JPS645059Y2 - - Google Patents

Info

Publication number
JPS645059Y2
JPS645059Y2 JP1497084U JP1497084U JPS645059Y2 JP S645059 Y2 JPS645059 Y2 JP S645059Y2 JP 1497084 U JP1497084 U JP 1497084U JP 1497084 U JP1497084 U JP 1497084U JP S645059 Y2 JPS645059 Y2 JP S645059Y2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
control
amount
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1497084U
Other languages
Japanese (ja)
Other versions
JPS60127442U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1497084U priority Critical patent/JPS60127442U/en
Publication of JPS60127442U publication Critical patent/JPS60127442U/en
Application granted granted Critical
Publication of JPS645059Y2 publication Critical patent/JPS645059Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〈技術分野〉 本考案は内燃機関における排気センサからの信
号に基づいて空燃比をフイードバツク制御する制
御装置に関し、特にV型機関等バンク別に2系統
に分かれた排気管にそれぞれ排気センサを設けた
ものの制御方式の改良に関する。
[Detailed description of the invention] <Technical field> The present invention relates to a control device that performs feedback control of the air-fuel ratio based on a signal from an exhaust sensor in an internal combustion engine, and is particularly applicable to an exhaust pipe that is divided into two systems for each bank such as a V-type engine. This paper relates to improvements in control methods for devices equipped with exhaust sensors.

〈背景技術〉 従来のこの種の制御方式としては、例えば第1
図に示すようなものがある(参考文献:日産自動
車サービス周報第476号ニツサンプレジデント)。
図において、V型内燃機関1の吸気系はエアクリ
ーナ2、エアフロメータ3、絞り弁4、補助空気
弁5、EGR(排気還流)制御弁6を備え、又、図
中左右のバンク,の各気筒群に燃料噴射弁7
A,7Bを備えている。
<Background Art> As a conventional control method of this type, for example,
There is something like the one shown in the figure (Reference: Nissan Motor Service Bulletin No. 476, Nissan President).
In the figure, the intake system of a V-type internal combustion engine 1 includes an air cleaner 2, an air flow meter 3, a throttle valve 4, an auxiliary air valve 5, an EGR (exhaust gas recirculation) control valve 6, and each cylinder in the left and right banks in the figure. Group fuel injector 7
It is equipped with A and 7B.

又、排気系は、機関1の左右のバンクの気筒群
にそれぞれ排気マニホールド8A,8Bが接続さ
れ、各排気マニホールド8A,8Bの下流端部に
夫々触媒コンバータ9A,9Bを介装した排気管
10A,10Bが接続される。各排気管10A,
10Bの下流端部は合流して一本化され、マフラ
11が接続される。そして、排気マニホールド8
A,8Bの合流部に夫々取り付けられた排気中の
酸素濃度を検出する酸素センサ12A,12Bか
らの信号に基づき、定常運転時、空燃比λがλ=
1となるように燃料噴射量を設定してフイードバ
ツク制御を行つている。
In addition, the exhaust system includes exhaust manifolds 8A and 8B connected to the cylinder groups of the left and right banks of the engine 1, respectively, and an exhaust pipe 10A with catalytic converters 9A and 9B interposed at the downstream ends of the exhaust manifolds 8A and 8B, respectively. , 10B are connected. Each exhaust pipe 10A,
The downstream ends of 10B are merged into one, and the muffler 11 is connected thereto. And exhaust manifold 8
Based on the signals from oxygen sensors 12A and 12B that detect the oxygen concentration in the exhaust gas, which are installed at the confluence of exhaust gases A and 8B, respectively, the air-fuel ratio λ becomes λ=
Feedback control is performed by setting the fuel injection amount so that it becomes 1.

第2図は従来広く用いられている空燃比フイー
ドバツク制御の特性を示したものであり、1つの
酸素センサからの信号に基づいて制御を行うもの
である。図中信号a0は機関運転条件に応じて設定
される燃料の基本噴射量に乗じられる空燃比フイ
ードバツク補正系数であり、酸素センサの検出信
号が排気中酸素濃度に対応する空燃比のリツチ
(リーン)側からリーン(リツチ)側へ反転した
時、初回に比例分Pだけ減少(増大)させ、以後
微小量な積分分Iずつ減少(増大)させるとい
う、いわゆる比例積分制御により設定される。
又、空燃比フイードバツク補正系数αに制御値に
対して空燃比λ=1である線を示してある。
FIG. 2 shows the characteristics of air-fuel ratio feedback control, which has been widely used in the past, and is controlled based on a signal from one oxygen sensor. Signal a0 in the figure is an air-fuel ratio feedback correction coefficient that is multiplied by the basic injection amount of fuel set according to the engine operating conditions, and the detection signal of the oxygen sensor is the rich (lean) air-fuel ratio corresponding to the oxygen concentration in the exhaust. ) side to the lean (rich) side, it is set by so-called proportional-integral control, in which it is first decreased (increased) by a proportional amount P, and thereafter decreased (increased) by a minute integral amount I.
Also, a line is shown in the air-fuel ratio feedback correction coefficient α for which the air-fuel ratio λ=1 with respect to the control value.

