JP2016195047A - Electrolyte membrane and manufacturing method for the same - Google Patents

Electrolyte membrane and manufacturing method for the same Download PDF

Info

Publication number
JP2016195047A
JP2016195047A JP2015074636A JP2015074636A JP2016195047A JP 2016195047 A JP2016195047 A JP 2016195047A JP 2015074636 A JP2015074636 A JP 2015074636A JP 2015074636 A JP2015074636 A JP 2015074636A JP 2016195047 A JP2016195047 A JP 2016195047A
Authority
JP
Japan
Prior art keywords
ion exchange
group
electrolyte membrane
polymer resin
exchange group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015074636A
Other languages
Japanese (ja)
Other versions
JP6665418B2 (en
Inventor
竜也 袖子田
Tatsuya Sodekoda
竜也 袖子田
高橋 克巳
Katsumi Takahashi
克巳 高橋
高橋 浩
Hiroshi Takahashi
浩 高橋
前川 康成
Yasunari Maekawa
康成 前川
進華 陳
Jinhua Chen
進華 陳
長谷川 伸
Shin Hasegawa
伸 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Japan Atomic Energy Agency
IHI Shibaura Machinery Corp
Original Assignee
IHI Corp
Japan Atomic Energy Agency
IHI Shibaura Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Japan Atomic Energy Agency, IHI Shibaura Machinery Corp filed Critical IHI Corp
Priority to JP2015074636A priority Critical patent/JP6665418B2/en
Publication of JP2016195047A publication Critical patent/JP2016195047A/en
Application granted granted Critical
Publication of JP6665418B2 publication Critical patent/JP6665418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To enhance the ion exchange capacity of an electrolyte membrane having hydrocarbon-based polymer resin as a base material.SOLUTION: An electrolyte membrane contains, as a base material, a graft polymer which contains an ion exchange group converted into a sodium type using weak alkaline reaction solution, and a hydrocarbon-based polymer resin. A method of manufacturing an electrolyte membrane contains an ion exchange group activating step of for immersing, in a weakly alkaline reaction solution, a base material formed by forming a film of graft polymer containing an ion exchange group to which a protective group is bonded and the hydrocarbon-based polymer resin, and replacing a protective group by sodium. It is preferable to use a weakly alkaline reaction solution containing a compound selected from the group consisting of an alkali metal hydroxide and an amine, and it is more preferably to select one from the group consisting of aqueous sodium hydrogen carbonate solution, aqueous sodium hydroxide solution and aqueous potassium hydroxide solution.SELECTED DRAWING: Figure 1

Description

本発明は、炭化水素系高分子樹脂を基材とする電解質膜に関する。また炭化水素系高分子樹脂とイオン交換基含有モノマーとを重合させる電解質膜の製造方法に関する。   The present invention relates to an electrolyte membrane based on a hydrocarbon-based polymer resin. The present invention also relates to a method for producing an electrolyte membrane in which a hydrocarbon polymer resin and an ion exchange group-containing monomer are polymerized.

いわゆるスーパーエンジニアリングプラスチックといわれる炭化水素系高分子樹脂は、耐熱性や機械的強度に優れるため、工業製品に広範に利用される。近年、放射線グラフト重合法を用いて、該炭化水素系高分子樹脂とイオン交換基含有モノマーとを重合させた重合物を基材とする電解質膜を製造する方法が提案される(特許文献1)。特許文献1には、予めグラフト鎖を形成させた炭化水素系高分子樹脂に放射線を照射してラジカルを生成させ、該ラジカルとイオン交換基含有モノマーとを接触させることにより、炭化水素系高分子樹脂にイオン交換基を結合させた電解質膜が開示される。   Hydrocarbon polymer resins called so-called super engineering plastics are widely used in industrial products because of their excellent heat resistance and mechanical strength. In recent years, a method for producing an electrolyte membrane based on a polymer obtained by polymerizing the hydrocarbon polymer resin and an ion exchange group-containing monomer using a radiation graft polymerization method has been proposed (Patent Document 1). . Patent Document 1 discloses that a hydrocarbon polymer is obtained by irradiating a hydrocarbon polymer resin, in which a graft chain is formed in advance, to generate a radical, and bringing the radical into contact with an ion exchange group-containing monomer. An electrolyte membrane having an ion exchange group bonded to a resin is disclosed.

上記のイオン交換基含有モノマーには、保護基が結合されたイオン交換基が含有される。重合反応時にイオン交換基を保護するためである。したがって、放射線グラフト重合法によりイオン交換基を結合させた炭化水素系高分子樹脂は、保護基を脱離させてイオン交換基を有効化させることで電解質膜として使用可能になる。   The above ion-exchange group-containing monomer contains an ion-exchange group to which a protective group is bonded. This is to protect the ion exchange group during the polymerization reaction. Therefore, the hydrocarbon-based polymer resin to which ion exchange groups are bonded by the radiation graft polymerization method can be used as an electrolyte membrane by activating the ion exchange groups by removing the protective groups.

イオン交換基を有効化する方法としては、従来、イオン交換基を結合させた炭化水素系高分子樹脂を成膜して得た基材を、水に浸漬させて加水分解処理する方法がある。水を使用する加水分解処理の問題点は、水が高活性なため、保護基と置換させた水素がイオン交換基から脱離しやすいことである。保護基を迅速にイオン交換基から脱離させるためには、高温条件下で加水分解処理を行うことが好ましい。しかし高温条件下では水の活性がさらに高くなるため、イオン交換基が炭化水素系高分子樹脂から脱離しやすい。   As a method for activating ion exchange groups, there is conventionally a method of hydrolyzing a substrate obtained by immersing a base material obtained by forming a hydrocarbon polymer resin bonded with ion exchange groups in water. The problem with the hydrolysis treatment using water is that water substituted with a protecting group is easily detached from the ion exchange group because water is highly active. In order to quickly remove the protecting group from the ion exchange group, it is preferable to perform a hydrolysis treatment under a high temperature condition. However, since the activity of water is further increased under high temperature conditions, the ion exchange group tends to be detached from the hydrocarbon polymer resin.

炭化水素系高分子樹脂を基材とする電解質膜は、その機械的強度により食塩電解装置用途、水処理装置用途、燃料電池用途等への利用が期待される。そのため炭化水素系高分子樹脂へのイオン交換基の含有量を増加させ、電解質膜のイオン交換容量を向上させることが望まれる。そのような電解質膜を実現するため、イオン交換基有効化工程においてイオン交換基の脱離を抑制できる電解質膜の製造方法が求められる。   An electrolyte membrane based on a hydrocarbon-based polymer resin is expected to be used for a salt electrolysis device application, a water treatment device application, a fuel cell application and the like due to its mechanical strength. Therefore, it is desired to increase the content of ion exchange groups in the hydrocarbon polymer resin and improve the ion exchange capacity of the electrolyte membrane. In order to realize such an electrolyte membrane, there is a need for a method for producing an electrolyte membrane that can suppress desorption of ion exchange groups in the ion exchange group validation step.

特開2009-67844号公報JP 2009-67844 A

本発明の課題は、イオン交換基の脱離を抑制して、炭化水素系高分子樹脂を用いた電解質膜のイオン交換容量を向上させることである。   An object of the present invention is to improve ion exchange capacity of an electrolyte membrane using a hydrocarbon polymer resin by suppressing desorption of ion exchange groups.

本発明は、弱アルカリ性反応液を用いてナトリウム型に変換したイオン交換基と炭化水素系高分子樹脂とを含有するグラフト重合物を基材とする電解質膜である。上記のイオン交換基は、スルホン酸基と、カルボン酸基と、ホスホン酸基とからなる群からいずれか一つ選択されることが好ましい。該電解質膜のイオン交換容量は、好ましくは0.1mmol/g以上4mmol/g未満である。   The present invention is an electrolyte membrane based on a graft polymer containing an ion exchange group converted into a sodium type using a weak alkaline reaction liquid and a hydrocarbon polymer resin. The ion exchange group is preferably selected from the group consisting of a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. The ion exchange capacity of the electrolyte membrane is preferably 0.1 mmol / g or more and less than 4 mmol / g.

本発明は、保護基が結合されたイオン交換基と炭化水素系高分子樹脂とを含有するグラフト重合物を成膜してなる基材を弱アルカリ性反応液に浸漬させ、保護基をナトリウムに置換させるイオン交換基有効化工程を含む電解質膜の製造方法を包含する。上記の弱アルカリ性反応液は、アルカリ金属の炭酸水素塩と、アルカリ金属水酸化物と、アミンとからなる群から選択される化合物を含有する。弱アルカリ性反応液は、炭酸水素ナトリウム水溶液と、水酸化ナトリウム水溶液と、水酸化カリウム水溶液とからなる群から一つ選択されることが好ましい。   In the present invention, a substrate formed by forming a graft polymer containing an ion exchange group to which a protecting group is bonded and a hydrocarbon polymer resin is immersed in a weak alkaline reaction solution, and the protecting group is replaced with sodium. The manufacturing method of the electrolyte membrane including the ion exchange group validation process to be carried out is included. The weak alkaline reaction liquid contains a compound selected from the group consisting of an alkali metal hydrogen carbonate, an alkali metal hydroxide, and an amine. The weak alkaline reaction liquid is preferably selected from the group consisting of an aqueous sodium hydrogen carbonate solution, an aqueous sodium hydroxide solution, and an aqueous potassium hydroxide solution.

本発明は、イオン交換基の脱離が抑制され、良好なイオン交換容量を備える。   In the present invention, desorption of ion exchange groups is suppressed, and a good ion exchange capacity is provided.

本発明の実施例と比較例とのイオン交換容量と導電率との測定結果である。It is a measurement result of the ion exchange capacity and electrical conductivity of the Example of this invention, and a comparative example.

[電解質膜]
本発明の電解質膜は、ナトリウム型に変換したイオン交換基と炭化水素系高分子樹脂とを含有するグラフト重合物を基材とする。本発明は、イオン交換基をナトリウム型に変換させるとき、弱アルカリ性反応液を用いる。また上記のグラフト重合物は、炭化水素系高分子樹脂の、主鎖とグラフト鎖とにイオン交換基を結合させるため、基材中のイオン交換基の含有量を増加できる。
[Electrolyte membrane]
The electrolyte membrane of the present invention is based on a graft polymer containing an ion exchange group converted into a sodium type and a hydrocarbon polymer resin. The present invention uses a weakly alkaline reaction liquid when converting the ion exchange group to the sodium type. Moreover, since said graft polymer combines an ion exchange group with the principal chain and graft chain of hydrocarbon type polymer resin, it can increase content of the ion exchange group in a base material.

本発明は、弱アルカリ性反応液を用いてイオン交換基をナトリウム型に変換させる。これにより、イオン交換基有効化工程におけるイオン交換基の脱離を抑制できる。その結果本発明の電解質膜は、イオン交換基の含有量を増加でき、イオン交換容量を向上させることができる。本発明の電解質膜のイオン交換容量は、0.1mmol/g以上4mmol/g未満であり、より好ましくは、1mmol/g以上4mmol/g未満であり、さらに好ましくは1.1mmol/g以上3mmol/g未満である。   In the present invention, an ion exchange group is converted to a sodium type using a weak alkaline reaction solution. Thereby, the detachment | desorption of the ion exchange group in an ion exchange group validation process can be suppressed. As a result, the electrolyte membrane of the present invention can increase the content of ion exchange groups and improve the ion exchange capacity. The ion exchange capacity of the electrolyte membrane of the present invention is 0.1 mmol / g or more and less than 4 mmol / g, more preferably 1 mmol / g or more and less than 4 mmol / g, and even more preferably 1.1 mmol / g or more and less than 3 mmol / g. It is.

本発明のイオン交換容量は、下記の方法により測定できる。イオン交換容量の測定方法を、スルホン酸基をイオン交換基とする本発明の例として説明する。
[イオン交換容量の測定方法]
寸法2cm×3cmで切り出した電解質膜をH型にし、乾燥状態の重量を測定する。乾燥時重量をW1とする。該電解質膜を飽和食塩水に室温で4〜16時間浸漬させる。浸漬容器から電解質膜を取り出した後、水酸化ナトリウムを用いて中和滴定する。イオン交換容量は、中和滴定で得た飽和食塩水のブランクの滴定値N1(ml)と中和滴定値N2(ml)とを用いて、式(1)に基づき求められる。
The ion exchange capacity of the present invention can be measured by the following method. A method for measuring the ion exchange capacity will be described as an example of the present invention in which a sulfonic acid group is an ion exchange group.
[Measurement method of ion exchange capacity]
The electrolyte membrane cut out with dimensions of 2 cm × 3 cm is made H-shaped, and the weight in the dry state is measured. Dry weight is referred to as W 1. The electrolyte membrane is immersed in saturated saline at room temperature for 4 to 16 hours. After removing the electrolyte membrane from the immersion container, neutralization titration is performed using sodium hydroxide. The ion exchange capacity is determined based on the formula (1) using a blank titration value N 1 (ml) and a neutralization titration value N 2 (ml) of a saturated saline solution obtained by neutralization titration.

本発明の電解質膜の導電率は、イオン交換容量の増加に従い上昇する。本発明の導電率は、0.05S/cm以上0.4S/cm未満であり、より好ましくは、0.7S/cm以上0.3S/cm未満である。電解質膜の導電率は、下記の方法により測定できる。   The conductivity of the electrolyte membrane of the present invention increases as the ion exchange capacity increases. The conductivity of the present invention is 0.05 S / cm or more and less than 0.4 S / cm, and more preferably 0.7 S / cm or more and less than 0.3 S / cm. The conductivity of the electrolyte membrane can be measured by the following method.

[導電率の測定方法]
本測定方法において、導電率は、膜抵抗値を用いて算出できる。膜抵抗値は、所定の膜面積の電解質膜を1M硫酸水溶液で湿潤させた後、対極となる2つのPt電極(電極間距離5mm)の間に配置し、交流電流を印加して電圧測定を行うことにより、測定できる。電解質膜の導電率は、得られた膜抵抗値Rm(Ω)と電解質膜の膜厚dとに基づき、式(2)により求めることができる。式(2)において、dは電極間距離、Sは電解質膜の膜面積である。
[Measurement method of conductivity]
In this measurement method, the conductivity can be calculated using the membrane resistance value. Membrane resistance is measured by applying an alternating current to two Pt electrodes (distance between electrodes: 5 mm) as counter electrodes after wetting an electrolyte membrane with a predetermined membrane area with 1M sulfuric acid aqueous solution. It can be measured by doing. The conductivity of the electrolyte membrane can be obtained by the formula (2) based on the obtained membrane resistance value Rm (Ω) and the thickness d of the electrolyte membrane. In formula (2), d is the distance between the electrodes, and S is the membrane area of the electrolyte membrane.

上記のグラフト重合物においては、炭化水素系高分子樹脂の、主にグラフト鎖にイオン交換基が結合される。これにより、炭化水素系高分子樹脂の疎水性部分へのイオン交換基の導入を抑制できる。その結果、本発明は炭化水素系高分子樹脂由来の機械的強度を保持できる。ただし本発明は、イオン交換基が炭化水素系高分子樹脂の主鎖に導入する構造を排除しない。本発明の電解質膜の機械的強度は、引張強度として30〜70MPaであり、好ましくは40〜50MPaである。本発明において引張強度は、公知の引張強度試験機を用いて測定できる。   In the graft polymer, ion-exchange groups are bonded mainly to the graft chains of the hydrocarbon polymer resin. Thereby, introduction | transduction of the ion exchange group to the hydrophobic part of hydrocarbon type polymer resin can be suppressed. As a result, the present invention can maintain the mechanical strength derived from the hydrocarbon polymer resin. However, the present invention does not exclude the structure in which the ion exchange group is introduced into the main chain of the hydrocarbon polymer resin. The mechanical strength of the electrolyte membrane of the present invention is 30 to 70 MPa as tensile strength, and preferably 40 to 50 MPa. In the present invention, the tensile strength can be measured using a known tensile strength tester.

本発明に用いられる炭化水素系高分子樹脂としては、いわゆるスーパーエンジニアリングプラスチックといわれる芳香族炭化水素系高分子樹脂が挙げられる。具体的には、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンナフタレート(PEN)、スーパーエンプラポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリイミド(PI)等を例示できる。PEEKは、化学的安定性や耐強アルカリ性に優れるため、特に好ましい。   Examples of the hydrocarbon polymer resin used in the present invention include aromatic hydrocarbon polymer resins called so-called super engineering plastics. Specifically, polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyethylene naphthalate (PEN), super engineering plastic polysulfone (PSU), polyethersulfone (PES), polyarylate (PAR), polyamideimide ( PAI), polyetherimide (PEI), polyimide (PI) and the like can be exemplified. PEEK is particularly preferable because it is excellent in chemical stability and strong alkali resistance.

