 1 ), CF 2 = CF (OCH 2 (CF 2 ) 1 ~ 2 SR Three ) (R Three The groups are -H and -CH Three Or -C (CH Three ) Three ) Or CF 2 = CF (OCH 2 (CF 2 ) 1 ~ 2 SX 1 ) And the like hardly undergo single graft polymerization. However, these are a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond; b. An acrylic monomer, and c. Co-graft polymerization with a fluorocarbon monomer having 4 or less carbon atoms and copolymerizability. In these co-grafts, when the fluorinated monomer is liquid and the monomer of the monomer group (A) is gas at the grafting temperature, alternating co-grafting is performed. In this case, even if the charge ratio of the monomer group (A) to the fluorine-based monomer is greatly changed to, for example, 1: 0.05 to 0.95 in a molar ratio, an alternating co-grafted chain can be obtained.
[0019]
As the base polymer that can be used in the present invention, PTFE, FEP, PFA, PVDF, and ETFE having a crosslinked structure can be applied according to the claims as described above, but FEP, PFA, PVDF, and ETFE film substrates are also applicable. For FEP, PFA, PVDF, and ETFE film substrates that do not have a crosslinked structure, the strength of the substrate will be reduced unless the dose for radiation grafting is reduced to 50 kGy or less.
[0020]
The graft ratio (see the formula (1) in the example) is substantially proportional to the radiation dose. The higher the dose, the higher the graft ratio, but the graft ratio gradually becomes saturated. The graft ratio is 10 to 150%, more preferably 15 to 100%, with respect to the crosslinked film substrate.
[0021]
In order to introduce a sulfonic acid group into the graft or co-graft crosslinked film obtained in the above (1) to (11), for example, sodium sulfite (Na 2 SO Three ) Or sodium bisulfite (NaHSO) Three ) Or an aqueous solution of sodium sulfite or sodium bisulfite in water and alcohol to give sodium sulfonate [-SO Three Na] followed by [-SO Three Na] group with sulfuric acid solution [-SO Three As H], a fluorine-containing polymer ion exchange membrane is obtained. As the sulfite or bisulfite, Li salt, Na salt and K salt are preferable. The concentration of the aqueous solution of sulfite or bisulfite, or the solution of sulfite or bisulfite in water and alcohol is preferably equal to or lower than the saturation concentration of sulfite or bisulfite at room temperature. Moreover, alcohol, butyl alcohol, etc. are good as alcohol.
[0022]
The sulfonation reaction temperature for the graft or co-grafted crosslinked film substrate is from room temperature to 200 ° C, more preferably from 80 ° C to 160 ° C. When the thickness of the membrane is 20 (m to 500 (m, the reaction time is 5 to 60 minutes. In the reaction, an aqueous solution is about 50 atm maximum, so use a pressure-resistant autoclave and water / alcohol. In the solution system, for safety, it is preferable to replace air with nitrogen except for air, and the upper limit of temperature is preferably 160 ° C.
[0023]
Subsequently, a sulfonate group [—SO 2 in the obtained graft chain is obtained. Three Na] in 1N-2N sulfuric acid solution at 60 ° C. [-SO Three H].
The fluorine-containing polymer ion exchange membrane according to the present invention can change the ion exchange capacity of the membrane according to the graft amount and the amount of introduced sulfonic acid groups. The ion exchange capacity is the amount of ion exchange groups (meq / g) per gram weight of the dry ion exchange membrane. Although depending on the type of graft monomer, the graft rate is 10% and below, the ion exchange capacity is 0.3 meq / g and below, and when the graft rate is 150% and above, the swelling of the membrane increases. That is, the ion exchange capacity is increased by increasing the graft ratio and introducing more ion exchange groups. However, if the amount of ion-exchange groups is excessively large, the membrane swells when it contains water and the strength of the membrane decreases. For these reasons, the ion exchange capacity of the fluorine-containing polymer ion exchange membrane according to the present invention is 0.3 meq / g to 3.0 meq / g, more preferably 0.5 meq / g to 2.0 meq / g. .
[0024]
In the fluorine-containing polymer ion exchange membrane of the present invention, the water content of the fluorine-containing polymer of the present invention can be controlled by the amount of sulfonic acid groups introduced and the molecular structure of the graft monomer. When this membrane is used as an ion exchange membrane for a fuel cell, if the water content is too low, the electrical conductivity and gas permeability coefficient change due to slight changes in operating conditions, which is not preferable. Most conventional Nafion membranes are-(CF 2 )-, When the battery is operated at a high temperature of 80 ° C. or higher, water atoms are insufficient in the film, and the conductivity of the film rapidly decreases. On the other hand, since the ion exchange membrane of the present invention can introduce a hydrophilic group such as a carboxyl group or a hydrocarbon structure in addition to the sulfonic acid group into the graft chain, the water content depends mainly on the amount of the sulfonic acid group. The water content can be controlled in the range of 10 to 80% by weight (wt)%. In general, the water content increases as the ion exchange capacity increases. However, since the water content of the ion exchange membrane of the present invention can be controlled, the water content of the membrane should be 10 to 80 wt%, preferably 20 to 60 wt%. Can do.
[0025]
Further, even if a large amount of sulfonic acid groups are introduced up to an ion exchange capacity of about 3.0 meq / g due to the cross-linked structure and the entanglement of the main chain terminal of the fluororesin, the fluorine-containing polymer membrane of the present invention can exhibit the mechanical properties of the membrane. Dimensional stability is maintained and it can be put to practical use. A membrane having a high ion exchange capacity and excellent mechanical properties is an extremely important invention in practice.
[0026]
The higher the electric conductivity related to the ion exchange capacity of the polymer ion exchange membrane, the smaller the electric resistance and the better the performance as an electrolyte membrane. However, the electrical conductivity of the ion exchange membrane at 25 ° C. is 0.05 (Ω · cm) -1 Since the output performance as a fuel cell often deteriorates significantly when the following is applied, the electric conductivity of the ion exchange membrane is 0.05 (Ω · cm) -1 0.10 (Ω · cm) for higher performance ion exchange membrane -1 It is often designed as described above. In the ion exchange membrane according to the present invention, the electric conductivity of the ion exchange membrane at 25 ° C. was equal to or higher than that of the Nafion membrane.
[0027]
In order to increase the electric conductivity of the ion exchange membrane, it is conceivable to reduce the thickness of the ion exchange membrane. However, under the present circumstances, it is a fact that an ion exchange membrane that is too thin is easily broken and it is difficult to manufacture the ion exchange membrane itself. Therefore, an ion exchange membrane having a thickness of 30 to 200 μm is usually used. In the present invention, a film thickness of 10 to 500 μm, preferably 20 μm to 100 μm is effective.
[0028]
In the fuel cell membrane, there is methanol currently considered as one of the fuel candidates, but the Nafion membrane (DuPont), which is a perfluorosulfonic acid membrane, is greatly increased by methanol because there is no intermolecular cross-linking structure. The fuel crossover that swells and diffuses methanol, which is fuel, from the anode (fuel electrode) to the cathode (air electrode) through the cell membrane is a serious problem as it reduces power generation efficiency. However, in the fluorine-containing polymer membrane according to the present invention, despite the high ion exchange capacity, the membrane of the alcohol-containing membrane including methanol can be used even at a temperature of 80 ° C. due to the cross-linked structure and entanglement of the base molecular chain and graft chain. Swelling is hardly observed. For this reason, it is useful as a membrane of a direct methanol fuel cell (direct methanol fuel cell) using methanol as a direct fuel without using a reformer.