この場合、図中区間T1では酸素センサの信号
はリツチを示しており、この間燃料噴射量減少制
御が行われることにより時点t1において空燃比は
λ=1となり以後λ<1の方向に制御が進行する
が、酸素センサがこの状態を検出して信号b0がリ
ツチ側からリーン側に切換わるまでには、燃料制
御系の制御結果に対応する酸素濃度をもつ排気が
酸素センサに到達するまでの無駄時間Tdがある
ため、それだけ遅れている。即ち、t1から時間
Tdだけ遅れて酸素センサがリーン状態を検出し、
その時点t2から燃料増量制御が行われる(制御方
式の参考文献:特開昭48−91425号公報)。
In this case, the signal from the oxygen sensor indicates a rich state in interval T 1 in the figure, and as fuel injection amount reduction control is performed during this period, the air-fuel ratio becomes λ = 1 at time t 1 and is thereafter controlled in the direction of λ < 1. progresses, but by the time the oxygen sensor detects this state and the signal b0 switches from the rich side to the lean side, exhaust gas with an oxygen concentration corresponding to the control result of the fuel control system has reached the oxygen sensor. Due to the wasted time Td until i.e. from t 1 to time
The oxygen sensor detects a lean condition with a delay of Td,
From that point in time t2 , fuel increase control is performed (reference document for control method: Japanese Patent Application Laid-Open No. 1983-91425).

このように酸素センサからの信号に基づくフイ
ードバツク制御は、主として無駄時間Tdが存在
することと酸素センサがON/OFF型であること
により制御量がハンチングしているが、制御ゲイ
ンを適当に選べば振巾、周期とも適当な値に設定
することができ実用上問題はない。
In this way, in feedback control based on the signal from the oxygen sensor, the control amount is hunting mainly due to the presence of dead time Td and because the oxygen sensor is an ON/OFF type, but if the control gain is selected appropriately, Both the amplitude and period can be set to appropriate values, and there is no problem in practical use.

このため、前記従来のV型機関の場合も、左右
のバンクに夫々制御系を設けて独立に制御を行つ
ているが、独立した制御系を2つ必要とするため
高価につく難点があつた。この他特開昭52−
97024号公報の従来例に示すものも同様の制御を
行つている。尚、同公報に示す発明では、1個の
酸素センサで左右のバンクの制御を行つている
が、このものでは左右バンクのバラツキの経時変
化、運転条件による変化に対処できない。
For this reason, in the case of the conventional V-type engine mentioned above, a control system is provided for each bank on the left and right banks to perform independent control, but this requires two independent control systems, which has the disadvantage of being expensive. . In addition, Japanese Patent Publication No. 52-
The conventional example disclosed in Japanese Patent No. 97024 also performs similar control. In the invention disclosed in the same publication, the left and right banks are controlled using one oxygen sensor, but this method cannot cope with changes over time in the dispersion of the left and right banks and changes due to operating conditions.

そこで、かかる問題を解決するため、2つの酸
素センサの信号に基づき一つの制御装置で制御す
ることが考えられるが、単純に2つのANDをと
り共通の信号結果に基づいて両バンクを同一信号
出力によつて制御を行つた場合には後述するよう
な問題を生じる。
Therefore, in order to solve this problem, it may be possible to control the two banks with one control device based on the signals of the two oxygen sensors, but simply AND the two and output the same signal from both banks based on the common signal result. If control is performed by

即ち、第3図は上記の方法による制御を行つた
場合の左右バンクにおける空燃比フイードバツク
補正系数αの信号a1,a2(両者は等しく制御され
る)と、これに対応するλ=1の位置および、左
右のバンクに接続される排気管に夫々設けられた
2つの酸素センサからの信号b1,b2の特性を示
す。図において、時点t11において2つの酸素セ
ンサの信号b1,b2が共にリツチを示し、空燃比フ
イードバツク補正系数αの信号a1,a2が増から減
に反転して燃料噴射量制御が行われる。
That is, FIG. 3 shows the signals a 1 and a 2 of the air-fuel ratio feedback correction coefficient α in the left and right banks (both are controlled equally) and the corresponding signals of λ=1 when control is performed using the above method. It shows the position and characteristics of signals b 1 and b 2 from two oxygen sensors installed in the exhaust pipes connected to the left and right banks, respectively. In the figure, at time t11 , both the signals b 1 and b 2 of the two oxygen sensors indicate richness, and the signals a 1 and a 2 of the air-fuel ratio feedback correction coefficient α reverse from increasing to decreasing, and the fuel injection amount control is activated. It will be done.

ところが、左右のバンクの空燃比は個体バラツ
キ等により通常ズレを生じており、この場合、一
方のバンク例えば、(図中信号a1に対応するバン
クの方が時点t12において他方のバンクより先に
λ=1に達する。そして、該時点t12から無駄時
間Tdだけ遅れて時点t14で該バンクに対応する酸
素センサの信号b2がリーン状態を検出するが、他
方の酸素センサの信号は依然としてリツチ状態を
示しており、従つて燃料を減少させる制御が継続
される。
However, the air-fuel ratios of the left and right banks usually differ due to individual variations, and in this case, for example, one bank (in the figure, the bank corresponding to signal a 1 is ahead of the other bank at time t 12 ) Then, at time t 14 , which is delayed by dead time Td from time t 12 , the signal b 2 of the oxygen sensor corresponding to the bank detects a lean state, but the signal of the other oxygen sensor It still indicates a rich condition, so control to reduce fuel is continued.

他方のバンクは時点t12よりやや遅れて時点t13
でλ=1に達し、さらに無駄時間Tdだけ遅れて
時点t15で酸素センサの信号b2がリーン状態を検
出する。
The other bank is at time t 13 , slightly later than time t 12 .
When λ=1 is reached, the oxygen sensor signal b 2 detects a lean state at time t 15 after a further delay of dead time Td.

この時点t15で2つの酸素センサの信号b1,b2
が共にリーン状態を示すため燃料増量制御に切換
えられる。
At this time t 15 the two oxygen sensor signals b 1 , b 2
Both indicate a lean state, so the control is switched to fuel increase control.

このように、左右のバンクの空燃比のズレによ
り制御系の切換えに遅れを生じる結果、制御量の
ハンチングの振巾、周期共に第2図に示した場合
に比べて大きく増大し、排気特性、燃費に悪影響
を及ぼすおそれがあつた。
As a result of the delay in switching the control system due to the difference in the air-fuel ratio between the left and right banks, both the amplitude and period of hunting of the controlled variable greatly increase compared to the case shown in Fig. 2, and the exhaust characteristics and There was a risk that fuel efficiency would be adversely affected.

又、同一の信号で両バンクの制御を行つている
ため機関全体としてはλ=1に制御されるものの
一方のバンクの空燃比はリーン側に保たれ、他方
のバンクの空燃比はリツチ側に保たれ、この面で
も排気特性、燃費に悪影響を及ぼすおそれがあつ
た。
Also, since both banks are controlled by the same signal, the engine as a whole is controlled to λ = 1, but the air-fuel ratio of one bank is kept on the lean side, and the air-fuel ratio of the other bank is kept on the rich side. In this respect, there was a risk that exhaust characteristics and fuel efficiency would be adversely affected.

〈考案の目的〉 本考案はこのような従来の実状に鑑みなされた
もので、2つの酸素センサからの信号のズレに応
じて2つの気筒群へ出力される空燃比フイードバ
ツク制御量に差をもたせることにより、2つの気
筒群を同一の設定空燃比に制御できるようにし、
もつて前記問題点を解決した内燃気関の空燃比制
御装置を提供することを目的とする。
<Purpose of the invention> The present invention was devised in view of the above-mentioned conventional situation, and it creates a difference in the air-fuel ratio feedback control amount output to the two cylinder groups according to the difference in the signals from the two oxygen sensors. By doing so, it is possible to control the two cylinder groups to the same set air-fuel ratio,
It is an object of the present invention to provide an air-fuel ratio control device for an internal combustion engine that solves the above problems.

〈考案の構成〉 このため、本考案は、2つの気筒群に夫々接続
される2系統の排気管に夫々排気中酸素濃度を検
出し、排気中酸素濃度に対応する空燃比の大小に
応じて反転する2種類の信号を出力する酸素セン
サを備え、これら2つの酸素センサからの信号に
基づいて燃料供給量を増減制御することにより空
燃比を設定値に保つようにフイードバツク制御す
る内燃機関の空燃比制御装置において、2つの酸
素センサらの信号を判別する信号判別手段と、該
信号判別手段により2つの酸素センサが異種類の
信号を出力している時に2つの気筒群に出力され
る空燃比フイードバツク制御量に偏差を与える2
つの気筒群においては空燃比フイードバツク制御
量と設定空燃比に対応する制御量との差がなくな
るように補正制御する制御量補正手段とを設けた
構成とする。
<Structure of the invention> For this reason, the present invention detects the oxygen concentration in the exhaust gas in each of the two exhaust pipes connected to the two cylinder groups, and detects the oxygen concentration in the exhaust gas depending on the size of the air-fuel ratio corresponding to the oxygen concentration in the exhaust gas. An air conditioner for an internal combustion engine that is equipped with an oxygen sensor that outputs two types of inverted signals, and performs feedback control to maintain the air-fuel ratio at a set value by increasing or decreasing the amount of fuel supplied based on the signals from these two oxygen sensors. The fuel ratio control device includes a signal discrimination means for discriminating signals from two oxygen sensors, and an air-fuel ratio output to two cylinder groups when the two oxygen sensors output different types of signals. Adding deviation to feedback control amount 2
In each cylinder group, a control amount correcting means is provided for performing correction control so that the difference between the air-fuel ratio feedback control amount and the control amount corresponding to the set air-fuel ratio is eliminated.

〈実施例〉 以下、本考案の実施例を説明する。但し、酸素
センサ、燃料供給系の構成については第1図に示
したものと同様であり、同一構成要素については
同図に付された符号を使用して説明する。
<Example> Hereinafter, an example of the present invention will be described. However, the configurations of the oxygen sensor and fuel supply system are the same as those shown in FIG. 1, and the same components will be described using the reference numerals given in the same figure.

第4図は、本考案に係る空燃比制御装置の制御
ブロツク図を示す。
FIG. 4 shows a control block diagram of the air-fuel ratio control device according to the present invention.

基本噴射量演算回路21は、機関回転数Nを検
出するクランク角センサ13からの信号と、吸入
空気量Qを検出するエアフロメータ3からの信号
とを入力して基本噴射量TpをTp=KQ/N(Kは
定数)として演算し、その信号S1を後述する2
つの乗算回路25,27に出力する。
The basic injection amount calculation circuit 21 inputs the signal from the crank angle sensor 13 that detects the engine speed N and the signal from the air flow meter 3 that detects the intake air amount Q, and calculates the basic injection amount Tp as Tp=KQ. /N (K is a constant), and the signal S1 is calculated as 2, which will be described later.
The output signal is output to two multiplication circuits 25 and 27.

信号判別回路22は、2つの酸素センサ12
A,12Bからの信号S2,S3を入力し、S
2,S3ともリツチである場合、S2がリツチで
S3がリーンである場合、S2がリーンでS3が
リツチである場合、S2,S3ともリーンである
場合の4通りの組合わせの判別を行い、その判別
信号S4を出力する。
The signal discrimination circuit 22 includes two oxygen sensors 12
Input signals S2 and S3 from A and 12B, and
2 and S3 are both rich, S2 is rich and S3 is lean, S2 is lean and S3 is rich, and S2 and S3 are both lean. The determination signal S4 is output.

空燃比フイードバツク補正係数演算回路23
は、前記信号判別回路22からの判別信号S4に
応じて、空燃比フイードバツク補正係数αを後述
するようにして演算する。即ち、判別信号S4に
よる判別で、S2,S3が共にリツチ(リーン)
である場合は、この状態に切換わつたことを判別
した1回目に空燃比フイードバツク補正係数αを
前回の値より比例分Pだけ減少(増大)し、2回
目以降は、微少な積分分Iずつ減少(増大)す
る。
Air-fuel ratio feedback correction coefficient calculation circuit 23
calculates the air-fuel ratio feedback correction coefficient α in accordance with the discrimination signal S4 from the signal discrimination circuit 22, as will be described later. That is, as determined by the discrimination signal S4, both S2 and S3 are rich (lean).
If this is the case, the first time it is determined that this state has been switched, the air-fuel ratio feedback correction coefficient α is decreased (increased) by a proportional amount P from the previous value, and from the second time onward, it is decreased by a minute integral amount I. Decrease (increase).

制御量補正回路24は、酸素センサ12A,1
2Bからの信号S2,S3を入力し、後述する如
く一方のバンク、本実施例では第1図中右側のバ
ンク側の空燃比フイードバツク補正系数αの制
御量を補正する信号S6を加算回路26に出力す
る。
The controlled amount correction circuit 24 includes oxygen sensors 12A, 1
As will be described later, a signal S6 for correcting the control amount of the air-fuel ratio feedback correction coefficient α of one bank, in this embodiment, the bank on the right side in FIG. 1, is input to the adding circuit 26. Output.

即ち、左右のバンク,の個体バラツキによ
り同一の空燃比フイードバツク補正係数αの制御
値に対する空燃比λにずれを生じた場合、一方の
酸素センサはリツチ期間の占める割合が大きく、
他方の酸素センサはリーン期間の占める割合が大
きくなる。
That is, when a deviation occurs in the air-fuel ratio λ with respect to the control value of the same air-fuel ratio feedback correction coefficient α due to individual variations between the left and right banks, one oxygen sensor has a large proportion of the rich period;
The other oxygen sensor has a larger proportion of the lean period.

この場合、前記一方の酸素センサは他方の酸素
センサに比べてリーンからリツチに反転する時期
は早められ、リツチからリーンに反転する時期は
逆に遅れる。
In this case, the time at which the one oxygen sensor changes from lean to rich is earlier than the other oxygen sensor, and the time at which the oxygen sensor changes from rich to lean is delayed.

そこで、制御量補正回路24は2つの酸素セン
サ12A,12Bの信号の反転時期のずれを検出
した場合は空燃比フイードバツク補正係数αの制
御値を反転させる際、即ち2つの酸素センサの信
号S2,S3が共にリツチ又はリーンとなつた時
点、バンク側の酸素センサ12Bがリツチ期間
が長いときは、同バンクの空燃比フイードバツ
ク補正係数をバンクにおいてなされるように通
常のPI制御により±P分を与えて設定した値か
ら所定量△αを減少させる信号を出力し、逆にリ
ーン期間が長いときは同じく所定量△αを増大さ
せる信号を出力する。
Therefore, when the control amount correction circuit 24 detects a difference in the reversal timing of the signals of the two oxygen sensors 12A and 12B, when inverting the control value of the air-fuel ratio feedback correction coefficient α, that is, the signal S2 of the two oxygen sensors, When both S3 become rich or lean, if the bank-side oxygen sensor 12B has a long rich period, the air-fuel ratio feedback correction coefficient of the same bank is given ±P by normal PI control as in the bank. A signal is output to decrease the predetermined amount Δα from the set value, and conversely, when the lean period is long, a signal is output to increase the predetermined amount Δα.

但し、具体的には、後述するように加算回路2
6においてバンク側の空燃比フイードバツク補
正係数αの値を基準としてバンク側の空燃比フ
イードバツク補正係数αの値を補正するため、制
御量補正回路24においては、制御値の反転毎に
所定量△αの積算した値に相当する信号を出力す
る。
However, specifically, as described later, the addition circuit 2
In order to correct the value of the bank-side air-fuel ratio feedback correction coefficient α using the value of the bank-side air-fuel ratio feedback correction coefficient α as a reference in step 6, the control amount correction circuit 24 adjusts the predetermined amount Δα every time the control value is reversed. A signal corresponding to the integrated value is output.

加算回路26はS5,S6の信号により空燃比
フイードバツク補正係数αを所定量だけ加算又は
減算し、その値α′に相応する信号S7を第2の乗
算回路27へ出力する。
The adder circuit 26 adds or subtracts the air-fuel ratio feedback correction coefficient α by a predetermined amount based on the signals S5 and S6, and outputs a signal S7 corresponding to the value α' to the second multiplier circuit 27.

第1の乗算回路25は、信号S1とS5とによ
り、基本噴射量Tpに空燃比フイードバツク補正
係数αを乗算して燃料噴射量Tiを求め、その信
号S8を第1の燃料噴射弁駆動回路28に出力す
る。第1の燃料噴射弁駆動回路28は、Tiに相
応するパルス巾をもつ駆動パルス信号S9をバン
ク側の各気筒に取り付けられた燃料噴射弁7A
に出力する。
The first multiplier circuit 25 multiplies the basic injection amount Tp by the air-fuel ratio feedback correction coefficient α based on the signals S1 and S5 to obtain the fuel injection amount Ti, and transmits the signal S8 to the first fuel injection valve drive circuit 28. Output to. The first fuel injection valve drive circuit 28 sends a drive pulse signal S9 having a pulse width corresponding to Ti to the fuel injection valves 7A attached to each cylinder on the bank side.
Output to.

第2の乗算回路27は信号S1とS7とにより
基本噴射量Tpと補正された空燃比フイードバツ
ク補正係数α′とを乗算して燃料噴射量Ti′を求め、
その信号S10を第2の燃料噴射弁駆動回路29
に出力する。第2の燃料噴射弁駆動回路29は
Ti′に相応する駆動パルス信号S11をバンク
側の各気筒に取り付られた燃料噴射弁7Bに出力
する。
The second multiplication circuit 27 multiplies the basic injection amount Tp and the corrected air-fuel ratio feedback correction coefficient α' based on the signals S1 and S7 to obtain the fuel injection amount Ti'.
The signal S10 is sent to the second fuel injection valve drive circuit 29.
Output to. The second fuel injection valve drive circuit 29 is
A drive pulse signal S11 corresponding to Ti' is output to the fuel injection valve 7B attached to each cylinder on the bank side.

次に、かかる制御装置による一連の制御動作を
第5図に示す信号特性図を参照しつつ説明する。
時点t21において2つの酸素センサ12A,12
Bの信号S2,S3は共にリツチの状態を示し、
信号判別回路22の信号に基づき空燃比フイード
バツク補正係数演算回路23は空燃比フイードバ
ツク補正係数αの値を初回に比例分Pだけ減じ、
2回目以後は積分分Iずつ減じる演算を行ない、
その信号S5を出力する。
Next, a series of control operations by such a control device will be explained with reference to the signal characteristic diagram shown in FIG.
At time t 21 two oxygen sensors 12A, 12
Signals S2 and S3 of B both indicate a rich state,
Based on the signal from the signal discrimination circuit 22, the air-fuel ratio feedback correction coefficient calculation circuit 23 initially subtracts the value of the air-fuel ratio feedback correction coefficient α by a proportional amount P;
From the second time onwards, perform the calculation to subtract the integral by I,
The signal S5 is output.

これにより第1の乗算回路25を経て第1の燃
料噴射弁駆動回路28から出力される燃料噴射量
Tiに相応するパルス信号S9のパルス巾が減じ
られ、バンクI側の燃料噴射弁7Aの開弁時間が
減少して燃料噴射量が減少制御される。
As a result, the fuel injection amount output from the first fuel injection valve drive circuit 28 via the first multiplier circuit 25
The pulse width of the pulse signal S9 corresponding to Ti is reduced, the opening time of the fuel injection valve 7A on the bank I side is reduced, and the fuel injection amount is controlled to be reduced.

一方、バンク側の酸素センサ12Bの出力は
時点t21より先に時点t20で既にリツチとなつてい
るため、このずれを検出して制御量補正回路24
により時点t21においてバンクの空燃比フイー
ドバツク係数α′を所定量△α減少させる信号S6
が出力される。これにより、加算回路26はバン
クの空燃比フイードバツク補正係数αから所定
量を減じた値をバンクの空燃比フイードバツク
係数α′として求め、その信号S7が第2の乗算回
路27に出力される。
On the other hand, since the output of the bank side oxygen sensor 12B has already become rich at time t20 before time t21 , this deviation is detected and the control amount correction circuit 24
A signal S6 decreases the bank air-fuel ratio feedback coefficient α' by a predetermined amount Δα at time t21 .
is output. As a result, the adder circuit 26 subtracts a predetermined amount from the bank air-fuel ratio feedback correction coefficient α to obtain the bank air-fuel ratio feedback coefficient α', and outputs the signal S7 to the second multiplier circuit 27.

第2の乗算回路27は、基本噴射量Tpと補正
された空燃比フイードバツク補正係数α′とを積算
して燃料噴射量Ti′を求め、その信号S10が第
2の燃料噴射弁駆動回路29へ出力され、該駆動
回路29からのTi′に相応するパルス巾をもつ信
号S11がバンク側の燃料噴射弁7Bに出力さ
れる。
The second multiplier circuit 27 calculates the fuel injection amount Ti' by integrating the basic injection amount Tp and the corrected air-fuel ratio feedback correction coefficient α', and sends the signal S10 to the second fuel injection valve drive circuit 29. A signal S11 having a pulse width corresponding to Ti' from the drive circuit 29 is output to the bank side fuel injection valve 7B.

このようにして、バンク側の燃料噴射弁7B
からの燃料噴射量も減少制御されるが、その減少
制御量はバンク側に比べて大きいのでリーン側
にスライドした制御が行われる。
In this way, the bank side fuel injection valve 7B
The amount of fuel injected from the bank is also controlled to decrease, but since the amount of decrease control is larger than that on the bank side, control is performed that slides toward the lean side.

次いで、時点t22においてバンクの空燃比が
λ=1に到達し無駄時間Tdの経過後の時点t24
酸素センサ7Aの信号S2がリツチからリーンに
反転し、又、時点t23でバンクの空燃比がλ=
1に到達し無駄時間Td経過後の時点t25で酸素セ
ンサ7Bの信号S3がリツチからリーンに反転す
る。従つて時点t25で空燃比フイードバツク補正
係数演算回路23が空燃比フイードバツク補正係
数αを比例分Pだけ増大させ、以後積分分Iずつ
増大する演算を行いその信号S5を出力する。こ
れにより、乗算回路25、燃料噴射弁駆動回路2
8を介してバンク側の燃料噴射弁7Aからの燃
料噴射量が増大制御に切換えられる。
Next, at time t22 , the air-fuel ratio of the bank reaches λ=1, and at time t24 , after the dead time Td has elapsed, the signal S2 of the oxygen sensor 7A is reversed from rich to lean, and at time t23 , the bank's air-fuel ratio reaches λ=1. Air fuel ratio is λ=
1 and after the dead time Td has elapsed, at time t25 , the signal S3 of the oxygen sensor 7B is reversed from rich to lean. Therefore, at time t25 , the air-fuel ratio feedback correction coefficient calculation circuit 23 increases the air-fuel ratio feedback correction coefficient α by the proportional amount P, and thereafter performs calculations to increase the air-fuel ratio feedback correction coefficient α by the integral amount I, and outputs the signal S5. As a result, the multiplier circuit 25, the fuel injection valve drive circuit 2
8, the fuel injection amount from the bank side fuel injection valve 7A is switched to increase control.

一方、制御量補正回路24は、酸素センサ12
A,12Bの反転時期のズレを検出してバンク
側の空燃比フイードバツク補正係数α′を所定量△
α減少させる信号S6を出力する。
On the other hand, the control amount correction circuit 24
Detecting the difference in the reversal timing of A and 12B, the bank side air-fuel ratio feedback correction coefficient α' is adjusted by a predetermined amount △
A signal S6 for decreasing α is output.

これにより、加算回路26において空燃比フイ
ードバツク補正係数α′は、時点t25で比例分Pか
ら所定量△αを差し引いた制御分が増大され、以
後積分分Iずつ増大する制御が行われる。
As a result, in the adding circuit 26, the air-fuel ratio feedback correction coefficient α' is increased by a control amount obtained by subtracting a predetermined amount Δα from the proportional amount P at time t25 , and thereafter control is performed to increase it by an integral amount I.

ここで、時点t21においてバンク側の空燃比
フイードバツク補正係数αの減少量を△αだけ大
きくしたことによりλ=1に到達する時点t23
それだけ早められ、従つて時点t24,t25間のずれ
が時点t20,t21間のずれに比べて短縮される。
Here, by increasing the amount of decrease in the air-fuel ratio feedback correction coefficient α on the bank side by Δα at time t 21 , the time t 23 at which λ=1 is reached is brought forward by that amount, and therefore the time t 23 between time t 24 and t 25 is The difference between the times t 20 and t 21 is reduced compared to the difference between the times t 20 and t 21 .

又、時点t25における空燃比フイードバツク補
正係数α′の増大量を△αだけ小さくしたことによ
りバンクにおいてλ=1に到達する時点t26
それだけ遅れバンクにおいてλ=1に到達する
時点t27とのずれが小さくなるので2つの酸素セ
ンサ12B,12Aがこれらの時点t26,t27を検
する時点t28,t29間のずれは時点t24,t25間のずれ
に比べて短縮される。
Also, by reducing the amount of increase in the air-fuel ratio feedback correction coefficient α' at time t 25 by Δα, the time t 26 at which λ=1 is reached in the bank is delayed by that amount and the time t 27 at which λ=1 is reached in the bank. Since the deviation between the two oxygen sensors 12B and 12A detects these times t 26 and t 27 between the times t 28 and t 29 is shortened compared to the deviation between the times t 24 and t 25 . .

以降同様のことが繰返されて2つの酸素センサ
12A,12Bの信号S2,S3の反転時期のず
れは短縮され、時点t30において許容範囲内で一
致し、これと併行してバンク,の空燃比フイ
ードバツク補正係数α,α′はハンチングの振巾、
周期を減少しつつ空燃比λ=1からのずれ量が等
しくなるように制御される。即ち2つのバンク
,がバラツキなく略λ=1を制御中心として
同一の空燃比に制御されるのである。
Thereafter, the same process is repeated, and the difference in the reversal timing of the signals S2 and S3 of the two oxygen sensors 12A and 12B is shortened, and at time t30 they match within the allowable range, and in parallel with this, the air-fuel ratio of the bank The feedback correction coefficients α and α′ are the amplitude of hunting,
Control is performed so that the deviation amount from the air-fuel ratio λ=1 becomes equal while decreasing the period. In other words, the two banks are controlled to the same air-fuel ratio with approximately λ=1 as the control center without any variation.

このようにして、バンク,の空燃比フイー
ドバツク補正係数α,α′の振巾、周期を減少で
き、かつ、同一の空燃比に制御できることによ
り、排気特性、燃費とも大幅に向上する。
In this way, the amplitude and period of the bank air-fuel ratio feedback correction coefficients α, α' can be reduced, and the air-fuel ratio can be controlled to the same level, thereby significantly improving both exhaust characteristics and fuel efficiency.

尚、本実施例において補正を行わない側の空燃
比フイードバツク補正係数αの制御量が所定範囲
に限定されている場合、制御中心値を前記所定範
囲の中央値に近づける方が制御の余裕が大きい。
したがつて、他方の空燃比フイードバツク補正係
数α′を補正することによつて空燃比フイードバツ
ク補正係数αの制御中心が前記所定範囲の中央値
に近づくように補正を行う側のバンクを選定する
ことが望ましい。
In addition, in this embodiment, when the control amount of the air-fuel ratio feedback correction coefficient α on the side where no correction is performed is limited to a predetermined range, the control margin is greater if the control center value is brought closer to the median value of the predetermined range. .
Therefore, by correcting the other air-fuel ratio feedback correction coefficient α', the bank to be corrected is selected so that the control center of the air-fuel ratio feedback correction coefficient α approaches the median value of the predetermined range. is desirable.

又、本実施例では酸素センサの信号のずれを検
出した場合一方の空燃比フイードバツク補正係数
を一定の値ずつ増減補正する構成としたが、ずれ
量に比例して増減補正量を設定するようにしても
よい。
Furthermore, in this embodiment, when a deviation in the signal of the oxygen sensor is detected, one of the air-fuel ratio feedback correction coefficients is increased or decreased by a fixed value, but the correction amount is set in proportion to the amount of deviation. You can.

さらに、2系統の空燃比フイードバツク補正係
数α,α′を共に互いに逆方向に増減補正する構成
としてもよい。
Furthermore, the air-fuel ratio feedback correction coefficients α and α' of the two systems may be both increased and decreased in opposite directions.

又、一方の酸素センサが故障した場合は、その
時点で2系統の空燃比フイードバツク補正係数
α,α′間のずれ量を記憶しておき、正常な酸素セ
ンサの信号に基づいて、従来通りのPI制御を行
つて一方の空燃比フイードバツク補正係数を設定
し、他方は、これに前記ずれ量を加算して設定す
れば2系統間のバラツキを吸収した良好な制御が
続行される。この場合、回転数、負荷等によつて
定まる異なる運転状態毎に2系統の空燃比フイー
ドバツク補正係数を記憶しておけば凡ゆる運転状
態に亘つてより良好な制御を行える。
In addition, if one oxygen sensor fails, the amount of deviation between the air-fuel ratio feedback correction coefficients α and α' of the two systems is memorized at that time, and the conventional method is performed based on the signal from the normal oxygen sensor. If PI control is performed to set one air-fuel ratio feedback correction coefficient, and the other is set by adding the above-mentioned deviation amount to this, good control that absorbs variations between the two systems can be continued. In this case, if two systems of air-fuel ratio feedback correction coefficients are stored for each different operating state determined by the rotational speed, load, etc., better control can be achieved over all operating states.

〈考案の効果〉 以上説明したように本考案によれば、2つの酸
素センサの信号出力の種類に応じて空燃比フイー
ドバツク制御量に偏差を与えることにより2つの
気筒群が同一の設定空燃比に制御される構成とし
たため、ハンチングする制御量の振巾、周期が短
縮されることとも相埃つて排気特性、燃費を可及
的に改善できる。
<Effects of the invention> As explained above, according to the invention, two cylinder groups are brought to the same set air-fuel ratio by giving a deviation to the air-fuel ratio feedback control amount according to the type of signal output from the two oxygen sensors. Since the configuration is controlled, the amplitude and period of the hunting control amount are shortened, and the exhaust characteristics and fuel efficiency can be improved as much as possible.

又、2つの気筒群を全く独立した制御系で制御
する場合に比べ、2つの酸素センサの共通の信号
に基づいて基本となる空燃比フイードバツク制御
量を設定し、この値に所定量を加減補正して2系
統の制御量を設定する構成であるため、演算回路
等の共通化が図れ、コスト的にも有利である。
In addition, compared to the case where two cylinder groups are controlled by completely independent control systems, the basic air-fuel ratio feedback control amount is set based on a common signal from the two oxygen sensors, and a predetermined amount is added or subtracted to this value. Since the configuration is such that the control amounts for two systems are set, the arithmetic circuits and the like can be shared, which is advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、内燃機関の空燃比制御装置の機械的
な構成部分の一例を示す構成図、第2図は1個の
酸素センサの信号に基づく空燃比フイードバツク
制御の一例を示す特性図、第3図は2つの酸素セ
ンサの信号に基づく空燃比フイードバツク制御の
一例を示す特性図、第4図は本考案の一実施例を
示す制御ブロツク図、第5図は同上実施例の制御
特性図である。 1……V型内燃機関、7A,7B……燃料噴射
弁、8A,8B……排気マニホールド、12A,
12B……酸素センサ、21……基本噴射量演算
回路、22……判別回路、23……空燃比フイー
ドバツク補正係数演算回路、24……制御量補正
回路、25,27……乗算回路、26……加算回
路、28,29……燃料噴射弁駆動回路、S1〜
S9……信号。
FIG. 1 is a configuration diagram showing an example of mechanical components of an air-fuel ratio control device for an internal combustion engine, FIG. 2 is a characteristic diagram showing an example of air-fuel ratio feedback control based on a signal from one oxygen sensor, and FIG. Fig. 3 is a characteristic diagram showing an example of air-fuel ratio feedback control based on the signals of two oxygen sensors, Fig. 4 is a control block diagram showing an embodiment of the present invention, and Fig. 5 is a control characteristic diagram of the same embodiment. be. 1... V-type internal combustion engine, 7A, 7B... Fuel injection valve, 8A, 8B... Exhaust manifold, 12A,
12B... Oxygen sensor, 21... Basic injection amount calculation circuit, 22... Discrimination circuit, 23... Air-fuel ratio feedback correction coefficient calculation circuit, 24... Controlled amount correction circuit, 25, 27... Multiplication circuit, 26... ... Addition circuit, 28, 29 ... Fuel injection valve drive circuit, S1 ~
S9...Signal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 2つの気筒群に夫々接続される2系統の排気管
に夫々排気中酸素濃度を検出し、排気中酸素濃度
に対応する空燃比の大小に応じて反転する2種類
の信号を出力する酸素センサを備え、これら2つ
の酸素センサからの信号に基づいて燃料供給量を
増減制御することにより空燃比を設定値に保つよ
うにフイードバツク制御する内燃機関の空燃比制
御装置において、2つの酸素センサからの信号を
判別する信号判別手段と、該信号判別手段により
2つの酸素センサが互いに異種類の信号を出力し
ていることを判別した時に2つの気筒群に出力さ
れる空燃比フイードバツク制御量に偏差を与え2
つの気筒群における空燃比フイードバツク制御量
と設定空燃比に対応する制御量との差が等しくな
るように補正制御する制御量補正手段を設けた構
成としたことを特徴とする内燃機関の空燃比制御
装置。
Oxygen sensors are installed in the two exhaust pipe systems connected to the two cylinder groups, respectively, to detect the oxygen concentration in the exhaust gas and output two types of signals that are inverted depending on the size of the air-fuel ratio corresponding to the oxygen concentration in the exhaust gas. In an air-fuel ratio control device for an internal combustion engine that performs feedback control to maintain the air-fuel ratio at a set value by increasing or decreasing the amount of fuel supplied based on the signals from the two oxygen sensors, a signal discriminating means for discriminating between the two oxygen sensors; 2
Air-fuel ratio control for an internal combustion engine, characterized in that the air-fuel ratio control for an internal combustion engine is provided with a control amount correction means that performs correction control so that the difference between the air-fuel ratio feedback control amount and the control amount corresponding to a set air-fuel ratio in one cylinder group becomes equal. Device.
JP1497084U 1984-02-07 1984-02-07 Air-fuel ratio control device for internal combustion engines Granted JPS60127442U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1497084U JPS60127442U (en) 1984-02-07 1984-02-07 Air-fuel ratio control device for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1497084U JPS60127442U (en) 1984-02-07 1984-02-07 Air-fuel ratio control device for internal combustion engines

Publications (2)

Publication Number Publication Date
JPS60127442U JPS60127442U (en) 1985-08-27
JPS645059Y2 true JPS645059Y2 (en) 1989-02-08

Family

ID=30500379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1497084U Granted JPS60127442U (en) 1984-02-07 1984-02-07 Air-fuel ratio control device for internal combustion engines

Country Status (1)

Country Link
JP (1) JPS60127442U (en)

Also Published As

Publication number Publication date
JPS60127442U (en) 1985-08-27

Similar Documents

Publication Publication Date Title
JPS59192838A (en) Air-fuel ratio controlling method
US5440877A (en) Air-fuel ratio controller for an internal combustion engine
JPH057548B2 (en)
JPS58150057A (en) Study control method of air-fuel ratio in internal-combustion engine
JPS645059Y2 (en)
JPS61118538A (en) Air-fuel ratio control of internal-combustion engine
JPS645058Y2 (en)
JPH0512538B2 (en)
JPH057546B2 (en)
JPS5872631A (en) Air-fuel ratio control method of engine
JP3562137B2 (en) Control device for internal combustion engine
JP2594943Y2 (en) Fuel control device for internal combustion engine
JP4247730B2 (en) Air-fuel ratio control device for internal combustion engine
JP3531221B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0372824B2 (en)
JPH0475382B2 (en)
JP2902646B2 (en) Engine air-fuel ratio control device
JPH0338417B2 (en)
JPH0368221B2 (en)
JPH0330601Y2 (en)
JP2901611B2 (en) Engine fuel injection control device
JPH0510490B2 (en)
JPS62191628A (en) Intake path device for multicylinder internal combustion engine
JPS6179839A (en) Idle rotational speed control device in engine
JPH0526934B2 (en)