JPWO2004061935A1 - Bump forming method, semiconductor device and manufacturing method thereof, substrate processing apparatus and semiconductor manufacturing device - Google Patents

Bump forming method, semiconductor device and manufacturing method thereof, substrate processing apparatus and semiconductor manufacturing device Download PDF

Info

Publication number
JPWO2004061935A1
JPWO2004061935A1 JP2004564465A JP2004564465A JPWO2004061935A1 JP WO2004061935 A1 JPWO2004061935 A1 JP WO2004061935A1 JP 2004564465 A JP2004564465 A JP 2004564465A JP 2004564465 A JP2004564465 A JP 2004564465A JP WO2004061935 A1 JPWO2004061935 A1 JP WO2004061935A1
Authority
JP
Japan
Prior art keywords
bump
cutting
semiconductor
substrate
bumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004564465A
Other languages
Japanese (ja)
Other versions
JP4279786B2 (en
Inventor
水越 正孝
正孝 水越
石月 義克
義克 石月
中川 香苗
香苗 中川
岡本 圭史郎
圭史郎 岡本
和雄 手代木
和雄 手代木
泰治 酒井
泰治 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2004061935A1 publication Critical patent/JPWO2004061935A1/en
Application granted granted Critical
Publication of JP4279786B2 publication Critical patent/JP4279786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1183Reworking, e.g. shaping
    • H01L2224/1184Reworking, e.g. shaping involving a mechanical process, e.g. planarising the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/749Tools for reworking, e.g. for shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

半導体基板(1)を基板支持台(11)の支持面(11a)に裏面(1b)を吸着させ固定する。このとき、裏面(1b)への平坦化処理により半導体基板(1)の厚みが一定の状態とされており、更に裏面(1b)が支持面(11a)への吸着により強制的にうねり等もない状態となり、これにより裏面(1b)が表面(1a)の平坦化の基準面となる。この状態で、表面(1a)における各Au突起(2)及びレジストマスク(12)の表層をバイト(10)を用いて切削加工し、各Au突起(2)及びレジストマスク(12)の表面が連続して平坦となるように平坦化処理する。これにより、CMPに替わり、基板上に形成された微細なバンプの表面を安価に高速で平坦化することができる。The semiconductor substrate (1) is fixed by adsorbing the back surface (1b) to the support surface (11a) of the substrate support base (11). At this time, the thickness of the semiconductor substrate (1) is made constant by the flattening process on the back surface (1b), and the back surface (1b) is also forced to swell due to adsorption to the support surface (11a). Thus, the back surface (1b) becomes the reference surface for flattening the front surface (1a). In this state, the surface layer of each Au protrusion (2) and resist mask (12) on the surface (1a) is cut using a cutting tool (10), and the surface of each Au protrusion (2) and resist mask (12) A flattening process is performed so as to be continuously flat. Thereby, it can replace with CMP and can planarize the surface of the fine bump formed on the board | substrate cheaply at high speed.

Description

本発明は、基板の表面に外部と電気的接続を行うための微細なバンプを形成する方法、半導体装置及びその製造方法、並びに基板処理装置及び半導体製造装置に関する。  The present invention relates to a method for forming fine bumps for electrical connection to the outside on the surface of a substrate, a semiconductor device and a manufacturing method thereof, and a substrate processing apparatus and a semiconductor manufacturing apparatus.

従来、半導体基板の表面で外部と電気的接続を行うため微細な金属端子には、金(Au)バンプ等が用いられている。このAuバンプはメッキで形成されており、表面の粗さが大きい。このような金属端子を平坦化するためには、化学機械研磨(Chemical Mechanical Polishing:CMP)法が用いられている。この方法は、被加工面となる金属及び樹脂を予め比較的平坦に形成し、平坦な研磨パッドを押し当て、スラリー(化学的研磨材)を用いて化学的・機械的に表面を精緻に平坦加工するものである。予め設けられた硬い樹脂や金属面がストップ層となり、CMPは完了する。CMP法は、半導体基板の厚みのばらつきや半導体基板の最大厚みと最小厚みとの差で定義されるTTV(Total Thickness Variation)には依存しない方法である。
また、従来の表面の粗さが大きいAuバンプ等の接合には、その粗さが無くなるまで、荷重、熱、あるいは超音波等によりバンプへ負荷を与える実装方法が必要である。
CMP以外でも、例えば切削工具を用いた平坦化方法がいくつか案出されている(例えば、特開平7−326614号公報、特開平8−11049号公報、特開平9−82616号公報、特開2000−173954号公報参照)。しかしながら、いずれもLSI上における部分領域のSOG膜の平坦化を対象としたものであり、CMPと同様、被切削面を基準として切削する方法であって半導体基板のTTVには依存しない。また、バンプを切削して表面を露出させる方法(特開平10−345201号公報参照)もあるが、これはLSI上に形成されたバンプ部分の平坦化を対象としており、被切削面を基準として切削する方法であって、半導体基板のTTVには依存しない。
上述のように、微細な接続にはAuバンプが用いられているが、バンプ表面の粗さが大きいことで、それらのバンプ同士を接合するのは困難である。また、Auなどの金属と樹脂を同時にCMPを用いて平坦化する場合、金属と樹脂の研磨速度の違いに起因してディッシングと呼ばれる窪みが現れる。このディッシングにより、確実なバンプ接合を得るために、荷重、熱、あるいは超音波等の大きな負荷をバンプに与えることを要する。
本発明は、上記の課題に鑑みてなされたものであり、CMPに替わり、基板上に形成された微細なバンプの表面を安価に高速で平坦化し、バンプ同士の接続を、ディッシング等の不都合を発生させることなく容易且つ確実に行うことを可能とするバンプの形成方法及び高信頼性の半導体装置、その製造方法並びに半導体製造装置を提供することを目的とする。
Conventionally, gold (Au) bumps or the like are used for fine metal terminals in order to make electrical connection with the outside on the surface of a semiconductor substrate. The Au bump is formed by plating and has a large surface roughness. In order to planarize such a metal terminal, a chemical mechanical polishing (CMP) method is used. In this method, a metal and a resin to be processed are formed in a relatively flat state in advance, a flat polishing pad is pressed against the surface, and the surface is precisely and mechanically flattened using a slurry (chemical abrasive). To be processed. The hard resin or metal surface provided in advance serves as a stop layer, and CMP is completed. The CMP method does not depend on TTV (Total Thickness Variation) defined by variations in the thickness of the semiconductor substrate or the difference between the maximum thickness and the minimum thickness of the semiconductor substrate.
In addition, the conventional bonding of Au bumps or the like having a large surface roughness requires a mounting method in which a load is applied to the bumps by a load, heat, ultrasonic waves, or the like until the roughness is eliminated.
Other than CMP, for example, several flattening methods using a cutting tool have been devised (for example, JP-A-7-326614, JP-A-8-11049, JP-A-9-82616, JP-A-9-82616). 2000-173594). However, both are intended for flattening the SOG film in a partial region on the LSI, and, like CMP, are methods based on the surface to be cut and do not depend on the TTV of the semiconductor substrate. There is also a method of exposing the surface by cutting the bump (refer to Japanese Patent Laid-Open No. 10-345201), but this is intended for flattening the bump portion formed on the LSI, and the surface to be cut is used as a reference. This is a cutting method and does not depend on the TTV of the semiconductor substrate.
As described above, Au bumps are used for fine connection, but it is difficult to join the bumps due to the large roughness of the bump surface. In addition, when a metal such as Au and a resin are simultaneously planarized using CMP, a recess called dishing appears due to a difference in polishing rate between the metal and the resin. In order to obtain reliable bump bonding by this dishing, it is necessary to apply a large load such as a load, heat, or ultrasonic waves to the bump.
The present invention has been made in view of the above problems, and instead of CMP, the surface of fine bumps formed on a substrate is flattened at low speed and at high speed, and the bumps are connected with each other with inconvenience such as dishing. It is an object of the present invention to provide a bump forming method, a highly reliable semiconductor device, a manufacturing method thereof, and a semiconductor manufacturing device that can be easily and reliably performed without being generated.

本発明のバンプの形成方法は、基板の表面に外部と電気的接続を行うためのバンプを形成する方法であって、前記基板の表面に、複数の前記バンプ及び前記バンプ間に絶縁膜を形成する工程と、バイトを用いた切削加工により、前記各バンプの表面及び前記絶縁膜の表面が連続して平坦となるように平坦化処理する工程と、前記絶縁膜を除去する工程とを含む。
本発明の半導体装置は、それぞれ、外部と電気的接続を行うための複数のバンプが表面に形成されてなる一対の半導体基板を有しており、前記各バンプの表面が前記各半導体基板上で連続して均一に平坦化されており、前記各半導体基板は、前記各バンプの平坦化された前記表面同士を対向させて接続し、一体化してなるものである。
本発明の半導体装置の製造方法は、一対の半導体基板の各表面に、絶縁膜内に埋め込まれるように各バンプを形成する工程と、バイトを用いた切削加工により、前記各バンプの表面及び前記絶縁膜の表面が連続して平坦となるように平坦化処理する工程と、前記絶縁膜を除去する工程と、前記各半導体基板を、前記各バンプの平坦化された前記表面同士を対向させて接続し、一体化する工程とを含む。
本発明のバンプの形成方法は、基板の表面に外部と電気的接続を行うためのバンプを形成する方法であって、前記基板の表面に、複数の前記バンプを形成する工程と、バイトを用いた切削加工により、前記複数のバンプの表面が連続して平坦となるように平坦化処理する工程とを含む。
本発明の半導体装置の製造方法は、一対の半導体チップの各表面に、それぞれ複数の前記バンプを形成する工程と、バイトを用いた切削加工により、前記複数のバンプの表面が連続して平坦となるように平坦化処理する工程と、前記複数のバンプの表面が平坦化された前記一対の半導体チップを、前記各バンプ同士が対向するように接続して一体化する工程とを含む。
本発明の半導体装置は、それぞれ、外部と電気的接続を行うための複数のバンプが表面に形成されてなる一対の半導体チップを有しており、前記各バンプの表面が前記各半導体チップ上で連続して均一に平坦化されており、前記各半導体チップは、前記各バンプの平坦化された前記表面同士を対向させて接続し、一体化してなるものである。
本発明のバンプの形成方法は、半導体基板の表面に外部と電気的接続を行うためのバンプであり、ワイヤボンディング法を用いたスタッドバンプを形成する方法であって、前記半導体基板の表面の電気的接続箇所にボンディングワイヤを用いて複数の突起部を形成する工程と、バイトを用いた切削加工により、前記複数の突起部の上面が連続して平坦となるように平坦化処理し、前記スタッドバンプを形成する工程とを含む。
本発明の半導体装置は、外部と電気的接続を行うためのバンプであり、ワイヤボンディング法を用いた複数のスタッドバンプが表面に形成されてなる半導体チップを有しており、前記各スタッドバンプの上面が前記半導体チップ上で連続して均一に平坦化されてなるものである。
本発明の半導体装置の製造方法は、半導体基板の表面に複数のバンプを形成する工程と、バイトを用いた切削加工により、前記複数のバンプの表面が連続して平坦となるように平坦化処理する工程と、前記複数のバンプの表面が平坦化された前記半導体基板から、各半導体チップを切り出す工程と、前記半導体チップの前記バンプとリード端子の一端部とを接続する工程とを含む。
本発明の半導体装置の製造方法は、半導体基板の表面の電気的接続箇所にワイヤボンディング法を用いた複数の突起部を形成する工程と、バイトを用いた切削加工により、前記複数の突起部の上面が連続して平坦となるように平坦化処理し、スタッドバンプを形成する工程と、複数のスタッドバンプの形成された前記半導体基板から、各半導体チップを切り出す工程と、前記半導体チップの前記スタッドバンプとリード端子の一端部とを接続する工程とを含む。
本発明の半導体装置は、外部と電気的接続を行うための複数のバンプが表面に形成されてなる半導体チップを有しており、前記各バンプの表面が前記半導体チップ上で連続して均一に平坦化されており、前記半導体チップの前記バンプとリード端子の一端部とが接続され、一体化してなるものである。
本発明の半導体装置は、外部と電気的接続を行うための複数のバンプであり、ワイヤボンディング法を用いた複数のスタッドバンプが表面に形成されてなる半導体チップを有しており、前記各スタッドバンプの表面が前記半導体チップ上で連続して均一に平坦化されており、前記半導体チップの前記スタッドバンプとリード端子の一端部とが接続され、一体化してなるものである。
本発明の半導体装置の製造方法は、表面に複数の電極が形成された半導体チップを不活性雰囲気内に導入し、バイトを用いた切削加工により、前記複数の電極の表面が連続して平坦となるように平坦化処理する工程と、平坦化された前記複数の電極の表面が前記不活性雰囲気内で清浄に保たれた状態で、前記半導体チップの前記複数の電極と回路基板とを接続し、一体化する工程とを含む。
本発明の半導体製造装置は、バイトを有する切削加工手段と、導入された一対の基体を接合させる接合手段と、前記切削加工手段及び前記接合手段の環境を不活性雰囲気の状態に保つ不活性雰囲気手段とを含み、前記切削加工手段は、前記不活性雰囲気内において、表面に複数の電極が形成された前記一対の基体の少なくとも一方に対して、前記バイトを用いた切削加工により、前記複数の電極の表面が連続して平坦となるように平坦化処理する機能を有し、前記接合手段は、平坦化された前記複数の電極の表面が前記不活性雰囲気内で清浄に保たれた状態で、前記一対の基体を前記複数の電極で接続し、一体化する機能を有する。
本発明の基板処理装置は、基板の表面に外部と電気的接続を行うためのバンプを形成する際の基板処理装置であって、平坦な支持面を有しており、基板をその一面で前記支持面に吸着させ、前記一面を強制的に平坦な基準面として支持固定する基板支持台と、前記基板の他面を切削加工するバイトとを含み、表面に複数の前記バンプ及び前記バンプ間に絶縁膜が形成されてなる基板を前記基板支持台に支持固定し、前記バイトを用いた切削加工により、前記各バンプの表面及び前記絶縁膜の表面が連続して平坦となるように平坦化処理する。
The bump forming method of the present invention is a method of forming a bump for electrical connection to the outside on the surface of a substrate, and forming a plurality of the bumps and an insulating film between the bumps on the surface of the substrate A step of performing a flattening process so that the surface of each bump and the surface of the insulating film are continuously flattened by cutting using a cutting tool, and a step of removing the insulating film.
The semiconductor device of the present invention has a pair of semiconductor substrates each having a plurality of bumps for electrical connection with the outside formed on the surface, and the surfaces of the bumps are formed on the semiconductor substrates. The semiconductor substrates are continuously and uniformly flattened, and the semiconductor substrates are formed by connecting and planarizing the flattened surfaces of the bumps so as to be integrated.
The method for manufacturing a semiconductor device of the present invention includes a step of forming each bump so as to be embedded in an insulating film on each surface of a pair of semiconductor substrates, and a cutting process using a cutting tool. The step of planarizing the surface of the insulating film so as to be continuously flat, the step of removing the insulating film, and the respective semiconductor substrates, with the flattened surfaces of the respective bumps facing each other Connecting and integrating.
The bump forming method of the present invention is a method for forming a bump for electrical connection to the outside on the surface of the substrate, wherein a plurality of bumps are formed on the surface of the substrate, and a cutting tool is used. And a step of flattening so that the surfaces of the plurality of bumps are continuously flat by cutting.
According to the method of manufacturing a semiconductor device of the present invention, the surface of the plurality of bumps is continuously flat by a step of forming the plurality of bumps on each surface of a pair of semiconductor chips and a cutting process using a cutting tool. And a step of connecting and integrating the pair of semiconductor chips in which the surfaces of the plurality of bumps are flattened so that the bumps face each other.
Each of the semiconductor devices of the present invention has a pair of semiconductor chips formed on the surface with a plurality of bumps for electrical connection with the outside, and the surface of each bump is on the semiconductor chip. The semiconductor chips are continuously and uniformly planarized, and the semiconductor chips are formed by connecting and planarizing the planarized surfaces of the bumps so as to be integrated.
The bump forming method of the present invention is a bump for electrical connection to the surface of a semiconductor substrate, and is a method of forming a stud bump using a wire bonding method. Forming a plurality of protrusions using a bonding wire at a target connection location and cutting using a cutting tool so that the upper surfaces of the plurality of protrusions are continuously flattened, and the stud Forming a bump.
The semiconductor device of the present invention is a bump for electrical connection with the outside, and has a semiconductor chip formed on the surface with a plurality of stud bumps using a wire bonding method. The upper surface is continuously flattened on the semiconductor chip.
The method for manufacturing a semiconductor device according to the present invention includes a step of forming a plurality of bumps on a surface of a semiconductor substrate and a cutting process using a cutting tool so that the surfaces of the plurality of bumps are continuously flattened. A step of cutting out each semiconductor chip from the semiconductor substrate on which the surfaces of the plurality of bumps are flattened, and a step of connecting the bumps of the semiconductor chip and one end of a lead terminal.
The method of manufacturing a semiconductor device according to the present invention includes a step of forming a plurality of protrusions using a wire bonding method at an electrical connection location on the surface of a semiconductor substrate, and a cutting process using a cutting tool. A step of flattening the upper surface continuously to be flat and forming a stud bump, a step of cutting each semiconductor chip from the semiconductor substrate on which a plurality of stud bumps are formed, and the stud of the semiconductor chip Connecting the bump and one end of the lead terminal.
The semiconductor device of the present invention has a semiconductor chip on which a plurality of bumps for electrical connection with the outside are formed, and the surface of each bump is continuously uniform on the semiconductor chip. The bumps of the semiconductor chip and one end of the lead terminal are connected and integrated.
The semiconductor device of the present invention includes a plurality of bumps for electrical connection with the outside, and includes a semiconductor chip having a plurality of stud bumps formed on the surface using a wire bonding method. The surface of the bump is continuously flattened on the semiconductor chip, and the stud bump of the semiconductor chip and one end of the lead terminal are connected and integrated.
According to the method for manufacturing a semiconductor device of the present invention, a semiconductor chip having a plurality of electrodes formed on a surface thereof is introduced into an inert atmosphere, and the surface of the plurality of electrodes is continuously flat by cutting using a cutting tool. A step of planarizing so that the surfaces of the planarized electrodes are kept clean in the inert atmosphere, and the circuit board is connected to the plurality of electrodes of the semiconductor chip. And integrating them.
The semiconductor manufacturing apparatus of the present invention includes a cutting means having a cutting tool, a joining means for joining a pair of introduced substrates, and an inert atmosphere that maintains the environment of the cutting means and the joining means in an inert atmosphere. The cutting means includes, in the inert atmosphere, cutting the plurality of the plurality of electrodes, wherein the plurality of electrodes are formed on the surface by cutting using the cutting tool. The bonding means has a function of flattening so that the surfaces of the electrodes are continuously flat, and the bonding means is in a state where the surfaces of the flattened electrodes are kept clean in the inert atmosphere. The pair of substrates are connected by the plurality of electrodes and integrated.
The substrate processing apparatus of the present invention is a substrate processing apparatus for forming bumps for electrical connection to the outside on the surface of the substrate, and has a flat support surface, and the substrate is disposed on the one surface thereof. A substrate support base that is adsorbed to a support surface and forcibly supports and fixes the one surface as a flat reference surface; and a cutting tool that cuts the other surface of the substrate. A substrate on which an insulating film is formed is supported and fixed on the substrate support, and the surface of each bump and the surface of the insulating film are continuously flattened by cutting using the cutting tool. To do.

図1A〜図1Dは、第1の実施形態によるバンプの形成方法を工程順に示す概略断面図である。
図2A,図2Bは、第1の実施形態によるバンプの形成方法を工程順に示す概略断面図である。
図3A,図3Bは、切削加工による平坦化の結果を示す図である。
図4A,図4Bは、切削加工による平坦化の具体例を示す概略断面図である。
図5は、切削加工による平坦化の具体例を示す概略断面図である。
図6は、切削加工装置の構成を表したブロック図である。
図7は、切削加工装置の概略構成図である。
図8は、切削加工工程のフロー図である。
図9A〜図9Cは、第2の実施形態による半導体装置の製造方法を工程順に示す概略平面図である。
図10A〜図10Fは、第2の実施形態によるバンプの形成方法を工程順に示す概略断面図である。
図11A,図11Bは、第3の実施形態による半導体装置の製造方法を工程順に示す概略断面図である。
図12A〜図12Cは、第3の実施形態の変形例1による半導体装置の製造方法を工程順に示す概略断面図である。
図13A〜図13Cは、第3の実施形態の変形例2による半導体装置の製造方法を工程順に示す概略断面図である。
図14A〜図14Fは、第4の実施形態による半導体装置の製造方法を工程順に示す概略断面図である。
図15A〜図15Dは、第4の実施形態による切削終点検出方法を示す図である。
図16は、第5の実施形態半導体装置の製造方法を示す概略断面図である。
図17は、第5の実施形態半導体装置の製造方法を示す概略断面図である。
図18は、第6の実施形態による半導体製造装置を示す模式図である。
1A to 1D are schematic cross-sectional views showing a bump forming method according to the first embodiment in the order of steps.
2A and 2B are schematic cross-sectional views illustrating the bump forming method according to the first embodiment in the order of steps.
3A and 3B are diagrams showing the results of flattening by cutting.
4A and 4B are schematic cross-sectional views showing specific examples of flattening by cutting.
FIG. 5 is a schematic cross-sectional view showing a specific example of flattening by cutting.
FIG. 6 is a block diagram showing the configuration of the cutting apparatus.
FIG. 7 is a schematic configuration diagram of the cutting apparatus.
FIG. 8 is a flowchart of the cutting process.
9A to 9C are schematic plan views illustrating the method of manufacturing the semiconductor device according to the second embodiment in the order of steps.
10A to 10F are schematic cross-sectional views showing the bump forming method according to the second embodiment in the order of steps.
11A and 11B are schematic cross-sectional views illustrating the method of manufacturing a semiconductor device according to the third embodiment in the order of steps.
12A to 12C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device according to Modification 1 of the third embodiment in the order of steps.
13A to 13C are schematic cross-sectional views illustrating a method for manufacturing a semiconductor device according to Modification 2 of the third embodiment in the order of steps.
14A to 14F are schematic cross-sectional views illustrating the method of manufacturing a semiconductor device according to the fourth embodiment in the order of steps.
15A to 15D are diagrams illustrating a cutting end point detection method according to the fourth embodiment.
FIG. 16 is a schematic cross-sectional view showing the method for manufacturing the semiconductor device of the fifth embodiment.
FIG. 17 is a schematic cross-sectional view showing the method for manufacturing the semiconductor device of the fifth embodiment.
FIG. 18 is a schematic view showing a semiconductor manufacturing apparatus according to the sixth embodiment.

−本発明の基本骨子−
初めに、本発明の基本骨子について説明する。
本発明者は、CMP法に替わり、基板上に形成された多数の微細バンプの表面を安価に高速で一斉に平坦化する手法として、バイトを用いた切削加工を適用することに想到した。この切削加工によれば、半導体基板上で絶縁膜内にバンプが埋め込み形成されているような場合でも、CMP法のように金属と絶縁物の研磨速度等に依存することなく、基板上で一斉に金属と絶縁物を連続して切削し、ディッシング等を発生せしめることなく全体的に両者を均一に平坦化することができる。銅、アルミニウム、ニッケル等の金属やポリイミド等の絶縁材料は、容易にバイトで切削可能な材料である。本発明では、バンプの金属材料及び絶縁材料としては、前者が延性金属であり、後者が例えば200GPa以上の剛性率を有する樹脂等であれば、好適である。
この場合、上述の切削加工をバンプ表面の平坦化に利用するためには、切削を基板の背面(裏面)基準で行うことが好適である。一般的に、シリコン基板のTTVは、1μm〜5μmの範囲内にあり、LSIのプロセスでは5μm程度のTTVはフォトリソグラフィーに影響を与えることはなく、通常では考慮の対象外となる。しかしながら、切削加工の場合ではTTVの値に大きく影響される。切削による平坦精度はTTVの値以下にはならない。従って、切削加工を半導体基板の平坦化に用いる場合には、基板のTTVを目標の切削精度以下に制御することが先ず必要になる。
本発明者は、上記の事情を勘案し、上述の切削加工をバンプ表面の平坦化に利用するに際して、当該平坦化を確実に行う具体的手法として、基板表面を基準にその裏面を研削し、半導体基板のTTVを目的とする切削精度以下に小さく抑えることに想到した。この場合、TTVを小さくして且つ個々の半導体基板の厚みばらつきも切削精度以下に抑えることが理想的である。しかしながら、TTVさえ小さくできれば、個々の半導体基板の厚みについては切削時に検出可能である。切削量は、この個々の半導体基板の厚みを検出することにより制御可能である。
バンプとしては、メッキ法により形成されるものの他、ワイヤボンディング法、即ちボンディングワイヤの先端を溶融して形成したボール状の塊を電極パッド上に圧着し、当該ワイヤを引きちぎることにより形成されたバンプ(以下、スタッドバンプと称する。)がある。
スタッドバンプを形成する場合、ボンディングワイヤの引きちぎりにより、ピン状の突起が形成されるため、かかる突起を平坦化する必要がある。本発明では、上述の切削加工による平坦化法をスタッドバンプにも適用する。この場合、ワイヤの引きちぎり(プレカット)時には各突起部の高さが異なり、最も低いバンプに揃えて平坦化することになるが、スタッドバンプの高さは高いほどデバイスへの応力を緩和し、デバイス寿命を延ばすことが可能であるため、各突起部の高さを規定することが必要である。本発明では、プレカット時の突起部の電極パッドからの高さをワイヤ径の2倍以上に規定し、切削加工の終点として、全てのスタッドバンプについて、切削面の径がワイヤ径と同等以上になった時点とする。これにより、切削平坦化後におけるスタッドバンプの高さを、ワイヤ径を規定しない場合に比べて1.5倍以上とすることができ、半導体素子への応力を緩和することが可能となり、デバイス寿命を延ばすことが可能となる。
そして、上述のようにTTVを制御し、切削加工により微細なバンプの表面を平坦化した後、半導体基板(ウェーハ)から半導体部品となる個々の半導体チップを切り出す。しかる後、平坦化された表面を有する半導体基板と半導体チップ、又は半導体チップ同士を、バンプを対向させて電気的に接続して接合する。このとき、対向するバンプの上面が共に高精度に平坦化されているため、従来のように高温・高圧等を要することなく容易に接合される。
ここで、本発明者は更に、対向するバンプ同士の接合を確実に実現するための具体的条件・状態を模索した。上述の接合時にもバンプを切削加工直後の平坦化状態に保つことが理想的であることに鑑み、切削加工直後の平坦化状態を可及的に保持するため、平坦化工程と接合工程を共に清浄化雰囲気、具体的には不活性雰囲気内で行うことに想到した。この点、接合工程の直前にArプラズマ等を用いた清浄化工程を付加することで対処することもできるが、工程数の増加を招くという欠点がある。本発明では、工程数の増加を招くことなく比較的容易に理想に極めて近い平坦化状態を維持することができ、バンプの確実な接合が可能となる。
本発明者は、本発明の他の態様として、この半導体チップの状態に着目する。即ち、ウェーハレベルでは、上述のように当該半導体基板のTTVが問題となるが、半導体チップなどの個片化されたものについては、そのサイズが小さいためにチップエリア内におけるTTVは、切削時には殆ど無視できる程度の影響しか受けない。
そこで本発明者は、先ず半導体基板から各半導体チップを切り出した後、この半導体チップの状態で上述のバンプを用いた切削加工により微細なバンプの表面を平坦化することに想到した。そして、半導体チップ同士を、バンプを対向させて電気的に接続して接合する。これにより、TTVを制御する工程を省略できるとともに、容易にバンプ接合を行うことが可能となる。
また本発明では、上述した切削加工技術を、いわゆるTABボンディング法による半導体装置にも適用する。
通常、TAB接続は、メッキバンプ法による場合では、金メッキバンプに直接に金の表面処理を施された短冊状の銅箔リードを位置合わせして300℃以上に加熱し、1つのバンプ当たり30g以上の加圧圧着を必要とする。他方、スタッドバンプ法にいる場合では、予めスタッドバンプの形成された半導体チップを、ガラス板又は金属板に押し当て加熱し、スタッドバンプ先端を平坦に加工して用いることが必要である。
メッキ終端面には、凹凸や表面に特有の金属的及び有機的汚染がある。また、チップ内でのメッキ高さのばらつきも数ミクロンのレベルで発生している。これらのメッキ終端面にTABボンディングする場合、高温と高荷重が必要になる。ボンディング時に高温になると微細なピッチのリードの接続では、銅とシリコンの熱膨張率の差が大きくなるため位置ずれが発生し易い。他方、スタッドバンプにおいては、高さにバラツキが大きく、形状も一定でないことから更に高温及び高荷重が必要であり、同様に微細ピッチの接続は難しい。
TABボンディング時の位置ずれを小さくするためには、温度を下げるとともに、銅のリード端子が同時にバンプに接触することが必要である。本発明では、バイトによる切削技術を用いメッキバンプ及びスタッドバンプの表面を切削加工により平坦化して清浄化を図り、これによりTABボンディング時の温度及び荷重を低減させ、微細ピッチのリードを位置ずれなく接続することが可能となる。
−本発明の具体的な実施形態−
以下、上述した基本骨子を踏まえ、本発明の具体的な諸実施形態について図面を用いて詳細に説明する。
[第1の実施形態]
ここでは、基板としてシリコン半導体基板を例示し、この半導体基板上に外部と電気的接続を行うために設けられてなるバンプを形成する方法及びこの方法を用いた半導体装置及びその製造方法について開示する。
(バンプの形成方法)
図1A〜図1D,図2A,図2Bは、本実施形態によるバンプの形成方法を工程順に示す概略断面図である。
先ず、シリコン半導体基板1を用意し、基板表面1aの素子形成部位に所望のLSI半導体素子(不図示)を形成する。このように、素子形成部位にLSI半導体素子等の形成された半導体基板1について、以下で各工程を説明する。
図1Aに示すように、通常、シリコン半導体基板は、図示の如く厚みが一様ではなく、しかもうねりを伴う状態にある。そこで、半導体基板1の表面1aに後述するバイトを用いた切削加工を施すための前工程として、その裏面1bを平坦化する。
具体的には、支持面が平坦とされた基板支持台(不図示)を用意し、この支持面に吸着、例えば真空吸着により表面1aを吸着させて半導体基板1を基板支持台に固定する。このとき、表面1aは支持面への吸着により強制的に平坦とされており、これにより表面1aが裏面1bの平坦化の基準面となる。この状態で、裏面1bを機械加工、ここでは機械研削し、裏面1bの凸部1cを研削除去して平坦化処理する。この場合、裏面1bの切削量を表面1aからの距離により制御することが好ましい。これにより、図1Bに示すように、半導体基板1の厚みが一定、具体的にはTTV(基板の最大厚みと最小厚みとの差)が所定値以下となるように、具体的にはTTVが1μm以下に制御されることになる。
続いて、図1Cに示すように、半導体基板1を基板支持台から外し、半導体基板1の表面1a上に感光性樹脂、例えばフォトレジストを塗布し、このフォトレジストをフォトリソグラフィーにより加工して、所定のバンプパターン12aを有するレジストマスク12を形成する。
続いて、レジストマスク12をマスクとして用い、例えば蒸着法により金属、例えば銅膜を形成し、メッキ電極(不図示)を形成した後、図1Dに示すように、メッキ電極をシードとしてメッキ法によりレジストマスク12の各バンプパターン12aを埋め込むように金(Au)を堆積させ、Au突起2を形成する。なお、Au以外にもCu,Ag,Ni,Sn又はこれらの合金等を用いて突起を形成しても良い。
続いて、半導体基板1の表面1aにバイトを用いた切削加工を施し、平坦化する。
具体的には、図2Aに示すように、基板支持台11の支持面11aに例えば真空吸着により裏面1bを吸着させ、半導体基板1を基板支持台11に固定する。このとき、裏面1bへの図1Bの平坦化処理により半導体基板1の厚みが一定の状態とされており、更に裏面1bが支持面11aへの吸着により強制的にうねり等もない状態となり、これにより裏面1bが表面1aの平坦化の基準面となる。この状態で、表面1aにおける各Au突起2及びフォトレジスト12の表層を機械加工、ここではダイヤモンド等からなるバイト10を用いて切削加工し、各Au突起2及びレジストマスク12の表面が連続して平坦となるように平坦化処理する。これにより、Au突起2の上面が鏡面状に平坦化される。
この切削加工による平坦化の結果を図3A,図3Bの顕微鏡写真の図及び模式図に示す。
切削加工前には、図3AのようにAu突起の表面は凹凸状であったのに対して、切削加工後には、図3Bに示すように、Au突起の表面が高精度に平坦化されていることが判る。
続いて、図2Bに示すように、レジストマスク12を灰化処理等により除去する。このとき、半導体基板1の表面1a上には、高さが均一であり、各Au突起2が切削加工されて上面3aが一様に平坦化されてなるバンプ3が形成される。この半導体基板1を用い、例えばこれをチップ化した後、他の半導体基板4とバンプ3により電気的に接続する。
なお、本実施形態では、1枚の半導体基板について説明したが、ロットを構成する複数の半導体基板について本実施形態の各工程を実行し、各半導体基板の厚みを同一に均一化することが好適である。
また、図2Aの平坦化工程において、図4A,図4Bに示すように、裏面1bを基準に半導体基板1の平行出しを行うとともに、表面1aの位置を検出し、検出された表面1aから削り量を算出して制御する。
具体的には、図4Aに示すように、表面1aの位置を検出する際に、半導体基板1の表面1aの周辺部位の複数箇所、ここでは例えば図4Bに示す3箇所A,B,Cにおけるレジストマスク12にレーザ光13を照射し、これらを加熱飛散させ、表面1aの一部を露出させることが好適である。
またこの場合、図5に示すように、表面1aの位置を検出する際に、半導体基板1を開口11bの形成された基板支持台11に吸着固定し、開口11bから裏面1bに赤外レーザ光を照射して、表面1aからの反射光を例えば赤外レーザ測定器14により測定するようにしても良い。
(切削加工装置の構成)
ここで、上述した切削加工工程を実行するための具体的な装置構成を説明する。
図6は切削加工装置の構成を表したブロック図、図7は同様の概略構成図である。この切削加工装置は、半導体基板を収納する収納部101、半導体基板1を各処理部へ搬送するためのハンド部102、半導体基板1の位置決めを行うセンシング部103、切削時の半導体基板1をチャックするチャックテーブル部104、半導体基板1の平坦化切削を行う切削部105、切削後の洗浄を行う洗浄部106、そしてこれらをコントロールする制御部107を有して構成されている。チャックテーブル部104は、上述したように半導体基板1を載置固定する基板支持台(チャックテーブル)11を構成しており、切削部105はダイヤモンド等からなる切削工具である硬質のバイト10を有している。
次に、切削加工工程のフローについて、図7及び図8を用いて説明する。
先ず、半導体基板1が収納された収納部101の収納カセット111から、ハンド部102の搬送ハンドが半導体基板1を取り出す。収納部101にはエレベータ機構があり、搬送ハンドの半導体基板1の取り出し高さまで昇降する。次に搬送ハンドが半導体基板をバキューム吸着し、センシング部103へ搬送する。搬送ハンドは、Θ3軸とZ軸のスカラー型ロボットになっており、各処理部へ容易にハンドリングすることができる。ロボットの機構はこの限りではなく、XY軸直行型でも良い。
センシング部103では、回転テーブル112により半導体基板1を360°回転させ、その半導体基板1の外周をCCDカメラ111で撮像し、その結果を制御部107の演算部で処理して半導体基板1のセンター位置を算出する。
次に、搬送ハンドは、その結果を元に、位置を補正して半導体基板1をチャックテーブル部104へ搬送し、チャックテーブル11はバキュームによってこれを固定する。このチャックテーブル11が加工の基準面となる。従って固定時及び加工時の平面精度を保つため、チャック面は多穴質の材料を使用して半導体基板1を全面チャックする構造が好ましい。材質は金属系、セラミック系、樹脂系などを用いる。チャックされた半導体基板1と対向して投光部114である光センサ部が配置され、受光部115であるカメラ部と共に半導体基板1の寸法を測定及び演算し、その結果を切削部105のX軸駆動部へフィードバックし、切削するための移動量を指令する。
切削面が配線形成面の場合、具体的には図4に示すように、レーザ光を照射し、レジストマスクを加熱飛散させ、表面を露出させることが好ましい。そして図5に示すように、赤外レーザ光を利用した透過型センサを利用して位置を計測する。そして、そこで演算された結果を元に、実際に切削を行うバイト10が搭載されたテーブルがX方向に移動し、切削を開始する。ここで使用するバイト10は、ダイヤモンド等からなる。このようにして設定寸法までの切削を完了する。
次に、搬送ハンドがチャックテーブル11から半導体基板1を取り出し、洗浄部へと搬送する。洗浄部105では半導体基板1をバキューム固定して回転させながら、洗浄水により加工後の表面残留異物を洗い流す。その後、エアブローしながら高速回転させ、洗浄水を吹き飛ばしながら乾燥させる。乾燥が完了したら、再び搬送ハンドが半導体基板1を取り出し、最後に収納部101の収納カセット111に収納する。
以上の各工程を、先ずバンプ及びバンプ間に絶縁膜が形成されている面を基準として裏面を切削し、その後、裏面を基準として各バンプの表面及び絶縁膜の表面を切削という処理を行い、平坦化処理を完了する。
(半導体装置及びその製造方法)
次に、上述したバンプの形成方法を実行する半導体製造装置を用いて、半導体装置を製造する方法について説明する。なおここでは、半導体装置の構成をその製造方法と共に述べる。
図9A〜図9Cは、本実施形態による半導体装置の製造方法を工程順に示す概略平面図である。
先ず、図1及び図2で説明した各工程を経て、LSI素子等が搭載され、バイトを用いた切削加工により上面3aの平坦化されたバンプ3を有する半導体基板1から、図9Aに示すように、各半導体チップ21を切り出す。
続いて、図9Bに示すように、バイトを用いた切削加工により上面の平坦化されたバンプ3を有する半導体基板22を用意し、この半導体基板22上に、各半導体チップ21をバンプ3の平坦化された上面3a同士で電気的に接続する。具体的には、半導体基板22と半導体チップ21aとを上面3a同士で対向するように配置し、室温〜350℃、ここでは170℃程度で圧着させ、接続する。各上面3aは共に高精度に平坦化されているため、従来のように高温・高圧等を要することなく、半導体基板22と半導体チップ21とを容易に接続することができる。
そして、図9Cに示すように、半導体チップ21の接続された半導体基板22から半導体チップ23毎に切り出し、ワイヤボンディング法(ワイヤ25を用いた接続)等の工程を経て、基板24上に半導体チップ23を搭載し、半導体装置を完成させる。
以上説明したように、本実施形態によれば、CMPに替わり、半導体基板1上に形成された微細なバンプ3の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、バンプ3の接続を容易且つ確実に行うことが可能となる。これにより、バンプ3同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。
[第2の実施形態]
次に、第2の実施形態について説明する。第1の実施形態では、バンプ材料としてAuを例示したが、本実施形態ではニッケル(Ni)を用いる場合を例示する。
図10A〜図10Fは、本実施形態によるバンプの形成方法を工程順に示す概略断面図である。
先ず、第1の実施形態の図1A,Bと同様の工程を経て、半導体基板1を裏面研削し、TTLを所定値以下、具体的には1μm以下に制御する。
この半導体基板1を用い、図10Aに示すように、半導体基板1の表面アルミニウム系金属からなる電極31をパターン形成した後、この電極31に無電解メッキ法によりニッケルリンメッキ膜32を膜厚5μm〜10μm程度に形成する。
ニッケルリンメッキ膜32は、汎用の無電解メッキ法によって、ニッケル−リン、ニッケル−リン−ホウ素、ニッケル−ホウ素などを用いて形成する。例えば、ニッケル−リン合金は次亜リン酸浴(次亜リン酸ナトリウムまたは次亜リン酸カリウム)で形成し、ニッケル−ホウ素合金は水素化ホウ素ナトリウム浴またはジメチルアミノボランを用い弱酸性浴または中性浴で形成し、ニッケル−リン−ホウ素合金は中性浴で形成する。
ここで、ニッケルリン系無電解メッキでは、上述した如何なる合金系を選択しても、ニッケルリンメッキ膜32の表層に機械的な脆弱層であるリン濃縮層33が形成される。半田バンプ形成後、このリン濃縮層が原因となりメッキと半田バンプとの界面強度が低下する。このリン濃縮層の厚みは、20nm〜40nm程度であり、メッキ浴中のリン含有率が高くなるほど厚くなる。
また、このリン濃縮層は下地の材料(ガラス基板、鉄基板、アルミニウム基板)によらず、またメッキの厚みに依らず生成される。また、例えば特許文献6で記載されているようなニッケル系無電解メッキを半田融点以上のアニール処理をしても、表層には必ずリン濃縮層が生成される。リン濃縮層を除去しなければ、高信頼性のあるメッキ被膜と半田バンプの形成は困難である。
これらの問題について、半田材料に銅を添加することにより、銅−ニッケル−錫系の化合物層が形成され、そのバリア効果によりリン濃縮層の形成を抑制する方法がある。ところが、Auメッキ厚が500nm以上ではリン濃縮層が形成されるなど、Auメッキ厚の制約や、半田材料の選択性が狭まるという問題点がある。
そこで本例では、ニッケルリンメッキ膜32の切削加工による平坦化時に、同時にこのリン濃縮層33を除去する。
具体的には、先ず図10Bに示すように、基板表面を覆うように保護膜34として液状レジストを被覆し、後述の切削加工による物理的衝撃の緩和層とする。保護膜34は、回転塗布等で10μm〜15μm程度の厚みに塗布し、キュアすることにより形成する。
その後、図2Aと同様、基板支持台の支持面に例えば真空吸着により裏面を吸着させ、半導体基板1を基板支持台に固定する。このとき、裏面1bへの図1Bの平坦化処理により半導体基板1の厚みが一定の状態とされており、更に裏面1bが支持面11aへの吸着により強制的にうねり等もない状態となり、これにより裏面1bが表面1aの平坦化の基準面となる。この状態で、図10Cに示すように、表面1aにおける各ニッケルリンメッキ膜32及び保護膜34の表層を機械加工、ここではダイヤモンド等からなるバイトを用いて切削加工し、ニッケルリンメッキ膜32のリン濃縮層33を除去するとともに、ニッケルリンメッキ膜32及び保護膜34の表面が連続して平坦となるように平坦化処理する。切削量は、リン濃縮層33を確実に除去できる1μm〜2μm程度とする。
続いて、必要に応じて、図10Dに示すように、無電解メッキ法により、ニッケルリンメッキ膜32上に金メッキ膜35を形成する。金メッキ膜35の厚みは30nm〜50nm程度が好ましい。
続いて、図10Eに示すように、保護膜34を灰化処理等により除去する。このとき、半導体基板1の表面1a上には、高さが均一であり、切削加工により上面が一様に平坦化され、金メッキ膜35が形成されてなるバンプ36が形成される。
そして、必要に応じて、図10Fに示すように、バンプ36上に半田バンプ37を形成する。この半田バンプ37は、スクリーン印刷、半田ボール法、溶融等により形成する。半田の材質としては、鉛を含まない、スズ−銀系、スズ−亜鉛系、等の半田を用いることが望ましい。
その後、フルカットダイシングにより半導体基板1を分割して半導体チップを切り出し、第1の実施形態と同様に半導体装置を完成させる。
以上説明したように、本実施形態によれば、CMPに替わり、半導体基板1上に形成されたニッケルのバンプ36の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、これにより、バンプ36同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。しかも、バンプ36と半田バンプ37との接合部位における信頼性を低下させるリン濃縮層34を低コストで完全に除去できるため、上面が平坦化されたバンプ36上に半田バンプ37を確実に形成することが可能となる。
[第3の実施形態]
次に、第3の実施形態について説明する。第1の実施形態では、半導体基板に多数の半導体チップを接合する場合について例示したが、本実施形態では半導体チップの状態で上述の平坦化処理を実行し、この半導体チップ同士を接合する場合について開示する。
図11A,図11Bは、本実施形態による半導体装置の製造方法を工程順に示す概略断面図である。
先ず、図11Aに示すように、第1の実施形態の裏面研削をすることなく、LSI素子等が搭載され、高さの異なる(未だ高さにバラツキのある)複数のバンプ、ここではAuバンプ42が形成されてなる半導体基板から、個々の半導体チップ41を切り出す。
続いて、半導体チップ41の表層を機械加工、ここでは第1の実施形態と同様にダイヤモンド等からなるバイトを用いて切削加工し、各Auバンプ42の表面が連続して平坦となるように平坦化処理する。これにより、各Auバンプ42の高さが均一化されるとともに、上面が鏡面状に平坦化される。
続いて、図11Bに示すように、一対の半導体チップ41を対向させ、Auバンプ42の平坦化された上面同士で両者を電気的に接続する。具体的には、一対の半導体チップ41を上面同士で対向するように配置し、室温〜350℃、ここでは170℃程度で圧着させ、接続する。各上面は共に高精度に平坦化されているため、従来のように高温・高圧等を要することなく、一対の半導体チップ41を容易に接続することができる。
このように、本実施形態によれば、CMPに替わり、半導体チップ41上に形成された微細なAuバンプ42の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、一対の半導体チップ41におけるAuバンプ42の接続を容易且つ確実に行うことが可能となる。これにより、Auバンプ42同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。しかも、半導体基板から個々の半導体チップ41に切り出した後に上述の切削加工を実行するため、TTVを制御する工程を省略することができ、工程数削減に寄与する。
[変形例1]
ここで、本実施形態の変形例1について説明する。
図12A〜図12Cは、変形例1による半導体装置の製造方法を工程順に示す概略断面図である。
先ず、図12Aに示すように、第1の実施形態の裏面研削をすることなく、LSI素子等が搭載され、高さの異なる(未だ高さにバラツキのある)複数のバンプ、ここではAuバンプ42が形成されてなる半導体基板から、個々の半導体チップ41を切り出す。
続いて、半導体チップ41の表面にAuバンプ42を埋め込むように絶縁材からなる樹脂層43を形成する。なお、半導体基板の状態でAuバンプ42を埋め込むように樹脂層43を形成した後、個々の半導体チップ41を切り出すようにしても良い。
続いて、図12Bに示すように、半導体チップ41の表層を機械加工、ここでは第1の実施形態と同様にダイヤモンド等からなるバイトを用いて切削加工し、各Auバンプ42の表面及び樹脂層43の表面が連続して平坦となるように平坦化処理する。これにより、各Auバンプ42の高さが均一化されるとともに、上面が鏡面状に平坦化される。
続いて、一対の半導体チップ41を対向させ、Auバンプ42及び樹脂層43の平坦化された上面同士で両者を電気的に接続する。具体的には、一対の半導体チップ41を上面同士で対向するように配置し、室温〜350℃、ここでは170℃程度で圧着させ、接続する。各上面は共に高精度に平坦化されているため、従来のように高温・高圧等を要することなく、一対の半導体チップ41を容易に接続することができる。更に、樹脂膜43が一対の半導体チップ41の接合を確実にするとともに、電極42等を保護するアンダーフィルとして寄与する。
このように、本変形例1によれば、CMPに替わり、半導体チップ41上に形成された微細なAuバンプ42の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、一対の半導体チップ41におけるAuバンプ42の接続を容易且つ確実に行うことが可能となる。これにより、Auバンプ42同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。しかも、半導体基板から個々の半導体チップ41に切り出した後に上述の切削加工を実行するため、TTVを制御する工程を省略することができ、工程数削減に寄与する。
[変形例2]
次いで、本実施形態の変形例2について説明する。
図13A〜図13Cは、変形例2による半導体装置の製造方法を工程順に示す概略断面図である。
先ず、図13Aに示すように、第1の実施形態の裏面研削をすることなく、LSI素子等が搭載され、高さの異なる(未だ高さにバラツキのある)複数のバンプ、ここではAuバンプ42が形成されてなる半導体基板から、個々の半導体チップ41を切り出す。
続いて、半導体チップ41の表層を機械加工、ここでは第1の実施形態と同様にダイヤモンド等からなるバイトを用いて切削加工し、各Auバンプ42の表面表面が連続して平坦となるように平坦化処理する。これにより、各Auバンプ42の高さが均一化されるとともに、上面が鏡面状に平坦化される。
続いて、図13Bに示すように、平坦化処理された半導体チップ41を2つ一組で一対の半導体チップ41とし、一方の半導体チップ41の表面にAuバンプ42を完全に埋め込む厚みに、絶縁性の樹脂に導電性微粒子45を含有する樹脂層44を形成する。
続いて、一対の半導体チップ41を対向させ、Auバンプ42の平坦化された上面同士で両者を電気的に接続する。具体的には、一対の半導体チップ41を上面同士で対向するように配置し、室温〜350℃、ここでは170℃程度で圧着させる。ここで、熱圧着により対向するAuバンプ42同士が導電性微粒子45を介して接触し、電気的に接続される。各上面は共に高精度に平坦化されているため、従来のように高温・高圧等を要することなく、一対の半導体チップ41を容易に接続することができる。更に、樹脂層44の樹脂が一対の半導体チップ41の密着性及び電気的接続を確実にするとともに、電極42等を保護するアンダーフィルとして寄与する。
このように、本変形例2によれば、CMPに替わり、半導体チップ41上に形成された微細なAuバンプ42の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、一対の半導体チップ41におけるAuバンプ42の接続を容易且つ確実に行うことが可能となる。これにより、Auバンプ42同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。しかも、半導体基板から個々の半導体チップ41に切り出した後に上述の切削加工を実行するため、TTVを制御する工程を省略することができ、工程数削減に寄与する。
[第4の実施形態]
次に、第4の実施形態について説明する。第1の実施形態では、半導体基板に外部接続用のバンプを形成する場合について例示したが、本実施形態ではワイヤボンディング法を用いたスタッドバンプを形成する場合について開示する。
図14A〜図14Fは、本実施形態による半導体装置の製造方法を工程順に示す概略断面図である。
先ず、図14A及び図14Bに示すように、図1Aと同様に素子形成部位にLSI半導体素子と電極パッド等の形成された半導体基板51の裏面を研削し、半導体基板51の厚みを一定、具体的にはTTV(基板の最大厚みと最小厚みとの差)を1μm以下に制御する。
ここで、前記研削工程においては、半導体基板51の裏面を研削した後に、スパッタ法等により半導体基板51上に金属膜、例えばAl膜を形成し、これをパターニングすることにより、電気的接続箇所となる部位に電極パッド52を形成しても良い。
続いて、図14Cに示すように、金属としてAuを用いたワイヤボンディング法により、例えば20μm径のAuボンディングワイヤの先端を溶融して形成したボール状の塊を電極パッド52上に圧着した後、当該ワイヤを引きちぎり(プレカット)、電極パッド52上にAu突起53を形成する。このとき、各Au突起53の電極パッド52からの高さをボンディングワイヤ径の2倍以上、ここでは60μm程度となるように規定する。この場合、実際にはAu突起53の高さにはバラツキがあり、50μm〜60μm程度であれば良い。
続いて、図14Dに示すように、ダイヤモンド等からなるバイト10を用いて切削加工し、各Au突起53の上面が連続して平坦となるように平坦化処理し、スタッドバンプ54を形成する。ここでは、切削位置を電極パッド52から例えば50μm程度の高さとする。切削条件は切削速度10m/s、1回当たりの送りを20μm程度とし、最初の切削位置から2μmずつ追い込んでゆく。これにより、図14Eに示すように、Au突起53の上面が鏡面状に平坦化され、スタッドバンプ54が形成される。
この切削加工による平坦化方法はCMPと比べてスラリーなどが必要なく、切削工具であるバイトはたとえ摩耗を起こして研磨して繰り返し使用できるので、コストが安い。チャックテーブルにチャッキングした半導体基板を高速回転させ、その上でバイトを所定の速度で移動させて、任意の切り込み量を一度に切削するため、半導体基板1枚当たり1〜2分間で終了可能であり、非常にスループットの高い方法である。バイトによる切削加工では、切削条件を適切にすることにより、Auのボンディングワイヤを用いたスタッドバンプの突起なども、突起の先端部で切削した場合でも、突起の傾きや折れなどのない平面出しが可能である。しかしながら、30Hv以下の硬度であると、切削時に突起の傾きが生じる恐れがあるため、ワイヤの硬度は30Hv以上であることが望ましい。
本実施形態では、切削加工の終点として、全てのスタッドバンプについて、切削面の径がワイヤ径と同等以上になった時点とする。通常、スタッドバンプはプレカット後の高さにばらつきが大きく、全てのスタッドバンプで切削面の径がワイヤ径と同等以上になった点を確認するのは困難である。切削方法としては、バイトが最も高いバンプに接触した点から1〜3μm位ずつ追い込んでゆき、全てのバイトの切削面を出すことが適当であるが、毎回拡大されたカメラ画像等で確認するのは非効率的である。
そこで本実施形態では、図15Aに示すように、終点検出方法として、レーザ発信器61及び検出器62を備える検出装置を用いて、切削加工後のスタッドバンプ54の上面にレーザビームを操引し、当該上面にて反射したレーザを検出器62で検出する方法を採用する。
そして、図15Bに示すように、検出されたレーザ強度が全てのAu突起53にて所定の強度に達するまで加工を繰り返す。この検出装置は切削工具の進行方向後方に設置され、切削工具と同期して進行することが望ましい。スタッドバンプ54の上面(切削面)はほぼ鏡面とされているため、レーザ光などは全反射する。切削工具と同期している場合、切削工具の進行速度に比例して遅延が生ずるため、厳密には全ての反射光が検出されるとは限らないが、切削速度は速くとも10数m/sであるため、ほぼ検出されると見なして良い。
本実施形態では、バイトの後部からバイトの進行と同期して動くレーザ発信器61及び検出器62により、平坦化されたAu突起53の上面から反射されたレーザ光強度を測定しながら追い込んでゆき、例えば46μmの高さで全てのAu突起53の上面が露出されたことを感知し、切削を終了とした。
ここで、図15Cに示すように、切削加工が不充分である場合や、切削面の径がワイヤ径以下である場合には、切削面以外の箇所に当たったレーザ光は乱反射し、検出器に検出されない。そのため、図15Dに示すように、検出されたレーザ光強度はボンディングワイヤと同径まで切削された面よりも弱くなる。このようなスタッドバンプが一箇所でも確認された場合には、自動的に更に1μm〜2μm程度追い込み、最終的に全バンプで一定量以上のレーザ光強度が検出されるまで切削する。これにより、未切削又は切削不足による接続不良を防止することができるとともに、加工時間の大幅な短縮が可能となる。
そして、図14Fに示すように、半導体基板51から各半導体チップ55を切り出し、例えばフリップチップ法により、半導体チップ55と回路基板56とを接続する。具体的には、半導体チップ55の上面平坦化されたスタッドバンプ54と、回路基板56の表面に形成された電極57とを対向させて接触させ、加圧及び加熱により両者を接合する。なおこの場合、回路基板56の電極57もスタッドバンプ54と同様に、上述した切削加工により平坦化した後、フリップチップ接続するようにしても好適である。
以上説明したように、本実施形態によれば、CMPに替わり、半導体基板51上に形成された微細なスタッドバンプ54の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、スタッドバンプ54の接続を容易且つ確実に行うことが可能となる。これにより、バンプ同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。しかも、切削平坦化後におけるスタッドバンプ54の高さを、ワイヤ径を規定しない場合に比べて1.5倍以上とすることができ、半導体素子への応力を緩和することが可能となり、デバイス寿命を延ばすことが可能となる。更に、切削における平坦面はワイヤ径と同等以上であるため、同じワイヤ径でも2倍以上の接合強度を得ることができる。また、従来と同程度の接合強度で充分な場合には、ワイヤ径を細くすることができるため、バンプピッチを狭めることが可能なうえ、ボンディングワイヤにかかるコストを下げることが可能となる。
[第5の実施形態]
次に、第5の実施形態について説明する。ここでは、いわゆるTABボンディング法による半導体装置を例示する。
図16及び図17は、本実施形態による半導体装置の製造方法を示す概略断面図である。
この半導体装置を製造するには、先ず第1の実施形態と同様に、図1及び図2に示す諸工程を経て、素子形成部位にLSI半導体素子等の形成された半導体基板1の電極71上に下地金属膜72を介して、高さが均一であり、各Au突起2が切削加工されて上面3aが一様に平坦化されてなるバンプ3を形成する。ここで、半導体基板1のバンプ3の周囲には絶縁性の保護膜73が形成されている。
続いて、バンプ3の上面にプローブを接触させることにより、半導体基板1の半導体素子等の電気的特性を検査する。ここで、従来では、当該検査の際にはバンプの凹凸や汚染の存するメッキ終端面にプローブを接触させていたため、安定した接触が得られず、プローブの先端が当該凹凸部位で引っ掛り破損するというトラブルもあった。これに対して本実施形態では、上述の切削加工により高度に平坦化及び清浄化されたバンプ3の表面にプローブを接触させるため、極めて安定な状態で検査を行うことができる。
続いて、この半導体基板1から個々の半導体チップ21を切り出した後、図16に示すように、TABボンディング法により半導体チップ21の接続を行う。
具体的には、銅箔75からなりAuの表面処理が施されてAu膜76が形成されており、一端に位置する箇所が接続部位に該り、他端に樹脂層77が設けられてなるTABリード74を用意する。そして、半導体チップ21をボンディングステージ80上に載置固定して、半導体チップ21の平坦化及び清浄化されたバンプ3の上面にTABリード74の接続部位のAu膜76を接触させ、ヒータ78により加熱しながら加圧し、両者を接合する。ここで、加熱温度は200℃程度の比較的低温で良く、接着荷重も約20gと従来の2/3程度に低減が可能となる。結果として40μmピッチ以下の微細ピッチのTABリードを位置ずれなく接続することが可能となる。
しかる後、図17に示すように、半導体チップ21をボンディングステージ80から外し、バンプ3とTABリード74との接続部位を含む半導体チップ21の表面を覆うように封止樹脂79を形成し、半導体装置を完成させる。
なお、本実施形態では、バンプとしてメッキバンプを形成する場合を例示したが、ワイヤボンディング法によるスタッドバンプを形成するようにしても良い。
以上説明したように、本実施形態によれば、CMPに替わり、半導体基板1上に形成された微細なバンプ3の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、バンプ3の接続を容易且つ確実に行うことが可能となる。これにより、バンプとリード端子との高温・高圧等の条件を要しない確実な接続が可能となり、信頼性の高いTABボンディングタイプの半導体装置を歩留まり良く製造することができる。
[第6の実施形態]
次に、第6の実施形態について説明する。ここでは、上述した諸実施形態を実行するに際して、一対の基体(ここでは、フリップチップ法による半導体チップ及び回路基板を例示する。)について、上述の切削加工工程及び接合工程を実行するための装置構成を開示する。
図18は、本実施形態による半導体製造装置を示す模式図である。
この半導体製造装置は、表面にバンプの形成された半導体チップを導入するためのチップ導入部81と、表面に電極の形成された回路基板を導入するための回路基板導入部82と、上述したバイトを用いた切削加工により半導体チップのバンプ表面を平坦化する工程を実行する切削部83と、半導体チップと回路基板とを平坦化されたバンプと電極とで接合する工程を実行する接合部84と、接合され一体化されてなる半導体装置を搬出するための搬出部85とを備えており、更に、切削部83及び接合部84を不活性雰囲気で包含する清浄化保持部86を有して構成されている。ここで、切削部83では、半導体チップのみならず回路基板の電極表面も同様に切削加工により平坦化するようにしても良い。
清浄化保持部86は、平坦化工程と接合工程を共に清浄化雰囲気、具体的には不活性雰囲気内、例えばArやN等の酸素を含まない気相中、又は酸素を含む1atm以下の雰囲気中に保持する機能を有している。これにより、接合工程の直前にArプラズマ等を用いた清浄化工程を付加することなく、比較的容易に理想に極めて近い平坦化状態を維持することができ、バンプと電極の確実な接合が可能となる。
なお、本実施形態では、フリップチップ実装を例示したが、本発明はこれに限定されることなく、半導体チップと半導体ウェーハ、半導体チップ同士等の接合に利用しても好適である。
-Basic outline of the present invention-
First, the basic outline of the present invention will be described.
The present inventor has come up with the idea of applying cutting using a cutting tool as a technique for simultaneously flattening the surface of a large number of fine bumps formed on a substrate at a low cost and at a high speed instead of the CMP method. According to this cutting process, even when a bump is embedded in an insulating film on a semiconductor substrate, it does not depend on the polishing rate of the metal and the insulator as in the CMP method, and can be performed simultaneously on the substrate. In addition, the metal and the insulator can be continuously cut, and both can be uniformly flattened without causing dishing or the like. Metals such as copper, aluminum, and nickel, and insulating materials such as polyimide are materials that can be easily cut with a cutting tool. In the present invention, as the metal material and insulating material of the bump, it is preferable that the former is a ductile metal and the latter is a resin having a rigidity of, for example, 200 GPa or more.
In this case, in order to use the above-described cutting process for the flattening of the bump surface, it is preferable to perform the cutting on the basis of the back surface (back surface) of the substrate. In general, the TTV of a silicon substrate is in the range of 1 μm to 5 μm. In the LSI process, a TTV of about 5 μm does not affect photolithography and is usually not considered. However, in the case of cutting, it is greatly influenced by the value of TTV. Flatness accuracy by cutting does not fall below the TTV value. Therefore, when cutting is used for flattening a semiconductor substrate, it is first necessary to control the TTV of the substrate to a target cutting accuracy or less.
In consideration of the above circumstances, the present inventor, when using the above-described cutting process for the flattening of the bump surface, as a specific method for reliably performing the flattening, grinding the back surface with respect to the substrate surface, The present inventors have conceived that the TTV of the semiconductor substrate is kept below the target cutting accuracy. In this case, it is ideal that the TTV is made small and the thickness variation of each semiconductor substrate is suppressed to below the cutting accuracy. However, as long as the TTV can be reduced, the thickness of each semiconductor substrate can be detected during cutting. The amount of cutting can be controlled by detecting the thickness of each individual semiconductor substrate.
In addition to the bumps formed by plating, the bumps are formed by wire bonding, that is, bumps formed by melting the tip of the bonding wire on the electrode pad and tearing the wire. (Hereinafter referred to as a stud bump).
When the stud bump is formed, a pin-shaped protrusion is formed by tearing of the bonding wire, and it is necessary to flatten the protrusion. In the present invention, the above-described flattening method by cutting is also applied to the stud bump. In this case, when the wire is torn (pre-cut), the height of each projection is different and flattened to align with the lowest bump, but the higher the stud bump height, the less stress on the device, Since the device life can be extended, it is necessary to define the height of each protrusion. In the present invention, the height from the electrode pad of the protruding portion at the time of pre-cut is specified to be twice or more of the wire diameter, and the cutting surface diameter is equal to or more than the wire diameter for all stud bumps as the end point of the cutting process. It becomes the time when it became. As a result, the height of the stud bump after the flattening of cutting can be made 1.5 times or more compared to the case where the wire diameter is not specified, and the stress on the semiconductor element can be relaxed, and the device life Can be extended.
And after controlling TTV as mentioned above and planarizing the surface of a fine bump by cutting, each semiconductor chip used as a semiconductor component is cut out from a semiconductor substrate (wafer). Thereafter, the semiconductor substrate having a planarized surface and the semiconductor chip, or the semiconductor chips are electrically connected with the bumps facing each other and bonded. At this time, since the upper surfaces of the opposing bumps are both flattened with high precision, they can be easily joined without requiring high temperature and high pressure as in the prior art.
Here, the inventor further sought specific conditions and states for reliably realizing the bonding between the bumps facing each other. Considering that it is ideal to keep the bumps in the flattened state immediately after the cutting process even during the above-mentioned bonding, both the flattening process and the bonding process are performed in order to keep the flattened state immediately after the cutting process as much as possible. It was conceived to carry out in a cleaning atmosphere, specifically in an inert atmosphere. Although this point can be dealt with by adding a cleaning step using Ar plasma or the like immediately before the bonding step, there is a drawback that the number of steps increases. In the present invention, a planarized state that is extremely close to the ideal can be maintained relatively easily without causing an increase in the number of steps, and the bumps can be reliably bonded.
The inventor pays attention to the state of the semiconductor chip as another aspect of the present invention. In other words, at the wafer level, the TTV of the semiconductor substrate becomes a problem as described above. However, since the size of individual chips such as semiconductor chips is small, the TTV in the chip area is almost not at the time of cutting. Only a negligible influence is received.
Therefore, the present inventor has first conceived that after cutting each semiconductor chip from the semiconductor substrate, the surface of the fine bump is flattened by cutting using the above-described bump in the state of the semiconductor chip. Then, the semiconductor chips are joined by electrically connecting the bumps to each other. Thereby, the step of controlling the TTV can be omitted and the bump bonding can be easily performed.
In the present invention, the above-described cutting technique is also applied to a semiconductor device using a so-called TAB bonding method.
Normally, when the TAB connection is based on the plating bump method, a strip-shaped copper foil lead subjected to gold surface treatment directly on the gold plating bump is aligned and heated to 300 ° C. or higher, and 30 g or more per bump. Requires pressure bonding. On the other hand, in the case of the stud bump method, it is necessary to heat a semiconductor chip on which a stud bump has been formed in advance by pressing it against a glass plate or a metal plate and processing the tip of the stud bump flatly.
The plating end surface has irregularities and metallic and organic contamination peculiar to the surface. In addition, variations in the plating height within the chip occur at a level of several microns. When TAB bonding is performed on these plating end faces, high temperature and high load are required. When a high temperature is used during bonding, a difference in the thermal expansion coefficient between copper and silicon becomes large in connecting fine pitch leads, and thus misalignment is likely to occur. On the other hand, the stud bump has a large variation in height and the shape thereof is not constant, so that a higher temperature and a higher load are required, and it is difficult to connect fine pitches.
In order to reduce misalignment during TAB bonding, it is necessary to lower the temperature and simultaneously contact the copper lead terminals with the bumps. In the present invention, the surface of the plating bump and the stud bump is flattened by cutting using a cutting technique using a cutting tool, thereby reducing the temperature and load at the time of TAB bonding, and the fine pitch lead is not displaced. It becomes possible to connect.
-Specific embodiment of the present invention-
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings based on the basic outline described above.
[First Embodiment]
Here, a silicon semiconductor substrate is exemplified as the substrate, and a method of forming bumps provided on the semiconductor substrate for electrical connection with the outside, a semiconductor device using the method, and a method of manufacturing the same are disclosed. .
(Bump formation method)
1A to 1D, 2A, and 2B are schematic cross-sectional views illustrating the bump forming method according to the present embodiment in the order of steps.
First, a silicon semiconductor substrate 1 is prepared, and a desired LSI semiconductor element (not shown) is formed at an element formation site on the substrate surface 1a. Each step of the semiconductor substrate 1 on which the LSI semiconductor element or the like is formed in the element formation site will be described below.
As shown in FIG. 1A, normally, the silicon semiconductor substrate is not uniform in thickness as shown in the figure, but is in a state accompanied by waviness. Therefore, the back surface 1b is flattened as a pre-process for cutting the surface 1a of the semiconductor substrate 1 using a cutting tool which will be described later.
Specifically, a substrate support base (not shown) having a flat support surface is prepared, and the semiconductor substrate 1 is fixed to the substrate support base by adsorbing the surface 1a to the support surface by, for example, vacuum adsorption. At this time, the surface 1a is forcibly flattened by adsorption to the support surface, and thus the surface 1a becomes a reference surface for flattening the back surface 1b. In this state, the back surface 1b is machined, here, mechanically ground, and the convex portion 1c of the back surface 1b is removed by grinding and flattened. In this case, it is preferable to control the cutting amount of the back surface 1b by the distance from the front surface 1a. As a result, as shown in FIG. 1B, the thickness of the semiconductor substrate 1 is constant, specifically, TTV (specifically, the difference between the maximum thickness and the minimum thickness of the substrate) is a predetermined value or less. It is controlled to 1 μm or less.
Subsequently, as shown in FIG. 1C, the semiconductor substrate 1 is removed from the substrate support, a photosensitive resin, for example, a photoresist is applied onto the surface 1a of the semiconductor substrate 1, and the photoresist is processed by photolithography. A resist mask 12 having a predetermined bump pattern 12a is formed.
Subsequently, using the resist mask 12 as a mask, for example, a metal, for example, a copper film is formed by an evaporation method, and a plating electrode (not shown) is formed. Then, as shown in FIG. Gold (Au) is deposited so as to embed each bump pattern 12a of the resist mask 12, and Au protrusions 2 are formed. In addition, you may form a protrusion using Cu, Ag, Ni, Sn or these alloys other than Au.
Subsequently, the surface 1a of the semiconductor substrate 1 is subjected to a cutting process using a cutting tool and flattened.
Specifically, as shown in FIG. 2A, the back surface 1 b is adsorbed to the support surface 11 a of the substrate support table 11 by, for example, vacuum adsorption, and the semiconductor substrate 1 is fixed to the substrate support table 11. At this time, the thickness of the semiconductor substrate 1 is made constant by the flattening process of FIG. 1B on the back surface 1b, and the back surface 1b is not forcedly swelled by adsorption to the support surface 11a. Thus, the back surface 1b becomes a reference surface for flattening the front surface 1a. In this state, the surface layer of each Au protrusion 2 and the photoresist 12 on the surface 1a is machined, in this case using a cutting tool 10 made of diamond or the like, and the surface of each Au protrusion 2 and the resist mask 12 is continuously formed. A flattening process is performed so as to be flat. Thereby, the upper surface of the Au protrusion 2 is flattened into a mirror surface.
The results of planarization by this cutting process are shown in the micrographs and schematic diagrams of FIGS. 3A and 3B.
Before cutting, the surface of the Au protrusion was uneven as shown in FIG. 3A, whereas after cutting, the surface of the Au protrusion was flattened with high accuracy as shown in FIG. 3B. I know that.
Subsequently, as shown in FIG. 2B, the resist mask 12 is removed by ashing or the like. At this time, on the surface 1 a of the semiconductor substrate 1, bumps 3 having a uniform height, each Au protrusion 2 being cut, and the upper surface 3 a being uniformly flattened are formed. Using this semiconductor substrate 1, for example, after making it into a chip, it is electrically connected to another semiconductor substrate 4 by bumps 3.
In the present embodiment, a single semiconductor substrate has been described. However, it is preferable that the steps of the present embodiment be performed on a plurality of semiconductor substrates constituting a lot so that the thickness of each semiconductor substrate is made uniform. It is.
Further, in the planarization process of FIG. 2A, as shown in FIGS. 4A and 4B, the semiconductor substrate 1 is parallelized with reference to the back surface 1b, and the position of the front surface 1a is detected and shaved from the detected front surface 1a. Calculate and control the amount.
Specifically, as shown in FIG. 4A, when detecting the position of the surface 1a, a plurality of locations around the surface 1a of the semiconductor substrate 1, for example, three locations A, B, and C shown in FIG. It is preferable to irradiate the resist mask 12 with the laser beam 13 to heat and scatter these to expose a part of the surface 1a.
Further, in this case, as shown in FIG. 5, when detecting the position of the front surface 1a, the semiconductor substrate 1 is adsorbed and fixed to the substrate support 11 on which the opening 11b is formed, and infrared laser light is applied from the opening 11b to the back surface 1b. The reflected light from the surface 1a may be measured by, for example, the infrared laser measuring device 14.
(Configuration of cutting device)
Here, the specific apparatus structure for performing the cutting process mentioned above is demonstrated.
FIG. 6 is a block diagram showing the configuration of the cutting apparatus, and FIG. 7 is a similar schematic configuration diagram. The cutting apparatus includes a storage unit 101 for storing a semiconductor substrate, a hand unit 102 for transporting the semiconductor substrate 1 to each processing unit, a sensing unit 103 for positioning the semiconductor substrate 1, and a chuck for the semiconductor substrate 1 at the time of cutting. A chuck table 104, a cutting unit 105 for performing flattening cutting of the semiconductor substrate 1, a cleaning unit 106 for performing cleaning after cutting, and a control unit 107 for controlling them. As described above, the chuck table portion 104 constitutes the substrate support (chuck table) 11 on which the semiconductor substrate 1 is placed and fixed, and the cutting portion 105 has a hard bit 10 that is a cutting tool made of diamond or the like. is doing.
Next, the flow of the cutting process will be described with reference to FIGS.
First, the transport hand of the hand unit 102 takes out the semiconductor substrate 1 from the storage cassette 111 of the storage unit 101 in which the semiconductor substrate 1 is stored. The storage unit 101 has an elevator mechanism that moves up and down to the height at which the semiconductor substrate 1 of the transport hand is taken out. Next, the transport hand vacuum-sucks the semiconductor substrate and transports it to the sensing unit 103. The transport hand is a Θ3-axis and Z-axis scalar robot, and can be easily handled by each processing unit. The robot mechanism is not limited to this, and may be an XY axis orthogonal type.
In the sensing unit 103, the semiconductor substrate 1 is rotated 360 ° by the rotary table 112, the outer periphery of the semiconductor substrate 1 is imaged by the CCD camera 111, and the result is processed by the arithmetic unit of the control unit 107 and the center of the semiconductor substrate 1 is processed. Calculate the position.
Next, based on the result, the transport hand corrects the position and transports the semiconductor substrate 1 to the chuck table unit 104, and the chuck table 11 is fixed by vacuum. This chuck table 11 serves as a processing reference surface. Therefore, in order to maintain the flatness accuracy during fixing and processing, the chuck surface preferably has a structure in which the semiconductor substrate 1 is chucked over the entire surface using a multi-hole material. The material is metal, ceramic, or resin. An optical sensor unit that is a light projecting unit 114 is arranged to face the chucked semiconductor substrate 1, and the dimensions of the semiconductor substrate 1 are measured and calculated together with the camera unit that is the light receiving unit 115, and the result is calculated as X of the cutting unit 105. Feedback to the shaft drive unit and command the amount of movement for cutting.
When the cutting surface is a wiring forming surface, specifically, as shown in FIG. 4, it is preferable to irradiate a laser beam to heat and scatter the resist mask to expose the surface. And as shown in FIG. 5, a position is measured using the transmissive | pervious sensor using an infrared laser beam. Then, based on the result calculated there, the table on which the cutting tool 10 that actually performs cutting moves in the X direction and starts cutting. The cutting tool 10 used here is made of diamond or the like. In this way, the cutting to the set dimension is completed.
Next, the transport hand takes out the semiconductor substrate 1 from the chuck table 11 and transports it to the cleaning unit. In the cleaning unit 105, the semiconductor substrate 1 is vacuum fixed and rotated, and the processed surface residual foreign matter is washed away with cleaning water. After that, it is rotated at a high speed while blowing air, and is dried while blowing off cleaning water. When the drying is completed, the transport hand takes out the semiconductor substrate 1 again and finally stores it in the storage cassette 111 of the storage unit 101.
For each of the above steps, first, the back surface is cut on the basis of the bump and the surface on which the insulating film is formed between the bumps, and then the surface of each bump and the surface of the insulating film are cut on the back surface as a reference, Complete the planarization process.
(Semiconductor device and manufacturing method thereof)
Next, a method of manufacturing a semiconductor device using a semiconductor manufacturing apparatus that executes the above-described bump forming method will be described. Here, the configuration of the semiconductor device is described together with the manufacturing method thereof.
9A to 9C are schematic plan views showing the method for manufacturing the semiconductor device according to the present embodiment in the order of steps.
First, through each step described in FIGS. 1 and 2, an LSI element or the like is mounted, and a semiconductor substrate 1 having bumps 3 whose upper surface 3a is flattened by cutting using a cutting tool is shown in FIG. 9A. Then, each semiconductor chip 21 is cut out.
Subsequently, as shown in FIG. 9B, a semiconductor substrate 22 having bumps 3 whose upper surfaces are flattened by cutting using a cutting tool is prepared, and each semiconductor chip 21 is flattened on the semiconductor substrate 22. The formed upper surfaces 3a are electrically connected to each other. Specifically, the semiconductor substrate 22 and the semiconductor chip 21a are disposed so as to face each other on the upper surface 3a, and are bonded by pressure bonding at room temperature to 350 ° C., here about 170 ° C. Since each upper surface 3a is flattened with high accuracy, the semiconductor substrate 22 and the semiconductor chip 21 can be easily connected without requiring high temperature and high pressure as in the prior art.
Then, as shown in FIG. 9C, each semiconductor chip 23 is cut out from the semiconductor substrate 22 to which the semiconductor chip 21 is connected, and the semiconductor chip is formed on the substrate 24 through a process such as a wire bonding method (connection using the wire 25). 23 is mounted to complete the semiconductor device.
As described above, according to the present embodiment, instead of CMP, the surface of the fine bump 3 formed on the semiconductor substrate 1 is flattened at low speed and at high speed without causing inconvenience such as dishing. 3 can be connected easily and reliably. As a result, the bumps 3 can be connected to each other without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with high yield.
[Second Embodiment]
Next, a second embodiment will be described. In the first embodiment, Au is exemplified as the bump material. However, in this embodiment, a case where nickel (Ni) is used is illustrated.
10A to 10F are schematic cross-sectional views illustrating the bump forming method according to the present embodiment in the order of steps.
First, through the same steps as in FIGS. 1A and 1B of the first embodiment, the semiconductor substrate 1 is ground on the back surface, and the TTL is controlled to a predetermined value or less, specifically to 1 μm or less.
Using this semiconductor substrate 1, as shown in FIG. 10A, after patterning an electrode 31 made of an aluminum metal on the surface of the semiconductor substrate 1, a nickel phosphor plating film 32 is formed on the electrode 31 by an electroless plating method to a thickness of 5 μm. It is formed to about 10 μm.
The nickel phosphorous plating film 32 is formed using nickel-phosphorus, nickel-phosphorus-boron, nickel-boron or the like by a general electroless plating method. For example, a nickel-phosphorus alloy is formed in a hypophosphorous acid bath (sodium hypophosphite or potassium hypophosphite), and a nickel-boron alloy is used in a weakly acidic bath or medium using a sodium borohydride bath or dimethylaminoborane. The nickel-phosphorus-boron alloy is formed with a neutral bath.
Here, in nickel-phosphorus electroless plating, a phosphorus-enriched layer 33 that is a mechanical fragile layer is formed on the surface layer of the nickel-phosphorous plating film 32 regardless of which alloy system is selected. After the formation of the solder bump, the phosphorus concentrated layer causes the interface strength between the plating and the solder bump to decrease. The thickness of this phosphorus concentration layer is about 20 nm to 40 nm, and becomes thicker as the phosphorus content in the plating bath increases.
The phosphorus enriched layer is generated regardless of the underlying material (glass substrate, iron substrate, aluminum substrate) and regardless of the plating thickness. Further, even if nickel-based electroless plating as described in Patent Document 6, for example, is annealed to a temperature higher than the solder melting point, a phosphorus-enriched layer is always generated on the surface layer. Unless the phosphorus-enriched layer is removed, it is difficult to form a highly reliable plating film and solder bump.
Regarding these problems, there is a method in which a copper-nickel-tin compound layer is formed by adding copper to the solder material, and the formation of a phosphorus-enriched layer is suppressed by its barrier effect. However, when the Au plating thickness is 500 nm or more, there is a problem that the limitation of the Au plating thickness and the selectivity of the solder material are narrowed, such as the formation of a phosphorus concentrated layer.
Therefore, in this example, at the time of flattening the nickel phosphorus plating film 32 by cutting, the phosphorus concentrated layer 33 is removed at the same time.
Specifically, as shown in FIG. 10B, first, a liquid resist is coated as a protective film 34 so as to cover the substrate surface to form a physical impact mitigation layer by a cutting process described later. The protective film 34 is formed by applying and curing to a thickness of about 10 μm to 15 μm by spin coating or the like.
Thereafter, as in FIG. 2A, the back surface is adsorbed on the support surface of the substrate support table by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support table. At this time, the thickness of the semiconductor substrate 1 is made constant by the flattening process of FIG. 1B on the back surface 1b, and the back surface 1b is not forcedly swelled by adsorption to the support surface 11a. Thus, the back surface 1b becomes a reference surface for flattening the front surface 1a. In this state, as shown in FIG. 10C, the surface layers of the nickel phosphorous plating film 32 and the protective film 34 on the surface 1a are machined, and in this case, cutting is performed using a cutting tool made of diamond or the like. The phosphorus concentration layer 33 is removed, and a flattening process is performed so that the surfaces of the nickel phosphorus plating film 32 and the protective film 34 are continuously flat. The cutting amount is set to about 1 μm to 2 μm so that the phosphorus concentrated layer 33 can be reliably removed.
Subsequently, as shown in FIG. 10D, a gold plating film 35 is formed on the nickel phosphorous plating film 32 by an electroless plating method as necessary. The thickness of the gold plating film 35 is preferably about 30 nm to 50 nm.
Subsequently, as shown in FIG. 10E, the protective film 34 is removed by ashing or the like. At this time, on the surface 1 a of the semiconductor substrate 1, bumps 36 are formed which are uniform in height, are uniformly flattened by cutting, and are formed with a gold plating film 35.
Then, as necessary, solder bumps 37 are formed on the bumps 36 as shown in FIG. 10F. The solder bumps 37 are formed by screen printing, a solder ball method, melting, or the like. As a material for the solder, it is desirable to use a lead-free solder such as tin-silver or tin-zinc.
Thereafter, the semiconductor substrate 1 is divided by full-cut dicing to cut out a semiconductor chip, and the semiconductor device is completed as in the first embodiment.
As described above, according to the present embodiment, instead of CMP, the surface of the nickel bump 36 formed on the semiconductor substrate 1 is flattened at low speed and at high speed without causing inconvenience such as dishing. Therefore, it is possible to connect the bumps 36 without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with a high yield. In addition, since the phosphorus-enriched layer 34 that lowers the reliability at the joint portion between the bump 36 and the solder bump 37 can be completely removed at low cost, the solder bump 37 is reliably formed on the bump 36 whose upper surface is flattened. It becomes possible.
[Third Embodiment]
Next, a third embodiment will be described. In the first embodiment, the case where a large number of semiconductor chips are bonded to the semiconductor substrate is illustrated. However, in the present embodiment, the above-described planarization process is performed in the state of the semiconductor chip, and the semiconductor chips are bonded to each other. Disclose.
11A and 11B are schematic cross-sectional views showing the method of manufacturing the semiconductor device according to the present embodiment in the order of steps.
First, as shown in FIG. 11A, a plurality of bumps, which are mounted with LSI elements and have different heights (there are still variations in height), here Au bumps, without the back surface grinding of the first embodiment. Individual semiconductor chips 41 are cut out from the semiconductor substrate on which 42 is formed.
Subsequently, the surface layer of the semiconductor chip 41 is machined. Here, the surface of each Au bump 42 is flattened by cutting using a cutting tool made of diamond or the like as in the first embodiment. Process. Thereby, the height of each Au bump 42 is made uniform, and the upper surface is flattened into a mirror surface.
Subsequently, as shown in FIG. 11B, the pair of semiconductor chips 41 are opposed to each other, and the two flattened upper surfaces of the Au bumps 42 are electrically connected to each other. Specifically, a pair of semiconductor chips 41 are arranged so as to face each other, and are bonded by pressure bonding at room temperature to 350 ° C., here about 170 ° C. Since each upper surface is flattened with high accuracy, a pair of semiconductor chips 41 can be easily connected without requiring high temperature and high pressure as in the prior art.
As described above, according to the present embodiment, instead of CMP, the surface of the fine Au bump 42 formed on the semiconductor chip 41 is flattened at low speed and at high speed without causing inconvenience such as dishing. It becomes possible to connect the Au bumps 42 in the semiconductor chip 41 easily and reliably. Thereby, the Au bumps 42 can be connected to each other without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with high yield. In addition, since the above-described cutting process is performed after cutting into individual semiconductor chips 41 from the semiconductor substrate, the step of controlling the TTV can be omitted, which contributes to a reduction in the number of steps.
[Modification 1]
Here, the modification 1 of this embodiment is demonstrated.
12A to 12C are schematic cross-sectional views illustrating a method for manufacturing a semiconductor device according to Modification 1 in the order of steps.
First, as shown in FIG. 12A, a plurality of bumps, which are mounted with LSI elements and having different heights (there are still variations in height), here Au bumps, without grinding the back surface of the first embodiment. Individual semiconductor chips 41 are cut out from the semiconductor substrate on which 42 is formed.
Subsequently, a resin layer 43 made of an insulating material is formed so as to embed Au bumps 42 on the surface of the semiconductor chip 41. In addition, after forming the resin layer 43 so as to embed the Au bumps 42 in the state of the semiconductor substrate, the individual semiconductor chips 41 may be cut out.
Subsequently, as shown in FIG. 12B, the surface layer of the semiconductor chip 41 is machined, here, similarly to the first embodiment, cutting is performed using a cutting tool made of diamond or the like, and the surface of each Au bump 42 and the resin layer The surface of 43 is flattened so as to be continuously flat. Thereby, the height of each Au bump 42 is made uniform, and the upper surface is flattened into a mirror surface.
Subsequently, the pair of semiconductor chips 41 are made to face each other, and the Au bumps 42 and the resin layer 43 are electrically connected to each other on the flattened upper surfaces. Specifically, a pair of semiconductor chips 41 are arranged so as to face each other, and are bonded by pressure bonding at room temperature to 350 ° C., here about 170 ° C. Since each upper surface is flattened with high accuracy, a pair of semiconductor chips 41 can be easily connected without requiring high temperature and high pressure as in the prior art. Further, the resin film 43 ensures the bonding of the pair of semiconductor chips 41 and contributes as an underfill for protecting the electrodes 42 and the like.
As described above, according to the first modification, instead of CMP, the surface of the fine Au bump 42 formed on the semiconductor chip 41 is flattened at low speed and at high speed without causing inconvenience such as dishing. It becomes possible to connect the Au bumps 42 in the semiconductor chip 41 easily and reliably. Thereby, the Au bumps 42 can be connected to each other without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with high yield. In addition, since the above-described cutting process is performed after cutting into individual semiconductor chips 41 from the semiconductor substrate, the step of controlling the TTV can be omitted, which contributes to a reduction in the number of steps.
[Modification 2]
Next, a second modification of the present embodiment will be described.
13A to 13C are schematic cross-sectional views illustrating a method for manufacturing a semiconductor device according to Modification 2 in the order of steps.
First, as shown in FIG. 13A, a plurality of bumps having different heights (having variations in height) (here, Au bumps) mounted with LSI elements or the like without the back surface grinding of the first embodiment. Individual semiconductor chips 41 are cut out from the semiconductor substrate on which 42 is formed.
Subsequently, the surface layer of the semiconductor chip 41 is machined, here, as in the first embodiment, cutting is performed using a cutting tool made of diamond or the like so that the surface of each Au bump 42 is continuously flat. Perform flattening. Thereby, the height of each Au bump 42 is made uniform, and the upper surface is flattened into a mirror surface.
Subsequently, as shown in FIG. 13B, the planarized semiconductor chips 41 are paired into a pair of semiconductor chips 41, and the insulating bumps are formed so that the Au bumps 42 are completely embedded in the surface of one of the semiconductor chips 41. The resin layer 44 containing the conductive fine particles 45 is formed on the conductive resin.
Subsequently, the pair of semiconductor chips 41 are opposed to each other, and the planarized upper surfaces of the Au bumps 42 are electrically connected to each other. Specifically, the pair of semiconductor chips 41 are disposed so as to face each other on the upper surface, and are bonded at room temperature to 350 ° C., here about 170 ° C. Here, the opposing Au bumps 42 are brought into contact with each other through the conductive fine particles 45 by thermocompression bonding, and are electrically connected. Since each upper surface is flattened with high accuracy, a pair of semiconductor chips 41 can be easily connected without requiring high temperature and high pressure as in the prior art. Further, the resin of the resin layer 44 ensures adhesion and electrical connection between the pair of semiconductor chips 41 and contributes as an underfill for protecting the electrodes 42 and the like.
Thus, according to the second modification, instead of CMP, the surface of the fine Au bump 42 formed on the semiconductor chip 41 is flattened at low speed and at high speed without causing inconvenience such as dishing. It becomes possible to connect the Au bumps 42 in the semiconductor chip 41 easily and reliably. Thereby, the Au bumps 42 can be connected to each other without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with high yield. In addition, since the above-described cutting process is performed after cutting into individual semiconductor chips 41 from the semiconductor substrate, the step of controlling the TTV can be omitted, which contributes to a reduction in the number of steps.
[Fourth Embodiment]
Next, a fourth embodiment will be described. In the first embodiment, the case where bumps for external connection are formed on the semiconductor substrate is illustrated. However, in the present embodiment, the case where stud bumps using a wire bonding method are formed is disclosed.
14A to 14F are schematic cross-sectional views showing the method of manufacturing the semiconductor device according to the present embodiment in the order of steps.
First, as shown in FIGS. 14A and 14B, as in FIG. 1A, the back surface of the semiconductor substrate 51 on which the LSI semiconductor elements and electrode pads are formed at the element formation site is ground, and the thickness of the semiconductor substrate 51 is kept constant. Specifically, the TTV (difference between the maximum thickness and the minimum thickness of the substrate) is controlled to 1 μm or less.
Here, in the grinding step, after the back surface of the semiconductor substrate 51 is ground, a metal film, for example, an Al film is formed on the semiconductor substrate 51 by a sputtering method or the like, and this is patterned, so that the electrical connection locations The electrode pad 52 may be formed at a portion to be formed.
Subsequently, as shown in FIG. 14C, after a ball-shaped lump formed by melting the tip of an Au bonding wire having a diameter of 20 μm, for example, is bonded onto the electrode pad 52 by a wire bonding method using Au as a metal, The wire is torn off (pre-cut), and Au protrusions 53 are formed on the electrode pads 52. At this time, the height of each Au protrusion 53 from the electrode pad 52 is defined to be at least twice the diameter of the bonding wire, here about 60 μm. In this case, the height of the Au protrusion 53 actually varies, and it may be about 50 μm to 60 μm.
Subsequently, as shown in FIG. 14D, cutting is performed using a cutting tool 10 made of diamond or the like, and a flattening process is performed so that the upper surface of each Au protrusion 53 is continuously flat, thereby forming a stud bump 54. Here, the cutting position is set to a height of, for example, about 50 μm from the electrode pad 52. The cutting conditions are a cutting speed of 10 m / s, a feed per stroke of about 20 μm, and a 2 μm drive from the initial cutting position. As a result, as shown in FIG. 14E, the upper surface of the Au protrusion 53 is flattened into a mirror surface, and the stud bump 54 is formed.
This flattening method by cutting does not require a slurry or the like as compared with CMP, and the cutting tool, which is a cutting tool, is worn and polished so that it can be used repeatedly, so that the cost is low. The semiconductor substrate chucked on the chuck table is rotated at a high speed, and then the cutting tool is moved at a predetermined speed to cut an arbitrary cutting amount at a time. Therefore, it can be completed in 1 to 2 minutes per semiconductor substrate. There is a very high throughput method. When cutting with a bite, by making the cutting conditions appropriate, even when stud bump projections using Au bonding wire are cut at the tip of the projection, flattening without tilting or bending of the projection can be achieved. Is possible. However, if the hardness is 30 Hv or less, the protrusions may be inclined during cutting. Therefore, the hardness of the wire is preferably 30 Hv or more.
In the present embodiment, the end point of the cutting process is the time when the diameter of the cutting surface is equal to or greater than the wire diameter for all stud bumps. Normally, stud bumps vary greatly in height after pre-cutting, and it is difficult to confirm that the diameter of the cutting surface is equal to or greater than the wire diameter in all stud bumps. As a cutting method, it is appropriate to drive the cutting tool by 1 to 3 μm from the point where the cutting tool comes into contact with the highest bump and bring out the cutting surfaces of all the cutting tools. Is inefficient.
Therefore, in the present embodiment, as shown in FIG. 15A, as a method for detecting the end point, a detection apparatus including a laser transmitter 61 and a detector 62 is used to operate a laser beam on the upper surface of the stud bump 54 after cutting. A method of detecting the laser reflected by the upper surface with the detector 62 is adopted.
Then, as shown in FIG. 15B, the processing is repeated until the detected laser intensity reaches a predetermined intensity at all the Au protrusions 53. It is desirable that this detection device is installed behind the cutting tool in the traveling direction and proceeds in synchronization with the cutting tool. Since the upper surface (cutting surface) of the stud bump 54 is substantially a mirror surface, the laser beam or the like is totally reflected. When synchronized with the cutting tool, a delay is generated in proportion to the traveling speed of the cutting tool. Therefore, strictly speaking, not all reflected light is detected, but the cutting speed is 10 tens m / s at the fastest. Therefore, it can be considered that it is almost detected.
In the present embodiment, the laser transmitter 61 and the detector 62 moving in synchronization with the progress of the cutting tool from the rear part of the cutting tool are driven while measuring the intensity of the laser beam reflected from the upper surface of the flattened Au protrusion 53. For example, it was detected that the upper surfaces of all the Au protrusions 53 were exposed at a height of 46 μm, and the cutting was finished.
Here, as shown in FIG. 15C, when the cutting process is insufficient, or when the diameter of the cutting surface is equal to or less than the wire diameter, the laser light hitting a place other than the cutting surface is irregularly reflected, and the detector Not detected. Therefore, as shown in FIG. 15D, the detected laser light intensity is weaker than the surface cut to the same diameter as the bonding wire. When such a stud bump is confirmed even at one place, it is automatically driven further by about 1 μm to 2 μm and finally cut until a laser light intensity of a certain amount or more is detected in all the bumps. Thereby, connection failure due to uncut or insufficient cutting can be prevented, and the processing time can be greatly shortened.
Then, as shown in FIG. 14F, each semiconductor chip 55 is cut out from the semiconductor substrate 51, and the semiconductor chip 55 and the circuit board 56 are connected by, for example, a flip chip method. Specifically, the stud bump 54 whose surface is flattened on the semiconductor chip 55 and the electrode 57 formed on the surface of the circuit board 56 are brought into contact with each other, and both are bonded by pressure and heating. In this case, like the stud bump 54, the electrode 57 of the circuit board 56 is also preferably made to be flip-chip connected after being flattened by the above-described cutting process.
As described above, according to the present embodiment, instead of CMP, the surface of the fine stud bump 54 formed on the semiconductor substrate 51 is flattened at a low speed without causing any inconvenience such as dishing, The stud bump 54 can be easily and reliably connected. As a result, the bumps can be connected without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with high yield. Moreover, the height of the stud bump 54 after the flattening of the cutting can be made 1.5 times or more compared with the case where the wire diameter is not specified, and the stress on the semiconductor element can be relaxed, and the device life Can be extended. Furthermore, since the flat surface in cutting is equal to or greater than the wire diameter, it is possible to obtain a bonding strength that is twice or more even with the same wire diameter. In addition, when a bonding strength comparable to the conventional one is sufficient, the wire diameter can be reduced, so that the bump pitch can be reduced and the cost for the bonding wire can be reduced.
[Fifth Embodiment]
Next, a fifth embodiment will be described. Here, a semiconductor device by a so-called TAB bonding method is illustrated.
16 and 17 are schematic cross-sectional views illustrating the method for fabricating the semiconductor device according to the present embodiment.
In order to manufacture this semiconductor device, first, similarly to the first embodiment, the steps shown in FIGS. 1 and 2 are performed, and then on the electrode 71 of the semiconductor substrate 1 on which an LSI semiconductor element or the like is formed at the element formation site. In addition, bumps 3 having a uniform height and a flat top surface 3a are formed by cutting each Au protrusion 2 through the underlying metal film 72. Here, an insulating protective film 73 is formed around the bump 3 of the semiconductor substrate 1.
Subsequently, an electrical characteristic of the semiconductor element or the like of the semiconductor substrate 1 is inspected by bringing a probe into contact with the upper surface of the bump 3. Here, conventionally, since the probe is brought into contact with bump end surfaces and contaminated plating end surfaces at the time of the inspection, stable contact cannot be obtained, and the tip of the probe is caught and damaged at the uneven portion. There was also a trouble. On the other hand, in this embodiment, since the probe is brought into contact with the surface of the bump 3 highly flattened and cleaned by the above-described cutting process, the inspection can be performed in an extremely stable state.
Subsequently, after the individual semiconductor chips 21 are cut out from the semiconductor substrate 1, the semiconductor chips 21 are connected by the TAB bonding method as shown in FIG.
Specifically, the Au film 76 is formed of the copper foil 75 and is subjected to the surface treatment of Au, the portion located at one end corresponds to the connection site, and the resin layer 77 is provided at the other end. A TAB lead 74 is prepared. Then, the semiconductor chip 21 is placed and fixed on the bonding stage 80, and the Au film 76 at the connection portion of the TAB lead 74 is brought into contact with the flattened and cleaned upper surface of the bump 3 by the heater 78. Pressurize while heating to join them together. Here, the heating temperature may be a relatively low temperature of about 200 ° C., and the adhesion load can be reduced to about 2/3 of the conventional one, about 20 g. As a result, it is possible to connect TAB leads having a fine pitch of 40 μm or less without displacement.
Thereafter, as shown in FIG. 17, the semiconductor chip 21 is removed from the bonding stage 80, and a sealing resin 79 is formed so as to cover the surface of the semiconductor chip 21 including the connection portion between the bump 3 and the TAB lead 74. Complete the device.
In the present embodiment, the case where the plating bump is formed as the bump is exemplified, but the stud bump may be formed by a wire bonding method.
As described above, according to the present embodiment, instead of CMP, the surface of the fine bump 3 formed on the semiconductor substrate 1 is flattened at low speed and at high speed without causing inconvenience such as dishing. 3 can be connected easily and reliably. As a result, it is possible to reliably connect the bump and the lead terminal without requiring conditions such as high temperature and high pressure, and it is possible to manufacture a highly reliable TAB bonding type semiconductor device with a high yield.
[Sixth Embodiment]
Next, a sixth embodiment will be described. Here, when executing the above-described embodiments, an apparatus for executing the above-described cutting process and joining process for a pair of bases (here, a semiconductor chip and a circuit board by a flip chip method are illustrated). The configuration is disclosed.
FIG. 18 is a schematic diagram showing the semiconductor manufacturing apparatus according to the present embodiment.
This semiconductor manufacturing apparatus includes a chip introducing portion 81 for introducing a semiconductor chip having bumps formed on the surface, a circuit substrate introducing portion 82 for introducing a circuit substrate having electrodes formed on the surface, and the above-described bite. A cutting portion 83 for performing a step of flattening the bump surface of the semiconductor chip by cutting using a chip, and a bonding portion 84 for performing a step of bonding the semiconductor chip and the circuit board with the flattened bump and electrode. And a carry-out portion 85 for carrying out the joined and integrated semiconductor device, and further includes a cleaning holding portion 86 including the cutting portion 83 and the joint portion 84 in an inert atmosphere. Has been. Here, in the cutting part 83, not only the semiconductor chip but also the electrode surface of the circuit board may be flattened by cutting.
The cleaning holding portion 86 performs both the flattening process and the bonding process in a cleaning atmosphere, specifically in an inert atmosphere, for example, Ar or N 2 It has a function of maintaining in a gas phase not containing oxygen, or in an atmosphere containing oxygen of 1 atm or less. This makes it possible to maintain a flat state that is very close to the ideal relatively easily without adding a cleaning process using Ar plasma or the like immediately before the bonding process, and enables reliable bonding of bumps and electrodes. It becomes.
In the present embodiment, the flip chip mounting is exemplified. However, the present invention is not limited to this, and the present invention is also suitable for joining a semiconductor chip and a semiconductor wafer, semiconductor chips, or the like.

本発明によれば、CMPに替わり、基板上に形成された微細なバンプの表面を安価に高速で平坦化し、バンプ同士の接続を、ディッシング等の不都合を発生させることなく容易且つ確実に行うことが可能となる。  According to the present invention, instead of CMP, the surface of fine bumps formed on a substrate is flattened inexpensively and at high speed, and the bumps are connected easily and reliably without causing problems such as dishing. Is possible.

本発明は、基板の表面に外部と電気的接続を行うための微細なバンプを形成する方法、半導体装置及びその製造方法、並びに基板処理装置及び半導体製造装置に関する。   The present invention relates to a method for forming fine bumps for electrical connection to the outside on the surface of a substrate, a semiconductor device and a manufacturing method thereof, and a substrate processing apparatus and a semiconductor manufacturing apparatus.

従来、半導体基板の表面で外部と電気的接続を行うため微細な金属端子には、金(Au)バンプ等が用いられている。このAuバンプはメッキで形成されており、表面の粗さが大きい。このような金属端子を平坦化するためには、化学機械研磨(Chemical Mechanical Polishing:CMP)法が用いられている。この方法は、被加工面となる金属及び樹脂を予め比較的平坦に形成し、平坦な研磨パッドを押し当て、スラリー(化学的研磨材)を用いて化学的・機械的に表面を精緻に平坦加工するものである。予め設けられた硬い樹脂や金属面がストップ層となり、CMPは完了する。CMP法は、半導体基板の厚みのばらつきや半導体基板の最大厚みと最小厚みとの差で定義されるTTV(Total Thickness Variation)には依存しない方法である。   Conventionally, gold (Au) bumps or the like are used for fine metal terminals in order to make electrical connection with the outside on the surface of a semiconductor substrate. The Au bump is formed by plating and has a large surface roughness. In order to planarize such a metal terminal, a chemical mechanical polishing (CMP) method is used. In this method, a metal and a resin to be processed are formed in a relatively flat state in advance, a flat polishing pad is pressed against the surface, and the surface is precisely and mechanically flattened using a slurry (chemical abrasive). To be processed. The hard resin or metal surface provided in advance serves as a stop layer, and CMP is completed. The CMP method is a method that does not depend on TTV (Total Thickness Variation) defined by the variation in the thickness of the semiconductor substrate or the difference between the maximum thickness and the minimum thickness of the semiconductor substrate.

また、従来の表面の粗さが大きいAuバンプ等の接合には、その粗さが無くなるまで、荷重、熱、あるいは超音波等によりバンプへ負荷を与える実装方法が必要である。   In addition, the conventional bonding of Au bumps or the like having a large surface roughness requires a mounting method in which a load is applied to the bumps by a load, heat, ultrasonic waves, or the like until the roughness is eliminated.

CMP以外でも、例えば切削工具を用いた平坦化方法がいくつか案出されている(例えば特許文献1〜4参照)。しかしながら、いずれもLSI上における部分領域のSOG膜の平坦化を対象としたものであり、CMPと同様、被切削面を基準として切削する方法であって半導体基板のTTVには依存しない。また、バンプを切削して表面を露出させる方法(特許文献4参照)もあるが、これはLSI上に形成されたバンプ部分の平坦化を対象としており、被切削面を基準として切削する方法であって、半導体基板のTTVには依存しない。   In addition to CMP, for example, several planarization methods using a cutting tool have been devised (see, for example, Patent Documents 1 to 4). However, both are intended for flattening the SOG film in a partial region on the LSI, and, like CMP, are methods based on the surface to be cut and do not depend on the TTV of the semiconductor substrate. There is also a method of exposing the surface by cutting the bump (see Patent Document 4), but this is intended for flattening the bump portion formed on the LSI, and is a method of cutting based on the surface to be cut. Thus, it does not depend on the TTV of the semiconductor substrate.

特開平7−326614号公報JP 7-326614 A 特開平8−11049号公報JP-A-8-11049 特開平9−82616号公報Japanese Patent Laid-Open No. 9-82616 特開2000−173954号公報Japanese Patent Application Laid-Open No. 2000-173954

上述のように、微細な接続にはAuバンプが用いられているが、バンプ表面の粗さが大きいことで、それらのバンプ同士を接合するのは困難である。また、Auなどの金属と樹脂を同時にCMPを用いて平坦化する場合、金属と樹脂の研磨速度の違いに起因してディッシングと呼ばれる窪みが現れる。このディッシングにより、確実なバンプ接合を得るために、荷重、熱、あるいは超音波等の大きな負荷をバンプに与えることを要する。   As described above, Au bumps are used for fine connection, but it is difficult to join the bumps due to the large roughness of the bump surface. In addition, when a metal such as Au and a resin are simultaneously planarized using CMP, a recess called dishing appears due to a difference in polishing rate between the metal and the resin. In order to obtain reliable bump bonding by this dishing, it is necessary to apply a large load such as a load, heat, or ultrasonic waves to the bump.

本発明は、上記の課題に鑑みてなされたものであり、CMPに替わり、基板上に形成された微細なバンプの表面を安価に高速で平坦化し、バンプ同士の接続を、ディッシング等の不都合を発生させることなく容易且つ確実に行うことを可能とするバンプの形成方法及び高信頼性の半導体装置、その製造方法並びに半導体製造装置を提供することを目的とする。   The present invention has been made in view of the above problems, and instead of CMP, the surface of fine bumps formed on a substrate is flattened at low speed and at high speed, and the bumps are connected with each other with inconvenience such as dishing. It is an object of the present invention to provide a bump forming method, a highly reliable semiconductor device, a manufacturing method thereof, and a semiconductor manufacturing device that can be easily and reliably performed without being generated.

本発明のバンプの形成方法は、基板の表面に外部と電気的接続を行うためのバンプを形成する方法であって、前記基板の表面に、複数の前記バンプ及び前記バンプ間に絶縁膜を形成する工程と、バイトを用いた切削加工により、前記各バンプの表面及び前記絶縁膜の表面が連続して平坦となるように平坦化処理する工程と、前記絶縁膜を除去する工程とを含む。   The bump forming method of the present invention is a method of forming a bump for electrical connection to the outside on the surface of a substrate, and forming a plurality of the bumps and an insulating film between the bumps on the surface of the substrate A step of performing a flattening process so that the surface of each bump and the surface of the insulating film are continuously flattened by cutting using a cutting tool, and a step of removing the insulating film.

本発明の半導体装置は、それぞれ、外部と電気的接続を行うための複数のバンプが表面に形成されてなる一対の半導体基板を有しており、前記各バンプの表面が、バイトを用いた切削加工により前記各半導体基板上で連続して均一に平坦化されており、前記各半導体基板は、前記各バンプの平坦化された前記表面同士を対向させて接続し、一体化してなるものである。   Each of the semiconductor devices of the present invention has a pair of semiconductor substrates on which a plurality of bumps for electrical connection with the outside are formed, and the surface of each bump is cut using a cutting tool. Each of the semiconductor substrates is flattened continuously and uniformly by processing, and each of the semiconductor substrates is formed by connecting and planarizing the flattened surfaces of the bumps so as to be integrated. .

本発明の半導体装置の製造方法は、一対の半導体基板の各表面に、絶縁膜内に埋め込まれるように各バンプを形成する工程と、バイトを用いた切削加工により、前記各バンプの表面及び前記絶縁膜の表面が連続して平坦となるように平坦化処理する工程と、前記絶縁膜を除去する工程と、前記各半導体基板を、前記各バンプの平坦化された前記表面同士を対向させて接続し、一体化する工程とを含む。   The method for manufacturing a semiconductor device of the present invention includes a step of forming each bump so as to be embedded in an insulating film on each surface of a pair of semiconductor substrates, and a cutting process using a cutting tool. The step of planarizing the surface of the insulating film so as to be continuously flat, the step of removing the insulating film, and the respective semiconductor substrates, with the flattened surfaces of the respective bumps facing each other Connecting and integrating.

本発明のバンプの形成方法は、基板の表面に外部と電気的接続を行うためのバンプを形成する方法であって、前記基板の表面に、複数の前記バンプを形成する工程と、バイトを用いた切削加工により、前記複数のバンプの表面が連続して平坦となるように平坦化処理する工程とを含む。   The bump forming method of the present invention is a method for forming a bump for electrical connection to the outside on the surface of the substrate, wherein a plurality of bumps are formed on the surface of the substrate, and a cutting tool is used. And a step of flattening so that the surfaces of the plurality of bumps are continuously flat by cutting.

本発明の半導体装置の製造方法は、一対の半導体チップの各表面に、それぞれ複数の前記バンプを形成する工程と、バイトを用いた切削加工により、前記複数のバンプの表面が連続して平坦となるように平坦化処理する工程と、前記複数のバンプの表面が平坦化された前記一対の半導体チップを、前記各バンプ同士が対向するように接続して一体化する工程とを含む。   According to the method of manufacturing a semiconductor device of the present invention, the surface of the plurality of bumps is continuously flat by a step of forming the plurality of bumps on each surface of a pair of semiconductor chips and a cutting process using a cutting tool. And a step of connecting and integrating the pair of semiconductor chips in which the surfaces of the plurality of bumps are flattened so that the bumps face each other.

本発明の半導体装置は、それぞれ、外部と電気的接続を行うための複数のバンプが表面に形成されてなる一対の半導体チップを有しており、前記各バンプの表面が、バイトを用いた切削加工により前記各半導体チップ上で連続して均一に平坦化されており、前記各半導体チップは、前記各バンプの平坦化された前記表面同士を対向させて接続し、一体化してなるものである。   Each of the semiconductor devices of the present invention has a pair of semiconductor chips formed on the surface with a plurality of bumps for electrical connection with the outside, and the surface of each bump is cut using a cutting tool. Each of the semiconductor chips is flattened continuously and uniformly by processing, and the semiconductor chips are formed by connecting the flattened surfaces of the bumps facing each other and integrating them. .

本発明のバンプの形成方法は、半導体基板の表面に外部と電気的接続を行うためのバンプであり、ワイヤボンディング法を用いたスタッドバンプを形成する方法であって、前記半導体基板の表面の電気的接続箇所にボンディングワイヤを用いて複数の突起部を形成する工程と、バイトを用いた切削加工により、前記複数の突起部の上面が連続して平坦となるように平坦化処理し、前記スタッドバンプを形成する工程とを含む。   The bump forming method of the present invention is a bump for electrical connection to the surface of a semiconductor substrate, and is a method of forming a stud bump using a wire bonding method. Forming a plurality of protrusions using a bonding wire at a target connection location and cutting using a cutting tool so that the upper surfaces of the plurality of protrusions are continuously flattened, and the stud Forming a bump.

本発明の半導体装置は、外部と電気的接続を行うためのバンプであり、ワイヤボンディング法を用いた複数のスタッドバンプが表面に形成されてなる半導体チップを有しており、前記各スタッドバンプの上面が、バイトを用いた切削加工により前記半導体チップ上で連続して均一に平坦化されてなるものである。   The semiconductor device of the present invention is a bump for electrical connection with the outside, and has a semiconductor chip formed on the surface with a plurality of stud bumps using a wire bonding method. The upper surface is continuously flattened on the semiconductor chip by cutting using a cutting tool.

本発明の半導体装置の製造方法は、半導体基板の表面に複数のバンプを形成する工程と、バイトを用いた切削加工により、前記複数のバンプの表面が連続して平坦となるように平坦化処理する工程と、前記複数のバンプの表面が平坦化された前記半導体基板から、各半導体チップを切り出す工程と、前記半導体チップの前記バンプとリード端子の一端部とを接続する工程とを含む。   The method for manufacturing a semiconductor device according to the present invention includes a step of forming a plurality of bumps on a surface of a semiconductor substrate and a cutting process using a cutting tool so that the surfaces of the plurality of bumps are continuously flattened. A step of cutting out each semiconductor chip from the semiconductor substrate on which the surfaces of the plurality of bumps are flattened, and a step of connecting the bumps of the semiconductor chip and one end of a lead terminal.

本発明の半導体装置の製造方法は、半導体基板の表面の電気的接続箇所にワイヤボンディング法を用いた複数の突起部を形成する工程と、バイトを用いた切削加工により、前記複数の突起部の上面が連続して平坦となるように平坦化処理し、スタッドバンプを形成する工程と、複数のスタッドバンプの形成された前記半導体基板から、各半導体チップを切り出す工程と、前記半導体チップの前記スタッドバンプとリード端子の一端部とを接続する工程とを含む。   The method of manufacturing a semiconductor device according to the present invention includes a step of forming a plurality of protrusions using a wire bonding method at an electrical connection location on the surface of a semiconductor substrate, and a cutting process using a cutting tool. A step of flattening the upper surface continuously to be flat and forming a stud bump, a step of cutting each semiconductor chip from the semiconductor substrate on which a plurality of stud bumps are formed, and the stud of the semiconductor chip Connecting the bump and one end of the lead terminal.

本発明の半導体装置は、外部と電気的接続を行うための複数のバンプが表面に形成されてなる半導体チップを有しており、前記各バンプの表面が前記半導体チップ上で連続して均一に平坦化されており、前記半導体チップの前記バンプとリード端子の一端部とが接続され、一体化してなるものである。   The semiconductor device of the present invention has a semiconductor chip on which a plurality of bumps for electrical connection with the outside are formed, and the surface of each bump is continuously uniform on the semiconductor chip. The bumps of the semiconductor chip and one end of the lead terminal are connected and integrated.

本発明の半導体装置は、外部と電気的接続を行うための複数のバンプであり、ワイヤボンディング法を用いた複数のスタッドバンプが表面に形成されてなる半導体チップを有しており、前記各スタッドバンプの表面が前記半導体チップ上で連続して均一に平坦化されており、前記半導体チップの前記スタッドバンプとリード端子の一端部とが接続され、一体化してなるものである。   The semiconductor device of the present invention includes a plurality of bumps for electrical connection with the outside, and includes a semiconductor chip having a plurality of stud bumps formed on the surface using a wire bonding method. The surface of the bump is continuously flattened on the semiconductor chip, and the stud bump of the semiconductor chip and one end of the lead terminal are connected and integrated.

本発明の半導体装置の製造方法は、表面に複数の電極が形成された半導体チップを不活性雰囲気内に導入し、バイトを用いた切削加工により、前記複数の電極の表面が連続して平坦となるように平坦化処理する工程と、平坦化された前記複数の電極の表面が前記不活性雰囲気内で清浄に保たれた状態で、前記半導体チップの前記複数の電極と回路基板とを接続し、一体化する工程とを含む。   According to the method for manufacturing a semiconductor device of the present invention, a semiconductor chip having a plurality of electrodes formed on a surface thereof is introduced into an inert atmosphere, and the surface of the plurality of electrodes is continuously flat by cutting using a cutting tool. A step of planarizing so that the surfaces of the planarized electrodes are kept clean in the inert atmosphere, and the circuit board is connected to the plurality of electrodes of the semiconductor chip. And integrating them.

本発明の半導体製造装置は、バイトを有する切削加工手段と、導入された一対の基体を接合させる接合手段と、前記切削加工手段及び前記接合手段の環境を不活性雰囲気の状態に保つ不活性雰囲気手段とを含み、前記切削加工手段は、前記不活性雰囲気内において、表面に複数の電極が形成された前記一対の基体の少なくとも一方に対して、前記バイトを用いた切削加工により、前記複数の電極の表面が連続して平坦となるように平坦化処理する機能を有し、前記接合手段は、平坦化された前記複数の電極の表面が前記不活性雰囲気内で清浄に保たれた状態で、前記一対の基体を前記複数の電極で接続し、一体化する機能を有する。   The semiconductor manufacturing apparatus of the present invention includes a cutting means having a cutting tool, a joining means for joining a pair of introduced substrates, and an inert atmosphere that maintains the environment of the cutting means and the joining means in an inert atmosphere. The cutting means includes, in the inert atmosphere, cutting the plurality of the plurality of electrodes, wherein the plurality of electrodes are formed on the surface by cutting using the cutting tool. The bonding means has a function of flattening so that the surfaces of the electrodes are continuously flat, and the bonding means is in a state where the surfaces of the flattened electrodes are kept clean in the inert atmosphere. The pair of substrates are connected by the plurality of electrodes and integrated.

本発明の基板処理装置は、基板の表面に外部と電気的接続を行うためのバンプを形成する際の基板処理装置であって、平坦な支持面を有しており、基板をその一面で前記支持面に吸着させ、前記一面を強制的に平坦な基準面として支持固定する基板支持台と、前記基板の他面を切削加工するバイトとを含み、表面に複数の前記バンプ及び前記バンプ間に絶縁膜が形成されてなる基板を前記基板支持台に支持固定し、前記バイトを用いた切削加工により、前記各バンプの表面及び前記絶縁膜の表面が連続して平坦となるように平坦化処理する。   The substrate processing apparatus of the present invention is a substrate processing apparatus for forming bumps for electrical connection to the outside on the surface of the substrate, and has a flat support surface, and the substrate is disposed on the one surface thereof. A substrate support base that is adsorbed to a support surface and forcibly supports and fixes the one surface as a flat reference surface; and a cutting tool that cuts the other surface of the substrate. A substrate on which an insulating film is formed is supported and fixed on the substrate support, and the surface of each bump and the surface of the insulating film are continuously flattened by cutting using the cutting tool. To do.

本発明によれば、CMPに替わり、基板上に形成された微細なバンプの表面を安価に高速で平坦化し、バンプ同士の接続を、ディッシング等の不都合を発生させることなく容易且つ確実に行うことが可能となる。   According to the present invention, instead of CMP, the surface of fine bumps formed on a substrate is flattened inexpensively and at high speed, and the bumps are connected easily and reliably without causing problems such as dishing. Is possible.

−本発明の基本骨子−
初めに、本発明の基本骨子について説明する。
本発明者は、CMP法に替わり、基板上に形成された多数の微細バンプの表面を安価に高速で一斉に平坦化する手法として、バイトを用いた切削加工を適用することに想到した。この切削加工によれば、半導体基板上で絶縁膜内にバンプが埋め込み形成されているような場合でも、CMP法のように金属と絶縁物の研磨速度等に依存することなく、基板上で一斉に金属と絶縁物を連続して切削し、ディッシング等を発生せしめることなく全体的に両者を均一に平坦化することができる。銅、アルミニウム、ニッケル等の金属やポリイミド等の絶縁材料は、容易にバイトで切削可能な材料である。本発明では、バンプの金属材料及び絶縁材料としては、前者が延性金属であり、後者が例えば200GPa以上の剛性率を有する樹脂等であれば、好適である。
-Basic outline of the present invention-
First, the basic outline of the present invention will be described.
The present inventor has come up with the idea of applying cutting using a cutting tool as a technique for simultaneously flattening the surface of a large number of fine bumps formed on a substrate at a low cost and at a high speed instead of the CMP method. According to this cutting process, even when a bump is embedded in an insulating film on a semiconductor substrate, it does not depend on the polishing rate of the metal and the insulator as in the CMP method, and can be performed simultaneously on the substrate. In addition, the metal and the insulator can be continuously cut, and both can be uniformly flattened without causing dishing or the like. Metals such as copper, aluminum, and nickel, and insulating materials such as polyimide are materials that can be easily cut with a cutting tool. In the present invention, as the metal material and insulating material of the bump, it is preferable that the former is a ductile metal and the latter is a resin having a rigidity of, for example, 200 GPa or more.

この場合、上述の切削加工をバンプ表面の平坦化に利用するためには、切削を基板の背面(裏面)基準で行うことが好適である。一般的に、シリコン基板のTTVは、1μm〜5μmの範囲内にあり、LSIのプロセスでは5μm程度のTTVはフォトリソグラフィーに影響を与えることはなく、通常では考慮の対象外となる。しかしながら、切削加工の場合ではTTVの値に大きく影響される。切削による平坦精度はTTVの値以下にはならない。従って、切削加工を半導体基板の平坦化に用いる場合には、基板のTTVを目標の切削精度以下に制御することが先ず必要になる。   In this case, in order to use the above-described cutting process for the flattening of the bump surface, it is preferable to perform the cutting on the basis of the back surface (back surface) of the substrate. In general, the TTV of a silicon substrate is in the range of 1 μm to 5 μm. In the LSI process, a TTV of about 5 μm does not affect photolithography and is usually not considered. However, in the case of cutting, it is greatly influenced by the value of TTV. Flatness accuracy by cutting does not fall below the TTV value. Therefore, when cutting is used for flattening a semiconductor substrate, it is first necessary to control the TTV of the substrate to a target cutting accuracy or less.

本発明者は、上記の事情を勘案し、上述の切削加工をバンプ表面の平坦化に利用するに際して、当該平坦化を確実に行う具体的手法として、基板表面を基準にその裏面を研削し、半導体基板のTTVを目的とする切削精度以下に小さく抑えることに想到した。この場合、TTVを小さくして且つ個々の半導体基板の厚みばらつきも切削精度以下に抑えることが理想的である。しかしながら、TTVさえ小さくできれば、個々の半導体基板の厚みについては切削時に検出可能である。切削量は、この個々の半導体基板の厚みを検出することにより制御可能である。   In consideration of the above circumstances, the present inventor, when using the above-described cutting process for the flattening of the bump surface, as a specific method for reliably performing the flattening, grinding the back surface with respect to the substrate surface, The present inventors have conceived that the TTV of the semiconductor substrate is kept below the target cutting accuracy. In this case, it is ideal that the TTV is made small and the thickness variation of each semiconductor substrate is suppressed to below the cutting accuracy. However, as long as the TTV can be reduced, the thickness of each semiconductor substrate can be detected during cutting. The amount of cutting can be controlled by detecting the thickness of each individual semiconductor substrate.

バンプとしては、メッキ法により形成されるものの他、ワイヤボンディング法、即ちボンディングワイヤの先端を溶融して形成したボール状の塊を電極パッド上に圧着し、当該ワイヤを引きちぎることにより形成されたバンプ(以下、スタッドバンプと称する。) がある。   In addition to the bumps formed by plating, the bumps are formed by wire bonding, that is, bumps formed by melting the tip of the bonding wire on the electrode pad and tearing the wire. (Hereinafter referred to as a stud bump).

スタッドバンプを形成する場合、ボンディングワイヤの引きちぎりにより、ピン状の突起が形成されるため、かかる突起を平坦化する必要がある。本発明では、上述の切削加工による平坦化法をスタッドバンプにも適用する。この場合、ワイヤの引きちぎり(プレカット)時には各突起部の高さが異なり、最も低いバンプに揃えて平坦化することになるが、スタッドバンプの高さは高いほどデバイスへの応力を緩和し、デバイス寿命を延ばすことが可能であるため、各突起部の高さを規定することが必要である。本発明では、プレカット時の突起部の電極パッドからの高さをワイヤ径の2倍以上に規定し、切削加工の終点として、全てのスタッドバンプについて、切削面の径がワイヤ径と同等以上になった時点とする。これにより、切削平坦化後におけるスタッドバンプの高さを、ワイヤ径を規定しない場合に比べて1.5倍以上とすることができ、半導体素子への応力を緩和することが可能となり、デバイス寿命を延ばすことが可能となる。   When the stud bump is formed, a pin-shaped protrusion is formed by tearing of the bonding wire, and it is necessary to flatten the protrusion. In the present invention, the above-described flattening method by cutting is also applied to the stud bump. In this case, when the wire is torn (pre-cut), the height of each projection is different and flattened to align with the lowest bump, but the higher the stud bump height, the less stress on the device, Since the device life can be extended, it is necessary to define the height of each protrusion. In the present invention, the height from the electrode pad of the protruding portion at the time of pre-cut is specified to be twice or more of the wire diameter, and the cutting surface diameter is equal to or more than the wire diameter for all stud bumps as the end point of the cutting process. It becomes the time when it became. As a result, the height of the stud bump after the flattening of cutting can be made 1.5 times or more compared to the case where the wire diameter is not specified, and the stress on the semiconductor element can be relaxed, and the device life Can be extended.

そして、上述のようにTTVを制御し、切削加工により微細なバンプの表面を平坦化した後、半導体基板(ウェーハ)から半導体部品となる個々の半導体チップを切り出す。しかる後、平坦化された表面を有する半導体基板と半導体チップ、又は半導体チップ同士を、バンプを対向させて電気的に接続して接合する。このとき、対向するバンプの上面が共に高精度に平坦化されているため、従来のように高温・高圧等を要することなく容易に接合される。   And after controlling TTV as mentioned above and planarizing the surface of a fine bump by cutting, each semiconductor chip used as a semiconductor component is cut out from a semiconductor substrate (wafer). Thereafter, the semiconductor substrate having a planarized surface and the semiconductor chip, or the semiconductor chips are electrically connected with the bumps facing each other and bonded. At this time, since the upper surfaces of the opposing bumps are both flattened with high precision, they can be easily joined without requiring high temperature and high pressure as in the prior art.

ここで、本発明者は更に、対向するバンプ同士の接合を確実に実現するための具体的条件・状態を模索した。上述の接合時にもバンプを切削加工直後の平坦化状態に保つことが理想的であることに鑑み、切削加工直後の平坦化状態を可及的に保持するため、平坦化工程と接合工程を共に清浄化雰囲気、具体的には不活性雰囲気内で行うことに想到した。この点、接合工程の直前にArプラズマ等を用いた清浄化工程を付加することで対処することもできるが、工程数の増加を招くという欠点がある。本発明では、工程数の増加を招くことなく比較的容易に理想に極めて近い平坦化状態を維持することができ、バンプの確実な接合が可能となる。   Here, the inventor further sought specific conditions and states for reliably realizing the bonding between the bumps facing each other. Considering that it is ideal to keep the bumps in the flattened state immediately after the cutting process even during the above-mentioned bonding, both the flattening process and the bonding process are performed in order to keep the flattened state immediately after the cutting process as much as possible. It was conceived to carry out in a cleaning atmosphere, specifically in an inert atmosphere. Although this point can be dealt with by adding a cleaning step using Ar plasma or the like immediately before the bonding step, there is a drawback that the number of steps increases. In the present invention, a planarized state that is extremely close to the ideal can be maintained relatively easily without causing an increase in the number of steps, and the bumps can be reliably bonded.

本発明者は、本発明の他の態様として、この半導体チップの状態に着目する。即ち、ウェーハレベルでは、上述のように当該半導体基板のTTVが問題となるが、半導体チップなどの個片化されたものについては、そのサイズが小さいためにチップエリア内におけるTTVは、切削時には殆ど無視できる程度の影響しか受けない。   The inventor pays attention to the state of the semiconductor chip as another aspect of the present invention. In other words, at the wafer level, the TTV of the semiconductor substrate becomes a problem as described above. However, since the size of individual chips such as semiconductor chips is small, the TTV in the chip area is almost not at the time of cutting. Only a negligible influence is received.

そこで本発明者は、先ず半導体基板から各半導体チップを切り出した後、この半導体チップの状態で上述のバンプを用いた切削加工により微細なバンプの表面を平坦化することに想到した。そして、半導体チップ同士を、バンプを対向させて電気的に接続して接合する。これにより、TTVを制御する工程を省略できるとともに、容易にバンプ接合を行うことが可能となる。   Therefore, the present inventor has first conceived that after cutting each semiconductor chip from the semiconductor substrate, the surface of the fine bump is flattened by cutting using the above-described bump in the state of the semiconductor chip. Then, the semiconductor chips are joined by electrically connecting the bumps to each other. Thereby, the step of controlling the TTV can be omitted and the bump bonding can be easily performed.

また本発明では、上述した切削加工技術を、いわゆるTABボンディング法による半導体装置にも適用する。
通常、TAB接続は、メッキバンプ法による場合では、金メッキバンプに直接に金の表面処理を施された短冊状の銅箔リードを位置合わせして300℃以上に加熱し、1つのバンプ当たり30g以上の加圧圧着を必要とする。他方、スタッドバンプ法にいる場合では、予めスタッドバンプの形成された半導体チップを、ガラス板又は金属板に押し当て加熱し、スタッドバンプ先端を平坦に加工して用いることが必要である。
In the present invention, the above-described cutting technique is also applied to a semiconductor device using a so-called TAB bonding method.
Normally, when the TAB connection is based on the plating bump method, a strip-shaped copper foil lead subjected to gold surface treatment directly on the gold plating bump is aligned and heated to 300 ° C. or higher, and 30 g or more per bump. Requires pressure bonding. On the other hand, in the case of the stud bump method, it is necessary to heat a semiconductor chip on which a stud bump has been formed in advance by pressing it against a glass plate or a metal plate and processing the tip of the stud bump flatly.

メッキ終端面には、凹凸や表面に特有の金属的及び有機的汚染がある。また、チップ内でのメッキ高さのばらつきも数ミクロンのレベルで発生している。これらのメッキ終端面にTABボンディングする場合、高温と高荷重が必要になる。ボンディング時に高温になると微細なピッチのリードの接続では、銅とシリコンの熱膨張率の差が大きくなるため位置ずれが発生し易い。他方、スタッドバンプにおいては、高さにバラツキが大きく、形状も一定でないことから更に高温及び高荷重が必要であり、同様に微細ピッチの接続は難しい。   The plating end surface has irregularities and metallic and organic contamination peculiar to the surface. In addition, variations in the plating height within the chip occur at a level of several microns. When TAB bonding is performed on these plating end faces, high temperature and high load are required. When a high temperature is used during bonding, a difference in the thermal expansion coefficient between copper and silicon becomes large in connecting fine pitch leads, and thus misalignment is likely to occur. On the other hand, the stud bump has a large variation in height and the shape thereof is not constant, so that a higher temperature and a higher load are required, and it is difficult to connect fine pitches.

TABボンディング時の位置ずれを小さくするためには、温度を下げるとともに、銅のリード端子が同時にバンプに接触することが必要である。本発明では、バイトによる切削技術を用いメッキバンプ及びスタッドバンプの表面を切削加工により平坦化して清浄化を図り、これによりTABボンディング時の温度及び荷重を低減させ、微細ピッチのリードを位置ずれなく接続することが可能となる。   In order to reduce misalignment during TAB bonding, it is necessary to lower the temperature and simultaneously contact the copper lead terminals with the bumps. In the present invention, the surface of the plating bump and the stud bump is flattened by cutting using a cutting technique using a cutting tool, thereby reducing the temperature and load at the time of TAB bonding, and the fine pitch lead is not displaced. It becomes possible to connect.

−本発明の具体的な実施形態−
以下、上述した基本骨子を踏まえ、本発明の具体的な諸実施形態について図面を用いて詳細に説明する。
-Specific embodiment of the present invention-
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings based on the basic outline described above.

[第1の実施形態]
ここでは、基板としてシリコン半導体基板を例示し、この半導体基板上に外部と電気的接続を行うために設けられてなるバンプを形成する方法及びこの方法を用いた半導体装置及びその製造方法について開示する。
[First Embodiment]
Here, a silicon semiconductor substrate is exemplified as the substrate, and a method of forming bumps provided on the semiconductor substrate for electrical connection with the outside, a semiconductor device using the method, and a method of manufacturing the same are disclosed. .

(バンプの形成方法)
図1A〜図1D,図2A,図2Bは、本実施形態によるバンプの形成方法を工程順に示す概略断面図である。
(Bump formation method)
1A to 1D, 2A, and 2B are schematic cross-sectional views illustrating the bump forming method according to the present embodiment in the order of steps.

先ず、シリコン半導体基板1を用意し、基板表面1aの素子形成部位に所望のLSI半導体素子(不図示)を形成する。このように、素子形成部位にLSI半導体素子等の形成された半導体基板1について、以下で各工程を説明する。   First, a silicon semiconductor substrate 1 is prepared, and a desired LSI semiconductor element (not shown) is formed at an element formation site on the substrate surface 1a. Each step of the semiconductor substrate 1 on which the LSI semiconductor element or the like is formed in the element formation site will be described below.

図1Aに示すように、通常、シリコン半導体基板は、図示の如く厚みが一様ではなく、しかもうねりを伴う状態にある。そこで、半導体基板1の表面1aに後述するバイトを用いた切削加工を施すための前工程として、その裏面1bを平坦化する。   As shown in FIG. 1A, normally, the silicon semiconductor substrate is not uniform in thickness as shown in the figure, but is in a state accompanied by waviness. Therefore, the back surface 1b is flattened as a pre-process for cutting the surface 1a of the semiconductor substrate 1 using a cutting tool which will be described later.

具体的には、支持面が平坦とされた基板支持台(不図示)を用意し、この支持面に吸着、例えば真空吸着により表面1aを吸着させて半導体基板1を基板支持台に固定する。このとき、表面1aは支持面への吸着により強制的に平坦とされており、これにより表面1aが裏面1bの平坦化の基準面となる。この状態で、裏面1bを機械加工、ここでは機械研削し、裏面1bの凸部1cを研削除去して平坦化処理する。この場合、裏面1bの切削量を表面1aからの距離により制御することが好ましい。これにより、図1Bに示すように、半導体基板1の厚みが一定、具体的にはTTV(基板の最大厚みと最小厚みとの差)が所定値以下となるように、具体的にはTTVが1μm以下に制御されることになる。   Specifically, a substrate support base (not shown) having a flat support surface is prepared, and the semiconductor substrate 1 is fixed to the substrate support base by adsorbing the surface 1a to the support surface by, for example, vacuum adsorption. At this time, the surface 1a is forcibly flattened by adsorption to the support surface, and thus the surface 1a becomes a reference surface for flattening the back surface 1b. In this state, the back surface 1b is machined, here, mechanically ground, and the convex portion 1c of the back surface 1b is removed by grinding and flattened. In this case, it is preferable to control the cutting amount of the back surface 1b by the distance from the front surface 1a. As a result, as shown in FIG. 1B, the thickness of the semiconductor substrate 1 is constant, specifically, TTV (specifically, the difference between the maximum thickness and the minimum thickness of the substrate) is a predetermined value or less. It is controlled to 1 μm or less.

続いて、図1Cに示すように、半導体基板1を基板支持台から外し、半導体基板1の表面1a上に感光性樹脂、例えばフォトレジストを塗布し、このフォトレジストをフォトリソグラフィーにより加工して、所定のバンプパターン12aを有するレジストマスク12を形成する。   Subsequently, as shown in FIG. 1C, the semiconductor substrate 1 is removed from the substrate support, a photosensitive resin, for example, a photoresist is applied onto the surface 1a of the semiconductor substrate 1, and the photoresist is processed by photolithography. A resist mask 12 having a predetermined bump pattern 12a is formed.

続いて、レジストマスク12をマスクとして用い、例えば蒸着法により金属、例えば銅膜を形成し、メッキ電極(不図示)を形成した後、図1Dに示すように、メッキ電極をシードとしてメッキ法によりレジストマスク12の各バンプパターン12aを埋め込むように金(Au)を堆積させ、Au突起2を形成する。なお、Au以外にもCu,Ag,Ni,Sn又はこれらの合金等を用いて突起を形成しても良い。   Subsequently, using the resist mask 12 as a mask, for example, a metal, for example, a copper film is formed by an evaporation method, and a plating electrode (not shown) is formed. Then, as shown in FIG. Gold (Au) is deposited so as to embed each bump pattern 12a of the resist mask 12, and Au protrusions 2 are formed. In addition, you may form a protrusion using Cu, Ag, Ni, Sn or these alloys other than Au.

続いて、半導体基板1の表面1aにバイトを用いた切削加工を施し、平坦化する。
具体的には、図2Aに示すように、基板支持台11の支持面11aに例えば真空吸着により裏面1bを吸着させ、半導体基板1を基板支持台11に固定する。このとき、裏面1bへの図1Bの平坦化処理により半導体基板1の厚みが一定の状態とされており、更に裏面1bが支持面11aへの吸着により強制的にうねり等もない状態となり、これにより裏面1bが表面1aの平坦化の基準面となる。この状態で、表面1aにおける各Au突起2及びフォトレジスト12の表層を機械加工、ここではダイヤモンド等からなるバイト10を用いて切削加工し、各Au突起2及びレジストマスク12の表面が連続して平坦となるように平坦化処理する。これにより、Au突起2の上面が鏡面状に平坦化される。
Subsequently, the surface 1a of the semiconductor substrate 1 is subjected to a cutting process using a cutting tool and flattened.
Specifically, as shown in FIG. 2A, the back surface 1 b is adsorbed to the support surface 11 a of the substrate support table 11 by, for example, vacuum adsorption, and the semiconductor substrate 1 is fixed to the substrate support table 11. At this time, the thickness of the semiconductor substrate 1 is made constant by the flattening process of FIG. 1B on the back surface 1b, and the back surface 1b is not forcedly swelled by adsorption to the support surface 11a. Thus, the back surface 1b becomes a reference surface for flattening the front surface 1a. In this state, the surface layer of each Au protrusion 2 and the photoresist 12 on the surface 1a is machined, in this case using a cutting tool 10 made of diamond or the like, and the surface of each Au protrusion 2 and the resist mask 12 is continuously formed. A flattening process is performed so as to be flat. Thereby, the upper surface of the Au protrusion 2 is flattened into a mirror surface.

この切削加工による平坦化の結果を図3A,図3Bの顕微鏡写真の図及び模式図に示す。
切削加工前には、図3AのようにAu突起の表面は凹凸状であったのに対して、切削加工後には、図3Bに示すように、Au突起の表面が高精度に平坦化されていることが判る。
The results of planarization by this cutting process are shown in the micrographs and schematic diagrams of FIGS. 3A and 3B.
Before cutting, the surface of the Au protrusion was uneven as shown in FIG. 3A, whereas after cutting, the surface of the Au protrusion was flattened with high accuracy as shown in FIG. 3B. I know that.

続いて、図2Bに示すように、レジストマスク12を灰化処理等により除去する。このとき、半導体基板1の表面1a上には、高さが均一であり、各Au突起2が切削加工されて上面3aが一様に平坦化されてなるバンプ3が形成される。この半導体基板1を用い、例えばこれをチップ化した後、他の半導体基板4とバンプ3により電気的に接続する。   Subsequently, as shown in FIG. 2B, the resist mask 12 is removed by ashing or the like. At this time, on the surface 1 a of the semiconductor substrate 1, bumps 3 having a uniform height, each Au protrusion 2 being cut, and the upper surface 3 a being uniformly flattened are formed. Using this semiconductor substrate 1, for example, after making it into a chip, it is electrically connected to another semiconductor substrate 4 by bumps 3.

なお、本実施形態では、1枚の半導体基板について説明したが、ロットを構成する複数の半導体基板について本実施形態の各工程を実行し、各半導体基板の厚みを同一に均一化することが好適である。   In the present embodiment, a single semiconductor substrate has been described. However, it is preferable that the steps of the present embodiment be performed on a plurality of semiconductor substrates constituting a lot so that the thickness of each semiconductor substrate is made uniform. It is.

また、図2Aの平坦化工程において、図4A,図4Bに示すように、裏面1bを基準に半導体基板1の平行出しを行うとともに、表面1aの位置を検出し、検出された表面1aから削り量を算出して制御する。   Further, in the planarization process of FIG. 2A, as shown in FIGS. 4A and 4B, the semiconductor substrate 1 is parallelized with reference to the back surface 1b, and the position of the front surface 1a is detected and shaved from the detected front surface 1a. Calculate and control the amount.

具体的には、図4Aに示すように、表面1aの位置を検出する際に、半導体基板1の表面1aの周辺部位の複数箇所、ここでは例えば図4Bに示す3箇所A,B,Cにおけるレジストマスク12にレーザ光13を照射し、これらを加熱飛散させ、表面1aの一部を露出させることが好適である。   Specifically, as shown in FIG. 4A, when detecting the position of the surface 1a, a plurality of locations around the surface 1a of the semiconductor substrate 1, for example, three locations A, B, and C shown in FIG. It is preferable to irradiate the resist mask 12 with the laser beam 13 to heat and scatter these to expose a part of the surface 1a.

またこの場合、図5に示すように、表面1aの位置を検出する際に、半導体基板1を開口11bの形成された基板支持台11に吸着固定し、開口11bから裏面1bに赤外レーザ光を照射して、表面1aからの反射光を例えば赤外レーザ測定器14により測定するようにしても良い。   Further, in this case, as shown in FIG. 5, when detecting the position of the front surface 1a, the semiconductor substrate 1 is adsorbed and fixed to the substrate support 11 on which the opening 11b is formed, and infrared laser light is applied from the opening 11b to the back surface 1b. The reflected light from the surface 1a may be measured by, for example, the infrared laser measuring device 14.

(切削加工装置の構成)
ここで、上述した切削加工工程を実行するための具体的な装置構成を説明する。
図6は切削加工装置の構成を表したブロック図、図7は同様の概略構成図である。この切削加工装置は、半導体基板を収納する収納部101、半導体基板1を各処理部へ搬送するためのハンド部102、半導体基板1の位置決めを行うセンシング部103、切削時の半導体基板1をチャックするチャックテーブル部104、半導体基板1の平坦化切削を行う切削部105、切削後の洗浄を行う洗浄部106、そしてこれらをコントロールする制御部107を有して構成されている。チャックテーブル部104は、上述したように半導体基板1を載置固定する基板支持台(チャックテーブル)11を構成しており、切削部105はダイヤモンド等からなる切削工具である硬質のバイト10を有している。
(Configuration of cutting device)
Here, the specific apparatus structure for performing the cutting process mentioned above is demonstrated.
FIG. 6 is a block diagram showing the configuration of the cutting apparatus, and FIG. 7 is a similar schematic configuration diagram. The cutting apparatus includes a storage unit 101 for storing a semiconductor substrate, a hand unit 102 for transporting the semiconductor substrate 1 to each processing unit, a sensing unit 103 for positioning the semiconductor substrate 1, and a chuck for the semiconductor substrate 1 at the time of cutting. A chuck table 104, a cutting unit 105 for performing flattening cutting of the semiconductor substrate 1, a cleaning unit 106 for performing cleaning after cutting, and a control unit 107 for controlling them. As described above, the chuck table portion 104 constitutes the substrate support (chuck table) 11 on which the semiconductor substrate 1 is placed and fixed, and the cutting portion 105 has a hard bit 10 that is a cutting tool made of diamond or the like. is doing.

次に、切削加工工程のフローについて、図7及び図8を用いて説明する。
先ず、半導体基板1が収納された収納部101の収納カセット111から、ハンド部102の搬送ハンドが半導体基板1を取り出す。収納部101にはエレベータ機構があり、搬送ハンドの半導体基板1の取り出し高さまで昇降する。次に搬送ハンドが半導体基板をバキューム吸着し、センシング部103へ搬送する。搬送ハンドは、Θ3軸とZ軸のスカラー型ロボットになっており、各処理部へ容易にハンドリングすることができる。ロボットの機構はこの限りではなく、XY軸直行型でも良い。
Next, the flow of the cutting process will be described with reference to FIGS.
First, the transport hand of the hand unit 102 takes out the semiconductor substrate 1 from the storage cassette 111 of the storage unit 101 in which the semiconductor substrate 1 is stored. The storage unit 101 has an elevator mechanism that moves up and down to the height at which the semiconductor substrate 1 of the transport hand is taken out. Next, the transport hand vacuum-sucks the semiconductor substrate and transports it to the sensing unit 103. The transport hand is a Θ3-axis and Z-axis scalar robot, and can be easily handled by each processing unit. The robot mechanism is not limited to this, and may be an XY axis orthogonal type.

センシング部103では、回転テーブル112により半導体基板1を360°回転させ、その半導体基板1の外周をCCDカメラ111で撮像し、その結果を制御部107の演算部で処理して半導体基板1のセンター位置を算出する。   In the sensing unit 103, the semiconductor substrate 1 is rotated 360 ° by the rotary table 112, the outer periphery of the semiconductor substrate 1 is imaged by the CCD camera 111, and the result is processed by the arithmetic unit of the control unit 107 and the center of the semiconductor substrate 1 is processed. Calculate the position.

次に、搬送ハンドは、その結果を元に、位置を補正して半導体基板1をチャックテーブル部104へ搬送し、チャックテーブル11はバキュームによってこれを固定する。このチャックテーブル11が加工の基準面となる。従って固定時及び加工時の平面精度を保つため、チャック面は多穴質の材料を使用して半導体基板1を全面チャックする構造が好ましい。材質は金属系、セラミック系、樹脂系などを用いる。チャックされた半導体基板1と対向して投光部114である光センサ部が配置され、受光部115であるカメラ部と共に半導体基板1の寸法を測定及び演算し、その結果を切削部105のX軸駆動部へフィードバックし、切削するための移動量を指令する。   Next, based on the result, the transport hand corrects the position and transports the semiconductor substrate 1 to the chuck table unit 104, and the chuck table 11 is fixed by vacuum. This chuck table 11 serves as a processing reference surface. Therefore, in order to maintain the flatness accuracy during fixing and processing, the chuck surface preferably has a structure in which the semiconductor substrate 1 is chucked over the entire surface using a multi-hole material. The material is metal, ceramic, or resin. An optical sensor unit that is a light projecting unit 114 is arranged to face the chucked semiconductor substrate 1, and the dimensions of the semiconductor substrate 1 are measured and calculated together with the camera unit that is the light receiving unit 115, and the result is calculated as X of the cutting unit 105. Feedback to the shaft drive unit and command the amount of movement for cutting.

切削面が配線形成面の場合、具体的には図4に示すように、レーザ光を照射し、レジストマスクを加熱飛散させ、表面を露出させることが好ましい。そして図5に示すように、赤外レーザ光を利用した透過型センサを利用して位置を計測する。そして、そこで演算された結果を元に、実際に切削を行うバイト10が搭載されたテーブルがX方向に移動し、切削を開始する。ここで使用するバイト10は、ダイヤモンド等からなる。このようにして設定寸法までの切削を完了する。   When the cutting surface is a wiring forming surface, specifically, as shown in FIG. 4, it is preferable to irradiate a laser beam to heat and scatter the resist mask to expose the surface. And as shown in FIG. 5, a position is measured using the transmissive | pervious sensor using an infrared laser beam. Then, based on the result calculated there, the table on which the cutting tool 10 that actually performs cutting moves in the X direction and starts cutting. The cutting tool 10 used here is made of diamond or the like. In this way, the cutting to the set dimension is completed.

次に、搬送ハンドがチャックテーブル11から半導体基板1を取り出し、洗浄部へと搬送する。洗浄部105では半導体基板1をバキューム固定して回転させながら、洗浄水により加工後の表面残留異物を洗い流す。その後、エアブローしながら高速回転させ、洗浄水を吹き飛ばしながら乾燥させる。乾燥が完了したら、再び搬送ハンドが半導体基板1を取り出し、最後に収納部101の収納カセット111に収納する。   Next, the transport hand takes out the semiconductor substrate 1 from the chuck table 11 and transports it to the cleaning unit. In the cleaning unit 105, the semiconductor substrate 1 is vacuum fixed and rotated, and the processed surface residual foreign matter is washed away with cleaning water. After that, it is rotated at a high speed while blowing air, and is dried while blowing off cleaning water. When the drying is completed, the transport hand takes out the semiconductor substrate 1 again and finally stores it in the storage cassette 111 of the storage unit 101.

以上の各工程を、先ずバンプ及びバンプ間に絶縁膜が形成されている面を基準として裏面を切削し、その後、裏面を基準として各バンプの表面及び絶縁膜の表面を切削という処理を行い、平坦化処理を完了する。   For each of the above steps, first, the back surface is cut on the basis of the bump and the surface on which the insulating film is formed between the bumps, and then the surface of each bump and the surface of the insulating film are cut on the back surface as a reference, Complete the planarization process.

(半導体装置及びその製造方法)
次に、上述したバンプの形成方法を実行する半導体製造装置を用いて、半導体装置を製造する方法について説明する。なおここでは、半導体装置の構成をその製造方法と共に述べる。
図9A〜図9Cは、本実施形態による半導体装置の製造方法を工程順に示す概略平面図である。
(Semiconductor device and manufacturing method thereof)
Next, a method of manufacturing a semiconductor device using a semiconductor manufacturing apparatus that executes the above-described bump forming method will be described. Here, the configuration of the semiconductor device is described together with the manufacturing method thereof.
9A to 9C are schematic plan views showing the method for manufacturing the semiconductor device according to the present embodiment in the order of steps.

先ず、図1及び図2で説明した各工程を経て、LSI素子等が搭載され、バイトを用いた切削加工により上面3aの平坦化されたバンプ3を有する半導体基板1から、図9Aに示すように、各半導体チップ21を切り出す。   First, through each step described in FIGS. 1 and 2, an LSI element or the like is mounted, and a semiconductor substrate 1 having bumps 3 whose upper surface 3a is flattened by cutting using a cutting tool is shown in FIG. 9A. Then, each semiconductor chip 21 is cut out.

続いて、図9Bに示すように、バイトを用いた切削加工により上面の平坦化されたバンプ3を有する半導体基板22を用意し、この半導体基板22上に、各半導体チップ21をバンプ3の平坦化された上面3a同士で電気的に接続する。具体的には、半導体基板22と半導体チップ21aとを上面3a同士で対向するように配置し、室温〜350℃、ここでは170℃程度で圧着させ、接続する。各上面3aは共に高精度に平坦化されているため、従来のように高温・高圧等を要することなく、半導体基板22と半導体チップ21とを容易に接続することができる。   Subsequently, as shown in FIG. 9B, a semiconductor substrate 22 having bumps 3 whose upper surfaces are flattened by cutting using a cutting tool is prepared, and each semiconductor chip 21 is flattened on the semiconductor substrate 22. The formed upper surfaces 3a are electrically connected to each other. Specifically, the semiconductor substrate 22 and the semiconductor chip 21a are disposed so as to face each other on the upper surface 3a, and are bonded by pressure bonding at room temperature to 350 ° C., here about 170 ° C. Since each upper surface 3a is flattened with high accuracy, the semiconductor substrate 22 and the semiconductor chip 21 can be easily connected without requiring high temperature and high pressure as in the prior art.

そして、図9Cに示すように、半導体チップ21の接続された半導体基板22から半導体チップ23毎に切り出し、ワイヤボンディング法(ワイヤ25を用いた接続)等の工程を経て、基板24上に半導体チップ23を搭載し、半導体装置を完成させる。   Then, as shown in FIG. 9C, each semiconductor chip 23 is cut out from the semiconductor substrate 22 to which the semiconductor chip 21 is connected, and the semiconductor chip is formed on the substrate 24 through a process such as a wire bonding method (connection using the wire 25). 23 is mounted to complete the semiconductor device.

以上説明したように、本実施形態によれば、CMPに替わり、半導体基板1上に形成された微細なバンプ3の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、バンプ3の接続を容易且つ確実に行うことが可能となる。これにより、バンプ3同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。   As described above, according to the present embodiment, instead of CMP, the surface of the fine bump 3 formed on the semiconductor substrate 1 is flattened at low speed and at high speed without causing inconvenience such as dishing. 3 can be connected easily and reliably. As a result, the bumps 3 can be connected to each other without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with high yield.

[第2の実施形態]
次に、第2の実施形態について説明する。第1の実施形態では、バンプ材料としてAuを例示したが、本実施形態ではニッケル(Ni)を用いる場合を例示する。
図10A〜図10Fは、本実施形態によるバンプの形成方法を工程順に示す概略断面図である。
[Second Embodiment]
Next, a second embodiment will be described. In the first embodiment, Au is exemplified as the bump material. However, in this embodiment, a case where nickel (Ni) is used is illustrated.
10A to 10F are schematic cross-sectional views illustrating the bump forming method according to the present embodiment in the order of steps.

先ず、第1の実施形態の図1A,Bと同様の工程を経て、半導体基板1を裏面研削し、TTLを所定値以下、具体的には1μm以下に制御する。
この半導体基板1を用い、図10Aに示すように、半導体基板1の表面アルミニウム系金属からなる電極31をパターン形成した後、この電極31に無電解メッキ法によりニッケルリンメッキ膜32を膜厚5μm〜10μm程度に形成する。
First, through the same steps as in FIGS. 1A and 1B of the first embodiment, the semiconductor substrate 1 is ground on the back surface, and the TTL is controlled to a predetermined value or less, specifically to 1 μm or less.
Using this semiconductor substrate 1, as shown in FIG. 10A, after patterning an electrode 31 made of an aluminum metal on the surface of the semiconductor substrate 1, a nickel phosphor plating film 32 is formed on the electrode 31 by an electroless plating method to a thickness of 5 μm. It is formed to about 10 μm.

ニッケルリンメッキ膜32は、汎用の無電解メッキ法によって、ニッケル−リン、ニッケル−リン−ホウ素、ニッケル−ホウ素などを用いて形成する。例えば、ニッケル−リン合金は次亜リン酸浴(次亜リン酸ナトリウムまたは次亜リン酸カリウム)で形成し、ニッケル−ホウ素合金は水素化ホウ素ナトリウム浴またはジメチルアミノボランを用い弱酸性浴または中性浴で形成し、ニッケル−リン−ホウ素合金は中性浴で形成する。   The nickel phosphorous plating film 32 is formed using nickel-phosphorus, nickel-phosphorus-boron, nickel-boron or the like by a general electroless plating method. For example, a nickel-phosphorus alloy is formed with a hypophosphite bath (sodium hypophosphite or potassium hypophosphite), and a nickel-boron alloy is a weakly acidic bath or medium using a sodium borohydride bath or dimethylaminoborane. The nickel-phosphorus-boron alloy is formed with a neutral bath.

ここで、ニッケルリン系無電解メッキでは、上述した如何なる合金系を選択しても、ニッケルリンメッキ膜32の表層に機械的な脆弱層であるリン濃縮層33が形成される。半田バンプ形成後、このリン濃縮層が原因となりメッキと半田バンプとの界面強度が低下する。このリン濃縮層の厚みは、20nm〜40nm程度であり、メッキ浴中のリン含有率が高くなるほど厚くなる。   Here, in nickel-phosphorus electroless plating, a phosphorus-enriched layer 33 that is a mechanical fragile layer is formed on the surface layer of the nickel-phosphorous plating film 32 regardless of which alloy system is selected. After the formation of the solder bump, the phosphorus concentrated layer causes the interface strength between the plating and the solder bump to decrease. The thickness of this phosphorus concentration layer is about 20 nm to 40 nm, and becomes thicker as the phosphorus content in the plating bath increases.

また、このリン濃縮層は下地の材料(ガラス基板、鉄基板、アルミニウム基板)によらず、またメッキの厚みに依らず生成される。また、例えば特許文献6で記載されているようなニッケル系無電解メッキを半田融点以上のアニール処理をしても、表層には必ずリン濃縮層が生成される。リン濃縮層を除去しなければ、高信頼性のあるメッキ被膜と半田バンプの形成は困難である。   In addition, this phosphorus-enriched layer is generated regardless of the underlying material (glass substrate, iron substrate, aluminum substrate) and regardless of the plating thickness. Further, even if nickel-based electroless plating as described in Patent Document 6, for example, is annealed to a temperature higher than the solder melting point, a phosphorus-enriched layer is always generated on the surface layer. Unless the phosphorus-enriched layer is removed, it is difficult to form a highly reliable plating film and solder bump.

これらの問題について、半田材料に銅を添加することにより、銅−ニッケル−錫系の化合物層が形成され、そのバリア効果によりリン濃縮層の形成を抑制する方法がある。ところが、Auメッキ厚が500nm以上ではリン濃縮層が形成されるなど、Auメッキ厚の制約や、半田材料の選択性が狭まるという問題点がある。   Regarding these problems, there is a method in which a copper-nickel-tin compound layer is formed by adding copper to the solder material, and the formation of a phosphorus-enriched layer is suppressed by its barrier effect. However, when the Au plating thickness is 500 nm or more, there is a problem that the limitation of the Au plating thickness and the selectivity of the solder material are narrowed, such as the formation of a phosphorus concentrated layer.

そこで本例では、ニッケルリンメッキ膜32の切削加工による平坦化時に、同時にこのリン濃縮層33を除去する。
具体的には、先ず図10Bに示すように、基板表面を覆うように保護膜34として液状レジストを被覆し、後述の切削加工による物理的衝撃の緩和層とする。保護膜34は、回転塗布等で10μm〜15μm程度の厚みに塗布し、キュアすることにより形成する。
Therefore, in this example, at the time of flattening the nickel phosphorus plating film 32 by cutting, the phosphorus concentrated layer 33 is removed at the same time.
Specifically, as shown in FIG. 10B, first, a liquid resist is coated as a protective film 34 so as to cover the substrate surface to form a physical impact mitigation layer by a cutting process described later. The protective film 34 is formed by applying and curing to a thickness of about 10 μm to 15 μm by spin coating or the like.

その後、図2Aと同様、基板支持台の支持面に例えば真空吸着により裏面を吸着させ、半導体基板1を基板支持台に固定する。このとき、裏面1bへの図1Bの平坦化処理により半導体基板1の厚みが一定の状態とされており、更に裏面1bが支持面11aへの吸着により強制的にうねり等もない状態となり、これにより裏面1bが表面1aの平坦化の基準面となる。この状態で、図10Cに示すように、表面1aにおける各ニッケルリンメッキ膜32及び保護膜34の表層を機械加工、ここではダイヤモンド等からなるバイトを用いて切削加工し、ニッケルリンメッキ膜32のリン濃縮層33を除去するとともに、ニッケルリンメッキ膜32及び保護膜34の表面が連続して平坦となるように平坦化処理する。切削量は、リン濃縮層33を確実に除去できる1μm〜2μm程度とする。   Thereafter, as in FIG. 2A, the back surface is adsorbed on the support surface of the substrate support table by, for example, vacuum suction, and the semiconductor substrate 1 is fixed to the substrate support table. At this time, the thickness of the semiconductor substrate 1 is made constant by the flattening process of FIG. 1B on the back surface 1b, and the back surface 1b is not forcedly swelled by adsorption to the support surface 11a. Thus, the back surface 1b becomes a reference surface for flattening the front surface 1a. In this state, as shown in FIG. 10C, the surface layers of the nickel phosphorous plating film 32 and the protective film 34 on the surface 1a are machined, and in this case, cutting is performed using a cutting tool made of diamond or the like. The phosphorus concentration layer 33 is removed, and a flattening process is performed so that the surfaces of the nickel phosphorus plating film 32 and the protective film 34 are continuously flat. The cutting amount is set to about 1 μm to 2 μm so that the phosphorus concentrated layer 33 can be reliably removed.

続いて、必要に応じて、図10Dに示すように、無電解メッキ法により、ニッケルリンメッキ膜32上に金メッキ膜35を形成する。金メッキ膜35の厚みは30nm〜50nm程度が好ましい。   Subsequently, as shown in FIG. 10D, a gold plating film 35 is formed on the nickel phosphorous plating film 32 by an electroless plating method as necessary. The thickness of the gold plating film 35 is preferably about 30 nm to 50 nm.

続いて、図10Eに示すように、保護膜34を灰化処理等により除去する。このとき、半導体基板1の表面1a上には、高さが均一であり、切削加工により上面が一様に平坦化され、金メッキ膜35が形成されてなるバンプ36が形成される。   Subsequently, as shown in FIG. 10E, the protective film 34 is removed by ashing or the like. At this time, on the surface 1 a of the semiconductor substrate 1, bumps 36 are formed which are uniform in height, are uniformly flattened by cutting, and are formed with a gold plating film 35.

そして、必要に応じて、図10Fに示すように、バンプ36上に半田バンプ37を形成する。この半田バンプ37は、スクリーン印刷、半田ボール法、溶融等により形成する。半田の材質としては、鉛を含まない、スズ−銀系、スズ−亜鉛系、等の半田を用いることが望ましい。   Then, as necessary, solder bumps 37 are formed on the bumps 36 as shown in FIG. 10F. The solder bumps 37 are formed by screen printing, a solder ball method, melting, or the like. As a material for the solder, it is desirable to use a lead-free solder such as tin-silver or tin-zinc.

その後、フルカットダイシングにより半導体基板1を分割して半導体チップを切り出し、第1の実施形態と同様に半導体装置を完成させる。   Thereafter, the semiconductor substrate 1 is divided by full-cut dicing to cut out a semiconductor chip, and the semiconductor device is completed as in the first embodiment.

以上説明したように、本実施形態によれば、CMPに替わり、半導体基板1上に形成されたニッケルのバンプ36の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、これにより、バンプ36同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。しかも、バンプ36と半田バンプ37との接合部位における信頼性を低下させるリン濃縮層34を低コストで完全に除去できるため、上面が平坦化されたバンプ36上に半田バンプ37を確実に形成することが可能となる。   As described above, according to the present embodiment, instead of CMP, the surface of the nickel bump 36 formed on the semiconductor substrate 1 is flattened at low speed and at high speed without causing inconvenience such as dishing. Therefore, it is possible to connect the bumps 36 without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with a high yield. In addition, since the phosphorus-enriched layer 34 that lowers the reliability at the joint portion between the bump 36 and the solder bump 37 can be completely removed at low cost, the solder bump 37 is reliably formed on the bump 36 whose upper surface is flattened. It becomes possible.

[第3の実施形態]
次に、第3の実施形態について説明する。第1の実施形態では、半導体基板に多数の半導体チップを接合する場合について例示したが、本実施形態では半導体チップの状態で上述の平坦化処理を実行し、この半導体チップ同士を接合する場合について開示する。
図11A,図11Bは、本実施形態による半導体装置の製造方法を工程順に示す概略断面図である。
[Third Embodiment]
Next, a third embodiment will be described. In the first embodiment, the case where a large number of semiconductor chips are bonded to the semiconductor substrate is illustrated. However, in the present embodiment, the above-described planarization process is performed in the state of the semiconductor chip, and the semiconductor chips are bonded to each other. Disclose.
11A and 11B are schematic cross-sectional views showing the method of manufacturing the semiconductor device according to the present embodiment in the order of steps.

先ず、図11Aに示すように、第1の実施形態の裏面研削をすることなく、LSI素子等が搭載され、高さの異なる(未だ高さにバラツキのある)複数のバンプ、ここではAuバンプ42が形成されてなる半導体基板から、個々の半導体チップ41を切り出す。   First, as shown in FIG. 11A, a plurality of bumps, which are mounted with LSI elements and have different heights (there are still variations in height), here Au bumps, without the back surface grinding of the first embodiment. Individual semiconductor chips 41 are cut out from the semiconductor substrate on which 42 is formed.

続いて、半導体チップ41の表層を機械加工、ここでは第1の実施形態と同様にダイヤモンド等からなるバイトを用いて切削加工し、各Auバンプ42の表面が連続して平坦となるように平坦化処理する。これにより、各Auバンプ42の高さが均一化されるとともに、上面が鏡面状に平坦化される。   Subsequently, the surface layer of the semiconductor chip 41 is machined. Here, the surface of each Au bump 42 is flattened by cutting using a cutting tool made of diamond or the like as in the first embodiment. Process. Thereby, the height of each Au bump 42 is made uniform, and the upper surface is flattened into a mirror surface.

続いて、図11Bに示すように、一対の半導体チップ41を対向させ、Auバンプ42の平坦化された上面同士で両者を電気的に接続する。具体的には、一対の半導体チップ41を上面同士で対向するように配置し、室温〜350℃、ここでは170℃程度で圧着させ、接続する。各上面は共に高精度に平坦化されているため、従来のように高温・高圧等を要することなく、一対の半導体チップ41を容易に接続することができる。   Subsequently, as shown in FIG. 11B, the pair of semiconductor chips 41 are opposed to each other, and the two flattened upper surfaces of the Au bumps 42 are electrically connected to each other. Specifically, a pair of semiconductor chips 41 are arranged so as to face each other, and are bonded by pressure bonding at room temperature to 350 ° C., here about 170 ° C. Since each upper surface is flattened with high accuracy, a pair of semiconductor chips 41 can be easily connected without requiring high temperature and high pressure as in the prior art.

このように、本実施形態によれば、CMPに替わり、半導体チップ41上に形成された微細なAuバンプ42の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、一対の半導体チップ41におけるAuバンプ42の接続を容易且つ確実に行うことが可能となる。これにより、Auバンプ42同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。しかも、半導体基板から個々の半導体チップ41に切り出した後に上述の切削加工を実行するため、TTVを制御する工程を省略することができ、工程数削減に寄与する。   As described above, according to the present embodiment, instead of CMP, the surface of the fine Au bump 42 formed on the semiconductor chip 41 is flattened at low speed and at high speed without causing inconvenience such as dishing. It becomes possible to connect the Au bumps 42 in the semiconductor chip 41 easily and reliably. Thereby, the Au bumps 42 can be connected to each other without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with high yield. In addition, since the above-described cutting process is performed after cutting into individual semiconductor chips 41 from the semiconductor substrate, the step of controlling the TTV can be omitted, which contributes to a reduction in the number of steps.

[変形例1]
ここで、本実施形態の変形例1について説明する。
図12A〜図12Cは、変形例1による半導体装置の製造方法を工程順に示す概略断面図である。
[Modification 1]
Here, the modification 1 of this embodiment is demonstrated.
12A to 12C are schematic cross-sectional views illustrating a method for manufacturing a semiconductor device according to Modification 1 in the order of steps.

先ず、図12Aに示すように、第1の実施形態の裏面研削をすることなく、LSI素子等が搭載され、高さの異なる(未だ高さにバラツキのある)複数のバンプ、ここではAuバンプ42が形成されてなる半導体基板から、個々の半導体チップ41を切り出す。   First, as shown in FIG. 12A, a plurality of bumps, which are mounted with LSI elements and having different heights (there are still variations in height), here Au bumps, without grinding the back surface of the first embodiment. Individual semiconductor chips 41 are cut out from the semiconductor substrate on which 42 is formed.

続いて、半導体チップ41の表面にAuバンプ42を埋め込むように絶縁材からなる樹脂層43を形成する。なお、半導体基板の状態でAuバンプ42を埋め込むように樹脂層43を形成した後、個々の半導体チップ41を切り出すようにしても良い。   Subsequently, a resin layer 43 made of an insulating material is formed so as to embed Au bumps 42 on the surface of the semiconductor chip 41. In addition, after forming the resin layer 43 so as to embed the Au bumps 42 in the state of the semiconductor substrate, the individual semiconductor chips 41 may be cut out.

続いて、図12Bに示すように、半導体チップ41の表層を機械加工、ここでは第1の実施形態と同様にダイヤモンド等からなるバイトを用いて切削加工し、各Auバンプ42の表面及び樹脂層43の表面が連続して平坦となるように平坦化処理する。これにより、各Auバンプ42の高さが均一化されるとともに、上面が鏡面状に平坦化される。   Subsequently, as shown in FIG. 12B, the surface layer of the semiconductor chip 41 is machined, here, similarly to the first embodiment, cutting is performed using a cutting tool made of diamond or the like, and the surface of each Au bump 42 and the resin layer The surface of 43 is flattened so as to be continuously flat. Thereby, the height of each Au bump 42 is made uniform, and the upper surface is flattened into a mirror surface.

続いて、一対の半導体チップ41を対向させ、Auバンプ42及び樹脂層43の平坦化された上面同士で両者を電気的に接続する。具体的には、一対の半導体チップ41を上面同士で対向するように配置し、室温〜350℃、ここでは170℃程度で圧着させ、接続する。各上面は共に高精度に平坦化されているため、従来のように高温・高圧等を要することなく、一対の半導体チップ41を容易に接続することができる。更に、樹脂膜43が一対の半導体チップ41の接合を確実にするとともに、電極42等を保護するアンダーフィルとして寄与する。   Subsequently, the pair of semiconductor chips 41 are made to face each other, and the Au bumps 42 and the resin layer 43 are electrically connected to each other on the flattened upper surfaces. Specifically, a pair of semiconductor chips 41 are arranged so as to face each other, and are bonded by pressure bonding at room temperature to 350 ° C., here about 170 ° C. Since each upper surface is flattened with high accuracy, a pair of semiconductor chips 41 can be easily connected without requiring high temperature and high pressure as in the prior art. Further, the resin film 43 ensures the bonding of the pair of semiconductor chips 41 and contributes as an underfill for protecting the electrodes 42 and the like.

このように、本変形例1によれば、CMPに替わり、半導体チップ41上に形成された微細なAuバンプ42の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、一対の半導体チップ41におけるAuバンプ42の接続を容易且つ確実に行うことが可能となる。これにより、Auバンプ42同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。しかも、半導体基板から個々の半導体チップ41に切り出した後に上述の切削加工を実行するため、TTVを制御する工程を省略することができ、工程数削減に寄与する。   As described above, according to the first modification, instead of CMP, the surface of the fine Au bump 42 formed on the semiconductor chip 41 is flattened at low speed and at high speed without causing inconvenience such as dishing. It becomes possible to connect the Au bumps 42 in the semiconductor chip 41 easily and reliably. Thereby, the Au bumps 42 can be connected to each other without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with high yield. In addition, since the above-described cutting process is performed after cutting into individual semiconductor chips 41 from the semiconductor substrate, the step of controlling the TTV can be omitted, which contributes to a reduction in the number of steps.

[変形例2]
次いで、本実施形態の変形例2について説明する。
図13A〜図13Cは、変形例2による半導体装置の製造方法を工程順に示す概略断面図である。
[Modification 2]
Next, a second modification of the present embodiment will be described.
13A to 13C are schematic cross-sectional views illustrating a method for manufacturing a semiconductor device according to Modification 2 in the order of steps.

先ず、図13Aに示すように、第1の実施形態の裏面研削をすることなく、LSI素子等が搭載され、高さの異なる(未だ高さにバラツキのある)複数のバンプ、ここではAuバンプ42が形成されてなる半導体基板から、個々の半導体チップ41を切り出す。   First, as shown in FIG. 13A, a plurality of bumps having different heights (having variations in height) (here, Au bumps) mounted with LSI elements or the like without the back surface grinding of the first embodiment. Individual semiconductor chips 41 are cut out from the semiconductor substrate on which 42 is formed.

続いて、半導体チップ41の表層を機械加工、ここでは第1の実施形態と同様にダイヤモンド等からなるバイトを用いて切削加工し、各Auバンプ42の表面表面が連続して平坦となるように平坦化処理する。これにより、各Auバンプ42の高さが均一化されるとともに、上面が鏡面状に平坦化される。

続いて、図13Bに示すように、平坦化処理された半導体チップ41を2つ一組で一対の半導体チップ41とし、一方の半導体チップ41の表面にAuバンプ42を完全に埋め込む厚みに、絶縁性の樹脂に導電性微粒子45を含有する樹脂層44を形成する。
Subsequently, the surface layer of the semiconductor chip 41 is machined, here, as in the first embodiment, cutting is performed using a cutting tool made of diamond or the like so that the surface of each Au bump 42 is continuously flat. Perform flattening. Thereby, the height of each Au bump 42 is made uniform, and the upper surface is flattened into a mirror surface.

Subsequently, as shown in FIG. 13B, the planarized semiconductor chips 41 are paired into a pair of semiconductor chips 41, and the insulating bumps are formed so that the Au bumps 42 are completely embedded in the surface of one of the semiconductor chips 41. The resin layer 44 containing the conductive fine particles 45 is formed on the conductive resin.

続いて、一対の半導体チップ41を対向させ、Auバンプ42の平坦化された上面同士で両者を電気的に接続する。具体的には、一対の半導体チップ41を上面同士で対向するように配置し、室温〜350℃、ここでは170℃程度で圧着させる。ここで、熱圧着により対向するAuバンプ42同士が導電性微粒子45を介して接触し、電気的に接続される。各上面は共に高精度に平坦化されているため、従来のように高温・高圧等を要することなく、一対の半導体チップ41を容易に接続することができる。更に、樹脂層44の樹脂が一対の半導体チップ41の密着性及び電気的接続を確実にするとともに、電極42等を保護するアンダーフィルとして寄与する。   Subsequently, the pair of semiconductor chips 41 are opposed to each other, and the planarized upper surfaces of the Au bumps 42 are electrically connected to each other. Specifically, the pair of semiconductor chips 41 are disposed so as to face each other on the upper surface, and are bonded at room temperature to 350 ° C., here about 170 ° C. Here, the opposing Au bumps 42 are brought into contact with each other through the conductive fine particles 45 by thermocompression bonding, and are electrically connected. Since each upper surface is flattened with high accuracy, a pair of semiconductor chips 41 can be easily connected without requiring high temperature and high pressure as in the prior art. Further, the resin of the resin layer 44 ensures adhesion and electrical connection between the pair of semiconductor chips 41 and contributes as an underfill for protecting the electrodes 42 and the like.

このように、本変形例2によれば、CMPに替わり、半導体チップ41上に形成された微細なAuバンプ42の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、一対の半導体チップ41におけるAuバンプ42の接続を容易且つ確実に行うことが可能となる。これにより、Auバンプ42同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。しかも、半導体基板から個々の半導体チップ41に切り出した後に上述の切削加工を実行するため、TTVを制御する工程を省略することができ、工程数削減に寄与する。   Thus, according to the second modification, instead of CMP, the surface of the fine Au bump 42 formed on the semiconductor chip 41 is flattened at low speed and at high speed without causing inconvenience such as dishing. It becomes possible to connect the Au bumps 42 in the semiconductor chip 41 easily and reliably. Thereby, the Au bumps 42 can be connected to each other without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with high yield. In addition, since the above-described cutting process is performed after cutting into individual semiconductor chips 41 from the semiconductor substrate, the step of controlling the TTV can be omitted, which contributes to a reduction in the number of steps.

[第4の実施形態]
次に、第4の実施形態について説明する。第1の実施形態では、半導体基板に外部接続用のバンプを形成する場合について例示したが、本実施形態ではワイヤボンディング法を用いたスタッドバンプを形成する場合について開示する。
図14A〜図14Fは、本実施形態による半導体装置の製造方法を工程順に示す概略断面図である。
[Fourth Embodiment]
Next, a fourth embodiment will be described. In the first embodiment, the case where bumps for external connection are formed on the semiconductor substrate is illustrated. However, in the present embodiment, the case where stud bumps using a wire bonding method are formed is disclosed.
14A to 14F are schematic cross-sectional views showing the method of manufacturing the semiconductor device according to the present embodiment in the order of steps.

先ず、図14A及び図14Bに示すように、図1Aと同様に素子形成部位にLSI半導体素子と電極パッド等の形成された半導体基板51の裏面を研削し、半導体基板51の厚みを一定、具体的にはTTV(基板の最大厚みと最小厚みとの差)を1μm以下に制御する。   First, as shown in FIGS. 14A and 14B, as in FIG. 1A, the back surface of the semiconductor substrate 51 on which the LSI semiconductor elements and electrode pads are formed at the element formation site is ground, and the thickness of the semiconductor substrate 51 is kept constant. Specifically, the TTV (difference between the maximum thickness and the minimum thickness of the substrate) is controlled to 1 μm or less.

ここで、前記研削工程においては、半導体基板51の裏面を研削した後に、スパッタ法等により半導体基板51上に金属膜、例えばAl膜を形成し、これをパターニングすることにより、電気的接続箇所となる部位に電極パッド52を形成しても良い。   Here, in the grinding step, after grinding the back surface of the semiconductor substrate 51, a metal film, for example, an Al film, is formed on the semiconductor substrate 51 by a sputtering method or the like, and this is patterned. The electrode pad 52 may be formed at a portion to be formed.

続いて、図14Cに示すように、金属としてAuを用いたワイヤボンディング法により、例えば20μm径のAuボンディングワイヤの先端を溶融して形成したボール状の塊を電極パッド52上に圧着した後、当該ワイヤを引きちぎり(プレカット)、電極パッド52上にAu突起53を形成する。このとき、各Au突起53の電極パッド52からの高さをボンディングワイヤ径の2倍以上、ここでは60μm程度となるように規定する。この場合、実際にはAu突起53の高さにはバラツキがあり、50μm〜60μm程度であれば良い。   Subsequently, as shown in FIG. 14C, after a ball-shaped lump formed by melting the tip of an Au bonding wire having a diameter of 20 μm, for example, is bonded onto the electrode pad 52 by a wire bonding method using Au as a metal, The wire is torn off (pre-cut), and Au protrusions 53 are formed on the electrode pads 52. At this time, the height of each Au protrusion 53 from the electrode pad 52 is defined to be at least twice the diameter of the bonding wire, here about 60 μm. In this case, the height of the Au protrusion 53 actually varies, and it may be about 50 μm to 60 μm.