[0029]
In a fuel cell membrane, the oxidation resistance of the membrane is a very important characteristic related to the durability (life) of the membrane. This is because OH radicals and the like generated during battery operation attack the ion exchange membrane and deteriorate the membrane. The polymer ion exchange membrane obtained by grafting hydrocarbon-based styrene to the cross-linked fluororesin membrane and then sulfonating the polystyrene graft chain has extremely low oxidation resistance. For example, a polystyrene graft-crosslinked fluororesin ion exchange membrane sulfonated with a polystyrene chain having a graft ratio of 100% is deteriorated in about 60 minutes in an aqueous 3% hydrogen peroxide solution at 80 ° C., and the ion exchange capacity is almost half. Become. This is because the polystyrene chain is easily decomposed by the attack of OH radicals. In contrast, in the fluorine-containing polymer ion exchange membrane according to the present invention, the graft chain is a polymer of a fluorine-containing monomer, or an alternating copolymer mainly of a fluorine-containing monomer and a hydrocarbon monomer. Since the excellent resistance of the fluorine compound is exhibited, the oxidation resistance is extremely high, and the ion exchange capacity hardly changes even when placed in a 3% hydrogen peroxide aqueous solution at 80 ° C. for 24 hours or more.
[0030]
As described above, the fluorine-containing polymer ion exchange membrane of the present invention has excellent oxidation resistance and methanol resistance, and has important characteristics as a membrane, that is, an ion exchange capacity of 0.3 to 3.0 meq / It is a feature of the present invention that g can be controlled in a wide range.
Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this.
[0031]
【Example】
Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this. In addition, each measured value was calculated | required by the following measurements.
(1) Graft rate
When the film substrate is a main chain part, and the graft polymerized part of a fluorine monomer or a hydrocarbon monomer and the like is a graft chain part, the weight ratio of the graft chain part to the main chain part is the graft ratio (X dg (Wt%)).
[0032]
X dg = 100 (W 2 -W 1 ) / W 1 (1)
W 1 : Weight of film substrate before grafting (g)
W 2 : Weight of grafted film (dry state) (g)
(2) Ion exchange capacity
Ion exchange capacity of membrane (I ex (Meq / g)) is expressed by the following equation.
[0033]
I ex = N (acid group) obs / W d (2)
n (acid group) obs : Acid group concentration of sulfonated graft film (ion exchange membrane) (mM / g)
W d : Dry weight (g) of sulfonated graft film (ion exchange membrane)
n (acid group) obs In order to ensure perfection, the membrane was again immersed in a 1 M (1 mol) sulfuric acid solution at 50 ° C. for 4 hours to obtain a complete acid type (H type). Then, it is immersed in a 3M NaCl aqueous solution at 50 ° C. for 4 hours to give —SO. Three Na-type and substituted proton (H + ) Was neutralized and titrated with 0.2N NaOH to determine the acid group concentration.
(3) Moisture content
The H-type ion exchange membrane stored in water at room temperature is taken out of the water and gently wiped off (after about 1 minute). s (G), and then the weight W of the film when the film was vacuum-dried at 60 ° C. for 16 hours. d If (g) is the dry weight, W s , W d Therefore, the water content is obtained by the following equation.
[0034]
Moisture content (%) = 100 · (W s -W d ) / W d (3)
(4) Electric conductivity
The electrical conductivity of the ion-exchange membrane is measured by an alternating current method (New Experimental Chemistry Course 19, Polymer Chemistry <II>, p. 992, Maruzen), and a normal membrane resistance measuring cell and an LCR meter made by Hewlett-Packard. , Membrane resistance (R m ) Was measured. The cell was filled with a 1M sulfuric acid aqueous solution, the resistance between platinum electrodes (distance 5 mm) depending on the presence or absence of the membrane was measured, and the electrical conductivity (specific conductivity) of the membrane was calculated using the following equation.
[0035]
κ = 1 / R m ・ D / S (Ω -1 cm -1 (4)
κ: electrical conductivity of membrane ((Ω -1 cm -1 )
d: thickness of ion exchange membrane (cm)
S: Current-carrying area of ion exchange membrane (cm 2 )
For comparison of electrical conductivity measurements, Mark W. Verbrugge, Robert F .; Hill et al. (J. Electrochem. Soc.,. 137 3770-3777 (1990)) and a similar potentiometer and function generator. There was a good correlation between the measured values of the AC and DC methods. The values in Table 1 below are measured values by the AC method.
(5) Oxidation resistance (weight residual rate%)
The weight of the ion exchange membrane after vacuum drying at 60 ° C. for 16 hours is W Three And the weight after drying of the ion exchange membrane treated for 24 hours in a 3% hydrogen peroxide solution at 80 ° C. Four And
Oxidation resistance = 100 (W Four / W Three )
Example 1
The following irradiation was performed to obtain a crosslinked polytetrafluoroethylene (PTFE) film. A 10 cm square of a 50 μm-thick PTFE film (manufactured by Nitto Denko, product number No. 900) is placed in a SUS autoclave irradiation container (inner diameter 7 cmφ × height 30 cm) with a heater, and the inside of the container is 10 -3 Degassed to Torr and replaced with argon gas. Then, the temperature of the PTFE film is set to 340 ° C. by heating with an electric heater, 60 Co-γ rays were irradiated at a dose rate of 3 kGy / h and a dose of 90 kGy (30 hours). After irradiation, the container was cooled and the PTFE film was taken out. The crosslinked PTFE film obtained by this high-temperature irradiation shows that the crystal size is considerably smaller than that of uncrosslinked PTFE because the transparency of the film is increased. The crosslinked PTFE film had a tensile strength of 18 MPa, an elongation at break of 320% (tensile speed of 200 mm / min (sample piece dumbbell-shaped No. 4 type (JIS-K6251-1993)), and a melting temperature by DSC measurement of 312 ° C.
[0036]
This cross-linked PTFE film was put into a glass separable container with a cock (inner diameter: 3 cmφ × 15 cm height), deaerated and then replaced with argon gas. In this state, a cross-linked PTFE film (4 cm 2 ) Was again irradiated with gamma rays (dose rate 10 kGy / h) at 40 kGy room temperature. Subsequently, 2-bromoethoxytrifluoroethylene (CF 2 = CF (O (CH 2 ) 2 Br)) was introduced by bubbling with argon gas, and then introduced until the film was immersed in a glass container containing the irradiated crosslinked PTFE film. The vessel was sealed and reacted at 60 ° C. for 24 hours. After the reaction, it was washed with toluene and then with acetone and dried. The graft ratio determined by formula (1) was 42%. As a result of measuring the total reflection infrared spectrum of the obtained film, wave number 619, 790 cm -1 There was absorption of the Br group.
[0037]
This graft-crosslinked PTFE film (membrane) is placed in a pressure-resistant autoclave, and sodium sulfite (Na 2 SO Three ) Was added to immerse the membrane in the solution and bubbled briefly to replace the air with nitrogen. This autoclave was placed in a 135 ° C. oil bath and allowed to react for 30 minutes. After cooling, the membrane was removed from the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 below shows the graft ratio, ion exchange capacity (formula (2)), moisture content (formula (3)), and electrical conductivity (formula (4)) of the membrane obtained in this example.
