JPS6399779A - Power converter - Google Patents

Power converter

Info

Publication number
JPS6399779A
JPS6399779A JP61241408A JP24140886A JPS6399779A JP S6399779 A JPS6399779 A JP S6399779A JP 61241408 A JP61241408 A JP 61241408A JP 24140886 A JP24140886 A JP 24140886A JP S6399779 A JPS6399779 A JP S6399779A
Authority
JP
Japan
Prior art keywords
upper arm
turned
terminal
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61241408A
Other languages
Japanese (ja)
Inventor
Hiroshi Miki
広志 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61241408A priority Critical patent/JPS6399779A/en
Publication of JPS6399779A publication Critical patent/JPS6399779A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent malfunction from being caused and shorten a TURN-OFF time, by short-circuiting a control terminal and an output terminal when each upper arm element is OFF. CONSTITUTION:A three-phase inverter circuit(one-phase component only is shown in figure) is composed of voltage driving type semiconductor elements 2a, 4a, an upper arm power source 16a, a transistor control circuit 8, a P channel MOSFET 9a, and the like. In this case, N channel MOSFETs 15-17, a resistor R, and a smoothing capacitor C are added. Then, to turn the upper arm element 2a ON, the FET 17 is turned ON by said control circuit 8, and the FET 16 is turned OFF, and as a result, the FET 9a is turned ON and specified voltage is applied to a control terminal(gate). When the element 2a is OFF, then the reverse against said action is performed. As a result, a the control terminal and the output terminal of the element 2a is short-circuited, and malfunction can be prevented from being caused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、パワーMO5FEFやIGBT(In5u
−1atI!d Ga(e RipOlar Tran
sistor ) (7)如!、1を正駆動形半導体素
子をブリッジ接続して構成される電力変換装置に関する
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to power MO5FEF and IGBT (In5u
-1atI! d Ga(e RipOlar Tran
sister ) (7) Like! , 1 relates to a power conversion device configured by connecting positive drive type semiconductor elements in a bridge manner.

〔従来の技術〕[Conventional technology]

第2図にトランジスタを用いた電力変換装置(インバー
タ)の例を示す。同図において、1は直流電圧源、2 
a/〜2 c /および4 a /〜4 e /けトラ
ンジスタ、3a〜3Cおよび5a〜5Cは帰還ダイオー
ド、20 a 〜20 fは駆動回路、218〜21d
は駆動電源、Toは出力端子でろる。
FIG. 2 shows an example of a power conversion device (inverter) using transistors. In the figure, 1 is a DC voltage source, 2
a/~2c/and 4a/~4e/transistors, 3a~3C and 5a~5C are feedback diodes, 20a~20f are drive circuits, 218~21d
is the drive power supply, and To is the output terminal.

このような方式では、上側アーム素子2 a /〜2 
c /の出力電極(エミンタ;同図の■、■および0点
)の電位は直流回路の正側めるいは負側の電位のどちら
にもなシ得る。従って、上側アーム各素子の駆動回路2
0 a 、 20b 、 20eは他のアームのそれと
互いに絶縁する必要がめり、従来は同図に示す二うに、
複数個の絶縁さnet源21a 121b 。
In such a system, upper arm element 2 a /~2
The potential of the output electrode (eminter; points ■, ■, and 0 in the figure) of c/ can be either the positive side potential or the negative side potential of the DC circuit. Therefore, the drive circuit 2 of each element of the upper arm
0a, 20b, and 20e need to be insulated from each other from those of other arms, and conventionally, as shown in the same figure,
A plurality of insulated net sources 21a 121b.

21Cと駆動回路20a 、 20b 、 20Cが必
要となり、回路構成が複雑になるという欠点がろった〇
半導体素子全スイッチとして使用する場合、その制御端
子(図ではトランジスタのベース)に信号が加えら11
でから実際に素子がスイフチ(オン又はオフ)−fる1
で【′I:は有限の時間遅れがある。
21C and drive circuits 20a, 20b, and 20C are required, making the circuit configuration complicated. When used as a semiconductor device all switch, a signal is not applied to its control terminal (the base of the transistor in the figure). 11
Then the element actually switches (on or off) -f1
['I: has a finite time delay.

このたλ5、ブリッジ接続して使用する場合には、上下
アームの素子が同時にオン状態となることをE+、止す
る目的で、待時間?設けている。同σ4の従来方式では
素子のオフ。オフ全制御する信号は各各絶縁して駆動回
路へ与える必要がンうり、前述の待時間にはこのイボ号
絶縁(で使用する回路部品([11えばフォトカプラ)
の信号伝達時間も考慮し々ければならない。待時間金高
精度で管理することは困難でるることから、電圧駆動形
半導体素子を以上の如き従来と同様の5動力式で駆動す
ると、胃速スインチングが可能であると云う素子の特性
を充分に生かせないことになる。
In addition, when using λ5 in a bridge connection, the waiting time is required to prevent the elements of the upper and lower arms from being turned on at the same time. It is set up. In the conventional method of σ4, the element is turned off. It is necessary to insulate each OFF control signal and give it to the drive circuit, and during the above-mentioned waiting time, the circuit parts used in this insulation ([11, for example, photo coupler)]
The signal transmission time must also be taken into consideration. Since it is difficult to control the waiting time with high precision, driving a voltage-driven semiconductor device using the conventional 5-power method as described above will fully demonstrate the characteristics of the device that enable gastric speed switching. This means that you will not be able to take advantage of it.

そこで、出頭人は以下の如き方式全提案している(以下
、提案方式とも云う。)。第3図はか〜る提案方式を示
す概要図でδる。
Therefore, the applicant has proposed the following method (hereinafter also referred to as the proposed method). FIG. 3 is a schematic diagram showing the proposed method.

これは、例えば前述のIGBTの如き電圧駆動形半導体
素子rスインチング素子とし、これ全ブリッジ接続して
構成嘔れる3相インバ一タ回路の例である。同図におい
て、lは直流電圧源、2a〜2Cおよび4a〜4Cは電
圧駆動形半導体素子、3a〜3Cお工び5a〜5Cは帰
還ダイオード、6aは上側アーム駆動用電源、6bは下
側アームボ動用電び、7はインバータ制御回路、8はト
ランジスタ制御回路、9a 〜9cはPチャンネルMO
S F E T。
This is an example of a three-phase inverter circuit constructed by using voltage-driven semiconductor elements such as the above-mentioned IGBTs and switching elements, all of which are bridge-connected. In the figure, l is a DC voltage source, 2a to 2C and 4a to 4C are voltage driven semiconductor elements, 3a to 3C are connected, 5a to 5C are feedback diodes, 6a is a power supply for driving the upper arm, and 6b is a lower arm bolt. 7 is an inverter control circuit, 8 is a transistor control circuit, 9a to 9c are P-channel MOs.
S F E T.

1oa−tocおよびLla 〜L]、eは抵抗、L2
&−12cは定電圧ダイオード、Toけ出力端子である
1oa-toc and Lla~L], e is the resistance, L2
&-12c is a constant voltage diode and a To output terminal.

上側アームを構成する各電圧駆動形半導体素子2a、2
bT2Cの入力端子(コレクタと呼ぶ)は直流電圧源l
の正極側(駆動電源6&の負極側)に接続され、コレク
タと制御端子(ゲートと呼ぶ)との間には、上側アーム
駆動用電源6aにつながる抵抗1oa 、 to)l 
、 108とPチャ/ネk hK:)S FET9a*
 9 b + 9 cがそれぞれ接続1f1.る。また
、各素子2&、2b、2Cのゲートと出力端子にミッタ
と呼ぶ)との間には、過′τ圧からターtf保護するた
めの定電圧ダイオード12&、12b、12Cがそれぞ
れ接続されている。下側アーム駆動用電源6b工り給電
されるトランジスタ制御回路8け、インバータ制御回路
7から制御信号を受け、素子2a〜2Cお工び4a〜4
14−オフ。オフさせる。
Each voltage-driven semiconductor element 2a, 2 forming the upper arm
The input terminal (called the collector) of bT2C is a DC voltage source l
A resistor 1oa, to)l connected to the upper arm drive power supply 6a is connected to the positive pole side (the negative pole side of the drive power supply 6&) between the collector and the control terminal (referred to as the gate).
, 108 and P channel/nek hK:)S FET9a*
9 b + 9 c are respectively connected 1f1. Ru. In addition, constant voltage diodes 12&, 12b, 12C are connected between the gates of each element 2&, 2b, 2C and the output terminal (called a mitter) to protect the tert from excessive pressure. . 8 transistor control circuits are supplied with power by the lower arm drive power source 6b, and receive control signals from the inverter control circuit 7, and the elements 2a to 2C are connected to the elements 4a to 4.
14-off. Turn it off.

例えば、上側素子29 ’(+−オンするには、制御回
路8(てエリ抵抗10a・\11流金流してPチャンネ
ルMOSFET9afオンとすることにより行ない、オ
フはMOSFET9a Thオフとすることにエリ行な
う。
For example, to turn on the upper element 29' (+-), turn on the P-channel MOSFET 9af by flowing the resistors 10a and 11 through the control circuit 8, and turn off the upper element 29' by turning off the MOSFET 9a Th. .

こnは、他の上側素子2 b 、 2 cについても同
様である。一方、下側アーム素子43〜4Cについては
This also applies to the other upper elements 2 b and 2 c. On the other hand, regarding the lower arm elements 43 to 4C.

IlI御回路8から直接これらの素子に正の電圧を与え
てオンにし、零または負の電圧?与えてこf′I−會オ
フするようにしている。
Directly apply positive voltage to these elements from the IlI control circuit 8 to turn them on, and set them to zero or negative voltage? I try to turn off the f'I-meeting by giving the f'I-meeting.

この工うに、提案方式は電圧駆動形半導(A−素子では
駆動電力が小てくて済むことに着目して、上側アーム素
子とPチャンネルMO3FET fJ:カスケード接続
し、このPチャンネルMO3FETのオン。
In this process, the proposed method focuses on the fact that the voltage-driven semiconductor (A-element) requires less driving power, connects the upper arm element and a P-channel MO3FET fJ in cascade, and turns on this P-channel MO3FET.

オフ制@に下側アーム素子の駆′lVJ制御回路と共通
の基準電位で行ない得るLうにし、かつ上記カスケード
接続回路に電圧源を挿入することに工り素子のオン7ヒ
圧を低′$、fる:うにしたものである。
By making the OFF control @ possible to perform the driving at a common reference potential with the VJ control circuit of the lower arm element, and by inserting a voltage source into the cascade connection circuit, the ON voltage of the element is reduced. $, fru: sea urchin.

なお、第3図の駆動五〇16a 、 6bとしては1例
えげ第4図の如き各種方式が考えられる。同図(イ)は
トランスを用いる方式、同図(ロ)U圧電素子を用いる
方式、同図(ハ)は太陽電池を用いる方式、そして同図
に)は定電圧ダイオード金円いる方式である。
It should be noted that various methods as shown in FIG. 4, for example, can be considered as the drives 5016a and 6b in FIG. The figure (A) shows a method using a transformer, the figure (B) uses a U piezoelectric element, the figure (C) uses a solar cell, and the figure () shows a method using a constant voltage diode. .

こ\に、上側アーム素子用としては同図(イ)〜(ハ)
の方式が、また下側アーム素子用としては同図(イ)〜
に)の全ての方式が適用可能でろる。なお、第41凶に
おいて31はトランス、32は整流器、33はコンデ/
す、34は圧電素子、35は発光素子、36は太陽電池
、37はダイオード、38は抵抗、39け定電圧ダイオ
ードである。
For the upper arm element, see (A) to (C) in the same figure.
For the lower arm element, the method shown in the same figure (A) ~
) are all applicable. In addition, in the 41st case, 31 is a transformer, 32 is a rectifier, and 33 is a converter/condenser.
34 is a piezoelectric element, 35 is a light emitting element, 36 is a solar cell, 37 is a diode, 38 is a resistor, and 39 is a constant voltage diode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、提案方式で用いられるスインチング素子には
、その寄生トランジスタがターンオフすることにニジ、
ター/オフ時の安全動作領域SOAが狭くなつ友り(M
OSFETの場合)、いわゆるランチアンプ現象が生じ
ゲートで制御できなくなること(IGBTの場合)がろ
る。そして、後者はスイッチング素子上ターンオンする
ときよりも、ターンオフするときに生じ易いことが指適
されている。また、このターンオフ時のランチアンプ現
象は、fPIJえは素子のケート・エミッタ間に抵抗全
挿入し、ターンオフわツらせることにより抑制し得るこ
ともわかっている。
By the way, the switching element used in the proposed method has a problem in that the parasitic transistor turns off.
The safe operating area SOA when turning on/off becomes narrower (M
In the case of an OSFET), a so-called launch amplifier phenomenon occurs, which makes it impossible to control the gate (in the case of an IGBT). It has been suggested that the latter is more likely to occur when the switching element is turned off than when it is turned on. It has also been found that this launch amplifier phenomenon at turn-off can be suppressed by inserting all the resistors between the gate and emitter of the fPIJ element to cause turn-off.

しかしながら、素子のコレクタ・エミッタ間に大きなd
V/dt(電圧上昇率)tもつ電圧が印加されると、こ
の新几に挿入されるランチアップ防止用抵抗によってゲ
ート・エミッタ間電圧が上昇し、これに工り素子がター
ンオンしてし塘うおそれがるる。つまり、インバータの
如き電力変換装置では、オフしているスインチング素子
に11その帰還ダイオードの逆回復時の都市av/dt
の大きな電圧が印加されることになるが、これによって
素子がターンオンすると、上、下アームが短絡してしま
い重大な事故が生じると云う問題がらる。
However, there is a large d between the collector and emitter of the device.
When a voltage with V/dt (voltage rise rate) t is applied, the launch-up prevention resistor inserted in this new capacitor increases the gate-emitter voltage, which turns on the engineered element. I'm afraid. In other words, in a power conversion device such as an inverter, a switching element that is turned off has an average value of 11 av/dt at the time of reverse recovery of its feedback diode.
However, when the device is turned on by this large voltage, the upper and lower arms are short-circuited, causing a serious accident.

前者のMOSFET (ID場合も寄生トランジスタの
ターンオンを防ぐには、ゲートに直列に抵抗全接続して
ターンオフ全遅くする方法がとられることから、上記と
同様の間91生じる。しかるに、提案方式ではこのこと
に対する対策は未だ不充分である0 し7tがって、この発明は提案方式におけるか\る誤動
作全防止すると−もに、ターンオフ時間?短縮すること
全目的とする。
In the case of the former MOSFET (also in the case of ID), in order to prevent the parasitic transistor from turning on, the method of connecting all resistors in series with the gate to slow down the turn-off is taken, so the same period of 91 as above occurs.However, in the proposed method, this Countermeasures against this problem are still insufficient. Therefore, the overall purpose of the present invention is to completely prevent such malfunctions in the proposed system and to shorten the turn-off time.

〔問題点全解決するための手段〕[Means to solve all problems]

提案方式の如く構成される′α力変換装置に対し、各上
側アーム素子のオフ時にその各々の制御端子(ゲート)
と出力端子(エミッタ)間tL短絡する短絡手段を設け
る。
For the 'α force converter configured as in the proposed method, when each upper arm element is turned off, its respective control terminal (gate)
A short-circuit means is provided to short-circuit tL between the output terminal (emitter) and the output terminal (emitter).

〔作用〕[Effect]

オフ時に素子のゲート・エミッタ間′に短絡することに
エリ、素子と逆並列接続された帰還ダイオードの逆回復
時におけるdv、/dtK!る1混オ/?防止し、ター
ンオフタイム?短縮する。
Due to the short circuit between the gate and emitter of the element when it is off, dv, /dtK! during reverse recovery of the feedback diode connected anti-parallel to the element. ru1 mixed o/? Prevention and turn-off time? Shorten.

〔実施例〕〔Example〕

第1図はこの発明の実施列を示す回路図である。 FIG. 1 is a circuit diagram showing an embodiment of the present invention.

これはインバータ回路の1相分を示すもので、Nチャン
ネルMOSFET15 、16 、17 、ぢ【抗Rお
:ヒ平滑コンデンサCが付加きれている点?除けば、第
3図と全く同様である。
This shows one phase of the inverter circuit, and includes N-channel MOSFETs 15, 16, 17, and 1. Otherwise, it is exactly the same as FIG. 3.

動作について説明する。The operation will be explained.

まず、上側アーム素子2a’2オンするには、トランジ
スタ制御回路8によりNチャンネルMO3−FET17
 ’にオフ、16’lil”オフとし、これによりPチ
インネルMO8FET!1a ’eオンとし、抵抗11
ai介して素子2aの制御端子(ゲート〕と出力端子(
エミッタ)間に所定の電圧を印加することにより行なう
。一方、素子2aのオフは、MO8FET16tオン、
17金オフとし素子2aに上記の如く印加される電圧全
除去することにエリ行なう。
First, in order to turn on the upper arm element 2a'2, the transistor control circuit 8 turns on the N-channel MO3-FET17.
' off, 16'lil' off, which turns P-channel MO8FET!1a 'e on, resistor 11
The control terminal (gate) and output terminal (
This is done by applying a predetermined voltage between the two emitters. On the other hand, when element 2a is off, MO8FET16t is on,
Elimination is performed by turning off the 17-karat gold and completely removing the voltage applied to the element 2a as described above.

このとき、MO3FET1Gがオンしており、これによ
り抵抗Rを介して電流が流れる九めNチャンネルMO8
FET15がオンし、その結果、素子2aの制御端子と
出力端子との間が短絡でれる。、シ九がって、素子2a
と逆並列接続され之帰還ダイオード3aの逆回復時に、
素子2aに大きなdv、/dtが印加芒れてもその制御
端子の電圧が上昇することはなく、これに二つて素子2
aがオンとなる誤動作全防止することができ、ター/オ
フ時間も短縮することができる。なお、下側アーム素子
のオン、オフはトランジスタ制御回路8からの出力に工
り、直接性なわれることは第3図の場合と同様である。
At this time, MO3FET1G is on, and this causes current to flow through the ninth N-channel MO8.
FET 15 is turned on, resulting in a short circuit between the control terminal and output terminal of element 2a. , element 2a
At the time of reverse recovery of the feedback diode 3a connected in antiparallel to the
Even if a large dv, /dt is applied to element 2a, the voltage at its control terminal will not rise;
It is possible to completely prevent malfunctions in which a is turned on, and the turn/off time can also be shortened. Note that the turning on and off of the lower arm element is controlled by the output from the transistor control circuit 8, and is directly controlled as in the case of FIG. 3.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、提案方式の如(構成でれる電力変換
装置に対し、各上側アーム素子のオフ時にその各々の制
御端子(ゲート)と出力端子(エミッタ)間を短絡する
短絡手段?設けるようにしたので、素子と逆並列接続さ
れ九帰還ダイオードの逆回復時のdv/dtK!る誤動
作が防止され、ターンオフタイムが短縮される利点がも
たらされる0
According to the present invention, a short-circuiting means for short-circuiting between the control terminal (gate) and the output terminal (emitter) of each upper arm element when each upper arm element is turned off is provided in the power converter configured as in the proposed method. This prevents malfunctions such as dv/dtK! during reverse recovery of the nine feedback diodes connected in anti-parallel with the element, and has the advantage of shortening the turn-off time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す回路図、第2図はトラ
ンジスタを用い7t1!力変換装置の一般的な例を示す
傳成図、第3図は提案方式?示す概要図、第4図は上側
、下側アーム用電源の具体例?示す概4図である。 符号説明 l・・・直流電圧源、2a〜2c、4a〜4C・・・社
圧駆動形半導体素子、2 a /〜2C’、 4JL’
〜4 C/ ・・・トランジスタ、3a〜3c 、 5
a〜5C、37・・・ダイオード、6a・・・上側アー
ム用駆動@Q、5 b・・・下側アーム用駆動電源、7
・・・イノバータ制御回路、8・・・トランジスタ1I
iIli卸回路、9a 、 9b 、 9cmp f4
 yネルMOSFET 、  lOl 〜10C,1l
a−11c 、 38 。 R・・・抵抗、12a−12C,39・・・定電圧ダイ
オード、15.16.17・・・N−f−ヤンネルhi
OsFET12011〜20f・・・駆動回路、21&
〜2Ld・・・駆動電源、at・・・トランス、32・
・・liI[Z、33.c・・・コンデンサ、34・・
・圧電素子、35・・・発光素子、36・・・太陽電池
FIG. 1 is a circuit diagram showing an embodiment of the invention, and FIG. 2 is a circuit diagram using transistors for 7t1! A diagram showing a general example of a force transducer, Figure 3 is the proposed method? Is the schematic diagram shown in Figure 4 a specific example of the power supply for the upper and lower arms? FIG. Symbol explanation l...DC voltage source, 2a to 2c, 4a to 4C... Company voltage drive type semiconductor element, 2a/~2C', 4JL'
~4 C/...transistor, 3a~3c, 5
a~5C, 37... Diode, 6a... Upper arm drive @Q, 5 b... Lower arm drive power supply, 7
... Inverter control circuit, 8... Transistor 1I
iIli wholesale circuit, 9a, 9b, 9cmp f4
ynel MOSFET, lOl ~10C, 1l
a-11c, 38. R...Resistance, 12a-12C, 39... Constant voltage diode, 15.16.17...N-f-yannel hi
OsFET12011~20f...driver circuit, 21&
~2Ld... Drive power supply, at... Transformer, 32.
...liI[Z, 33. c... Capacitor, 34...
- Piezoelectric element, 35... Light emitting element, 36... Solar cell.

Claims (1)

【特許請求の範囲】 電源にブリッジ接続された電圧駆動形半導体素子の上側
アームを構成する各素子の入力端子に上側アーム駆動用
電源の負側端子を接続し、その正側端子と前記各上側ア
ーム素子の制御端子との間にそれぞれPチャンネルMO
SFETを接続し、これら各PチャンネルMOSFET
のオン、オフ制御を下側アーム素子をオン、オフ駆動す
る駆動制御回路と共通の基準電位にて行なう電力変換装
置であつて、 前記各上側アーム素子のオフ時にその各々の制御端子と
出力端子間を短絡する短絡手段を備えてなることを特徴
とする電力変換装置。
[Claims] The negative terminal of the upper arm driving power supply is connected to the input terminal of each element constituting the upper arm of the voltage-driven semiconductor element bridge-connected to the power supply, and the positive terminal and each of the upper arm Each P channel MO is connected between the control terminal of the arm element.
SFET and each of these P-channel MOSFETs
A power conversion device that performs on/off control using a common reference potential with a drive control circuit that drives lower arm elements on and off, wherein when each upper arm element is turned off, its respective control terminal and output terminal A power conversion device characterized by comprising a short-circuit means for short-circuiting between the two.
JP61241408A 1986-10-13 1986-10-13 Power converter Pending JPS6399779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61241408A JPS6399779A (en) 1986-10-13 1986-10-13 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61241408A JPS6399779A (en) 1986-10-13 1986-10-13 Power converter

Publications (1)

Publication Number Publication Date
JPS6399779A true JPS6399779A (en) 1988-05-02

Family

ID=17073842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61241408A Pending JPS6399779A (en) 1986-10-13 1986-10-13 Power converter

Country Status (1)

Country Link
JP (1) JPS6399779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703664A2 (en) 1994-09-20 1996-03-27 Hitachi, Ltd. Semiconductor circuit comprising means for malfunction prevention, and its use, particularly for inverters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703664A2 (en) 1994-09-20 1996-03-27 Hitachi, Ltd. Semiconductor circuit comprising means for malfunction prevention, and its use, particularly for inverters
EP0703664A3 (en) * 1994-09-20 1996-09-18 Hitachi Ltd Semiconductor circuit comprising means for malfunction prevention, and its use, particularly for inverters
US5818281A (en) * 1994-09-20 1998-10-06 Hitachi, Ltd. Semiconductor circuit having turn-on prevention capability of switching semiconductor device during off cycle thereof by undesired transient voltages

Similar Documents

Publication Publication Date Title
JP5975833B2 (en) Power converter
JPS6382123A (en) Driving circuit
JPS61107813A (en) Semiconductor device
JPH0590933A (en) Composite switch circuit
JP2000358359A (en) Forward- and backward-current switch regenerating snubber energy
JPH1197994A (en) Driving circuit for mos gate type element
EP2212997A1 (en) Drive circuit for a power switch component
JPH08149796A (en) Drive circuit for voltage driven switch element
JP2019004656A (en) Bidirectional switch and driving method of the same
JPS6399779A (en) Power converter
US6813169B2 (en) Inverter device capable of reducing through current
JPH10243647A (en) Power unit
US6396333B2 (en) Circuit for synchronous rectification with minimal reverse recovery losses
JP3568024B2 (en) Gate drive circuit for voltage driven semiconductor device
JP2019024289A (en) Driving method of electric power conversion system
EP2811648B1 (en) Method and arrangement for controlling semiconductor switch
JP4074991B2 (en) AC-AC power converter
JPH10209832A (en) Semiconductor switch circuit
JPH0548584U (en) Gate drive circuit for high-speed switching devices
JPH084122B2 (en) Semiconductor device
JP2000139071A (en) Gate driving circuit for power converter
US20230308098A1 (en) Current Sourced, Voltage Clamped, High Speed MOSFET Driver
JP2023144345A (en) Gate driving circuit and power conversion device
JPS5913422A (en) Driving circuit of gate turn off thyristor
JP2022143030A (en) Drive circuit and semiconductor device