本発明に用いられる炭化水素系高分子樹脂は、PEEKを含むポリマーアロイであってもよい。PEEKとアロイ化させる他の炭化水素系高分子樹脂としては、ポリフェニレンサルファイド(PPS)、ポリサルフォン(PSU)、ポリエーテルイミド(PEI)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)等が挙げられる。上記に例示するポリマーアロイは、PEEKだけで作製したフィルムと比較して導電性に優れる。   The hydrocarbon polymer resin used in the present invention may be a polymer alloy containing PEEK. Other hydrocarbon polymer resins to be alloyed with PEEK include polyphenylene sulfide (PPS), polysulfone (PSU), polyetherimide (PEI), polytetrafluoroethylene (PTFE), and tetrafluoroethylene perfluoroalkyl vinyl ether. A polymer (PFA) etc. are mentioned. The polymer alloy exemplified above is excellent in electrical conductivity as compared with a film produced only by PEEK.

上記に例示するPEEK含有ポリマーアロイにおける、PEEKとアロイ化させる他の炭化水素系高分子樹脂の含有量は、得られるポリマーアロイ100質量部に対し、1〜50質量部が好ましく、3〜40質量部がより好ましく、5〜30質量部がさらに好ましい。上記の含有量が1質量部未満の場合、得られる電解質膜の導電性に有意な向上は認められない。50質量部を超えると、電解質膜の機械的強度が低下する場合がある。   In the PEEK-containing polymer alloy exemplified above, the content of other hydrocarbon polymer resin to be alloyed with PEEK is preferably 1 to 50 parts by weight, and 3 to 40 parts by weight with respect to 100 parts by weight of the obtained polymer alloy. Part is more preferable, and 5 to 30 parts by mass is even more preferable. When the content is less than 1 part by mass, no significant improvement is observed in the conductivity of the obtained electrolyte membrane. If it exceeds 50 parts by mass, the mechanical strength of the electrolyte membrane may be lowered.

本発明は所定の炭化水素系高分子樹脂に、タルク、シリカ、二酸化マンガン、カーボン、酸化チタン等をフィラーとして含有させることも好ましい。これにより、得られる電解質膜のラジカル耐性や導電性を向上させることができる。   In the present invention, it is also preferable that a predetermined hydrocarbon polymer resin contains talc, silica, manganese dioxide, carbon, titanium oxide or the like as a filler. Thereby, the radical tolerance and electroconductivity of the electrolyte membrane obtained can be improved.

上記のフィラーを含有させる場合、フィラーの平均粒子径D50は0.1〜40μmが好ましく、0.2〜15μmがより好ましく、0.5〜1nmがさらに好ましい。0.1μm未満の場合、ラジカル耐性、耐強酸性、含水率、導電性等の向上性で所望の効果が得られない場合がある。40μmを超える場合、電解質膜内に均一に分散しない場合がある。 Case of containing the above filler, the average particle diameter D 50 of the filler is preferably from 0.1 to 40, more preferably from 0.2~15Myuemu, more preferably 0.5-1 nm. If it is less than 0.1 μm, the desired effect may not be obtained due to improvements in radical resistance, strong acid resistance, moisture content, conductivity, and the like. If it exceeds 40 μm, it may not be uniformly dispersed in the electrolyte membrane.

炭化水素系高分子樹脂100質量部に対するフィラーの含有量は、1〜40質量部が好ましい。1質量部未満の場合、ラジカル耐性の十分な向上が認められない。40質量部を超える場合、電解質膜中の炭化水素系高分子樹脂の含有量が少なくなり機械的強度が不十分になる。   The content of the filler with respect to 100 parts by mass of the hydrocarbon-based polymer resin is preferably 1 to 40 parts by mass. When the amount is less than 1 part by mass, sufficient improvement in radical resistance is not recognized. When it exceeds 40 parts by mass, the content of the hydrocarbon-based polymer resin in the electrolyte membrane is reduced and the mechanical strength becomes insufficient.

本発明の電解質膜の膜厚は、10〜200μmが好ましく、10〜180μmがより好ましく、10〜120μmが更に好ましい。該膜厚は、電解質膜の用途に応じて上記の好ましい範囲内で適宜調整される。膜厚が10μm未満の場合、電解質膜の機械的強度が不十分になる。膜厚が200μmを超える場合、電解質膜の機能が低下し、いずれの用途にも適さなくなる。従って基材となるグラフト重合物の成膜時に、膜厚が上記の好ましい範囲内になるように適宜調整される。   The thickness of the electrolyte membrane of the present invention is preferably 10 to 200 μm, more preferably 10 to 180 μm, and still more preferably 10 to 120 μm. The film thickness is appropriately adjusted within the above preferred range depending on the use of the electrolyte membrane. When the film thickness is less than 10 μm, the mechanical strength of the electrolyte membrane becomes insufficient. When the film thickness exceeds 200 μm, the function of the electrolyte membrane is lowered and it is not suitable for any application. Accordingly, the film thickness is appropriately adjusted so that the film thickness falls within the above preferred range during the film formation of the graft polymer as the base material.

上記のグラフト重合物に含有されるイオン交換基は、スルホン酸基、カルボン酸基、ホスホン酸基からなる群から選択され、スルホン酸基がより好ましい。   The ion exchange group contained in the graft polymer is selected from the group consisting of a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group, and a sulfonic acid group is more preferable.

[電解質膜の製造方法]
本発明の電解質膜の製造方法は、保護基が結合されたイオン交換基と炭化水素系高分子樹脂とを含有するグラフト重合物を成膜してなる基材を、弱アルカリ性反応液に浸漬させ、保護基をナトリウムに置換させるイオン交換基有効化工程を含む。従来、イオン交換基有効化工程においては、水による加水分解処理が一般的である。水による加水分解処理では、イオン交換基に結合される保護基と水素とを置換させて、イオン交換基を水素型に変換する。
[Method of manufacturing electrolyte membrane]
In the method for producing an electrolyte membrane of the present invention, a substrate formed by forming a graft polymer containing an ion exchange group to which a protecting group is bonded and a hydrocarbon polymer resin is immersed in a weak alkaline reaction solution. , Including an ion exchange group activating step of replacing the protecting group with sodium. Conventionally, hydrolysis treatment with water is generally used in the ion exchange group validation step. In the hydrolysis treatment with water, the protecting group bonded to the ion exchange group is replaced with hydrogen to convert the ion exchange group into a hydrogen type.

保護基をイオン交換基から脱離させやすくするためには、上記の加水分解処理は高温条件下で行うことが好ましい。またグラフト重合物の製造を放射線グラフト重合法を適用して行う場合、高温条件下で加水分解処理を行えば、未反応で残存するラジカルを失活化できる。しかし、高温条件下での加水分解処理においては、高温の水の活性が極めて高く、水素型に変換したイオン交換基が脱離しやすい。   In order to facilitate removal of the protecting group from the ion exchange group, the hydrolysis treatment is preferably performed under high temperature conditions. Further, when the graft polymer is produced by applying a radiation graft polymerization method, radicals remaining unreacted can be deactivated by hydrolysis treatment under high temperature conditions. However, in the hydrolysis treatment under high-temperature conditions, the activity of high-temperature water is extremely high, and the ion exchange groups converted to the hydrogen form are likely to be eliminated.

本発明は、弱アルカリ性反応液を用いてイオン交換基有効化工程を行い、イオン交換基をナトリウム型に変換する。ナトリウム型に変換されたイオン交換基は結合が強いため、高温条件下でも分解しない。そのため本発明は、高温条件下でイオン交換基有効化工程を行うことができる。本発明のイオン交換基有効化工程の処理温度は、好ましくは100〜200℃であり、より好ましくは150〜200℃である。   In the present invention, an ion exchange group validation step is performed using a weak alkaline reaction solution to convert the ion exchange group into a sodium type. Since the ion exchange group converted into the sodium form has a strong bond, it does not decompose even under high temperature conditions. Therefore, this invention can perform an ion exchange group validation process under high temperature conditions. The treatment temperature of the ion exchange group validation step of the present invention is preferably 100 to 200 ° C, more preferably 150 to 200 ° C.

これにより本発明は、イオン交換基から保護基を速やかに脱離させることでき、イオン交換基有効化工程の効率化に寄与する。また、グラフト重合物を放射線グラフト重合法により製造する場合には、残存するラジカルを失活させることができる。そのため、イオン交換基と異なる他の成分と、未反応のラジカルとの反応による生成物が不純物となって電解質膜の破損を防止できる。   Thereby, this invention can remove | eliminate a protecting group from an ion exchange group rapidly, and contributes to efficiency improvement of an ion exchange group validation process. Further, when the graft polymer is produced by the radiation graft polymerization method, the remaining radicals can be deactivated. Therefore, damage to the electrolyte membrane can be prevented by the product resulting from the reaction between other components different from the ion exchange group and unreacted radicals as impurities.

本発明に用いられる弱アルカリ性反応液は、pHが8以上9未満の反応液である。該弱アルカリ性反応液は、アルカリ金属の炭酸水素塩と、アルカリ金属水酸化物と、アミンとからなる群からいずれか一つ選択される化合物を含有する。アルカリ金属の炭酸水素塩としては、炭酸水素ナトリウム、炭酸水素カリウム等が例示される。アルカリ金属水酸化物として、水酸化ナトリウム、水酸化カリウム等が挙げられる。アミンとしては、トリメチルアミン等が例示される。   The weakly alkaline reaction solution used in the present invention is a reaction solution having a pH of 8 or more and less than 9. The weakly alkaline reaction liquid contains a compound selected from the group consisting of alkali metal hydrogen carbonates, alkali metal hydroxides, and amines. Examples of the alkali metal hydrogen carbonate include sodium hydrogen carbonate and potassium hydrogen carbonate. Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. Examples of the amine include trimethylamine.

具体的な弱アルカリ性反応液として、炭酸水素ナトリウム水溶液や水酸化ナトリウム水溶液、水酸化カリウム水溶液等が挙げられる。好ましくは炭酸水素ナトリウム水溶液が用いられる。炭酸水素ナトリウム水溶液の濃度は、5〜40g/lが好ましく、10〜30g/lがより好ましい。   Specific examples of the weak alkaline reaction liquid include a sodium hydrogen carbonate aqueous solution, a sodium hydroxide aqueous solution, and a potassium hydroxide aqueous solution. Preferably, an aqueous sodium hydrogen carbonate solution is used. The concentration of the sodium hydrogen carbonate aqueous solution is preferably 5 to 40 g / l, and more preferably 10 to 30 g / l.

基材の弱アルカリ性反応液への浸漬について、温度条件は100℃以上200℃未満が好ましく、140℃以上200℃未満がより好ましく、170℃以上200℃未満がさらに好ましい。100℃未満の場合、保護基とナトリウムとの置換が不十分になる。200℃以上の場合、官能基の脱離が起こる可能性が有る。浸漬時間は、2時間以上6時間未満が好ましく、3時間以上5時間未満がより好ましい。2時間未満の場合、保護基とナトリウムとの置換が不十分になる。6時間以上の場合、官能基の脱離が起こる可能性が有る。浸漬時間の終了後、基材を弱アルカリ性反応液から取り出し、純水で洗浄する。これにより、ナトリウム型に変換させたイオン交換基と炭化水素系高分子樹脂とを含有するグラフト重合物を基材とする電解質膜を製造できる。   Regarding the immersion of the substrate in the weak alkaline reaction solution, the temperature condition is preferably 100 ° C. or higher and lower than 200 ° C., more preferably 140 ° C. or higher and lower than 200 ° C., and further preferably 170 ° C. or higher and lower than 200 ° C. When the temperature is lower than 100 ° C, the substitution between the protecting group and sodium becomes insufficient. In the case of 200 ° C. or higher, there is a possibility that functional group elimination occurs. The immersion time is preferably 2 hours or more and less than 6 hours, and more preferably 3 hours or more and less than 5 hours. If it is less than 2 hours, the substitution between the protecting group and sodium becomes insufficient. In the case of 6 hours or more, elimination of the functional group may occur. After completion of the immersion time, the substrate is taken out from the weak alkaline reaction solution and washed with pure water. Thereby, the electrolyte membrane which makes the base material the graft polymer containing the ion exchange group converted into the sodium type and hydrocarbon type polymer resin can be manufactured.

なお、上記のナトリウム型に変換させたイオン交換基を含有する電解質膜を、さらに塩酸に浸漬させて、水素型に変換させたイオン交換基を含有する電解質膜を製造してもよい。反応させる反応条件としては、大気中で、好ましくは温度条件25〜27℃、反応時間14時間以上18時間未満、より好ましくは温度条件25〜27℃、反応時間15時間以上17時間未満で浸漬させることが好ましい。浸漬時間が14時間未満の場合、水素型への置換が不十分になる。18時間以上の場合、官能基の脱離が起こる可能性が有る。   In addition, the electrolyte membrane containing the ion exchange group converted into the sodium type may be further immersed in hydrochloric acid to produce the electrolyte membrane containing the ion exchange group converted into the hydrogen type. As the reaction conditions for the reaction, it is immersed in the atmosphere, preferably at a temperature condition of 25 to 27 ° C., a reaction time of 14 hours to less than 18 hours, more preferably at a temperature condition of 25 to 27 ° C. and a reaction time of 15 hours to less than 17 hours. It is preferable. When the immersion time is less than 14 hours, the substitution to the hydrogen type becomes insufficient. In the case of 18 hours or longer, there is a possibility that the functional group is eliminated.

上記のイオン交換基有効化工程で、弱アルカリ性反応液中に浸漬されるグラフト重合物の製造方法は、グラフト重合物を成膜して基材を作製する成膜工程と、該基材にイオン交換基含有モノマーをグラフト重合させるグラフト重合工程とに大別される。   In the ion exchange group validation step, the method for producing a graft polymer immersed in a weak alkaline reaction liquid includes a film forming step of forming a substrate by forming a film of the graft polymer, and an ion on the substrate. It is roughly divided into a graft polymerization step in which an exchange group-containing monomer is graft-polymerized.

(成膜工程)
成膜工程においては、まず原料成分となる炭化水素系高分子樹脂を混練可能な粘度になるまで溶融させて十分に混練する。混練温度は、用いられる炭化水素系高分子樹脂の融点以上であればよく、350〜420℃が好ましく、350〜400℃が好ましい。
(Film formation process)
In the film forming step, first, the hydrocarbon polymer resin as a raw material component is melted to a kneadable viscosity and sufficiently kneaded. The kneading temperature should just be more than melting | fusing point of the hydrocarbon type polymer resin used, 350-420 degreeC is preferable and 350-400 degreeC is preferable.

タルク、シリカ、二酸化マンガン、カーボン、酸化チタン等の所定のフィラーを含有させる場合は、上記の混練時に添加する。これにより得られる電解質膜のラジカル耐性や導電率を向上できる。適宜増粘剤、架橋剤、分散剤、安定剤等を添加してもよい。溶融させた炭化水素系高分子樹脂に添加される上記の所定のフィラーの添加量は、炭化水素系高分子樹脂100質量部に対し、0.1質量部以上50質量部以下が好ましく、0.3質量部以上45質量部以下がより好ましく、0.5質量部以上40質量部以下がさらに好ましい。   When a predetermined filler such as talc, silica, manganese dioxide, carbon, titanium oxide or the like is contained, it is added during the kneading. As a result, the radical resistance and conductivity of the obtained electrolyte membrane can be improved. You may add a thickener, a crosslinking agent, a dispersing agent, a stabilizer, etc. suitably. The amount of the predetermined filler added to the molten hydrocarbon polymer resin is preferably 0.1 parts by mass or more and 50 parts by mass or less, and 0.3 parts by mass or more with respect to 100 parts by mass of the hydrocarbon polymer resin. 45 parts by mass or less is more preferable, and 0.5 parts by mass or more and 40 parts by mass or less is more preferable.

混練は、炭化水素系高分子樹脂が上記の粘度を保持できる温度として好ましくは、350〜420℃で行われ、より好ましくは350〜400℃で行われる。混練装置としては、例えば2軸混練押出機(例:パーカーコーポレーション社製HK25D)を使った場合、吐出速度は2kg/hr〜8kg/hrが好ましい。混練回数は、300〜600rpmが好ましい。混練装置としては、蒸気の2軸混練押出機等、従来公知のものを用いることができる。取扱性の観点から、混練終了後の炭化水素系高分子樹脂はペレット化することが好ましい。またペレット化させた炭化水素系高分子樹脂を再び溶融し、上記の混練工程を2〜10回繰り返してもよい。   The kneading is preferably performed at 350 to 420 ° C., more preferably at 350 to 400 ° C. as a temperature at which the hydrocarbon polymer resin can maintain the above viscosity. As the kneading apparatus, for example, when a twin-screw kneading extruder (for example, HK25D manufactured by Parker Corporation) is used, the discharge speed is preferably 2 kg / hr to 8 kg / hr. The number of kneading is preferably 300 to 600 rpm. As the kneading apparatus, a conventionally known apparatus such as a steam twin-screw kneading extruder can be used. From the viewpoint of handleability, it is preferable that the hydrocarbon-based polymer resin after kneading is pelletized. Alternatively, the pelletized hydrocarbon polymer resin may be melted again, and the kneading step may be repeated 2 to 10 times.

混練が終了した炭化水素系高分子樹脂をシート加工機を用いて成膜し基材を作製する。基材の膜厚は、好ましくは10〜200μm、より好ましくは10〜120μmになるように成膜する。成膜時の処理温度は、350〜450℃が好ましく、370〜420℃がより好ましい。成膜後の炭化水素系高分子樹脂を急冷し、硬化させることで本発明の基材を作製できる。急冷時の処理温度は、用いる炭化水素系高分子樹脂の硬化温度より低く、好ましくは80〜140℃である。シート加工機としては、ダイコーター、Tコーターが用いられる。   The base material is produced by forming a film of the hydrocarbon polymer resin after kneading using a sheet processing machine. The film thickness of the substrate is preferably 10 to 200 μm, more preferably 10 to 120 μm. The processing temperature during film formation is preferably 350 to 450 ° C, more preferably 370 to 420 ° C. The substrate of the present invention can be produced by quenching and curing the hydrocarbon polymer resin after film formation. The treatment temperature at the time of quenching is lower than the curing temperature of the hydrocarbon polymer resin used, and is preferably 80 to 140 ° C. As the sheet processing machine, a die coater or a T coater is used.

(グラフト重合工程)
グラフト重合の方法としては、熱グラフト重合法、放射線グラフト重合法等、従来公知の方法を適用できる。いわゆるスーパーエンジニアリングプラスチックといわれる炭化水素系高分子樹脂を用いて本発明の基材となるグラフト重合物を製造する場合、炭化水素系高分子樹脂と、所定のイオン交換基を含有するイオン交換基含有モノマーとを放射線グラフト重合法を適用してグラフト重合させることが好ましい。
(Graft polymerization process)
As the graft polymerization method, a conventionally known method such as a thermal graft polymerization method or a radiation graft polymerization method can be applied. When producing a graft polymer as a base material of the present invention using a hydrocarbon polymer resin called a so-called super engineering plastic, it contains a hydrocarbon polymer resin and an ion exchange group containing a predetermined ion exchange group. It is preferable to graft-polymerize the monomer with a radiation graft polymerization method.

本発明のイオン交換基有効化工程は温度条件90〜200℃で行える。そのため放射線グラフト重合法において、放射線照射により生成されたラジカルが、グラフト重合工程終了後残存しても、イオン交換基有効化工程で失活させることができる。そのため残存するラジカルによる不純物の生成が防止される。これにより本発明は、電解質膜の劣化や破損を防止できる。   The ion exchange group validation step of the present invention can be performed at a temperature condition of 90 to 200 ° C. Therefore, in the radiation graft polymerization method, even if radicals generated by radiation irradiation remain after completion of the graft polymerization step, they can be deactivated in the ion exchange group validation step. Therefore, generation of impurities due to remaining radicals is prevented. Thereby, this invention can prevent deterioration and breakage of an electrolyte membrane.

放射線グラフト重合法を行う場合、前処理として、上記の基材に、熱重合法等を用いてビニルモノマーをグラフト重合させ、基材に含有される炭化水素系高分子樹脂にグラフト鎖を形成させる。これにより放射線グラフト重合法による炭化水素系高分子樹脂へのイオン交換基の結合を円滑にし、イオン交換基の含有量を向上させることができる。   When performing the radiation graft polymerization method, as a pretreatment, a vinyl monomer is graft-polymerized on the above-mentioned base material using a thermal polymerization method or the like, and a graft chain is formed on the hydrocarbon polymer resin contained in the base material. . Thereby, the coupling | bonding of the ion exchange group to the hydrocarbon type polymer resin by a radiation graft polymerization method can be made smooth, and content of an ion exchange group can be improved.

(ビニルモノマー反応工程)
熱グラフト重合法を適用する場合、まずビニルモノマーを分散させたビニルモノマー反応液を調製する。上記のビニルモノマー反応液のビニルモノマーの濃度は、10〜80容積%が好ましく、20〜70容積%がより好ましい。溶媒としては、1,4−ジオキサン、テトラヒドロフラン等のエーテル類、トルエン、ヘキサン等の炭化水素類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルイソプロピルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、イソプロピルアミン、ジエタノールアミン、N−メチルホルムアミド、N,N−ジメチルホルムアミド等の含窒素化合物等を例示できる。
(Vinyl monomer reaction process)
When applying the thermal graft polymerization method, first, a vinyl monomer reaction solution in which a vinyl monomer is dispersed is prepared. The concentration of the vinyl monomer in the vinyl monomer reaction solution is preferably 10 to 80% by volume, more preferably 20 to 70% by volume. Solvents include ethers such as 1,4-dioxane and tetrahydrofuran, hydrocarbons such as toluene and hexane, alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone, methyl isopropyl ketone and cyclohexanone, and ethyl acetate. And esters such as butyl acetate, nitrogen-containing compounds such as isopropylamine, diethanolamine, N-methylformamide, N, N-dimethylformamide, and the like.

本発明で用いられるビニルモノマーは、所定の炭化水素系高分子樹脂の主鎖にグラフト鎖を形成できるものであればよく、下記式(3)で表されるモノマーが例示される。
(上記式(3)において、Xは、H、OH、F、Cl、または炭化水素である。Rは炭化水素及びその誘導体である。)
The vinyl monomer used in the present invention is not particularly limited as long as it can form a graft chain on the main chain of a predetermined hydrocarbon polymer resin, and examples thereof include a monomer represented by the following formula (3).
(In the above formula (3), X is H, OH, F, Cl, or a hydrocarbon. R is a hydrocarbon and its derivatives.)

式(3)で表されるモノマーとして、式(3)に含まれるRが、芳香環を含む炭化水素やカルボニル基やアミド基を有する炭化水素であるモノマーを例示できる。より具体的な例示としては、スチレンおよびその誘導体、アクリル酸およびその誘導体、アクリルアミド類、ビニルケトン類、アクリルニトリル類、ビニルフッ素系モノマー、またはこれらの多官能性モノマーが挙げられる。該多官能性モノマーは、熱グラフト重合性が高いため好ましい。また炭化水素系高分子樹脂の主鎖に架橋構造を形成できるため、電解質膜の機械的強度を向上できる。   Examples of the monomer represented by the formula (3) include a monomer in which R contained in the formula (3) is a hydrocarbon having an aromatic ring or a hydrocarbon having a carbonyl group or an amide group. More specific examples include styrene and its derivatives, acrylic acid and its derivatives, acrylamides, vinyl ketones, acrylonitriles, vinyl fluorine-based monomers, or polyfunctional monomers thereof. The polyfunctional monomer is preferred because of its high thermal graft polymerizability. Further, since a crosslinked structure can be formed in the main chain of the hydrocarbon polymer resin, the mechanical strength of the electrolyte membrane can be improved.

上記のビニルモノマー反応液に、基材を浸漬し、大気中で重合反応を行う。温度条件は、40〜100℃が好ましく、50〜80℃がより好ましい。反応時間は、10分〜24時間が好ましい。反応終了後、基材としてのグラフト鎖を形成させた炭化水素系高分子樹脂を不活性ガス雰囲気下で乾燥させる。ビニルモノマーのグラフト率は、1〜20%である。なおビニルモノマーのグラフト率は、基材の上記反応前の乾燥時重量(W1)と同反応後の乾燥時重量(W2)とを測定して下記式(4)により求めることができる。
The substrate is immersed in the above vinyl monomer reaction solution, and a polymerization reaction is performed in the air. The temperature condition is preferably 40 to 100 ° C, more preferably 50 to 80 ° C. The reaction time is preferably 10 minutes to 24 hours. After completion of the reaction, the hydrocarbon polymer resin with the graft chain formed as a substrate is dried in an inert gas atmosphere. The graft ratio of the vinyl monomer is 1 to 20%. The graft ratio of the vinyl monomer can be determined by the following formula (4) by measuring the dry weight (W 1 ) of the base material before the reaction and the dry weight (W 2 ) after the reaction.

(放射線グラフト重合工程)
基材としてのグラフト鎖を形成させた炭化水素系高分子樹脂は、乾燥後、放射線を照射し、ラジカルを生成させる。炭化水素系高分子樹脂フィルムに、上記に例示する方法により予めグラフト鎖を形成させておくことで、ラジカル生成量を向上させることができる。生成させたラジカルと、イオン交換基含有モノマーとを反応させて、炭化水素系高分子樹脂にイオン交換基を結合させることができる。
(Radiation graft polymerization process)
The hydrocarbon polymer resin in which the graft chain as a base material is formed is irradiated with radiation after drying to generate radicals. By previously forming a graft chain on the hydrocarbon-based polymer resin film by the method exemplified above, the amount of radical generation can be improved. The generated radical and an ion exchange group-containing monomer can be reacted to bond the ion exchange group to the hydrocarbon polymer resin.

本発明で用いる放射線グラフト重合法の例として、前照射法と同時照射法とが挙げられる。前照射法とは、基材となる炭化水素系高分子樹脂に放射線を照射後、イオン交換基を含有するモノマーを反応させる方法である。同時照射法とは、基材となる炭化水素系高分子樹脂と、イオン交換基含有モノマーとに同時に放射線を照射して上記モノマーを反応させる方法である。本発明においては、上記のいずれの方法を適用してもよい。ホモポリマーの生成量を抑制する観点からは前照射法を適用することが好ましい。   Examples of the radiation graft polymerization method used in the present invention include a pre-irradiation method and a simultaneous irradiation method. The pre-irradiation method is a method of reacting a monomer containing an ion exchange group after irradiating a hydrocarbon polymer resin as a base material with radiation. The simultaneous irradiation method is a method of reacting the monomer by simultaneously irradiating a hydrocarbon polymer resin as a base material and an ion exchange group-containing monomer with radiation. In the present invention, any of the above methods may be applied. From the viewpoint of suppressing the amount of homopolymer produced, it is preferable to apply the pre-irradiation method.

さらに前照射法としてはポリマーラジカル法と、パーオキサイド法とが挙げられる。ポリマーラジカル法とは、基材に不活性ガス雰囲気下で放射線を照射する方法である。パーオキサイド法とは、基材を酸素存在下で照射する方法である。本発明においては上記のいずれの方法を適用してもよく、ポリマーラジカル法が好ましい。   Further, examples of the pre-irradiation method include a polymer radical method and a peroxide method. The polymer radical method is a method in which a substrate is irradiated with radiation in an inert gas atmosphere. The peroxide method is a method in which a substrate is irradiated in the presence of oxygen. In the present invention, any of the above methods may be applied, and a polymer radical method is preferred.

基材に照射する放射線の種類としては、γ線、X線、電子線、イオンビーム、紫外線等を例示できる。γ線、電子線は、ラジカル生成が容易なため好ましく用いられる。放射線照射量は、1kGy以上500kGy以下が好ましく、5kGy以上100kGy以下がより好ましく、10kGy以上60kGy以下がさらに好ましい。1kGy未満の場合、グラフト鎖の形成が不十分になる。500kGyを超える場合、基材が破損するため、機械的強度が不十分になる場合がある。   Examples of the type of radiation applied to the substrate include γ rays, X rays, electron beams, ion beams, and ultraviolet rays. γ rays and electron beams are preferably used because radical generation is easy. The irradiation dose is preferably 1 kGy or more and 500 kGy or less, more preferably 5 kGy or more and 100 kGy or less, and further preferably 10 kGy or more and 60 kGy or less. If it is less than 1 kGy, the formation of graft chains becomes insufficient. When it exceeds 500 kGy, the base material is damaged, so that the mechanical strength may be insufficient.

(イオン交換基含有モノマー反応液の調製)
炭化水素系高分子樹脂とイオン交換基含有モノマーとの反応は、溶媒にイオン交換基含有モノマーを分散させたイオン交換基含有モノマー反応液に、炭化水素系高分子樹脂フィルムを浸漬させて行うことが好ましい。これによりイオン交換基含有モノマーのホモポリマー化を抑制できる。
(Preparation of ion exchange group-containing monomer reaction solution)
The reaction between the hydrocarbon polymer resin and the ion exchange group-containing monomer is performed by immersing the hydrocarbon polymer resin film in an ion exchange group-containing monomer reaction solution in which the ion exchange group-containing monomer is dispersed in a solvent. Is preferred. Thereby, homopolymerization of the ion exchange group-containing monomer can be suppressed.

所定のイオン交換基含有モノマーを溶媒に分散させたイオン交換基含有モノマー反応液を調製する。上記溶媒に分散させるイオン交換基含有モノマーは1種でもよく2種以上でもよい。所定の溶媒で上記のモノマーを希釈させることにより、ホモポリマーの生成を抑制できる。   An ion exchange group-containing monomer reaction solution in which a predetermined ion exchange group-containing monomer is dispersed in a solvent is prepared. The ion-exchange group-containing monomer dispersed in the solvent may be one type or two or more types. By diluting the above monomer with a predetermined solvent, the formation of a homopolymer can be suppressed.

上記のグラフト重合反応で用いられるイオン交換基含有モノマーとしては、スチレンスルホン酸エチルエステル(ETSS)、スチレンスルホン酸ナトリウムが挙げられる。ETSSは、イオン交換基に置換可能な官能基としてスルホン酸基(-SO3)を含み、保護基としてエチル基を含むモノマーである。他のイオン交換基含有モノマーとしては、クロロメチルスチレン(CMS)等が挙げられる。クロロメチルスチレンはイオン交換基として、アンモニウム基を含み、保護基としてアミノ基を含むモノマーである。 Examples of the ion exchange group-containing monomer used in the graft polymerization reaction include styrene sulfonic acid ethyl ester (ETSS) and sodium styrene sulfonate. ETSS is a monomer containing a sulfonic acid group (—SO 3 ) as a functional group substitutable for an ion exchange group and an ethyl group as a protective group. Examples of other ion exchange group-containing monomers include chloromethylstyrene (CMS). Chloromethylstyrene is a monomer containing an ammonium group as an ion exchange group and an amino group as a protecting group.

上記のイオン交換基含有モノマー反応液中のイオン交換基含有モノマーの濃度は、20〜80容積%が好ましく、25〜75容積%がより好ましい。溶媒としては、ジオキサン、テトラヒドロフラン等のエーテル類、トルエン、ヘキサン等の炭化水素類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルイソプロピルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、イソプロピルアミン、ジエタノールアミン、N−メチルホルムアミド、N,N−ジメチルホルムアミド等の窒素含有化合物等を例示できる。   The concentration of the ion exchange group-containing monomer in the ion exchange group-containing monomer reaction liquid is preferably 20 to 80% by volume, more preferably 25 to 75% by volume. Solvents include ethers such as dioxane and tetrahydrofuran, hydrocarbons such as toluene and hexane, alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone, methyl isopropyl ketone and cyclohexanone, ethyl acetate, butyl acetate and the like And nitrogen-containing compounds such as isopropylamine, diethanolamine, N-methylformamide, N, N-dimethylformamide, and the like.

上記のイオン交換基含有モノマー反応液に、フィラーを含有する炭化水素系高分子樹脂フィルムを浸漬し、空気中または不活性ガス雰囲気下で重合反応を行う。反応雰囲気中の酸素濃度は、ラジカルの失活を抑制する観点から低いほど好ましく、0.01容積%以下がより好ましい。0.01容積%を超えると、ラジカルが失活しグラフト率が低くなる。不活性ガスとしては窒素、アルゴン等が用いられる。   A hydrocarbon-based polymer resin film containing a filler is immersed in the above-described ion exchange group-containing monomer reaction solution, and a polymerization reaction is performed in air or in an inert gas atmosphere. The oxygen concentration in the reaction atmosphere is preferably as low as possible from the viewpoint of suppressing radical deactivation, and is more preferably 0.01% by volume or less. If it exceeds 0.01% by volume, the radicals are deactivated and the graft ratio is lowered. Nitrogen, argon or the like is used as the inert gas.

重合時の温度条件は、40〜100℃が好ましく、50〜80℃がより好ましい。これによりホモポリマーの生成やラジカルの失活を抑制できる。反応時間は、1〜100時間が好ましく、5〜80時間がより好ましい。上記の放射線グラフト重合工程によるイオン交換基含有モノマーのグラフト率は、好ましくは50〜200%であり、より好ましくは70〜160%である。   The temperature condition during the polymerization is preferably 40 to 100 ° C, more preferably 50 to 80 ° C. Thereby, formation of homopolymer and radical deactivation can be suppressed. The reaction time is preferably 1 to 100 hours, more preferably 5 to 80 hours. The graft ratio of the ion-exchange group-containing monomer by the radiation graft polymerization step is preferably 50 to 200%, more preferably 70 to 160%.

上記の成膜工程と、グラフト重合工程とにより本発明に用いられるグラフト重合物が製造できる。該グラフト重合物を、上記の所定のイオン交換基有効化工程で処理することで、本発明の電解質膜を製造できる。   The graft polymer used in the present invention can be produced by the film forming step and the graft polymerization step. The electrolyte membrane of the present invention can be produced by treating the graft polymer in the predetermined ion exchange group validation step.

本発明の製造方法により得られる電解質膜のイオン交換容量は、0.1mmol/g以上4mmol/g未満であり、より好ましくは、1mmol/g以上4mmol/g未満であり、さらに好ましくは1.1mmol/g以上3mmol/g未満である。本発明の電解質膜は、炭化水素系高分子樹脂を含有するグラフト重合物を基材とするため、機械的強度、耐強アルカリ性、耐薬品性に優れる。これにより本発明の電解質膜は、食塩電解装置、水処理装置、燃料電池、電解濃縮装置等に好適である。   The ion exchange capacity of the electrolyte membrane obtained by the production method of the present invention is 0.1 mmol / g or more and less than 4 mmol / g, more preferably 1 mmol / g or more and less than 4 mmol / g, and even more preferably 1.1 mmol / g. It is less than 3 mmol / g. Since the electrolyte membrane of the present invention is based on a graft polymer containing a hydrocarbon polymer resin, it is excellent in mechanical strength, strong alkali resistance, and chemical resistance. Accordingly, the electrolyte membrane of the present invention is suitable for a salt electrolyzer, a water treatment device, a fuel cell, an electrolytic concentrator, and the like.

本発明を、実施例を用いてさらに説明する。ただし本発明は以下に記載する実施例に限定されない。   The invention will be further described by way of examples. However, the present invention is not limited to the examples described below.

[実施例]
(成膜工程)
混練装置内に、炭化水素系高分子樹脂としてのPEEK粉末を投入し、温度条件360℃でPEEK粉末を溶融させて、500rpmで混練した。混練時間終了後、PEEKをペレット化した。該ペレットを再び混練装置内に投入して溶融させ、さらに混練した。得られたペレットを乾燥させた。
[Example]
(Film formation process)
PEEK powder as a hydrocarbon polymer resin was put into a kneading apparatus, and the PEEK powder was melted at a temperature condition of 360 ° C. and kneaded at 500 rpm. After the kneading time, PEEK was pelletized. The pellets were again put into a kneader and melted and further kneaded. The resulting pellet was dried.

乾燥させたPEEKのペレットをシート加工機に投入し、温度条件400℃で加熱しながら成膜した。成膜したPEEKを、急冷し硬化させた。PEEK膜の膜厚は、100μmであった。   The dried PEEK pellets were put into a sheet processing machine, and a film was formed while heating at a temperature condition of 400 ° C. The deposited PEEK was quenched and cured. The thickness of the PEEK film was 100 μm.

上記のPEEK膜を寸法2cm×3cmで切り出した。切り出したPEEK膜の乾燥状態の重量を測定し、ジビニルベンゼンモノマー(DVBモノマー)との反応前のPEEK膜の乾燥時重量(W1)とした。またDVBを1,4-ジオキサンに添加したDVB反応液を調製した。ガラス容器内でPEEKとDVB反応液とを大気中、80℃で反応させ、DVBモノマーをPEEKに重合させて、PEEKにグラフト鎖を形成させた。反応終了後、PEEK膜をアルゴン雰囲気下、95℃で乾燥させた。基材の乾燥状態の重量を測定し、DVBモノマーとの反応後の基材の放射線照射前の乾燥時重量(W2)とした。式(4)に基づきDVBモノマーのグラフト率を求めた。DVBモノマーのグラフト率は、12.1%であった。 The above PEEK membrane was cut out with dimensions of 2 cm × 3 cm. The dry weight of the cut PEEK film was measured and used as the dry weight (W 1 ) of the PEEK film before the reaction with the divinylbenzene monomer (DVB monomer). A DVB reaction solution in which DVB was added to 1,4-dioxane was also prepared. PEEK and the DVB reaction liquid were reacted in the glass container at 80 ° C. in the atmosphere to polymerize the DVB monomer to PEEK, thereby forming a graft chain on PEEK. After completion of the reaction, the PEEK film was dried at 95 ° C. under an argon atmosphere. The weight of the substrate in a dry state was measured and used as the dry weight (W 2 ) before irradiation of the substrate after the reaction with the DVB monomer. Based on the formula (4), the graft ratio of the DVB monomer was determined. The graft ratio of DVB monomer was 12.1%.

乾燥後のPEEK膜をガラス容器に入れ、アルゴン雰囲気下で30kGyのγ線を照射した。また、スチレンスルホン酸エチルエステル(ETSS)を1,4-ジオキサンに添加したETSS反応液を調製した。上記ガラス容器内で該ETSS反応液にPEEK膜を浸漬させた。その後、アルゴン雰囲気下、反応温度85℃でPEEK膜とETSS反応液とを反応させ、ETSSモノマーをPEEKに重合させスルホン酸基をPEEKに結合させた。反応終了後、得られたグラフト重合物を洗浄し乾燥させた。グラフト重合工程終了後のグラフト重合物の乾燥状態の重量を測定し、グラフト重合工程終了後の重量(W3)とした。式(5)によりETSSモノマーのグラフト率を求めた。実施例のETSSモノマーのグラフト率は、51.4%であった。
The dried PEEK film was placed in a glass container and irradiated with 30 kGy of γ rays in an argon atmosphere. Further, an ETSS reaction solution in which styrene sulfonic acid ethyl ester (ETSS) was added to 1,4-dioxane was prepared. The PEEK film was immersed in the ETSS reaction solution in the glass container. Thereafter, the PEEK membrane and the ETSS reaction solution were reacted at a reaction temperature of 85 ° C. in an argon atmosphere, and the ETSS monomer was polymerized to PEEK to bond sulfonic acid groups to PEEK. After completion of the reaction, the obtained graft polymer was washed and dried. The weight of the graft polymer after the graft polymerization process was dried was measured and taken as the weight after completion of the graft polymerization process (W 3 ). The graft ratio of the ETSS monomer was determined from the formula (5). The graft ratio of the ETSS monomer of the example was 51.4%.

(イオン交換基有効化工程)
耐圧容器内で、グラフト重合工程により得られた、基材としてのグラフト重合物を、濃度20g/lの炭酸水素ナトリウム水溶液に170℃で4時間浸漬させて加水分解処理を行い、イオン交換基をナトリウム型に変換した。純水で洗浄後、1mol/l塩酸に室温で16時間浸漬させ、水素型に変換したイオン交換基を含有する電解質膜を得た。
(Ion exchange group validation process)
In the pressure vessel, the graft polymer obtained as a base material obtained by the graft polymerization step is immersed in an aqueous solution of sodium hydrogencarbonate having a concentration of 20 g / l at 170 ° C. for 4 hours to perform hydrolysis treatment, and ion exchange groups are formed. Converted to sodium form. After washing with pure water, the membrane was immersed in 1 mol / l hydrochloric acid at room temperature for 16 hours to obtain an electrolyte membrane containing ion-exchange groups converted to the hydrogen type.

[比較例]
(イオン交換基有効化工程)
実施例と同様の成膜工程とグラフト重合工程とを用いて作製した基材を、ガラス容器内で、純水に95℃で16時間浸漬させて加水分解処理を行い、水素型に変換したイオン交換基を含有する電解質膜を得た。式(5)に基づいて求めた実施例のETSSモノマーのグラフト率は、50.5%であった。
[Comparative example]
(Ion exchange group validation process)
Ions converted using the film formation process and graft polymerization process similar to the Examples to a hydrogen type after being hydrolyzed by immersing the substrate in pure water at 95 ° C for 16 hours in a glass container An electrolyte membrane containing an exchange group was obtained. The graft ratio of the ETSS monomer of the example obtained based on the formula (5) was 50.5%.

実施例と比較例との電解質膜について、上記の測定方法により導電率とイオン交換容量を測定した。測定結果を表1と図1とに記載した。表1と図1とに示されるように、本発明の実施例は、比較例よりも高い処理温度でイオン交換基有効化工程を行うことができる。その結果、導電率やイオン交換容量を向上できる。   About the electrolyte membrane of an Example and a comparative example, the electrical conductivity and the ion exchange capacity were measured with said measuring method. The measurement results are shown in Table 1 and FIG. As shown in Table 1 and FIG. 1, the example of the present invention can perform the ion exchange group validation step at a higher processing temperature than the comparative example. As a result, conductivity and ion exchange capacity can be improved.

[ラジカル耐性評価]
ラジカルに対する耐性を評価するため、代表的なラジカルである塩素ラジカルに対する耐性評価試験を行った。実施例と比較例との電解質膜を寸法2cm×3cmでそれぞれ10枚切り出し、各5枚を気相中と液相中とでそれぞれ塩素ガスに暴露した。暴露開始時から16時間経過後の各電解質膜の劣化状態を観察し、劣化度を6段階で評価した。各評価は以下のとおりである。
[劣化度評価]
1:試験中に割れが発生し、小片に分散した。
2:試験中に一部に割れが発生したが、膜面積の50%以上は膜形状を維持した。
3:試験後も膜形状を留めたが、取り出した際に力を加えなくても割れた。
4:試験後も膜形状を留めたが、荷重1kgを加えると割れた。
5:試験後も膜形状を留め、荷重1kgを加えても割れなかったが、荷重2kgを加えると割れた。
6:試験後も膜形状を留め、荷重2kgを加えても割れずに、しなやかさを保った。
[Radical resistance evaluation]
In order to evaluate resistance to radicals, a resistance evaluation test for chlorine radicals, which are representative radicals, was performed. Ten electrolyte membranes of Example and Comparative Example were cut out with dimensions of 2 cm × 3 cm, respectively, and 5 each were exposed to chlorine gas in the gas phase and in the liquid phase, respectively. The deterioration state of each electrolyte membrane after 16 hours from the start of exposure was observed, and the degree of deterioration was evaluated in 6 stages. Each evaluation is as follows.
[Degradation evaluation]
1: Cracks occurred during the test and dispersed into small pieces.
2: Some cracks occurred during the test, but the film shape was maintained for 50% or more of the film area.
3: Although the film shape was retained after the test, it was cracked even when no force was applied when it was taken out.
4: The film shape remained after the test, but cracked when a load of 1 kg was applied.
5: Even after the test, the film shape was retained and it did not crack even when a load of 1 kg was applied, but it cracked when a load of 2 kg was applied.
6: The shape of the film was retained after the test, and it remained flexible without cracking even when a load of 2 kg was applied.

実施例と比較例について、気相中と液相中とにおける各試験結果の平均値を算出し、表2に記載した。表2に示されるように、実施例は塩素ラジカル耐性が比較例と比較して良好である。その原因は、実施例においては、イオン交換基有効化工程を比較例より高温条件で、かつ弱アルカリ性反応液を用いて行ったことにより、グラフト重合工程終了後に残存するラジカルを失活できたことや、グラフト重合物の分解を抑制できたことにあると推察できる。
For the examples and comparative examples, the average values of the test results in the gas phase and in the liquid phase were calculated and listed in Table 2. As shown in Table 2, the examples have better resistance to chlorine radicals than the comparative examples. The cause is that, in the examples, the ion exchange group activation step was performed under a higher temperature condition than in the comparative example and using a weak alkaline reaction solution, so that radicals remaining after the completion of the graft polymerization step could be deactivated. It can also be inferred that decomposition of the graft polymer could be suppressed.

Claims (6)

弱アルカリ性反応液を用いてナトリウム型に変換したイオン交換基と、炭化水素系高分子樹脂とを含有するグラフト重合物を基材とする電解質膜。   An electrolyte membrane based on a graft polymer containing an ion exchange group converted into a sodium type using a weak alkaline reaction solution and a hydrocarbon polymer resin. イオン交換基が、スルホン酸基と、カルボン酸基と、ホスホン酸基とからなる群からいずれか一つ選択される請求項1に記載の電解質膜。   2. The electrolyte membrane according to claim 1, wherein the ion exchange group is selected from the group consisting of a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. イオン交換容量が、0.1mmol/g以上4mmol/g未満である請求項1または請求項2に記載の電解質膜。   3. The electrolyte membrane according to claim 1, wherein the ion exchange capacity is 0.1 mmol / g or more and less than 4 mmol / g. 保護基が結合されたイオン交換基と炭化水素系高分子樹脂とを含有するグラフト重合物を成膜してなる基材を、弱アルカリ性反応液に浸漬させ、保護基をナトリウムに置換させるイオン交換基有効化工程を含む電解質膜の製造方法。   Ion exchange in which a base material formed from a graft polymer containing an ion-exchange group to which a protective group is bonded and a hydrocarbon polymer resin is immersed in a weak alkaline reaction solution to replace the protective group with sodium An electrolyte membrane manufacturing method including a group validation step. アルカリ金属の炭酸水素塩と、アルカリ金属水酸化物と、アミンとからなる群から選択される化合物を含有する弱アルカリ性反応液を用いる、請求項4に記載の電解質膜の製造方法。   5. The method for producing an electrolyte membrane according to claim 4, wherein a weakly alkaline reaction liquid containing a compound selected from the group consisting of an alkali metal hydrogen carbonate, an alkali metal hydroxide, and an amine is used. 炭酸水素ナトリウム水溶液と、水酸化ナトリウム水溶液と、水酸化カリウム水溶液とからなる群から一つ選択される弱アルカリ性反応液を用いる、請求項4または請求項5に記載の電解質膜の製造方法。   6. The method for producing an electrolyte membrane according to claim 4, wherein a weak alkaline reaction liquid selected from the group consisting of a sodium hydrogen carbonate aqueous solution, a sodium hydroxide aqueous solution, and a potassium hydroxide aqueous solution is used.
JP2015074636A 2015-03-31 2015-03-31 Method for producing electrolyte membrane Active JP6665418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015074636A JP6665418B2 (en) 2015-03-31 2015-03-31 Method for producing electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015074636A JP6665418B2 (en) 2015-03-31 2015-03-31 Method for producing electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2016195047A true JP2016195047A (en) 2016-11-17
JP6665418B2 JP6665418B2 (en) 2020-03-13

Family

ID=57323827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015074636A Active JP6665418B2 (en) 2015-03-31 2015-03-31 Method for producing electrolyte membrane

Country Status (1)

Country Link
JP (1) JP6665418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173602A1 (en) * 2017-03-22 2018-09-27 株式会社石井表記 Apparatus for producing battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141601A (en) * 2005-11-17 2007-06-07 Japan Atomic Energy Agency Inorganic nano-particle composite cross-linking polymer electrolyte film, manufacturing method of the same, and film-electrode assembly using the same
JP2008204857A (en) * 2007-02-21 2008-09-04 Japan Atomic Energy Agency Polymer electrolyte membrane consisting of alkyl graft chain, and its manufacturing method
JP2009151938A (en) * 2006-03-06 2009-07-09 Shin Etsu Chem Co Ltd Solid polymer electrolyte membrane for fuel cell and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141601A (en) * 2005-11-17 2007-06-07 Japan Atomic Energy Agency Inorganic nano-particle composite cross-linking polymer electrolyte film, manufacturing method of the same, and film-electrode assembly using the same
JP2009151938A (en) * 2006-03-06 2009-07-09 Shin Etsu Chem Co Ltd Solid polymer electrolyte membrane for fuel cell and fuel cell
JP2008204857A (en) * 2007-02-21 2008-09-04 Japan Atomic Energy Agency Polymer electrolyte membrane consisting of alkyl graft chain, and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173602A1 (en) * 2017-03-22 2018-09-27 株式会社石井表記 Apparatus for producing battery
JP2018160338A (en) * 2017-03-22 2018-10-11 株式会社石井表記 Battery manufacturing device

Also Published As

Publication number Publication date
JP6665418B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP4871591B2 (en) ELECTROLYTE POLYMER FOR SOLID POLYMER TYPE FUEL CELL, PROCESS FOR PRODUCING THE SAME
JP5573246B2 (en) Fluoropolymer liquid composition and method for producing fluorinated crosslinked product
US20100087553A1 (en) Process for stabilizing fluoropolymer having ion exchange groups
JP2007515508A (en) Bromine, chlorine or iodine functional polymer electrolyte crosslinked by E-beam
JPWO2007089017A1 (en) -SO3H group-containing fluoropolymer production method and -SO3H group-containing fluoropolymer
WO2014175123A1 (en) Electrolyte material, liquid composition, and membrane electrode assembly for solid polymer fuel cells
KR101892317B1 (en) Process for the preparation of cross-linked fluorinated polymers
JP2013181128A (en) Method for manufacturing polymer, electrolyte membrane for solid polymer type fuel cell, and membrane electrode assembly
JP2007514012A (en) Polymer electrolyte crosslinked by E-beam
JP2014070213A (en) Method of producing polyelectrolyte-containing solution and solid polyelectrolyte film
JPWO2016104379A1 (en) Method for producing fluorine-containing polymer particles
JP6665418B2 (en) Method for producing electrolyte membrane
JP2005521771A (en) Polymer grafted support polymer
JP2016193407A (en) Ion exchange membrane for radioactive substance concentrator
JP2004018673A (en) Fluorine-containing molding, its producing method, fluorine-containing polymer, and its producing method
JP2003342328A (en) Molded product and polymeric solid electrolyte-based fuel cell
CN110467698A (en) A kind of ethylene modified exhaustive fluorinated ethylene propylene and preparation method thereof
JP5050284B2 (en) Cation exchange membrane for salt production and method for producing the same
JP4621536B2 (en) Method for producing electrolyte membrane with excellent chemical stability
JP4569472B2 (en) Fluoropolymer, fluoropolymer production method, electrolyte membrane, active substance fixed body, and solid polymer electrolyte fuel cell
JP2017043700A (en) Hydrophilic film, electrolytic membrane, and method for producing the hydrophilic film
JP3781023B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP6522394B2 (en) Electrolyte membrane and method of manufacturing electrolyte membrane
JP5477583B2 (en) Radiation-crosslinked fluorine-based solid polymer electrolyte and production method thereof
JP6530630B2 (en) Polymer alloy electrolyte membrane and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R151 Written notification of patent or utility model registration

Ref document number: 6665418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151