[0038]
(Example 2)
A crosslinked PTFE film (4 cm) obtained by irradiating 90 kGy of γ rays in the same manner as in Example 1. 2 ) Was placed in a separable container made of glass with a cock (inner diameter 3 cmφ × 15 cm height), and after deaeration, it was replaced with argon gas. In this state, γ rays (dose rate 10 kGy / h) were irradiated again at 40 kGy room temperature. After irradiation, the container was vacuum degassed and 2-chloroethoxytrifluoroethylene (CF) with air removed by bubbling with argon gas. 2 = CF (O (CH 2 ) 2 Cl)) is introduced until the film is immersed, and further tetrafluoroethylene (CF adjusted to 5 atm) 2 = CF 2 ) Gas was connected to the reaction vessel, and the inside of the vessel was brought to 5 atm. The solution was reacted at 50 ° C. for 24 hours while stirring the solution with a magnetic stirrer. After the reaction, it was washed with toluene and then with acetone and dried. The obtained graft ratio was 72%.
[0039]
This co-grafted cross-linked PTFE membrane was placed in a pressure-resistant autoclave, and sodium sulfite (Na 2 SO Three ) Was immersed in a solution of isopropanol (1: 3 (water)) in a 20 wt% aqueous solution, and the bubble was simply bubbled to replace the air with nitrogen. This autoclave was placed in a 120 ° C. oil bath and allowed to react for 30 minutes. After cooling, the membrane was removed from the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 shows the graft ratio, ion exchange capacity, moisture content, and electrical conductivity of the membrane obtained in this example.
[0040]
(Example 3)
50 μm thick ethylene-tetrafluoroethylene copolymer (ETFE) film (4 cm) cross-linked by irradiation with an electron beam of 100 kGy in air at room temperature 2 ) Was put into a SUS pressure-resistant autoclave with a cock (inner diameter 4 cmφ × 12 cmH), and after deaeration, it was replaced with argon gas. In this state, γ rays (dose rate 10 kGy / h) were irradiated again at 60 kGy at room temperature. After irradiation, the container was evacuated and air was removed by bubbling with argon gas. 2 = CF ((CH 2 ) 2 Br) is added until the ETFE film is immersed, and is further adjusted to about 2 atmospheres isobutene (CH 2 = C (CH Three ) 2 ) Gas was connected to the reaction vessel. The solution was allowed to react for 48 hours at room temperature with stirring. After the reaction, it was washed with toluene and then with acetone and dried. The obtained graft ratio was 62%.
[0041]
This co-grafted ETFE membrane was placed in a pressure-resistant autoclave, and sodium sulfite (Na 2 SO Three ) Was immersed in a solution of isopropanol (1: 3 (water)) in a 20 wt% aqueous solution, and the bubble was simply bubbled to replace the air with nitrogen. This autoclave was placed in a 120 ° C. oil bath and allowed to react for 30 minutes. After cooling, the membrane was removed from the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 shows the graft ratio, ion exchange capacity, moisture content, and electrical conductivity of the membrane obtained in this example.
[0042]
Example 4
A 50 μm thick tetrafluoroethylene-hexafluoropropylene copolymer (FEP) film (3 cm x 3 cm) is sandwiched between two 20-mesh carbon cloths, a SUS autoclave irradiation container with a heater (inner diameter 7 cm φ x height 30 cm) And put 10 inside the container. -3 Degassed to Torr and replaced with argon gas. Then, the temperature of the FEP film is set to 305 ° C. by heating with an electric heater, 60 Co-γ rays were irradiated at a dose rate of 3 kGy / h and a dose of 90 kGy (30 hours). After irradiation, the container was cooled and the crosslinked FEP film was taken out. Cross-linked FEP film 4cm 2 Was placed in a separable container made of glass with a cock (inner diameter: 3 cmφ × 15 cmH) and deaerated and replaced with argon gas. In this state, the FEP film was again irradiated with γ rays (dose rate 10 kGy / h) at 60 kGy room temperature. Subsequently, 2-chloro-1,1,2,2-tetrafluoroethoxytrifluoroethylene (CF 2 = CF (O (CF 2 ) 2 Cl)) was introduced after bubbling with argon gas to remove air and until the crosslinked FEP film in the glass container was immersed. Furthermore, isobutene (CH) adjusted to about 2 atm. 2 = C (CH Three ) 2 ) Gas was connected to the reaction vessel. The vessel was sealed, and the solution was reacted at 60 ° C. for 48 hours while stirring. After the reaction, it was washed with toluene and then with acetone and dried. The obtained graft ratio was 68%.
[0043]
This co-grafted FEP membrane was placed in a pressure-resistant autoclave, and sodium sulfite (Na 2 SO Three 20 wt% aqueous solution was added, the film was immersed in the solution, and the bubble was simply bubbled to replace the air with nitrogen. This autoclave was placed in a 135 ° C. oil bath and allowed to react for 30 minutes. After cooling, the membrane was removed from the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 shows the graft ratio, ion exchange capacity, moisture content, and electrical conductivity of the membrane obtained in this example.
[0044]
(Example 5)
50 μm thick polyvinylidene fluoride (PVDF) film (4 cm) cross-linked by irradiation with an electron beam of 100 kGy in air at room temperature 2 ) Was put into a SUS pressure-resistant autoclave with a cock (inner diameter 4 cmφ × 12 cmH), and after deaeration, it was replaced with argon gas. In this state, γ rays (dose rate 10 kGy / h) were irradiated again at a room temperature of 60 kGy. Subsequently, 2-bromo-1,1,2,2-tetrafluoroethoxytrifluoroethylene (CF 2 = CF (OCH 2 (CF 2 ) 2 Br)) and acrylic acid (CH 2 = CHCOOH) mixed in a molar ratio of 2: 1 (toluene to monomer solution in a volume ratio of 2: 1), after removing air by bubbling with argon gas, glass containing irradiated crosslinked PVDF film The film was introduced until the film was immersed in the container. The vessel was sealed and reacted at 60 ° C. for 48 hours. After the reaction, it was washed with toluene and then with acetone and dried. The graft rate was 48%.
[0045]
This co-grafted PVDF membrane was placed in a pressure-resistant autoclave, and sodium sulfite (Na 2 SO Three ) Was immersed in a solution of isopropanol (1: 3 (water)) in a 20 wt% aqueous solution, and the bubble was simply bubbled to replace the air with nitrogen. This autoclave was placed in a 120 ° C. oil bath and allowed to react for 30 minutes. After cooling, the membrane was removed from the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 shows the graft ratio, ion exchange capacity, moisture content, and electrical conductivity of the membrane obtained in this example.
[0046]
(Example 6)
PVDF film with a thickness of 50 μm cross-linked by irradiation with an electron beam of 100 kGy in air at room temperature (4 cm 2 ) Was put into a SUS pressure-resistant autoclave with a cock (inner diameter 4 cmφ × 12 cmH), and after deaeration, it was replaced with argon gas. In this state, γ rays (dose rate 10 kGy / h) were irradiated again at a room temperature of 60 kGy. After irradiation, the container is decompressed and CF is hydrofluorovinyl ether monomer from which oxygen has been removed by bubbling with argon gas. 2 = CF (OCH 2 (CF 2 ) 2 SCH Three ) Was introduced into a glass container with crosslinked PVDF until the film was immersed. Furthermore, tetrafluoroethylene (CF adjusted to about 5 atmospheres) 2 = CF 2 ) Gas was connected to the reaction vessel. The vessel was sealed, and the solution was reacted at 50 ° C. for 48 hours while stirring. After the reaction, it was washed with toluene and then with acetone and dried. The graft rate was 62%.
[0047]
This co-grafted PVDF membrane was reacted with chlorine gas in a 1,1,2-trichlorotrifluoroethane solvent at a temperature of 125 ° C., and subsequently in the presence of trifluoroacetic acid and water at 100 ° C., 6 Reacted for hours. The obtained membrane was washed with THF, dried, further treated with a NaOH solution at 60 ° C. for 12 hours, and then treated with a sulfuric acid solution. Table 1 shows the graft ratio, ion exchange capacity, water content, electrical conductivity, and oxidation resistance of the membrane obtained in this example.
[0048]
(Example 7)
A crosslinked PTFE film (4 cm) obtained by irradiating 90 kGy of γ rays in the same manner as in Example 1. 2 ) Was placed in a separable container made of glass with a cock (inner diameter 3 cmφ × 15 cm height), and after deaeration, it was replaced with argon gas. In this state, γ rays (dose rate 10 kGy / h) were irradiated again at a room temperature of 60 kGy. Subsequently, CF, which is a hydrofluorovinyl ether monomer that has been degassed three times and deoxygenated and purged with argon gas. 2 = CF (OCH 2 (CF 2 ) 2 SO 2 F) was introduced into a glass container with crosslinked PTFE until the PTFE film was immersed. Furthermore, tetrafluoroethylene (CF adjusted to about 5 atmospheres) 2 = CF 2 ) Gas was connected to the reaction vessel. The vessel was sealed, and the solution was reacted at 50 ° C. for 48 hours while stirring. After the reaction, it was washed with toluene and then with acetone and dried. The graft rate was 65%.
[0049]
The co-grafted PTFE membrane was treated with a 2N methanol NaOH solution for 12 hours and then with a sulfuric acid solution. Table 1 shows the ion exchange capacity, water content, electrical conductivity, and oxidation resistance of the membrane obtained in this example.
[0050]
(Example 8)
First, in order to obtain cross-linked FEP, a 50 μm thick FEP film (3 cm × 3 cm) was sandwiched between two 20-mesh carbon cloths, placed in a SUS autoclave irradiation container (inner diameter 7 cmφ × height 30 cm) with a heater, and the inside of the container 10 -3 Degassed to Torr and replaced with argon gas. Then, the temperature of the FEP film is set to 305 ° C. by heating with an electric heater, 60 Co-γ rays were irradiated at a dose rate of 3 kGy / h and a dose of 90 kGy (30 hours). After irradiation, the container was cooled and the crosslinked FEP film was taken out. Cross-linked FEP film 4cm 2 Was placed in a separable container made of glass with a cock (inner diameter: 3 cmφ × 15 cmH) and deaerated and replaced with argon gas. In this state, the FEP film was again irradiated with γ rays (dose rate 10 kGy / h) at 60 kGy room temperature. Subsequently, 3-chloro-2,2,3,3-tetrafluoropropoxytrifluorotrifluoroethylene (CF 2 = CF (OCH 2 (CF 2 ) 2 Cl)), which was freed of air by bubbling with argon gas, was introduced into a glass container containing crosslinked FEP until the film was immersed. The mixture was reacted at 60 ° C. for 48 hours. After the reaction, it was washed with toluene and then with acetone and dried. The graft rate was 23%.
[0051]
This co-grafted FEP membrane was placed in a pressure-resistant autoclave, and sodium sulfite (Na 2 SO Three 20 wt% aqueous solution was added, the film was immersed in the solution, and the bubble was simply bubbled to replace the air with nitrogen. This autoclave was placed in a 135 ° C. oil bath and allowed to react for 30 minutes. After cooling, the membrane was removed from the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. Table 1 shows the graft ratio, ion exchange capacity, moisture content, and electrical conductivity of the membrane obtained in this example.
[0052]
Example 9
A crosslinked PTFE film (4 cm) obtained by irradiating 90 kGy of γ rays in the same manner as in Example 1. 2 ) Was placed in a separable container made of glass with a cock (inner diameter 3 cmφ × 15 cm height), and after deaeration, it was replaced with argon gas. In this state, γ rays (dose rate 10 kGy / h) were irradiated again at a room temperature of 60 kGy. Subsequently, CF, which is a hydrofluorovinyl ether monomer that has been degassed three times and deoxygenated and purged with argon gas. 2 = CF (OCH 2 (CF 2 ) 2 SCH Three ) Was introduced into a glass container containing crosslinked PTFE until the PTFE film was immersed. Furthermore, tetrafluoroethylene (CF adjusted to about 5 atmospheres) 2 = CF 2 ) Gas was connected to the reaction vessel. The vessel was sealed, and the solution was reacted at 50 ° C. for 48 hours while stirring. After the reaction, it was washed with toluene and then with acetone and dried. The graft ratio was 52%.
[0053]
This co-grafted PTFE membrane was reacted with chlorine gas in a 1,1,2-trichlorotrifluoroethane solvent at a temperature of 125 ° C., and subsequently in the presence of trifluoroacetic acid and water at 100 ° C., 6 Reacted for hours. The obtained membrane was washed with THF, dried, further treated with a NaOH solution at 60 ° C. for 12 hours, and then treated with a sulfuric acid solution. Table 1 shows the graft ratio, ion exchange capacity, water content, electrical conductivity, and oxidation resistance of the membrane obtained in this example.
[0054]
(Example 10)
50 μm thick ETFE film (4 cm) cross-linked by irradiation with electron beam 100 kGy in air at room temperature 2 ) Was placed in a pressure-resistant glass separable container with a cock (inner diameter: 3 cmφ × 15 cm height) and deaerated and replaced with argon gas. In this state, ETFE was again irradiated with γ-rays (dose rate 10 kGy / h) at 60 kGy at room temperature. 1,2,2-trifluoroethylenesulfonyl fluoride (CF 2 = CFSO 2 F) and methyl-1,2,2-trifluoroacrylate (CF 2 = CFCOOCH Three ) Was introduced until the crosslinked ETFE in the glass container was immersed. The inside of the container is agitated and isobutene (CH 2 = C (CH Three ) 2 ) A gas was introduced into the glass container containing the crosslinked ETFE film to 2 atm. The mixture was stirred in this state and reacted at 60 ° C. for 48 hours. Thereafter, the graft copolymer membrane was washed with toluene and then with acetone and dried. The graft ratio was 71%.
[0055]
This co-grafted and co-heavy ETFE membrane was treated with a 2N methanol KOH solution for 12 hours and then with a sulfuric acid solution. Table 1 shows the ion exchange capacity, water content, electrical conductivity, and oxidation resistance of the membrane obtained in this example.
[0056]
(Example 11)
Uncrosslinked ETFE film with a thickness of 50 μm (4 cm 2 ) Was put into a SUS pressure-resistant autoclave with a cock (inner diameter 4 cmφ × 12 cmH), and after deaeration, it was replaced with argon gas. In this state, γ rays (dose rate 10 kGy / h) were irradiated again at 30 kGy room temperature. Subsequently, 2-bromo-1,1,2,2-tetrafluoroethoxytrifluoroethylene (CF 2 = CF (OCF 2 CF 2 Br)) was introduced by bubbling with argon gas, and then introduced until the film was immersed in a glass container containing the ETFE film. Furthermore, isobutene (CH) adjusted to about 2 atm. 2 = C (CH Three ) 2 ) Gas was connected to the reaction vessel. The vessel was sealed, and the solution was reacted at 50 ° C. for 48 hours while stirring. After the reaction, it was washed with toluene and then with acetone and dried. The obtained graft ratio was 28%. As a result of measuring the total reflection infrared spectrum of the obtained film, wave number 619, 790 cm -1 There was absorption of the Br group.
[0057]
This co-grafted ETFE membrane was placed in a pressure-resistant autoclave, and sodium sulfite (Na 2 SO Three ) Was immersed in a solution of isopropanol (1: 3 (water)) in a 20 wt% aqueous solution, and the bubble was simply bubbled to replace the air with nitrogen. This autoclave was placed in a 120 ° C. oil bath and allowed to react for 30 minutes. After cooling, the membrane was removed from the autoclave, washed with water, and treated in a 2N sulfuric acid solution at 60 ° C. for 4 hours. The graft ratio, ion exchange capacity, moisture content, and electrical conductivity of the membrane obtained in this example are shown in Table 1 below.
[0058]
(Example 12)
The degree of swelling of the membrane with alcohol was measured. Example 1 and Nafion 117 were immersed in a 3N sulfuric acid solution to make the sulfonic acid group H-shaped. And it was immersed in room temperature water, and the dimension was measured in the wet state. Next, the membrane was immersed in each alcohol solution of methanol and isopropanol (IPA) and kept at 60 ° C. for 3 hours. After that, the membrane was allowed to cool to room temperature overnight, and then the dimensional change of the membrane was measured. The result is shown in FIG. The membrane obtained in this example is very effective as a membrane material for a direct methanol fuel cell because the membrane is hardly swollen by methanol or the like as compared with the Nafion membrane.
1 and Table 1 prove the effectiveness of the present invention.
[0059]
(Comparative Examples 1 and 2)
The results of ion exchange capacity, water content, and electrical conductivity measured for Nafion 115 and Nafion 117 (manufactured by DuPont) shown in Table 1 below are shown in Comparative Examples 1 and 2 in Table 1.
[0060]
(Comparative Example 3)
The cross-linked PTFE film (thickness 50 μm) obtained in Example 1 was placed in a glass separable container (inner diameter 3 cmφ × 15 cmH) with a cock and purged with argon gas. In this state, the crosslinked PTFE film was again irradiated with γ rays (dose rate 10 kGy / h) at 45 kGy at room temperature. Styrene monomer, in which oxygen was removed by bubbling with argon gas and replaced with argon gas, was introduced into a glass container containing a crosslinked PTFE film until the membrane was immersed. The container was stirred and reacted at 60 ° C. for 6 hours. Thereafter, the graft copolymer membrane was washed with toluene and then with acetone and dried. The graft rate was 93%. This graft polymerized membrane was immersed in 0.5 M chlorosulfonic acid (1,2-dichloroethane solvent) and subjected to sulfonation reaction at 60 ° C. for 24 hours. Thereafter, this membrane was washed with water to obtain sulfonic acid groups.
[0061]
(Comparative Example 4)
The crosslinked FEP film (thickness: about 50 μm) obtained in Example 1 was placed in a glass separable container with a cock (inner diameter: 3 cmφ × 15 cmH) and replaced with argon gas after deaeration. Again, γ rays (dose rate 10 kGy / h) were irradiated at 45 kGy at room temperature. The styrene monomer that had been purged with argon gas by bubbling with argon gas and substituted with argon gas was introduced into a glass container containing the irradiated FEP film until the film was immersed. The container was stirred and reacted at 60 ° C. for 6 hours. The membrane was then washed with toluene followed by acetone and dried. The graft rate was 78%. This graft copolymer was immersed in 0.5 M chlorosulfonic acid (1,2-dichloroethane solvent) and subjected to sulfonation reaction at 60 ° C. for 24 hours. Thereafter, this membrane was washed with water to obtain sulfonic acid groups.
[0062]
[Table 1]
Figure 0003972125
[0063]
【The invention's effect】
The fluororesin ion exchange membrane of the present invention provides a polymer ion exchange membrane having a wide range of ion exchange capacities, excellent methanol resistance, and high oxidation resistance.
[0064]
The ion exchange membrane of the present invention is particularly suitable for a fuel cell membrane. Moreover, it is useful as an inexpensive and durable electrolytic membrane or ion exchange membrane.
[Brief description of the drawings]
FIG. 1 is a diagram showing the swelling property of a film by a mixed solvent of alcohol and water.

Claims (14)

架橋構造を有するポリテトラフルオロエチレンフィルム基材に、次式:
CF=CF(O−(CH1〜4)(Xはハロゲン基で−Br又は−Cl)
のモノマーを放射線グラフト重合させ、得られたグラフトフィルムを亜硫酸塩若しくは亜硫酸水素塩の水溶液、又は、亜硫酸塩若しくは亜硫酸水素塩の水とアルコールの溶液中で反応させて、該グラフト鎖中のハロゲン基[−X]をスルホン酸塩[−SOM](Mはアルカリ金属でLi、Na又はK)とし、引き続き、得られたグラフト鎖中のスルホン酸塩基をスルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
A polytetrafluoroethylene film substrate having a crosslinked structure has the following formula:
CF 2 = CF (O- (CH 2) 1~4 X 1) (X 1 is -Br or -Cl halogen group)
And the resulting graft film is reacted in an aqueous solution of sulfite or bisulfite or a solution of sulfite or bisulfite in water and an alcohol to produce halogen groups in the graft chain. [—X 1 ] is a sulfonate [—SO 3 M] (M is an alkali metal, Li, Na, or K), and then the sulfonate group in the obtained graft chain is converted to a sulfonate group [—SO 3 H ] Fluorine-containing polymer ion exchange membrane.
架橋構造を有するポリテトラフルオロエチレンフィルム基材に、次式:
CF=CF(O−(CH1〜4)(Xはハロゲン基で−Br又は−Cl)
のモノマーと、
(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させ、得られた共グラフトフィルムを亜硫酸塩若しくは亜硫酸水素塩の水溶液、又は、亜硫酸塩若しくは亜硫酸水素塩の水とアルコールの溶液中で反応させて、該共グラフト鎖中のハロゲン基[−X]をスルホン酸塩[−SOM](Mはアルカリ金属でLi、Na又はK)とし、引き続き、得られた共グラフト鎖中のスルホン酸塩基をスルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
A polytetrafluoroethylene film substrate having a crosslinked structure has the following formula:
CF 2 = CF (O- (CH 2) 1~4 X 1) (X 1 is -Br or -Cl halogen group)
A monomer of
(A) Monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. A compound of CH 2 ═CR 1 (COOR 2 ) or CF 2 ═CF (COOR 2 ), R 1 is —H, —CH 3 , —F, and R 2 is —H, —CH 3 , —C 2. H 5, -C 3 H 7, acrylic monomer is -C 4 H 9; or c. One or more monomers selected from fluorocarbon monomers having 4 or less carbon atoms and having a copolymerizable double bond are co-grafted by radiation irradiation, and the resulting co-grafted film is sulfite or bisulfite. Or an aqueous solution of sulfite or bisulfite in water and an alcohol solution to convert the halogen group [—X 1 ] in the co-graft chain to a sulfonate [—SO 3 M] (M is an alkali A fluorine-containing polymer ion exchange membrane in which the metal is Li, Na, or K), and the sulfonate group in the obtained co-graft chain is the sulfonate group [—SO 3 H].
架橋構造を有するテトラフルオロエチレン−六フッ化プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材から選ばれた1つのフィルム基材に、次式:
CF=CF(O−(CH1〜4)(Xはハロゲン基で−Br又は−Cl)
のモノマーを放射線グラフト重合させ、得られたグラフトフィルムを亜硫酸塩若しくは亜硫酸水素塩の水溶液、又は、亜硫酸塩若しくは亜硫酸水素塩の水とアルコールの溶液中で反応させて、該グラフト鎖中のハロゲン基[−X]をスルホン酸塩[−SOM](Mはアルカリ金属でLi、Na又はK)とし、引き続き、得られたグラフト鎖中のスルホン酸塩基をスルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
One selected from a tetrafluoroethylene-hexafluoropropylene copolymer having a crosslinked structure, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a polyvinylidene fluoride, or an ethylene-tetrafluoroethylene copolymer film substrate On the film substrate, the following formula:
CF 2 = CF (O- (CH 2) 1~4 X 1) (X 1 is -Br or -Cl halogen group)
And the resulting graft film is reacted in an aqueous solution of sulfite or bisulfite or a solution of sulfite or bisulfite in water and an alcohol to produce halogen groups in the graft chain. [—X 1 ] is a sulfonate [—SO 3 M] (M is an alkali metal, Li, Na, or K), and then the sulfonate group in the obtained graft chain is converted to a sulfonate group [—SO 3 H ] Fluorine-containing polymer ion exchange membrane.
架橋構造を有するテトラフルオロエチレン−六フッ化プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材から選ばれた1つのフィルム基材に、次式:
CF=CF(O−(CH1〜4)(Xはハロゲン基で−Br又は−Cl)
のモノマーと、
(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させ、得られた共グラフトフィルムを亜硫酸塩若しくは亜硫酸水素塩の水溶液、又は、亜硫酸塩若しくは亜硫酸水素塩の水とアルコールの溶液中で反応させて、該共グラフト鎖中のハロゲン基[−X]をスルホン酸塩[−SOM](Mはアルカリ金属でLi、Na又はK)とし、引き続き、得られた共グラフト鎖中のスルホン酸塩基をスルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
One selected from a tetrafluoroethylene-hexafluoropropylene copolymer having a crosslinked structure, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a polyvinylidene fluoride, or an ethylene-tetrafluoroethylene copolymer film substrate On the film substrate, the following formula:
CF 2 = CF (O- (CH 2) 1~4 X 1) (X 1 is -Br or -Cl halogen group)
A monomer of
(A) Monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. A compound of CH 2 ═CR 1 (COOR 2 ) or CF 2 ═CF (COOR 2 ), R 1 is —H, —CH 3 , —F, and R 2 is —H, —CH 3 , —C 2. H 5, -C 3 H 7, acrylic monomer is -C 4 H 9; or c. One or more monomers selected from fluorocarbon monomers having 4 or less carbon atoms and having a copolymerizable double bond are co-grafted by radiation irradiation, and the resulting co-grafted film is sulfite or bisulfite. Or an aqueous solution of sulfite or bisulfite in water and an alcohol solution to convert the halogen group [—X 1 ] in the co-graft chain to a sulfonate [—SO 3 M] (M is an alkali A fluorine-containing polymer ion exchange membrane in which the metal is Li, Na, or K), and the sulfonate group in the obtained co-graft chain is the sulfonate group [—SO 3 H].
架橋構造を有するテトラフルオロエチレン−六フッ化プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材から1つのフィルム基材を選び、
(B)モノマー群:
d.CF=CF((CH1〜4)(Xはハロゲン基で−Br又は−Cl);
e.CF=CF(O−(CF1〜2);
f.CF=CF(OCH(CF1〜2
から選ばれた1種類以上のモノマーと、
(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させ、得られた共グラフトフィルムを亜硫酸塩若しくは亜硫酸水素塩の水溶液、又は、亜硫酸塩若しくは亜硫酸水素塩の水とアルコールの溶液中で反応させて、該共グラフト鎖中のハロゲン基[−X]をスルホン酸塩[−SOM](Mはアルカリ金属でLi、Na又はK)とし、引き続き、得られた共グラフト鎖中のスルホン酸塩をスルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
One film substrate from a tetrafluoroethylene-hexafluoropropylene copolymer, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a polyvinylidene fluoride, or an ethylene-tetrafluoroethylene copolymer film substrate having a crosslinked structure Select
(B) Monomer group:
d. CF 2 = CF ((CH 2 ) 1~4 X 1) (X 1 is -Br or -Cl halogen group);
e. CF 2 = CF (O- (CF 2) 1~2 X 1);
f. CF 2 = CF (OCH 2 ( CF 2) 1~2 X 1)
One or more monomers selected from
(A) Monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. A compound of CH 2 ═CR 1 (COOR 2 ) or CF 2 ═CF (COOR 2 ), R 1 is —H, —CH 3 , —F, and R 2 is —H, —CH 3 , —C 2. H 5, -C 3 H 7, acrylic monomer is -C 4 H 9; or c. One or more monomers selected from fluorocarbon monomers having 4 or less carbon atoms and having a copolymerizable double bond are co-grafted by radiation irradiation, and the resulting co-grafted film is sulfite or bisulfite. Or an aqueous solution of sulfite or bisulfite in water and an alcohol solution to convert the halogen group [—X 1 ] in the co-graft chain to a sulfonate [—SO 3 M] (M is an alkali A fluorine-containing polymer ion exchange membrane in which Li, Na, or K) is used as a metal, and the sulfonate in the obtained co-graft chain is subsequently used as a sulfonic acid group [—SO 3 H].
架橋構造を有するポリテトラフルオロエチレンフィルム基材に、
(C)モノマー群:
g.CF=CF(O−(CF1〜2SR)(R基は−H、−CH、又は−C(CH);
h.CF=CF(O−(CF1〜2SX)(Xはハロゲン基で−Br又は−Cl)
から選ばれた1種類以上のモノマーと、
(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させ、得られた共グラフトフィルム中の−SR基又は−SX基を塩素化及び酸化してクロルスルホン基(−SOCl)とし、更にこれをスルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
To a polytetrafluoroethylene film substrate having a crosslinked structure,
(C) Monomer group:
g. CF 2 = CF (O- (CF 2) 1~2 SR 3) (R 3 group is -H, -CH 3, or -C (CH 3) 3);
h. CF 2 = CF (O- (CF 2) 1~2 SX 1) (X 1 is -Br or -Cl halogen group)
One or more monomers selected from
(A) Monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. A compound of CH 2 ═CR 1 (COOR 2 ) or CF 2 ═CF (COOR 2 ), R 1 is —H, —CH 3 , —F, and R 2 is —H, —CH 3 , —C 2. H 5, -C 3 H 7, acrylic monomer is -C 4 H 9; or c. One or more monomers selected from fluorocarbon monomers having 4 or less carbon atoms and having a copolymerizable double bond are subjected to co-graft polymerization by radiation irradiation, and -SR 3 group in the obtained co-graft film or A fluorine-containing polymer ion exchange membrane in which SX 1 group is chlorinated and oxidized to form a chlorosulfone group (—SO 2 Cl), which is further converted to a sulfonic acid group [—SO 3 H].
架橋構造を有するポリテトラフルオロエチレンフィルム基材に、
(D)モノマー群:
i.CF=CF(O−(CF1〜2SO)(R基は−H、−CH、又は−C(CH);
j.CF=CF(O−(CF1〜2SO)(Xはハロゲン基で−F又は−Cl)
から選ばれた1種類以上のモノマーと、
(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させ、得られた共グラフトフィルム中の−SO及び−SO基をスルホン酸塩[−SOM](Mはアルカリ金属でLi、Na又はK)とした後、スルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
To a polytetrafluoroethylene film substrate having a crosslinked structure,
(D) Monomer group:
i. CF 2 = CF (O- (CF 2) 1~2 SO 2 R 3) (R 3 group is -H, -CH 3, or -C (CH 3) 3);
j. CF 2 = CF (O- (CF 2) 1~2 SO 2 X 2) (X 2 is -F or -Cl halogen group)
One or more monomers selected from
(A) Monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. A compound of CH 2 ═CR 1 (COOR 2 ) or CF 2 ═CF (COOR 2 ), R 1 is —H, —CH 3 , —F, and R 2 is —H, —CH 3 , —C 2. H 5, -C 3 H 7, acrylic monomer is -C 4 H 9; or c. One or more monomers selected from fluorocarbon monomers having 4 or less carbon atoms and having a copolymerizable double bond are subjected to co-graft polymerization by radiation irradiation, and —SO 2 R 3 in the obtained co-graft film is obtained. And the —SO 2 X 2 group as a sulfonate [—SO 3 M] (M is an alkali metal such as Li, Na, or K) and then a sulfonic acid group [—SO 3 H]. Exchange membrane.
架橋構造を有するテトラフルオロエチレン−六フッ化プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材から選ばれた1つのフィルム基材に、
(C)モノマー群:
g.CF=CF(O−(CF1〜2SR)(R基は−H、−CH、又は−C(CH);
h.CF=CF(O−(CF1〜2SX)(Xはハロゲン基で−Br又は−Cl)
から選ばれた1種類以上のモノマーと、
(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させ、得られた共グラフトフィルム中の−SR基又は−SX基を塩素化及び酸化してクロルスルホン基(−SOCl)とし、更にこれをスルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
One selected from a tetrafluoroethylene-hexafluoropropylene copolymer having a crosslinked structure, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a polyvinylidene fluoride, or an ethylene-tetrafluoroethylene copolymer film substrate On the film substrate,
(C) Monomer group:
g. CF 2 = CF (O- (CF 2) 1~2 SR 3) (R 3 group is -H, -CH 3, or -C (CH 3) 3);
h. CF 2 = CF (O- (CF 2) 1~2 SX 1) (X 1 is -Br or -Cl halogen group)
One or more monomers selected from
(A) Monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. A compound of CH 2 ═CR 1 (COOR 2 ) or CF 2 ═CF (COOR 2 ), R 1 is —H, —CH 3 , —F, and R 2 is —H, —CH 3 , —C 2. H 5, -C 3 H 7, acrylic monomer is -C 4 H 9; or c. One or more monomers selected from fluorocarbon monomers having 4 or less carbon atoms and having a copolymerizable double bond are subjected to co-graft polymerization by radiation irradiation, and -SR 3 group in the obtained co-graft film or A fluorine-containing polymer ion exchange membrane in which SX 1 group is chlorinated and oxidized to form a chlorosulfone group (—SO 2 Cl), which is further converted to a sulfonic acid group [—SO 3 H].
架橋構造を有するテトラフルオロエチレン−六フッ化プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材から選ばれた1つのフィルム基材に、
(D)モノマー群:
i.CF=CF(O−(CF1〜2SO)(R基は−H、−CH、又は−C(CH);
j.CF=CF(O−(CF1〜2SO)(Xはハロゲン基で−F又は−Cl)
から選ばれた1種類以上のモノマーと、
(A)モノマー群:
a.炭素数4以下で、重合性二重結合を有する炭化水素系モノマー;
b.CH=CR(COOR)若しくはCF=CF(COOR)の化合物で、Rは−H,−CH,−Fであり、Rは−H,−CH,−C,−C,−Cであるアクリル系モノマー;又は
c.炭素数4以下で、共重合性二重結合を有するフッ化炭素系モノマー
から選ばれた1種類以上のモノマーを放射線照射によって共グラフト重合させ、得られた共グラフトフィルム中の−SO及び−SO基をスルホン酸塩[−SOM](Mはアルカリ金属でLi、Na、K)とした後、スルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
One selected from a tetrafluoroethylene-hexafluoropropylene copolymer having a crosslinked structure, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a polyvinylidene fluoride, or an ethylene-tetrafluoroethylene copolymer film substrate On the film substrate,
(D) Monomer group:
i. CF 2 = CF (O- (CF 2) 1~2 SO 2 R 3) (R 3 group is -H, -CH 3, or -C (CH 3) 3);
j. CF 2 = CF (O- (CF 2) 1~2 SO 2 X 2) (X 2 is -F or -Cl halogen group)
One or more monomers selected from
(A) Monomer group:
a. A hydrocarbon monomer having 4 or less carbon atoms and a polymerizable double bond;
b. A compound of CH 2 ═CR 1 (COOR 2 ) or CF 2 ═CF (COOR 2 ), R 1 is —H, —CH 3 , —F, and R 2 is —H, —CH 3 , —C 2. H 5, -C 3 H 7, acrylic monomer is -C 4 H 9; or c. One or more monomers selected from fluorocarbon monomers having 4 or less carbon atoms and having a copolymerizable double bond are subjected to co-graft polymerization by radiation irradiation, and —SO 2 R 3 in the obtained co-graft film is obtained. And the —SO 2 X 2 group as a sulfonate [—SO 3 M] (M is an alkali metal such as Li, Na, K) and then a sulfonic acid group [—SO 3 H]. Exchange membrane.
架橋構造を有するテトラフルオロエチレン−六フッ化プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材から1つのフィルム基材を選び、
)モノマー群:
.CF=CF(OCH(CF1〜2SR)(R基は−H、−CH、又は−C(CH);
.CF=CF(OCH(CF1〜2SX)(Xはハロゲン基で−Br又は−Cl)
から選ばれた1種類以上のモノマーを放射線グラフト重合させ、得られた共グラフトフィルム中の−SR基又は−SX基を塩素化及び酸化してクロルスルホン基(−SOCl)とし、更にこれをスルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
One film substrate from a tetrafluoroethylene-hexafluoropropylene copolymer, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a polyvinylidene fluoride, or an ethylene-tetrafluoroethylene copolymer film substrate having a crosslinked structure Select
( E ) Monomer group:
k . CF 2 = CF (OCH 2 ( CF 2) 1~2 SR 3) (R 3 group is -H, -CH 3, or -C (CH 3) 3);
l . CF 2 = CF (OCH 2 (CF 2 ) 1-2 SX 1 ) (X 1 is a halogen group —Br or —Cl)
Radiation graft polymerization of one or more types of monomers selected from the above, -SR 3 group or -SX 1 group in the obtained co-graft film is chlorinated and oxidized to a chlorosulfone group (-SO 2 Cl), Furthermore, this sulfonic acid group [-SO 3 H] and the fluorine-containing polymer ion-exchange membrane.
架橋構造を有するテトラフルオロエチレン−六フッ化プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材から1つのフィルム基材を選び、
)モノマー群:
.CF=CF(OCH(CF1〜2SO)(R基は−H、−CH、又は−C(CH);
.CF=CF(OCH(CF1〜2SO)(Xはハロゲン基で−F又は−Cl)
から選ばれた1種類以上のモノマーを放射線グラフト重合させ、得られたグラフトフィルム中の−SO基及び−SO基をスルホン酸塩[−SOM](Mはアルカリ金属でLi、Na、K)とした後、スルホン酸基[−SOH]とした含フッ素系高分子イオン交換膜。
One film substrate from a tetrafluoroethylene-hexafluoropropylene copolymer, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a polyvinylidene fluoride, or an ethylene-tetrafluoroethylene copolymer film substrate having a crosslinked structure Select
( F ) Monomer group:
m . CF 2 = CF (OCH 2 ( CF 2) 1~2 SO 2 R 3) (R 3 group is -H, -CH 3, or -C (CH 3) 3);
n . CF 2 = CF (OCH 2 ( CF 2) 1~2 SO 2 X 2) (X 2 is -F or -Cl halogen group)
One or more types of monomers selected from the following are subjected to radiation graft polymerization, and —SO 2 R 3 group and —SO 2 X 2 group in the obtained graft film are converted into sulfonate [—SO 3 M] (M is an alkali metal) Li, Na, K), and then a fluorinated polymer ion exchange membrane having a sulfonic acid group [—SO 3 H].
架橋構造を有するポリテトラフルオロエチレンフィルム基材が、架橋構造を有しないテトラフルオロエチレン−六フッ化プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材から選ばれた1つのフィルム基材である、請求項1、2、6及び7のいずれかに記載の含フッ素系高分子イオン交換膜。  A polytetrafluoroethylene film substrate having a crosslinked structure is a tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinylidene fluoride, or ethylene-tetra having no crosslinked structure. The fluorine-containing polymer ion exchange membrane according to any one of claims 1, 2, 6 and 7, which is one film substrate selected from fluoroethylene copolymer film substrates. 架橋構造を有するテトラフルオロエチレン−六フッ化プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材が、架橋構造を有しないテトラフルオロエチレン−六フッ化プロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、又はエチレン−テトラフルオロエチレン共重合体フィルム基材である、請求項3、4、5,8,9,10及び11のいずれかに記載の含フッ素系高分子イオン交換膜。  The tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinylidene fluoride, or ethylene-tetrafluoroethylene copolymer film substrate having a crosslinked structure has a crosslinked structure. A tetrafluoroethylene-hexafluoropropylene copolymer, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, a polyvinylidene fluoride, or an ethylene-tetrafluoroethylene copolymer film substrate, The fluorine-containing polymer ion exchange membrane according to any one of 5, 8, 9, 10 and 11. グラフト率が10〜150%、イオン交換容量が0.3〜3.0meq/gであることを特徴とする、請求範囲1〜13のいずれか1項に記載の含フッ素系高分子イオン交換膜。The fluorine-containing polymer ion exchange membrane according to any one of claims 1 to 13 , wherein the graft rate is 10 to 150% and the ion exchange capacity is 0.3 to 3.0 meq / g. .
JP2002207865A 2002-07-17 2002-07-17 Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane Expired - Fee Related JP3972125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002207865A JP3972125B2 (en) 2002-07-17 2002-07-17 Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207865A JP3972125B2 (en) 2002-07-17 2002-07-17 Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane

Publications (2)

Publication Number Publication Date
JP2004051685A JP2004051685A (en) 2004-02-19
JP3972125B2 true JP3972125B2 (en) 2007-09-05

Family

ID=31932161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207865A Expired - Fee Related JP3972125B2 (en) 2002-07-17 2002-07-17 Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane

Country Status (1)

Country Link
JP (1) JP3972125B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307026A (en) * 2004-04-22 2005-11-04 Reitekku:Kk Functional fluoropolymer material and its preparation method
JP4670074B2 (en) * 2004-08-26 2011-04-13 日東電工株式会社 Fuel cell electrolyte membrane with excellent acid resistance
JP4822389B2 (en) 2004-11-15 2011-11-24 日東電工株式会社 Electrolyte membrane with excellent oxidation resistance
JP4748410B2 (en) * 2004-12-22 2011-08-17 独立行政法人 日本原子力研究開発機構 Method for producing a polymer electrolyte membrane for a highly durable fuel cell incorporating a crosslinked structure
JP4747241B2 (en) 2005-02-25 2011-08-17 独立行政法人 日本原子力研究開発機構 Functional membrane, method for producing electrolyte membrane for fuel cell, and electrolyte membrane for fuel cell
JP4682358B2 (en) 2005-04-05 2011-05-11 独立行政法人 日本原子力研究開発機構 Method for producing functional inorganic / graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell
JP5011567B2 (en) 2005-11-17 2012-08-29 独立行政法人日本原子力研究開発機構 Nano-inorganic particle composite cross-linked polymer electrolyte membrane, method for producing the same, and membrane / electrode assembly using the same
JP4997625B2 (en) 2006-03-24 2012-08-08 独立行政法人日本原子力研究開発機構 Method for producing polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP5000289B2 (en) 2006-12-27 2012-08-15 本田技研工業株式会社 Membrane-electrode structure for polymer electrolyte fuel cell
WO2009020086A1 (en) * 2007-08-09 2009-02-12 Shin-Etsu Chemical Co., Ltd. Solid polymer electrolyte membrane, method for producing the same, membrane-electrode assembly for fuel cell, and fuel cell
CN102216354A (en) * 2008-09-17 2011-10-12 贝伦诺斯清洁电力控股有限公司 Method for producing a radiation grafted polymer
KR102048064B1 (en) * 2017-04-21 2019-11-22 단국대학교 천안캠퍼스 산학협력단 Method of preparing ion-exchange membrane using chemical modification and ion-exchange membrane produced by the same method
WO2018194393A1 (en) * 2017-04-21 2018-10-25 단국대학교 천안캠퍼스 산학협력단 Method for manufacturing ion exchange membrane using chemical modification and ion exchange membrane manufactured thereby
EP4028163A1 (en) 2019-09-09 2022-07-20 Compact Membrane Systems, Inc. Gas permeable fluoropolymers and ionomers

Also Published As

Publication number Publication date
JP2004051685A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US8232353B2 (en) Processes for producing nano-space controlled polymer ion-exchange membranes
JP4748410B2 (en) Method for producing a polymer electrolyte membrane for a highly durable fuel cell incorporating a crosslinked structure
JP5137174B2 (en) Method for producing polymer electrolyte membrane for fuel cell with silane cross-linked structure
JP4568848B2 (en) Fluororesin ion exchange membrane having a wide range of ion exchange capacities and method for producing the same
JP4682358B2 (en) Method for producing functional inorganic / graft polymer hybrid ion exchange membrane and electrolyte membrane for fuel cell
JP3739713B2 (en) Method for producing a fluorine-based polymer ion exchange membrane having excellent oxidation resistance and a wide range of ion exchange amounts
JP5261937B2 (en) Manufacturing method of electrolyte membrane
JP3972125B2 (en) Fuel cell electrolyte membrane comprising a fluorine-containing polymer ion exchange membrane
JP4953113B2 (en) Fluoropolymer ion exchange membrane having excellent oxidation resistance and high ion exchange capacity and method for producing the same
JP2006344552A (en) Cross-link type electrolyte membrane and its manufacturing method
JP3932338B2 (en) Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
JP4997625B2 (en) Method for producing polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP5105340B2 (en) Fluorine polymer ion exchange membrane having wide ion exchange capacity and method for producing the same
JP4576620B2 (en) Method for producing nanostructure control polymer ion exchange membrane
JP4670073B2 (en) Method for producing nano space control polymer ion exchange membrane
JP4219656B2 (en) Electrolyte membrane for fuel cell
JP2007157428A (en) Polymer electrolyte membrane and method of manufacturing same
JP4822389B2 (en) Electrolyte membrane with excellent oxidation resistance
JP4670074B2 (en) Fuel cell electrolyte membrane with excellent acid resistance
JP4429851B2 (en) Durable electrolyte membrane
JP2004010744A (en) Fluorine-based macromolecular copolymer having large ion-exchanging capacity and oxidation resistance, and method for producing the same
JP2004300360A (en) Method for producing electrolyte membrane for fuel cell comprising graft polymer ion-exchange membrane
JP2005063778A (en) Electrolyte film for fuel cell excellent in oxidation resistance
JP2005142014A (en) Electrolyte membrane for fuel cells superior in acid resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees