JPS638611B2 - - Google Patents

Info

Publication number
JPS638611B2
JPS638611B2 JP54138923A JP13892379A JPS638611B2 JP S638611 B2 JPS638611 B2 JP S638611B2 JP 54138923 A JP54138923 A JP 54138923A JP 13892379 A JP13892379 A JP 13892379A JP S638611 B2 JPS638611 B2 JP S638611B2
Authority
JP
Japan
Prior art keywords
sio
insulating film
gas
film
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54138923A
Other languages
English (en)
Other versions
JPS5662328A (en
Inventor
Yutaka Hayashi
Iwao Hamaguchi
Kyohiko Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13892379A priority Critical patent/JPS5662328A/ja
Publication of JPS5662328A publication Critical patent/JPS5662328A/ja
Priority to US06/635,477 priority patent/US4567061A/en
Publication of JPS638611B2 publication Critical patent/JPS638611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02131Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being halogen doped silicon oxides, e.g. FSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/91Controlling charging state at semiconductor-insulator interface

Description

【発明の詳細な説明】 本発明は良質な酸化シリコン系の絶縁膜および
絶縁膜―半導体界面の製造方法に関する。
従来、SiO2中の可動イオンの固定化を行い電
気特性を安定化するのには、酸化燐を含む高温雰
囲気中でSiO2を熱処理して表面にリンガラス層
を形成し、可動インオをゲツタリングするか、塩
素又は塩化水素を含む雰囲気中でSiO2を熱酸化
して形成することにより、塩素原子を可動イオン
に対するバリアとしてSiO2中に取り込んでいた。
この塩素酸化は更にSiO2―Si界面の界面準位の
減少、SiO2膜の絶縁耐圧のバラツキの減少(但
し、必ずしも絶縁耐圧の値の増大は期待できな
い)、Si表面の結晶欠陥の減少に有効であること
が知られている。しかし、塩素原子の原子半径は
Siのそれに較べて大きいので、SiO2中の欠陥やSi
表面の欠陥を完全に埋めることは難しい。一方、
水素は欠陥を埋めるには原子半径が小さく好都合
で、その効果はあるが、300〜400℃の熱処理で解
離してしまうこと、SiO2およびSiO2―Si界面に
輸送された高エネルギーキヤリア又は電子線、又
は紫外線で容易に解離してしまう等の難点があ
る。本発明者らは弗素原子はSiより小さい一価の
原子でSiO2及びSiO2―半導体の界面の安定、高
品質化に有効であることに着目したが、一般に弗
素イオンはSiO2を溶解し、しかも熱酸化等に用
いられる石英反応管をおかすことが知られてい
る。本発明者らの実験によれば、HF―O2を始め
としてNF3―O2やF2―O2の酸化ではまさしくそ
うであつた。
本発明は、このような不都合を伴なわずに、
SiO2系の絶縁膜中に弗素原子をとり込んでその
高品質化およびSiO2系―半導体界面の特性を改
善することを主目的とし、この課題の解決のため
に、弗化炭素系のガスをO2、CO2、NOX等の酸
化性ガス雰囲気中に混入して、Si化合物、Siを加
熱するか、SiO2膜を上記雰囲気中で加熱する方
法を採用した。この場合、キヤリアガスとしては
N2、Ar、He等の不活性ガスを用いることができ
る。実験によれば上記の弗化炭素系のガスを酸化
性ガス雰囲気中に混入した場合は石英反応管も
SiO2膜もおかされることなく高品質の酸化シリ
コン系膜を得ることができた。尚、本発明で酸化
シリコン系とは、酸化シリコン及び酸化シリコン
中に窒素、塩素、リン等の他の元素を含んでいる
ものの総称である。以下、本発明の実施例に就き
記述する。
弗化炭素系のガスとしてCF4を用い、酸化性の
雰囲気中で800℃〜1200℃の温度でシリコン基板
を熱酸化した場合はSiO2―Si界面の界面準位密
度の減少が観測された。第1図はその1例で、横
軸は酸化性ガスに対するCF4の体積%を示す。こ
の例では界面準位感度は1/4に減少している。同
様な条件で成長させたSiO2膜の絶縁耐圧はCF4
混入しないで製造したものよりも改善された。第
2図はこの一例を示し、耐圧の低い絶縁膜製造技
術でも、CF4を混入することによつて平均耐圧の
値が4Vから10Vまで改善されている。ここで絶
縁耐圧は絶縁膜に10-15Acm2オーダーの電流が流
れる電圧として便宜的に測定された。CF4の酸化
性ガスに対する体積%が6%を越すと耐圧改善効
果は少なくなつている。この体積%を酸素原子に
対する弗素原子の割合で換算すると体積%の2倍
に相当する。従つて、CF4の酸化性ガスに対する
体積%が6%ということは、酸素原子に対する弗
素原子の割合は12%になる。SiO2系の絶縁膜は
室温でその中に正電荷が捕獲された状態で得られ
る場合が多く、そのために導電性電極―SiO2
絶縁膜―半導体(COS)構造の半導体表面には
熱平衡状態より過剰な電子が誘起されている場合
が多い。この過剰電子の表面密度NFBは絶縁膜の
中の半導体表面側にある正電荷の大小に比例し、
小さい方が望ましいし、COS構造に加える電圧
温度ストレスに対する変動が小さいことも重要で
ある。弗化炭素系のガス混入により、このNFB
値も小さく、NFBのバイアス・温度ストレスに対
する変動も小さくなることがたしかめられた。第
3図は(100)面Si上にSiO2をCF4混入酸化雰囲
気中で成長させた場合の測定値で、NFBの値は零
からの負の値をとるようになり、従来のSiO2
の場合と逆の符号となる。これはnチヤネル
MOSトランジスタのゲート閾値電圧の設計に有
用な性質である。又CF4の混入%が1%前後とな
るとバイアス・温度ストレスに対するNFB変動
(ΔNFB)も小さくなつていることがわかる。
更に、本発明の方法により、SiO2中のトラツ
プの濃度の減少を示唆するVI特性を示すSiO2
得られ、また、SiO2膜を生成した後に弗化炭素
系ガスを酸化性ガスに混入した雰囲気で熱処理し
た場合も界面準位、トラツプ減少、NFB、ΔNFB
の減少効果が見られた。
また、SiH4、SiCl4等のシリコン化合物を同様
な雰囲気中において加熱基板上に供給し、SiO2
系の膜を形成しても同様な効果が得られた。
以上、具体例を述べたように、本発明は、従来
困難であつたSiO2系絶縁膜中への弗素の導入を
容易とし、しかも種々格別の効果が期待でき、半
導体素子工業界に寄与すること大である。
【図面の簡単な説明】
第1図は本発明によるCF4ガス混入による界面
準位密度減少効果を示す一例の測定図、第2図は
同じくCF4ガス混入による絶縁耐圧向上効果を示
す一例の測定図、第3図はCF4ガス混入による
NFB減少、ΔFBの減少(安定化)効果を示す一例
の測定図である。

Claims (1)

  1. 【特許請求の範囲】 1 弗化炭素系ガスを酸素性ガスに酸素原子に対
    する弗素原子の割合が0.1%以上12%以下の混合
    比で混入した雰囲気ガス中において、シリコン、
    シリコン化合物又は酸化シリコン膜を800℃から
    1200℃の範囲で加熱することにより酸化シリコン
    膜を製造することを特徴とする絶縁膜および絶縁
    膜―半導体界面の製造方法。 2 特許請求の範囲1記載の絶縁膜および絶縁膜
    ―半導体界面の製造方法において、弗化炭素系ガ
    スはCF4であることを特徴とする方法。
JP13892379A 1979-10-26 1979-10-26 Manufacturing of insulation membrane and insulation membrane-semiconductor interface Granted JPS5662328A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13892379A JPS5662328A (en) 1979-10-26 1979-10-26 Manufacturing of insulation membrane and insulation membrane-semiconductor interface
US06/635,477 US4567061A (en) 1979-10-26 1984-07-30 Method for manufacture of insulating film and interface between insulation film and semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13892379A JPS5662328A (en) 1979-10-26 1979-10-26 Manufacturing of insulation membrane and insulation membrane-semiconductor interface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP58163048A Division JPS59218735A (ja) 1983-09-05 1983-09-05 絶縁膜および絶縁膜−半導体界面の製造方法

Publications (2)

Publication Number Publication Date
JPS5662328A JPS5662328A (en) 1981-05-28
JPS638611B2 true JPS638611B2 (ja) 1988-02-23

Family

ID=15233285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13892379A Granted JPS5662328A (en) 1979-10-26 1979-10-26 Manufacturing of insulation membrane and insulation membrane-semiconductor interface

Country Status (2)

Country Link
US (1) US4567061A (ja)
JP (1) JPS5662328A (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296405A (en) * 1985-08-02 1994-03-22 Semiconductor Energy Laboratory Co.., Ltd. Method for photo annealing non-single crystalline semiconductor films
US5753542A (en) 1985-08-02 1998-05-19 Semiconductor Energy Laboratory Co., Ltd. Method for crystallizing semiconductor material without exposing it to air
EP0211634B1 (en) * 1985-08-02 1994-03-23 Sel Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for manufacturing semiconductor devices
US4916116A (en) * 1987-05-06 1990-04-10 Semiconductor Energy Laboratory Co., Ltd. Method of adding a halogen element into oxide superconducting materials by ion injection
US4894353A (en) * 1988-04-29 1990-01-16 Advanced Micro Devices, Inc. Method of fabricating passivated tunnel oxide
US5043224A (en) * 1988-05-12 1991-08-27 Lehigh University Chemically enhanced thermal oxidation and nitridation of silicon and products thereof
EP0445535B1 (en) * 1990-02-06 1995-02-01 Sel Semiconductor Energy Laboratory Co., Ltd. Method of forming an oxide film
US5578520A (en) * 1991-05-28 1996-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US5766344A (en) 1991-09-21 1998-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
CN1052566C (zh) 1993-11-05 2000-05-17 株式会社半导体能源研究所 制造半导体器件的方法
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
US5591681A (en) * 1994-06-03 1997-01-07 Advanced Micro Devices, Inc. Method for achieving a highly reliable oxide film
US5702976A (en) 1995-10-24 1997-12-30 Micron Technology, Inc. Shallow trench isolation using low dielectric constant insulator
US5902128A (en) * 1996-10-17 1999-05-11 Micron Technology, Inc. Process to improve the flow of oxide during field oxidation by fluorine doping
JP4622318B2 (ja) * 2004-06-04 2011-02-02 セイコーエプソン株式会社 半導体装置の製造方法
JP4985855B2 (ja) * 2011-01-13 2012-07-25 セイコーエプソン株式会社 半導体装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3698948A (en) * 1968-07-26 1972-10-17 Motorola Inc Fabrication of a silicon-silicon dioxide interface of predetermined space charge polarity
US3692571A (en) * 1970-11-12 1972-09-19 Northern Electric Co Method of reducing the mobile ion contamination in thermally grown silicon dioxide
US4007294A (en) * 1974-06-06 1977-02-08 Rca Corporation Method of treating a layer of silicon dioxide
US4223048A (en) * 1978-08-07 1980-09-16 Pacific Western Systems Plasma enhanced chemical vapor processing of semiconductive wafers
JPS5522862A (en) * 1978-08-07 1980-02-18 Nec Corp Manufacturing method for silicon oxidized film
US4246296A (en) * 1979-02-14 1981-01-20 Bell Telephone Laboratories, Incorporated Controlling the properties of native films using selective growth chemistry
US4232057A (en) * 1979-03-01 1980-11-04 International Business Machines Corporation Semiconductor plasma oxidation

Also Published As

Publication number Publication date
US4567061A (en) 1986-01-28
JPS5662328A (en) 1981-05-28

Similar Documents

Publication Publication Date Title
JPS638611B2 (ja)
US7235438B2 (en) Inclusion of nitrogen at the silicon dioxide-silicon carbide interface for passivation of interface defects
CA1284236C (en) Semiconductor device with low defect density oxide
US5043224A (en) Chemically enhanced thermal oxidation and nitridation of silicon and products thereof
EP0617461A2 (en) Oxynitride dielectric process for IC manufacture
EP0264774A2 (en) Improved post-oxidation anneal of silicon dioxide
JP2006210818A (ja) 半導体素子およびその製造方法
JP2002532900A (ja) 酸窒化ケイ素膜
US4246296A (en) Controlling the properties of native films using selective growth chemistry
JP2001521284A (ja) 高速昇降温処理(rtp)システムにおける半導体ウェーハの酸化方法
Chang et al. Application of selective chemical reaction concept for controlling the properties of oxides on GaAs
JPS6361771B2 (ja)
Constant et al. Interfacial properties of oxides grown on 3C-SiC by rapid thermal processing
US20080242109A1 (en) Method for growing a thin oxynitride film on a substrate
JPH05299355A (ja) ホウ素ドープダイヤモンド膜の製造方法
US7659214B2 (en) Method for growing an oxynitride film on a substrate
JP2019050294A (ja) 炭化珪素半導体装置
JP2000357690A (ja) 絶縁膜、その形成方法およびその絶縁膜を用いた半導体装置
JP2020061475A (ja) 炭化珪素半導体装置とその製造方法
JP3399148B2 (ja) シリコン酸化膜の形成方法
JPH10321620A (ja) 窒化酸化膜およびその形成方法
JP3243915B2 (ja) Cvd酸化膜の界面酸化方法
JPH07221092A (ja) 半導体装置の製造方法
Ting et al. Fluorinated thin SiO2 grown by rapid thermal processing
KR960008903B1 (ko) 반도체 기판상의 유전체막 형성방법