続いて、図14Dに示すように、ダイヤモンド等からなるバイト10を用いて切削加工し、各Au突起53の上面が連続して平坦となるように平坦化処理し、スタッドバンプ54を形成する。ここでは、切削位置を電極パッド52から例えば50μm程度の高さとする。切削条件は切削速度10m/s、1回当たりの送りを20μm程度とし、最初の切削位置から2μmずつ追い込んでゆく。これにより、図14Eに示すように、Au突起53の上面が鏡面状に平坦化され、スタッドバンプ54が形成される。   Subsequently, as shown in FIG. 14D, cutting is performed using a cutting tool 10 made of diamond or the like, and a flattening process is performed so that the upper surface of each Au protrusion 53 is continuously flat, thereby forming a stud bump 54. Here, the cutting position is set to a height of, for example, about 50 μm from the electrode pad 52. The cutting conditions are a cutting speed of 10 m / s, a feed per stroke of about 20 μm, and a 2 μm drive from the initial cutting position. As a result, as shown in FIG. 14E, the upper surface of the Au protrusion 53 is flattened into a mirror surface, and the stud bump 54 is formed.

この切削加工による平坦化方法はCMPと比べてスラリーなどが必要なく、切削工具であるバイトはたとえ摩耗を起こして研磨して繰り返し使用できるので、コストが安い。チャックテーブルにチャッキングした半導体基板を高速回転させ、その上でバイトを所定の速度で移動させて、任意の切り込み量を一度に切削するため、半導体基板1枚当たり1〜2分間で終了可能であり、非常にスループットの高い方法である。バイトによる切削加工では、切削条件を適切にすることにより、Auのボンディングワイヤを用いたスタッドバンプの突起なども、突起の先端部で切削した場合でも、突起の傾きや折れなどのない平面出しが可能である。しかしながら、30Hv以下の硬度であると、切削時に突起の傾きが生じる恐れがあるため、ワイヤの硬度は30Hv以上であることが望ましい。   This flattening method by cutting does not require a slurry or the like as compared with CMP, and the cutting tool, which is a cutting tool, is worn and polished so that it can be used repeatedly, so that the cost is low. The semiconductor substrate chucked on the chuck table is rotated at a high speed, and then the cutting tool is moved at a predetermined speed to cut an arbitrary cutting amount at a time. Therefore, it can be completed in 1 to 2 minutes per semiconductor substrate. There is a very high throughput method. When cutting with a bite, by making the cutting conditions appropriate, even when stud bump projections using Au bonding wire are cut at the tip of the projection, flattening without tilting or bending of the projection can be achieved. Is possible. However, if the hardness is 30 Hv or less, the protrusions may be inclined during cutting. Therefore, the hardness of the wire is preferably 30 Hv or more.

本実施形態では、切削加工の終点として、全てのスタッドバンプについて、切削面の径がワイヤ径と同等以上になった時点とする。通常、スタッドバンプはプレカット後の高さにばらつきが大きく、全てのスタッドバンプで切削面の径がワイヤ径と同等以上になった点を確認するのは困難である。切削方法としては、バイトが最も高いバンプに接触した点から1〜3μm位ずつ追い込んでゆき、全てのバイトの切削面を出すことが適当であるが、毎回拡大されたカメラ画像等で確認するのは非効率的である。   In the present embodiment, the end point of the cutting process is the time when the diameter of the cutting surface is equal to or greater than the wire diameter for all stud bumps. Normally, stud bumps vary greatly in height after pre-cutting, and it is difficult to confirm that the diameter of the cutting surface is equal to or greater than the wire diameter in all stud bumps. As a cutting method, it is appropriate to drive the cutting tool by 1 to 3 μm from the point where the cutting tool comes into contact with the highest bump and bring out the cutting surfaces of all the cutting tools. Is inefficient.

そこで本実施形態では、図15Aに示すように、終点検出方法として、レーザ発信器61及び検出器62を備える検出装置を用いて、切削加工後のスタッドバンプ54の上面にレーザビームを操引し、当該上面にて反射したレーザを検出器62で検出する方法を採用する。   Therefore, in the present embodiment, as shown in FIG. 15A, as a method for detecting the end point, a detection apparatus including a laser transmitter 61 and a detector 62 is used to operate a laser beam on the upper surface of the stud bump 54 after cutting. A method of detecting the laser reflected by the upper surface with the detector 62 is adopted.

そして、図15Bに示すように、検出されたレーザ強度が全てのAu突起53にて所定の強度に達するまで加工を繰り返す。この検出装置は切削工具の進行方向後方に設置され、切削工具と同期して進行することが望ましい。スタッドバンプ54の上面(切削面)はほぼ鏡面とされているため、レーザ光などは全反射する。切削工具と同期している場合、切削工具の進行速度に比例して遅延が生ずるため、厳密には全ての反射光が検出されるとは限らないが、切削速度は速くとも10数m/sであるため、ほぼ検出されると見なして良い。   Then, as shown in FIG. 15B, the processing is repeated until the detected laser intensity reaches a predetermined intensity at all the Au protrusions 53. It is desirable that this detection device is installed behind the cutting tool in the traveling direction and proceeds in synchronization with the cutting tool. Since the upper surface (cutting surface) of the stud bump 54 is substantially a mirror surface, the laser beam or the like is totally reflected. When synchronized with the cutting tool, a delay is generated in proportion to the traveling speed of the cutting tool. Therefore, strictly speaking, not all reflected light is detected, but the cutting speed is 10 tens m / s at the fastest. Therefore, it can be considered that it is almost detected.

本実施形態では、バイトの後部からバイトの進行と同期して動くレーザ発信器61及び検出器62により、平坦化されたAu突起53の上面から反射されたレーザ光強度を測定しながら追い込んでゆき、例えば46μmの高さで全てのAu突起53の上面が露出されたことを感知し、切削を終了とした。   In the present embodiment, the laser transmitter 61 and the detector 62 moving in synchronization with the progress of the cutting tool from the rear part of the cutting tool are driven while measuring the intensity of the laser beam reflected from the upper surface of the flattened Au protrusion 53. For example, it was detected that the upper surfaces of all the Au protrusions 53 were exposed at a height of 46 μm, and the cutting was finished.

ここで、図15Cに示すように、切削加工が不充分である場合や、切削面の径がワイヤ径以下である場合には、切削面以外の箇所に当たったレーザ光は乱反射し、検出器に検出されない。そのため、図15Dに示すように、検出されたレーザ光強度はボンディングワイヤと同径まで切削された面よりも弱くなる。このようなスタッドバンプが一箇所でも確認された場合には、自動的に更に1μm〜2μm程度追い込み、最終的に全バンプで一定量以上のレーザ光強度が検出されるまで切削する。これにより、未切削又は切削不足による接続不良を防止することができるとともに、加工時間の大幅な短縮が可能となる。   Here, as shown in FIG. 15C, when the cutting process is insufficient, or when the diameter of the cutting surface is equal to or less than the wire diameter, the laser light hitting a place other than the cutting surface is irregularly reflected, and the detector Not detected. Therefore, as shown in FIG. 15D, the detected laser light intensity is weaker than the surface cut to the same diameter as the bonding wire. When such a stud bump is confirmed even at one place, it is automatically driven further by about 1 μm to 2 μm and finally cut until a laser light intensity of a certain amount or more is detected in all the bumps. Thereby, connection failure due to uncut or insufficient cutting can be prevented, and the processing time can be greatly shortened.

そして、図14Fに示すように、半導体基板51から各半導体チップ55を切り出し、例えばフリップチップ法により、半導体チップ55と回路基板56とを接続する。具体的には、半導体チップ55の上面平坦化されたスタッドバンプ54と、回路基板56の表面に形成された電極57とを対向させて接触させ、加圧及び加熱により両者を接合する。なおこの場合、回路基板56の電極57もスタッドバンプ54と同様に、上述した切削加工により平坦化した後、フリップチップ接続するようにしても好適である。   Then, as shown in FIG. 14F, each semiconductor chip 55 is cut out from the semiconductor substrate 51, and the semiconductor chip 55 and the circuit board 56 are connected by, for example, a flip chip method. Specifically, the stud bump 54 whose surface is flattened on the semiconductor chip 55 and the electrode 57 formed on the surface of the circuit board 56 are brought into contact with each other, and both are bonded by pressure and heating. In this case, like the stud bump 54, the electrode 57 of the circuit board 56 is also preferably made to be flip-chip connected after being flattened by the above-described cutting process.

以上説明したように、本実施形態によれば、CMPに替わり、半導体基板51上に形成された微細なスタッドバンプ54の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、スタッドバンプ54の接続を容易且つ確実に行うことが可能となる。これにより、バンプ同士の高温・高圧等の条件を要しない接続が可能となり、信頼性の高い半導体装置を歩留まり良く製造することができる。しかも、切削平坦化後におけるスタッドバンプ54の高さを、ワイヤ径を規定しない場合に比べて1.5倍以上とすることができ、半導体素子への応力を緩和することが可能となり、デバイス寿命を延ばすことが可能となる。更に、切削における平坦面はワイヤ径と同等以上であるため、同じワイヤ径でも2倍以上の接合強度を得ることができる。また、従来と同程度の接合強度で充分な場合には、ワイヤ径を細くすることができるため、バンプピッチを狭めることが可能なうえ、ボンディングワイヤにかかるコストを下げることが可能となる。   As described above, according to the present embodiment, instead of CMP, the surface of the fine stud bump 54 formed on the semiconductor substrate 51 is flattened at low speed and without causing inconvenience such as dishing, The stud bump 54 can be easily and reliably connected. As a result, the bumps can be connected without requiring conditions such as high temperature and high pressure, and a highly reliable semiconductor device can be manufactured with high yield. Moreover, the height of the stud bump 54 after the flattening of the cutting can be made 1.5 times or more compared with the case where the wire diameter is not specified, and the stress on the semiconductor element can be relaxed, and the device life Can be extended. Furthermore, since the flat surface in cutting is equal to or greater than the wire diameter, it is possible to obtain a bonding strength that is twice or more even with the same wire diameter. In addition, when a bonding strength comparable to the conventional one is sufficient, the wire diameter can be reduced, so that the bump pitch can be reduced and the cost for the bonding wire can be reduced.

[第5の実施形態]
次に、第5の実施形態について説明する。ここでは、いわゆるTABボンディング法による半導体装置を例示する。
図16及び図17は、本実施形態による半導体装置の製造方法を示す概略断面図である。
[Fifth Embodiment]
Next, a fifth embodiment will be described. Here, a semiconductor device by a so-called TAB bonding method is illustrated.
16 and 17 are schematic cross-sectional views illustrating the method for fabricating the semiconductor device according to the present embodiment.

この半導体装置を製造するには、先ず第1の実施形態と同様に、図1及び図2に示す諸工程を経て、素子形成部位にLSI半導体素子等の形成された半導体基板1の電極71上に下地金属膜72を介して、高さが均一であり、各Au突起2が切削加工されて上面3aが一様に平坦化されてなるバンプ3を形成する。ここで、半導体基板1のバンプ3の周囲には絶縁性の保護膜73が形成されている。   In order to manufacture this semiconductor device, first, similarly to the first embodiment, the steps shown in FIGS. 1 and 2 are performed, and then on the electrode 71 of the semiconductor substrate 1 on which an LSI semiconductor element or the like is formed at the element formation site. In addition, the bump 3 is formed through the base metal film 72, the height of which is uniform, and each Au protrusion 2 is cut and the upper surface 3a is uniformly flattened. Here, an insulating protective film 73 is formed around the bump 3 of the semiconductor substrate 1.

続いて、バンプ3の上面にプローブを接触させることにより、半導体基板1の半導体素子等の電気的特性を検査する。ここで、従来では、当該検査の際にはバンプの凹凸や汚染の存するメッキ終端面にプローブを接触させていたため、安定した接触が得られず、プローブの先端が当該凹凸部位で引っ掛り破損するというトラブルもあった。これに対して本実施形態では、上述の切削加工により高度に平坦化及び清浄化されたバンプ3の表面にプローブを接触させるため、極めて安定な状態で検査を行うことができる。   Subsequently, an electrical characteristic of the semiconductor element or the like of the semiconductor substrate 1 is inspected by bringing a probe into contact with the upper surface of the bump 3. Here, conventionally, since the probe is in contact with the bump end surface and the plating end surface where the contamination exists during the inspection, a stable contact cannot be obtained, and the tip of the probe is caught and damaged at the uneven portion. There was also a trouble. On the other hand, in this embodiment, since the probe is brought into contact with the surface of the bump 3 that has been highly planarized and cleaned by the above-described cutting process, the inspection can be performed in an extremely stable state.

続いて、この半導体基板1から個々の半導体チップ21を切り出した後、図16に示すように、TABボンディング法により半導体チップ21の接続を行う。
具体的には、銅箔75からなりAuの表面処理が施されてAu膜76が形成されており、一端に位置する箇所が接続部位に該り、他端に樹脂層77が設けられてなるTABリード74を用意する。そして、半導体チップ21をボンディングステージ80上に載置固定して、半導体チップ21の平坦化及び清浄化されたバンプ3の上面にTABリード74の接続部位のAu膜76を接触させ、ヒータ78により加熱しながら加圧し、両者を接合する。ここで、加熱温度は200℃程度の比較的低温で良く、接着荷重も約20gと従来の2/3程度に低減が可能となる。結果として40μmピッチ以下の微細ピッチのTABリードを位置ずれなく接続することが可能となる。
Subsequently, after the individual semiconductor chips 21 are cut out from the semiconductor substrate 1, the semiconductor chips 21 are connected by the TAB bonding method as shown in FIG.
Specifically, the Au film 76 is formed of the copper foil 75 and is subjected to the surface treatment of Au, the portion located at one end corresponds to the connection site, and the resin layer 77 is provided at the other end. A TAB lead 74 is prepared. Then, the semiconductor chip 21 is placed and fixed on the bonding stage 80, and the Au film 76 at the connection portion of the TAB lead 74 is brought into contact with the flattened and cleaned upper surface of the bump 3 by the heater 78. Pressurize while heating to join them together. Here, the heating temperature may be a relatively low temperature of about 200 ° C., and the adhesion load can be reduced to about 2/3 of the conventional one, about 20 g. As a result, it is possible to connect TAB leads having a fine pitch of 40 μm or less without displacement.

しかる後、図17に示すように、半導体チップ21をボンディングステージ80から外し、バンプ3とTABリード74との接続部位を含む半導体チップ21の表面を覆うように封止樹脂79を形成し、半導体装置を完成させる。   Thereafter, as shown in FIG. 17, the semiconductor chip 21 is removed from the bonding stage 80, and a sealing resin 79 is formed so as to cover the surface of the semiconductor chip 21 including the connection portion between the bump 3 and the TAB lead 74. Complete the device.

なお、本実施形態では、バンプとしてメッキバンプを形成する場合を例示したが、ワイヤボンディング法によるスタッドバンプを形成するようにしても良い。   In the present embodiment, the case where the plating bump is formed as the bump is exemplified, but the stud bump may be formed by a wire bonding method.

以上説明したように、本実施形態によれば、CMPに替わり、半導体基板1上に形成された微細なバンプ3の表面を、ディッシング等の不都合を発生させることなく安価に高速で平坦化し、バンプ3の接続を容易且つ確実に行うことが可能となる。これにより、バンプとリード端子との高温・高圧等の条件を要しない確実な接続が可能となり、信頼性の高いTABボンディングタイプの半導体装置を歩留まり良く製造することができる。   As described above, according to the present embodiment, instead of CMP, the surface of the fine bump 3 formed on the semiconductor substrate 1 is flattened at low speed and at high speed without causing inconvenience such as dishing. 3 can be connected easily and reliably. As a result, it is possible to reliably connect the bump and the lead terminal without requiring conditions such as high temperature and high pressure, and it is possible to manufacture a highly reliable TAB bonding type semiconductor device with a high yield.

[第6の実施形態]
次に、第6の実施形態について説明する。ここでは、上述した諸実施形態を実行するに際して、一対の基体(ここでは、フリップチップ法による半導体チップ及び回路基板を例示する。)について、上述の切削加工工程及び接合工程を実行するための装置構成を開示する。
[Sixth Embodiment]
Next, a sixth embodiment will be described. Here, when executing the above-described embodiments, an apparatus for executing the above-described cutting process and joining process for a pair of bases (here, a semiconductor chip and a circuit board by a flip chip method are illustrated). The configuration is disclosed.

図18は、本実施形態による半導体製造装置を示す模式図である。
この半導体製造装置は、表面にバンプの形成された半導体チップを導入するためのチップ導入部81と、表面に電極の形成された回路基板を導入するための回路基板導入部82と、上述したバイトを用いた切削加工により半導体チップのバンプ表面を平坦化する工程を実行する切削部83と、半導体チップと回路基板とを平坦化されたバンプと電極とで接合する工程を実行する接合部84と、接合され一体化されてなる半導体装置を搬出するための搬出部85とを備えており、更に、切削部83及び接合部84を不活性雰囲気で包含する清浄化保持部86を有して構成されている。ここで、切削部83では、半導体チップのみならず回路基板の電極表面も同様に切削加工により平坦化するようにしても良い。
FIG. 18 is a schematic diagram showing the semiconductor manufacturing apparatus according to the present embodiment.
This semiconductor manufacturing apparatus includes a chip introducing portion 81 for introducing a semiconductor chip having bumps formed on the surface, a circuit substrate introducing portion 82 for introducing a circuit substrate having electrodes formed on the surface, and the above-described bite. A cutting portion 83 for performing a step of flattening the bump surface of the semiconductor chip by cutting using a chip, and a bonding portion 84 for performing a step of bonding the semiconductor chip and the circuit board with the flattened bump and electrode. And a carry-out portion 85 for carrying out the joined and integrated semiconductor device, and further includes a cleaning holding portion 86 including the cutting portion 83 and the joint portion 84 in an inert atmosphere. Has been. Here, in the cutting part 83, not only the semiconductor chip but also the electrode surface of the circuit board may be flattened by cutting.

清浄化保持部86は、平坦化工程と接合工程を共に清浄化雰囲気、具体的には不活性雰囲気内、例えばArやN2等の酸素を含まない気相中、又は酸素を含む1atm以下の雰囲気中に保持する機能を有している。これにより、接合工程の直前にArプラズマ等を用いた清浄化工程を付加することなく、比較的容易に理想に極めて近い平坦化状態を維持することができ、バンプと電極の確実な接合が可能となる。 The cleaning holding unit 86 performs both the flattening process and the bonding process in a cleaning atmosphere, specifically, in an inert atmosphere, for example, in a gas phase not containing oxygen such as Ar or N 2, or in the oxygen atmosphere containing 1 atm or less. It has the function of holding in the atmosphere. This makes it possible to maintain a flat state that is very close to the ideal relatively easily without adding a cleaning process using Ar plasma or the like immediately before the bonding process, and enables reliable bonding of bumps and electrodes. It becomes.

なお、本実施形態では、フリップチップ実装を例示したが、本発明はこれに限定されることなく、半導体チップと半導体ウェーハ、半導体チップ同士等の接合に利用しても好適である。   In the present embodiment, the flip chip mounting is exemplified. However, the present invention is not limited to this, and the present invention is also suitable for joining a semiconductor chip and a semiconductor wafer, semiconductor chips, or the like.

本発明によれば、CMPに替わり、基板上に形成された微細なバンプの表面を安価に高速で平坦化し、バンプ同士の接続を、ディッシング等の不都合を発生させることなく容易且つ確実に行うことが可能となる。   According to the present invention, instead of CMP, the surface of fine bumps formed on a substrate is flattened inexpensively and at high speed, and the bumps are connected easily and reliably without causing problems such as dishing. Is possible.

図1Aは、第1の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 1A is a schematic cross-sectional view showing a bump forming method according to the first embodiment in the order of steps. 図1Bは、第1の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 1B is a schematic cross-sectional view showing the bump forming method according to the first embodiment in the order of steps. 図1Cは、第1の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 1C is a schematic cross-sectional view showing a bump forming method according to the first embodiment in the order of steps. 図1Dは、第1の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 1D is a schematic cross-sectional view showing the bump forming method according to the first embodiment in the order of steps. 図2Aは、第1の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 2A is a schematic cross-sectional view showing a bump forming method according to the first embodiment in the order of steps. 図2Bは、第1の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 2B is a schematic cross-sectional view illustrating the bump forming method according to the first embodiment in the order of steps. 図3Aは、切削加工による平坦化の結果を示す図である。FIG. 3A is a diagram illustrating a result of flattening by cutting. 図3Bは、切削加工による平坦化の結果を示す図である。FIG. 3B is a diagram illustrating a result of flattening by cutting. 図4Aは、切削加工による平坦化の具体例を示す概略断面図である。FIG. 4A is a schematic cross-sectional view showing a specific example of flattening by cutting. 図4Bは、切削加工による平坦化の具体例を示す概略断面図である。FIG. 4B is a schematic cross-sectional view showing a specific example of flattening by cutting. 図5は、切削加工による平坦化の具体例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing a specific example of flattening by cutting. 図6は、切削加工装置の構成を表したブロック図である。FIG. 6 is a block diagram showing the configuration of the cutting apparatus. 図7は、切削加工装置の概略構成図である。FIG. 7 is a schematic configuration diagram of the cutting apparatus. 図8は、切削加工工程のフロー図である。FIG. 8 is a flowchart of the cutting process. 図9Aは、第2の実施形態による半導体装置の製造方法を工程順に示す概略平面図である。FIG. 9A is a schematic plan view illustrating the manufacturing method of the semiconductor device according to the second embodiment in the order of steps. 図9Bは、第2の実施形態による半導体装置の製造方法を工程順に示す概略平面図である。FIG. 9B is a schematic plan view showing the method of manufacturing the semiconductor device according to the second embodiment in the order of steps. 図9Cは、第2の実施形態による半導体装置の製造方法を工程順に示す概略平面図である。FIG. 9C is a schematic plan view showing the method of manufacturing the semiconductor device according to the second embodiment in the order of steps. 図10Aは、第2の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 10A is a schematic cross-sectional view showing a bump forming method according to the second embodiment in the order of steps. 図10Bは、第2の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 10B is a schematic cross-sectional view showing the bump forming method according to the second embodiment in the order of steps. 図10Cは、第2の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 10C is a schematic cross-sectional view showing the bump forming method according to the second embodiment in the order of steps. 図10Dは、第2の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 10D is a schematic cross-sectional view illustrating the bump forming method according to the second embodiment in the order of steps. 図10Eは、第2の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 10E is a schematic cross-sectional view showing the bump forming method according to the second embodiment in the order of steps. 図10Fは、第2の実施形態によるバンプの形成方法を工程順に示す概略断面図である。FIG. 10F is a schematic cross-sectional view showing the bump forming method according to the second embodiment in the order of steps. 図11Aは、第3の実施形態による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 11A is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the third embodiment in the order of steps. 図11Bは、第3の実施形態による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 11B is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the third embodiment in the order of steps. 図12Aは、第3の実施形態の変形例1による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 12A is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the first modification of the third embodiment in the order of steps. 図12Bは、第3の実施形態の変形例1による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 12B is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the first modification of the third embodiment in the order of steps. 図12Cは、第3の実施形態の変形例1による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 12C is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the first modification of the third embodiment in the order of steps. 図13Aは、第3の実施形態の変形例2による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 13A is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the second modification of the third embodiment in the order of steps. 図13Bは、第3の実施形態の変形例2による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 13B is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the second modification of the third embodiment in the order of steps. 図13Cは、第3の実施形態の変形例2による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 13C is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the second modification of the third embodiment in the order of steps. 図14Aは、第4の実施形態による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 14A is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment in the order of steps. 図14Bは、第4の実施形態による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 14B is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment in the order of steps. 図14Cは、第4の実施形態による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 14C is a schematic cross-sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment in the order of steps. 図14Dは、第4の実施形態による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 14D is a schematic sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment in the order of steps. 図14Eは、第4の実施形態による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 14E is a schematic sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment in the order of steps. 図14Fは、第4の実施形態による半導体装置の製造方法を工程順に示す概略断面図である。FIG. 14F is a schematic sectional view showing the method of manufacturing the semiconductor device according to the fourth embodiment in the order of steps. 図15Aは、第4の実施形態による切削終点検出方法を示す図である。FIG. 15A is a diagram illustrating a cutting end point detection method according to a fourth embodiment. 図15Bは、第4の実施形態による切削終点検出方法を示す図である。FIG. 15B is a diagram illustrating a cutting end point detection method according to the fourth embodiment. 図15Cは、第4の実施形態による切削終点検出方法を示す図である。FIG. 15C is a diagram illustrating a cutting end point detection method according to the fourth embodiment. 図15Dは、第4の実施形態による切削終点検出方法を示す図である。FIG. 15D is a diagram illustrating a cutting end point detection method according to the fourth embodiment. 図16は、第5の実施形態半導体装置の製造方法を示す概略断面図である。FIG. 16 is a schematic cross-sectional view showing the method for manufacturing the semiconductor device of the fifth embodiment. 図17は、第5の実施形態半導体装置の製造方法を示す概略断面図である。FIG. 17 is a schematic cross-sectional view showing the method for manufacturing the semiconductor device of the fifth embodiment. 図18は、第6の実施形態による半導体製造装置を示す模式図である。FIG. 18 is a schematic view showing a semiconductor manufacturing apparatus according to the sixth embodiment.

Claims (48)

基板の表面に外部と電気的接続を行うためのバンプを形成する方法であって、
前記基板の表面に、複数の前記バンプ及び前記バンプ間に絶縁膜を形成する工程と、
バイトを用いた切削加工により、前記各バンプの表面及び前記絶縁膜の表面が連続して平坦となるように平坦化処理する工程と、
前記絶縁膜を除去する工程と
を含むことを特徴とするバンプの形成方法。
A method of forming bumps for electrical connection to the outside on the surface of a substrate,
Forming a plurality of bumps and an insulating film between the bumps on the surface of the substrate;
A step of performing a flattening process so that the surface of each bump and the surface of the insulating film are continuously flat by cutting using a cutting tool,
And a step of removing the insulating film.
前記バンプを形成するに際して、
前記絶縁膜を加工して電極形状の複数の開口を有するマスクを形成した後、前記マスクの前記各開口を導電材料で埋め込むことを特徴とする請求項1に記載のバンプの形成方法。
In forming the bump,
The bump forming method according to claim 1, wherein after processing the insulating film to form a mask having a plurality of electrode-shaped openings, the openings of the mask are filled with a conductive material.
メッキ法により、前記マスクの前記各開口を前記導電材料で埋め込むことを特徴とする請求項2に記載のバンプの形成方法。The bump forming method according to claim 2, wherein the openings of the mask are filled with the conductive material by a plating method. 前記バンプをニッケル系無電解メッキ法により形成し、
前記バンプの表面を前記切削加工する際に、前記バンプに表層に生成された高リン濃度の層を除去することを特徴とする請求項1に記載のバンプの形成方法。
The bump is formed by a nickel-based electroless plating method,
2. The bump forming method according to claim 1, wherein when the surface of the bump is cut, a high phosphorus concentration layer formed on a surface layer of the bump is removed. 3.
前記バンプをニッケル系無電解メッキ法により形成した後、前記バンプを覆うように前記絶縁膜を形成することを特徴とする請求項4に記載のバンプの形成方法。The bump formation method according to claim 4, wherein the insulating film is formed so as to cover the bump after the bump is formed by a nickel-based electroless plating method. 前記基板にはLSI素子が設けられており、前記バンプが前記LSI素子と接続されていることを特徴とする請求項1に記載のバンプの形成方法。2. The bump forming method according to claim 1, wherein the substrate is provided with an LSI element, and the bump is connected to the LSI element. 前記基板上で同一の高さとなるように、前記バンプの表面を前記切削加工することを特徴とする請求項1に記載のバンプの形成方法。The bump forming method according to claim 1, wherein the surface of the bump is cut so as to have the same height on the substrate. 前記基板の表面を基準として、前記基板の裏面を機械加工により平坦化処理する工程を更に含み、
前記基板の前記裏面を基準として、前記バンプの表面及び前記絶縁膜の表面の前記平坦化処理を行うことを特徴とする請求項7に記載のバンプの形成方法。
Further comprising a step of flattening the back surface of the substrate by machining on the basis of the surface of the substrate;
The bump forming method according to claim 7, wherein the planarization process is performed on the surface of the bump and the surface of the insulating film with the back surface of the substrate as a reference.
複数の前記基板に前記各工程を実行し、前記各基板の厚みを同一に均一化することを特徴とする請求項8に記載のバンプの形成方法。The bump forming method according to claim 8, wherein the steps are performed on a plurality of the substrates, and the thicknesses of the substrates are made uniform. 前記バンプの表面及び前記絶縁膜の表面を平坦化処理するに際して、
前記裏面を基準に前記半導体基板の平行出しを行うとともに、前記表面の位置を検出し、検出された前記表面から削り量を算出して制御することを特徴とする請求項8に記載のバンプの形成方法。
When flattening the surface of the bump and the surface of the insulating film,
9. The bump according to claim 8, wherein the semiconductor substrate is parallelized with respect to the back surface, the position of the surface is detected, and the amount of shaving is calculated and controlled from the detected surface. Forming method.
前記基板の前記表面の位置を検出する際に、前記表面の周辺部位の複数箇所における絶縁膜にレーザ光を照射して絶縁物を加熱飛散させ、前記表面の一部を露出させることを特徴とする請求項10に記載のバンプの形成方法。When detecting the position of the surface of the substrate, the insulating film in a plurality of locations around the surface is irradiated with laser light to heat and dissipate the insulator, thereby exposing a part of the surface. The method for forming a bump according to claim 10. 前記基板の前記表面の位置を検出する際に、前記裏面に赤外レーザ光を照射し、前記表面からの反射光を測定することを特徴とする請求項10に記載の配線の形成方法。The wiring forming method according to claim 10, wherein when detecting the position of the front surface of the substrate, the back surface is irradiated with infrared laser light and reflected light from the front surface is measured. それぞれ、外部と電気的接続を行うための複数のバンプが表面に形成されてなる一対の半導体基板を有しており、
前記各バンプの表面が前記各半導体基板上で連続して均一に平坦化されており、
前記各半導体基板は、前記各バンプの平坦化された前記表面同士を対向させて接続し、一体化してなることを特徴とする半導体装置。
Each has a pair of semiconductor substrates formed on the surface with a plurality of bumps for electrical connection with the outside,
The surface of each bump is continuously and uniformly planarized on each semiconductor substrate,
Each semiconductor substrate is formed by connecting and planarizing the planarized surfaces of each bump so as to be integrated.
前記各半導体基板にはそれぞれLSI素子が設けられており、前記各半導体基板上で前記各バンプが前記各LSI素子と接続されていることを特徴とする請求項13に記載の半導体装置。14. The semiconductor device according to claim 13, wherein each semiconductor substrate is provided with an LSI element, and each bump is connected to each LSI element on each semiconductor substrate. 前記各バンプは、前記各半導体基板上で同一の高さとされてなることを特徴とする請求項13に記載の半導体装置。The semiconductor device according to claim 13, wherein the bumps have the same height on the semiconductor substrates. 前記各半導体基板は、その裏面側に前記表面を基準とした機械加工が施され、前記裏面の平坦化及び基板厚の均一化がなされていることを特徴とする請求項15に記載の半導体装置。16. The semiconductor device according to claim 15, wherein each of the semiconductor substrates is machined on the back side thereof with reference to the front surface so that the back surface is flattened and the thickness of the substrate is uniformed. . 一対の半導体基板の各表面に、絶縁膜内に埋め込まれるように各バンプを形成する工程と、
バイトを用いた切削加工により、前記各バンプの表面及び前記絶縁膜の表面が連続して平坦となるように平坦化処理する工程と、
前記絶縁膜を除去する工程と、
前記各半導体基板を、前記各バンプの平坦化された前記表面同士を対向させて接続し、一体化する工程と
を含むことを特徴とする半導体装置の製造方法。
Forming each bump on each surface of a pair of semiconductor substrates so as to be embedded in an insulating film;
A step of performing a flattening process so that the surface of each bump and the surface of the insulating film are continuously flat by cutting using a cutting tool,
Removing the insulating film;
Connecting each semiconductor substrate with the flattened surfaces of the respective bumps facing each other, and integrating them. A method for manufacturing a semiconductor device, comprising:
前記各半導体基板にはそれぞれLSI素子が設けられており、前記各半導体基板上で前記各バンプが前記各LSI素子と接続されていることを特徴とする請求項17に記載の半導体装置の製造方法。18. The method of manufacturing a semiconductor device according to claim 17, wherein each semiconductor substrate is provided with an LSI element, and each bump is connected to each LSI element on each semiconductor substrate. . 前記基板の表面を基準として、前記基板の裏面を機械加工により平坦化処理する工程を更に含み、
前記各半導体基板の前記裏面を基準として、前記バンプの表面及び前記絶縁膜の表面の前記平坦化処理を行うことを特徴とする請求項17に記載の半導体装置の製造方法。
Further comprising a step of flattening the back surface of the substrate by machining on the basis of the surface of the substrate;
18. The method of manufacturing a semiconductor device according to claim 17, wherein the planarization process is performed on the surface of the bump and the surface of the insulating film with reference to the back surface of each semiconductor substrate.
基板の表面に外部と電気的接続を行うためのバンプを形成する方法であって、
前記基板の表面に、複数の前記バンプを形成する工程と、
バイトを用いた切削加工により、前記複数のバンプの表面が連続して平坦となるように平坦化処理する工程と
を含むことを特徴とするバンプの形成方法。
A method of forming bumps for electrical connection to the outside on the surface of a substrate,
Forming a plurality of the bumps on the surface of the substrate;
And a step of performing a flattening process so that the surfaces of the plurality of bumps are continuously flattened by cutting using a cutting tool.
一対の半導体チップの各表面に、それぞれ複数の前記バンプを形成する工程と、
バイトを用いた切削加工により、前記複数のバンプの表面が連続して平坦となるように平坦化処理する工程と、
前記複数のバンプの表面が平坦化された前記一対の半導体チップを、前記各バンプ同士が対向するように接続して一体化する工程と
を含むことを特徴とする半導体装置の製造方法。
Forming a plurality of bumps on each surface of a pair of semiconductor chips;
A step of performing a flattening process so that the surfaces of the plurality of bumps are continuously flat by cutting using a cutting tool,
And a step of connecting and integrating the pair of semiconductor chips in which the surfaces of the plurality of bumps are flattened so that the bumps face each other.
前記一対の半導体チップの各表面を基準として、各裏面を機械加工により平坦化処理する工程を更に含み、
前記裏面を基準として、前記切削加工により前記バンプの表面の前記平坦化処理を行うことを特徴とする請求項21に記載の半導体装置の製造方法。
The method further includes a step of flattening each back surface by machining on the basis of each surface of the pair of semiconductor chips,
The method of manufacturing a semiconductor device according to claim 21, wherein the flattening process of the surface of the bump is performed by the cutting process with the back surface as a reference.
前記バンプを形成した後、前記バンプを覆うように樹脂膜を形成し、前記切削加工により、前記各バンプの表面及び前記樹脂膜の表面が連続して平坦となるように平坦化処理することを特徴とする請求項21に記載の半導体装置の製造方法。After forming the bump, a resin film is formed so as to cover the bump, and the surface of each bump and the surface of the resin film are flattened by the cutting process so as to be continuously flat. The method for manufacturing a semiconductor device according to claim 21, wherein: それぞれ、外部と電気的接続を行うための複数のバンプが表面に形成されてなる一対の半導体チップを有しており、
前記各バンプの表面が前記各半導体チップ上で連続して均一に平坦化されており、
前記各半導体チップは、前記各バンプの平坦化された前記表面同士を対向させて接続し、一体化してなることを特徴とする半導体装置。
Each has a pair of semiconductor chips formed on the surface with a plurality of bumps for electrical connection with the outside,
The surface of each bump is continuously flattened on each semiconductor chip,
Each of the semiconductor chips is formed by connecting and planarizing the flattened surfaces of the bumps so as to be integrated.
前記各半導体チップは、その裏面側に前記表面を基準とした機械加工が施され、前記裏面の平坦化及び基板厚の均一化がなされていることを特徴とする請求項24に記載の半導体装置。25. The semiconductor device according to claim 24, wherein each of the semiconductor chips is machined on the back side thereof with respect to the front surface to flatten the back surface and make the substrate thickness uniform. . 前記バンプを覆うように樹脂膜が形成されており、前記各バンプの表面及び前記樹脂膜の表面が連続して均一に平坦化されていることを特徴とする請求項24に記載の半導体装置。25. The semiconductor device according to claim 24, wherein a resin film is formed so as to cover the bumps, and a surface of each bump and a surface of the resin film are continuously and uniformly flattened. 半導体基板の表面に外部と電気的接続を行うためのバンプであり、ワイヤボンディング法を用いたスタッドバンプを形成する方法であって、
前記半導体基板の表面の電気的接続箇所にボンディングワイヤを用いて複数の突起部を形成する工程と、
バイトを用いた切削加工により、前記複数の突起部の上面が連続して平坦となるように平坦化処理し、前記スタッドバンプを形成する工程と
を含むことを特徴とするバンプの形成方法。
A bump for electrical connection to the surface of a semiconductor substrate, a method of forming a stud bump using a wire bonding method,
Forming a plurality of protrusions using bonding wires at electrical connection locations on the surface of the semiconductor substrate;
Forming a stud bump by performing a flattening process so that upper surfaces of the plurality of protrusions are continuously flattened by cutting using a cutting tool, and forming a stud bump.
レーザ発信器及び検出器を備えた検出装置を用い、前記切削加工後の前記突起部の前記上面にレーザビームを操引し、前記上面にて反射したレーザ光を前記検出器により検出する方法により、検出されたレーザ光の強度が全ての前記突起部について所定値に達するまで、前記切削加工を繰り返し実行することを特徴とする請求項27に記載のバンプの形成方法。By using a detection device including a laser transmitter and a detector, operating a laser beam on the upper surface of the projection after the cutting, and detecting the laser beam reflected on the upper surface by the detector 28. The bump forming method according to claim 27, wherein the cutting process is repeatedly executed until the intensity of the detected laser beam reaches a predetermined value for all the protrusions. 前記検出器を前記バイトの進行方向の後方に設置し、前記バイトの動作と同期するように前記検出器を移動させることを特徴とする請求項28に記載のバンプの形成方法。29. The bump forming method according to claim 28, wherein the detector is installed behind the moving direction of the cutting tool, and the detector is moved so as to synchronize with the operation of the cutting tool. 前記複数の突起部を覆うように保護膜を形成する工程と、
前記切削加工により、前記複数の突起部の上面及び前記保護膜の表面が連続して平坦となるように平坦化処理した後、前記保護膜を除去する工程と
を更に含むことを特徴とする請求項27に記載のバンプの形成方法。
Forming a protective film so as to cover the plurality of protrusions;
And a step of removing the protective film after performing a flattening process so that the upper surfaces of the plurality of protrusions and the surface of the protective film are continuously flattened by the cutting. Item 28. The bump forming method according to Item 27.
外部と電気的接続を行うためのバンプであり、ワイヤボンディング法を用いた複数のスタッドバンプが表面に形成されてなる半導体チップを有しており、
前記各スタッドバンプの上面が前記半導体チップ上で連続して均一に平坦化されてなることを特徴とする半導体装置。
It is a bump for electrical connection with the outside, and has a semiconductor chip in which a plurality of stud bumps using a wire bonding method are formed on the surface,
A semiconductor device, wherein the upper surface of each stud bump is continuously flattened on the semiconductor chip.
半導体基板の表面に複数のバンプを形成する工程と、
バイトを用いた切削加工により、前記複数のバンプの表面が連続して平坦となるように平坦化処理する工程と、
前記複数のバンプの表面が平坦化された前記半導体基板から、各半導体チップを切り出す工程と、
前記半導体チップの前記バンプとリード端子の一端部とを接続する工程と
を含むことを特徴とする半導体装置の製造方法。
Forming a plurality of bumps on the surface of the semiconductor substrate;
A step of performing a flattening process so that the surfaces of the plurality of bumps are continuously flat by cutting using a cutting tool,
A step of cutting each semiconductor chip from the semiconductor substrate in which the surfaces of the plurality of bumps are planarized;
Connecting the bump of the semiconductor chip and one end of a lead terminal. A method for manufacturing a semiconductor device, comprising:
前記半導体基板の表面を基準として、裏面を機械加工により平坦化処理する工程を更に含み、
前記裏面を基準として、前記切削加工により前記バンプの表面の前記平坦化処理を行うことを特徴とする請求項32に記載の半導体装置の製造方法。
The method further includes a step of planarizing the back surface by machining on the basis of the surface of the semiconductor substrate,
33. The method of manufacturing a semiconductor device according to claim 32, wherein the flattening process of the surface of the bump is performed by the cutting process with the back surface as a reference.
半導体基板の表面の電気的接続箇所にワイヤボンディング法を用いた複数の突起部を形成する工程と、
バイトを用いた切削加工により、前記複数の突起部の上面が連続して平坦となるように平坦化処理し、スタッドバンプを形成する工程と、
複数のスタッドバンプの形成された前記半導体基板から、各半導体チップを切り出す工程と、
前記半導体チップの前記スタッドバンプとリード端子の一端部とを接続する工程と
を含むことを特徴とする半導体装置の製造方法。
Forming a plurality of protrusions using a wire bonding method at an electrical connection location on a surface of a semiconductor substrate;
By cutting using a cutting tool, a process of flattening so that the upper surfaces of the plurality of protrusions are continuously flat, and forming stud bumps;
A step of cutting each semiconductor chip from the semiconductor substrate on which a plurality of stud bumps are formed;
Connecting the stud bump of the semiconductor chip and one end of the lead terminal. A method for manufacturing a semiconductor device, comprising:
前記半導体基板の表面を基準として、裏面を機械加工により平坦化処理する工程を更に含み、
前記裏面を基準として、前記切削加工により前記バンプの表面の前記平坦化処理を行うことを特徴とする請求項34に記載の半導体装置の製造方法。
The method further includes a step of planarizing the back surface by machining on the basis of the surface of the semiconductor substrate,
35. The method of manufacturing a semiconductor device according to claim 34, wherein the flattening process of the surface of the bump is performed by the cutting process with the back surface as a reference.
前記バンプの表面を平坦化した後、前記リード端子と接続する前に、前記バンプの表面に試験用針を接触させて検査を行う工程を更に有することを特徴とする請求項34に記載の半導体装置の製造方法。35. The semiconductor device according to claim 34, further comprising a step of inspecting a surface of the bump by bringing a test needle into contact with the surface of the bump before the connection with the lead terminal after the surface of the bump is flattened. Device manufacturing method. 外部と電気的接続を行うための複数のバンプが表面に形成されてなる半導体チップを有しており、
前記各バンプの表面が前記半導体チップ上で連続して均一に平坦化されており、
前記半導体チップの前記バンプとリード端子の一端部とが接続され、一体化してなることを特徴とする半導体装置。
It has a semiconductor chip in which a plurality of bumps for electrical connection with the outside are formed on the surface,
The surface of each bump is continuously flattened on the semiconductor chip,
A semiconductor device, wherein the bump of the semiconductor chip and one end of a lead terminal are connected and integrated.
前記バンプが金からなるとともに、前記リード端子の前記一端部に金又は錫の表面処理が施されていることを特徴とする請求項37に記載の半導体装置。38. The semiconductor device according to claim 37, wherein the bump is made of gold and a surface treatment of gold or tin is applied to the one end portion of the lead terminal. 外部と電気的接続を行うための複数のバンプであり、ワイヤボンディング法を用いた複数のスタッドバンプが表面に形成されてなる半導体チップを有しており、
前記各スタッドバンプの表面が前記半導体チップ上で連続して均一に平坦化されており、
前記半導体チップの前記スタッドバンプとリード端子の一端部とが接続され、一体化してなることを特徴とする半導体装置。
It is a plurality of bumps for electrical connection with the outside, and has a semiconductor chip in which a plurality of stud bumps using a wire bonding method are formed on the surface,
The surface of each stud bump is continuously flattened on the semiconductor chip,
The semiconductor device, wherein the stud bump of the semiconductor chip and one end of the lead terminal are connected and integrated.
前記スタッドバンプが金からなるとともに、前記リード端子の前記一端部に金又は錫の表面処理が施されていることを特徴とする請求項39に記載の半導体装置。40. The semiconductor device according to claim 39, wherein the stud bump is made of gold, and the one end portion of the lead terminal is subjected to a surface treatment of gold or tin. 表面に複数の電極が形成された半導体チップを不活性雰囲気内に導入し、バイトを用いた切削加工により、前記複数の電極の表面が連続して平坦となるように平坦化処理する工程と、
平坦化された前記複数の電極の表面が前記不活性雰囲気内で清浄に保たれた状態で、前記半導体チップの前記複数の電極と回路基板とを接続し、一体化する工程と
を含むことを特徴とする半導体装置の製造方法。
Introducing a semiconductor chip having a plurality of electrodes formed on the surface thereof into an inert atmosphere and performing a flattening process so that the surfaces of the plurality of electrodes are continuously flat by cutting using a cutting tool;
Connecting and integrating the plurality of electrodes of the semiconductor chip and the circuit board in a state where the surfaces of the plurality of planarized electrodes are kept clean in the inert atmosphere. A method of manufacturing a semiconductor device.
前記回路基板上に形成された複数の電極は、バイトを用いた切削加工により表面が連続して平坦となるように平坦化処理されており、
前記半導体チップと回路基板とを、前記電極表面同士が対向するように接続し、一体化することを特徴とする請求項41に記載の半導体装置の製造方法。
The plurality of electrodes formed on the circuit board are flattened so that the surface is continuously flat by cutting using a cutting tool,
42. The method of manufacturing a semiconductor device according to claim 41, wherein the semiconductor chip and the circuit board are connected and integrated so that the electrode surfaces face each other.
バイトを有する切削加工手段と、
導入された一対の基体を接合させる接合手段と、
前記切削加工手段及び前記接合手段の環境を不活性雰囲気の状態に保つ不活性雰囲気手段と
を含み、
前記切削加工手段は、前記不活性雰囲気内において、表面に複数の電極が形成された前記一対の基体の少なくとも一方に対して、前記バイトを用いた切削加工により、前記複数の電極の表面が連続して平坦となるように平坦化処理する機能を有し、
前記接合手段は、平坦化された前記複数の電極の表面が前記不活性雰囲気内で清浄に保たれた状態で、前記一対の基体を前記複数の電極で接続し、一体化する機能を有することを特徴とする半導体製造装置。
Cutting means having a cutting tool;
A joining means for joining a pair of introduced substrates;
An inert atmosphere means for maintaining the environment of the cutting means and the joining means in an inert atmosphere state,
In the inert atmosphere, the cutting means continuously cuts the surfaces of the plurality of electrodes by cutting using the cutting tool on at least one of the pair of bases having a plurality of electrodes formed on the surface. And has a function of flattening so as to be flat,
The joining means has a function of connecting and integrating the pair of substrates with the plurality of electrodes in a state where the surfaces of the planarized electrodes are kept clean in the inert atmosphere. A semiconductor manufacturing apparatus.
基板の表面に外部と電気的接続を行うためのバンプを形成する際の基板処理装置であって、
平坦な支持面を有しており、基板をその一面で前記支持面に吸着させ、前記一面を強制的に平坦な基準面として支持固定する基板支持台と、
前記基板の他面を切削加工するバイトと
を含み、
表面に複数の前記バンプ及び前記バンプ間に絶縁膜が形成されてなる基板を前記基板支持台に支持固定し、前記バイトを用いた切削加工により、前記各バンプの表面及び前記絶縁膜の表面が連続して平坦となるように平坦化処理することを特徴とする基板処理装置。
A substrate processing apparatus for forming bumps for electrical connection with the outside on the surface of a substrate,
A substrate support base that has a flat support surface, adsorbs the substrate to the support surface on one surface, and forcibly supports and fixes the one surface as a flat reference surface;
A cutting tool for cutting the other surface of the substrate,
A plurality of bumps on the surface and a substrate in which an insulating film is formed between the bumps are supported and fixed to the substrate support base, and the surface of each bump and the surface of the insulating film are formed by cutting using the cutting tool. A substrate processing apparatus which performs a planarization process so as to be continuously flat.
前記基板支持台により前記基板の表面を基準面として、前記バイトにより前記基板の裏面を切削加工した後、前記基板支持台により前記基板の前記裏面を基準面として、前記バイトにより前記基板の前記表面を切削加工し、前記各バンプの表面及び絶縁膜の表面が連続して平坦となるように平坦化処理することを特徴とする請求項44に記載の基板処理装置。After cutting the back surface of the substrate with the cutting tool using the substrate support table as the reference surface, the front surface of the substrate with the cutting tool using the substrate support table as the reference surface with the back surface of the substrate. 45. The substrate processing apparatus according to claim 44, wherein the surface of each bump and the surface of the insulating film are flattened so as to be continuously flat. 前記裏面を基準に前記半導体基板の平行出しを行うとともに、前記配線形成面の位置を検出し、検出された前記配線形成面から削り量を算出して制御することを特徴とする請求項44に記載の基板処理装置。45. The method according to claim 44, wherein the semiconductor substrate is parallelized with respect to the back surface, the position of the wiring forming surface is detected, and a shaving amount is calculated from the detected wiring forming surface. The substrate processing apparatus as described. 前記配線形成面の位置を検出する際に、前記配線形成面の周辺部位の複数箇所における絶縁膜にレーザ光を照射して絶縁物を加熱飛散させ、前記配線形成面の一部を露出させることを特徴とする請求項46に記載の基板処理装置。When detecting the position of the wiring formation surface, the insulating film in a plurality of locations around the wiring formation surface is irradiated with laser light to heat and dissipate the insulator to expose a part of the wiring formation surface. 47. The substrate processing apparatus according to claim 46, wherein: 前記配線形成面の位置を検出する際に、前記裏面に赤外レーザ光を照射し、前記配線形成面からの反射光を測定することを特徴とする請求項46に記載の基板処理装置。47. The substrate processing apparatus according to claim 46, wherein when detecting the position of the wiring formation surface, the back surface is irradiated with infrared laser light and the reflected light from the wiring formation surface is measured.
JP2004564465A 2002-12-27 2003-04-22 Bump formation method, semiconductor device manufacturing method, and substrate processing apparatus Expired - Fee Related JP4279786B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002381582 2002-12-27
JP2002381582 2002-12-27
PCT/JP2003/005092 WO2004061935A1 (en) 2002-12-27 2003-04-22 Method for forming bump, semiconductor devcie and its manufacturing method, substrate treatment device, and semiconductor manufacturing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009022023A Division JP4785937B2 (en) 2002-12-27 2009-02-02 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2004061935A1 true JPWO2004061935A1 (en) 2006-05-18
JP4279786B2 JP4279786B2 (en) 2009-06-17

Family

ID=32708500

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004564465A Expired - Fee Related JP4279786B2 (en) 2002-12-27 2003-04-22 Bump formation method, semiconductor device manufacturing method, and substrate processing apparatus
JP2009022023A Expired - Fee Related JP4785937B2 (en) 2002-12-27 2009-02-02 Manufacturing method of semiconductor device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009022023A Expired - Fee Related JP4785937B2 (en) 2002-12-27 2009-02-02 Manufacturing method of semiconductor device

Country Status (3)

Country Link
JP (2) JP4279786B2 (en)
CN (3) CN102044413B (en)
WO (1) WO2004061935A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709535B2 (en) * 2004-11-19 2011-06-22 株式会社東芝 Semiconductor device manufacturing equipment
JP4796330B2 (en) * 2005-05-18 2011-10-19 株式会社ディスコ Bump processing method
JP4768546B2 (en) * 2006-08-16 2011-09-07 富士通株式会社 Manufacturing method of semiconductor device
JP2008182015A (en) * 2007-01-24 2008-08-07 Disco Abrasive Syst Ltd Method for grinding wafer
US7803693B2 (en) * 2007-02-15 2010-09-28 John Trezza Bowed wafer hybridization compensation
JP4466662B2 (en) * 2007-03-06 2010-05-26 株式会社デンソー Method for forming metal electrode of semiconductor device
JP4875532B2 (en) 2007-04-03 2012-02-15 株式会社ディスコ Cutting device
CN101231961B (en) * 2008-02-21 2010-11-17 日月光半导体制造股份有限公司 Basal plate making process of inner embedded component
JP2011009561A (en) * 2009-06-26 2011-01-13 Disco Abrasive Syst Ltd Inspection method of device
JP2011018720A (en) * 2009-07-08 2011-01-27 Casio Computer Co Ltd Method of manufacturing semiconductor device
JP2011109067A (en) 2009-10-19 2011-06-02 Denso Corp Method of manufacturing semiconductor device
JP5520097B2 (en) 2010-03-23 2014-06-11 富士フイルム株式会社 Manufacturing method of microstructure
CN102228953B (en) * 2011-06-15 2012-12-19 山东潍坊福田模具有限责任公司 Stamping die insert lost foam manufacturing method
JP6021386B2 (en) 2012-03-30 2016-11-09 オリンパス株式会社 Wiring substrate manufacturing method and semiconductor device manufacturing method
JP5970680B2 (en) * 2012-11-19 2016-08-17 アピックヤマダ株式会社 Resin molded product manufacturing method and resin removing device
JP6269682B2 (en) * 2013-11-29 2018-01-31 富士通株式会社 Substrate bonding method
CN105448750A (en) * 2014-08-28 2016-03-30 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof, and electronic device
JP6536024B2 (en) * 2014-12-04 2019-07-03 日立化成株式会社 Semiconductor device manufacturing method and semiconductor device
WO2016174733A1 (en) 2015-04-28 2016-11-03 オリンパス株式会社 Semiconductor device
DE102015216619B4 (en) * 2015-08-31 2017-08-10 Disco Corporation Method for processing a wafer
TW201812887A (en) * 2016-09-23 2018-04-01 頎邦科技股份有限公司 Wafer dicing method
JP6985599B2 (en) * 2018-01-04 2021-12-22 富士通株式会社 Electronic device and manufacturing method of electronic device
JP7028152B2 (en) * 2018-12-14 2022-03-02 トヨタ自動車株式会社 Resolver
WO2023079751A1 (en) * 2021-11-08 2023-05-11 株式会社レゾナック Semiconductor chip stack, electronic component device, and production method for semiconductor chip stack

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188280A (en) * 1989-04-28 1993-02-23 Hitachi Ltd. Method of bonding metals, and method and apparatus for producing semiconductor integrated circuit device using said method of bonding metals
JP2570468B2 (en) * 1990-06-01 1997-01-08 日本電気株式会社 Manufacturing method of LSI module
JPH05315404A (en) * 1992-05-07 1993-11-26 Nec Corp Semiconductor substrate for tab
JPH0766241A (en) * 1993-08-31 1995-03-10 Oki Electric Ind Co Ltd Connection structure of electronic part using anisotropic conductive bonding agent
JPH07297196A (en) * 1994-04-25 1995-11-10 Sony Corp Method of forming bump electrode
JP3397265B2 (en) * 1994-11-25 2003-04-14 富士通株式会社 Method for manufacturing semiconductor device
JPH1140621A (en) * 1997-07-16 1999-02-12 Canon Inc Device for bonding beam lead of tab film, semiconductor chip electrically bonded by the bonding device and liquid jet recording head
JP3326382B2 (en) * 1998-03-26 2002-09-24 松下電器産業株式会社 Method for manufacturing semiconductor device
JP3515917B2 (en) * 1998-12-01 2004-04-05 シャープ株式会社 Method for manufacturing semiconductor device
US6267650B1 (en) * 1999-08-09 2001-07-31 Micron Technology, Inc. Apparatus and methods for substantial planarization of solder bumps
JP2001332577A (en) * 2000-05-25 2001-11-30 Citizen Watch Co Ltd Method of manufacturing semiconductor device
JP2002110851A (en) * 2000-10-03 2002-04-12 Rohm Co Ltd Semiconductor chip and semiconductor device using the semiconductor chip

Also Published As

Publication number Publication date
JP4785937B2 (en) 2011-10-05
WO2004061935A1 (en) 2004-07-22
CN101483144B (en) 2013-08-28
CN101483144A (en) 2009-07-15
JP2009094545A (en) 2009-04-30
JP4279786B2 (en) 2009-06-17
CN1685489A (en) 2005-10-19
CN100477139C (en) 2009-04-08
CN102044413A (en) 2011-05-04
CN102044413B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4785937B2 (en) Manufacturing method of semiconductor device
US8962470B2 (en) Method for forming bumps, semiconductor device and method for manufacturing same, substrate processing apparatus, and semiconductor manufacturing apparatus
JP6383449B2 (en) Electronic component mounting method and electronic component mounting system
KR100821574B1 (en) Process for manufacturing semiconductor device
US6306683B1 (en) Method of forming a flip chip assembly, and a flip chip assembly formed by the method
JP4848153B2 (en) Manufacturing method of semiconductor device
JP2007266557A (en) Method of manufacturing semiconductor device
EP0951063B1 (en) Process for producing a semiconductor device
JP2011009372A (en) Semiconductor device and method of fabricating the same
JPH0758153A (en) Manufacture of semiconductor device
WO2021084902A1 (en) Method for manufacturing chip-mounted substrate, and substrate processing device
JP5551396B2 (en) Inspection probe and method of manufacturing inspection probe
JPH07297196A (en) Method of forming bump electrode
WO1998034273A1 (en) Ball arranging substrate for forming bump, ball arranging head, ball arranging device, and ball arranging method
WO2022224855A1 (en) Glass substrate, and glass interposer
US20220301891A1 (en) Micro-fabricated, stress-engineered members formed on passivation layer of integrated circuit
JP2016529693A (en) Method for reducing solder pad shape difference by planarization
JPH0469427B2 (en)
JPH10224029A (en) Production of bump
JP2005166739A (en) Method of connecting metal bump and circuit component with metal bump
JP2000114313A (en) Manufacture of solder bump electrode
JP2004172356A (en) Method for manufacturing semiconductor device
JP2007232740A (en) Production method of probe card
JPH06230034A (en) Probe base plate and manufacture thereof
JPH0945694A (en) Bonding method for semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4279786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees