JPS6385432A - Inspecting method for linear defect - Google Patents

Inspecting method for linear defect

Info

Publication number
JPS6385432A
JPS6385432A JP23277286A JP23277286A JPS6385432A JP S6385432 A JPS6385432 A JP S6385432A JP 23277286 A JP23277286 A JP 23277286A JP 23277286 A JP23277286 A JP 23277286A JP S6385432 A JPS6385432 A JP S6385432A
Authority
JP
Japan
Prior art keywords
defect
cells
defective
cell
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23277286A
Other languages
Japanese (ja)
Other versions
JPH0569375B2 (en
Inventor
Shigeyuki Nishi
西 重幸
Shinichi Kobayashi
慎一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23277286A priority Critical patent/JPS6385432A/en
Publication of JPS6385432A publication Critical patent/JPS6385432A/en
Publication of JPH0569375B2 publication Critical patent/JPH0569375B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To inspect a linear defect by removing noises from an input image of a body to be inspected and then calculating the degree of connection between defect cells corresponding to only the linear defect. CONSTITUTION:The image pickup signal of the body 1 to be inspected which is obtained through an image pickup device 3 is stored in an image memory 5 as XY-axial quinary picture element data. Plural cells consisting of plural picture elements as to binary-coded picture element data are set in a matrix in an X and a Y axial direction through a central controller 6. Then, the number of defect picture elements in each cell is calculated. Then, a cell whose number of defect picture elements is larger than a predetermined number is extracted as a defective cell. The degree of connection of those defect cells is calculated. Then, it is decided that cells whose connection degree is larger than a predetermined value are defectives.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子部品若しくは精密加工品の表面に存在する
クランク、スクラッチ等の線状欠陥を画像処理によって
検査する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of inspecting linear defects such as cranks and scratches existing on the surface of electronic parts or precision processed products by image processing.

〔従来の技術〕  ゛ 従来、電子部品若しくは精密加工品の表面に存在するク
ランク、スクラッチ等の線状欠陥を検査するには、例え
ば被検査物を顕微鏡若しくは拡大鏡の視野内に置き、目
視によって検査する方法が最も一般的な方法であった。
[Prior Art] ``Conventionally, in order to inspect linear defects such as cranks and scratches that exist on the surface of electronic parts or precision processed products, the object to be inspected is placed within the field of view of a microscope or magnifying glass, and visually inspected. The testing method was the most common method.

しかしながら上記の方法においては、特に微小な被検査
物ではピンセント等によっても取扱いが困難であると共
に、多量生産の場合には作業者の疲労が大きく、長時間
作業を継続することが困難であり、更には非能率である
等の問題点がある。上記問題点を解消するために、近年
画像処理手段による検査方法が応用されてきており、実
用に供されているものも多い。
However, in the above method, it is difficult to handle particularly small objects to be inspected using pins, etc., and in the case of mass production, the workers become fatigued and it is difficult to continue working for a long time. Furthermore, there are other problems such as inefficiency. In order to solve the above problems, inspection methods using image processing means have been applied in recent years, and many of them are in practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の画像処理手段を前記の線状欠陥の検査に適用した
場合においては、下記のような問題点がある。すなわち
被検査物を画像入力した場合に、被検査物の地肌のムラ
も画像として入力されてノイズとなり、線状欠陥との区
別ができないという欠点がある。また被検査物をTVカ
メラ等の撮像手段を介して撮像して得た撮像信号を、一
定のしきい値によって2値化した場合には、本来連続し
ている画像が不連続に表示されることがあるという問題
点がある。このような不連続の画像を連続化して表示す
る手段が、例えば特開昭55−124873号公報に開
示されているが、このような手段によると本来の線状欠
陥のみならず、線状欠陥近傍に存在するノイズをも連続
して表示してしまうおそれがあり、非欠陥部を欠陥と認
識してしまうため再現性若しくは信頼性が低く、実作業
に適用することができないという問題点がある。
When the above-mentioned image processing means is applied to the above-mentioned linear defect inspection, there are the following problems. That is, when an image of the object to be inspected is input, unevenness in the background of the object to be inspected is also input as an image and becomes noise, which has the disadvantage that it is impossible to distinguish it from linear defects. Furthermore, when the image signal obtained by imaging the object to be inspected using an imaging means such as a TV camera is binarized using a certain threshold value, the originally continuous image is displayed discontinuously. There is a problem with this. A means for displaying such discontinuous images in a continuous manner is disclosed, for example, in Japanese Patent Application Laid-Open No. 124873/1982. However, such means can detect not only the original linear defects but also the linear defects. There is a risk that noise that exists in the vicinity may be displayed continuously, and non-defective parts may be recognized as defects, resulting in low reproducibility or reliability, and there is a problem that it cannot be applied to actual work. .

本発明は上記のような従来技術に存在する問題点を解消
し、入力画像におけるノイズを除去すると共に、見かけ
土工連続状に表示される線状欠陥を完全に検査する信頼
性の高い線状欠陥の検査方法を提供することを目的とす
る。
The present invention solves the problems existing in the prior art as described above, eliminates noise in input images, and provides highly reliable linear defects that completely inspect linear defects that appear in an apparent continuous earthwork pattern. The purpose is to provide an inspection method for

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記の問題点解決のため、本発明においては、A、撮像
手段を介して得た被検査物の撮像信号をXY軸方向の2
値化画素データとして画像メモリに記憶する。
In order to solve the above-mentioned problems, in the present invention, A.
It is stored in the image memory as valued pixel data.

B、中央制御装置を介して前記2値化画素データについ
て複数個の画素からなるセルをXY軸方向に複数個夫々
行列に設定する。
B. A plurality of cells each consisting of a plurality of pixels are set in a matrix in the X and Y axis directions for the binarized pixel data through the central controller.

C9夫々のセル内の欠陥画素数を計算する。The number of defective pixels in each cell of C9 is calculated.

D、欠陥画素数が予め定めた数以上であるセルを欠陥セ
ルとして抽出する。
D. Extract cells with a predetermined number or more of defective pixels as defective cells.

E、これらの欠陥セルの連結度を計算する。E. Compute the connectivity of these defective cells.

F、連結度が予め定めた値以上のものを不良として判定
する。
F: Those whose degree of connectivity exceeds a predetermined value are determined to be defective.

という技術的手段を採用したのである。This technical method was adopted.

〔作用〕[Effect]

上記の構成により、被検査物の入力画像中におけるノイ
ズは、通常はセル内の画素数が小さいため、セル内の欠
陥画素数計算の段階において殆んど除去されるから、本
来欠陥ではないノイズを欠陥であると認識する誤りを排
除する作用がある。
With the above configuration, most of the noise in the input image of the object to be inspected is removed at the stage of calculating the number of defective pixels in the cell because the number of pixels in the cell is usually small, so it is noise that is not originally a defect. It has the effect of eliminating the error of recognizing something as a defect.

上記のようにしてノイズ排除後、線状欠陥にのみ対応す
る欠陥セル相互間の連結度を計算して、線状欠陥を検査
するのである。
After eliminating noise as described above, the degree of connectivity between defective cells corresponding only to the linear defect is calculated to inspect the linear defect.

〔実施例〕〔Example〕

第1図は本発明の実施例における装置のブロック図であ
る。同図において、まず被検査物1をレンズ2を介して
TVカメラ等の撮像装置3に結像する。次に撮像装置3
からの撮像信号をAD変換装置4により2値化画素デー
タに変換して、メモリ5に入力する。6はメモリ5の内
容を処理する処理回路、7は処理回路による処理結果を
記憶するメモリである。
FIG. 1 is a block diagram of an apparatus in an embodiment of the present invention. In the figure, first, an image of an object to be inspected 1 is imaged through a lens 2 on an imaging device 3 such as a TV camera. Next, the imaging device 3
The AD converter 4 converts the captured image signal into binary pixel data and inputs it into the memory 5. 6 is a processing circuit for processing the contents of the memory 5, and 7 is a memory for storing processing results by the processing circuit.

次に第2図(al〜(elは夫々本発明の処理手順の要
部を示す模式図である。まず第2図(a)は、前記第1
図においてメモリ5内に記憶された2値化画素データを
示す。同図において10はタラワクであり、被検査物1
の表面に存在する線状欠陥の1種である。而してクラッ
ク10は本来連続しているのであるが、2値化画素デー
タとしては一部が10aで示されるように不連続状態と
なっている。
Next, FIG. 2 (al to (el) are schematic diagrams showing the main parts of the processing procedure of the present invention. First, FIG.
In the figure, binarized pixel data stored in the memory 5 is shown. In the figure, 10 is Tarawak, and inspection object 1
It is a type of linear defect that exists on the surface of. Although the cracks 10 are originally continuous, a portion of the binarized pixel data is discontinuous as shown by 10a.

11はノイズであり、被検査物1の表面の地肌ムラその
他に起因して2値化画素データとして記憶されている。
Reference numeral 11 indicates noise, which is caused by background unevenness on the surface of the object to be inspected 1 and other factors, and is stored as binary pixel data.

次に第2図(blはセルを設定した状態を示す。すなわ
ち12はセルであり、例えば8X8=64の画素からな
り、中央制御装置(図示せず)を介してXY軸方向に複
数個を夫々行列に設定する。第2図(blはX軸および
Y軸に夫々14個、合計196個設定した例である。
Next, in Fig. 2 (bl shows the state in which cells are set. In other words, 12 is a cell, which consists of, for example, 8 x 8 = 64 pixels, and multiple cells are controlled in the X and Y axes directions via a central controller (not shown). Each is set in a matrix. FIG. 2 (bl is an example in which 14 pieces are set on each of the X axis and the Y axis, and 196 pieces in total are set.

第2図(C1はセル12内の欠陥画素の数を計算する状
態を示す。すなわち夫々のセル12内において、クラン
ク10およびノイズ11によって占められた欠陥画素の
数mを計算する。なお欠陥画素は、背景が低い濃度であ
れば、前記クランク10およびノイズ11によって高い
濃度で示され、背景が高い濃度であれば逆に低い濃度で
示される。
FIG. 2 (C1 shows a state in which the number of defective pixels in the cell 12 is calculated. That is, in each cell 12, the number m of defective pixels occupied by the crank 10 and the noise 11 is calculated. If the background has a low density, it will be shown with a high density by the crank 10 and the noise 11, and if the background has a high density, it will be shown with a low density.

第2図Fdlは欠陥セル12aを抽出した状態を示す。FIG. 2 Fdl shows a state in which the defective cell 12a is extracted.

すなわち第2図(C)において計算した欠陥画素の数m
が、予め定めた数基上のセルを欠陥セル12aとして抽
出し、上記の数未満のセル12を除去した状態である。
In other words, the number m of defective pixels calculated in FIG. 2(C)
However, a predetermined number of cells above are extracted as defective cells 12a, and cells 12 less than the above number are removed.

第2図(al〜(C1において入力画像として現われる
ノイズ11は、通常はセル12内において占有する画素
の数が極めて小さい。従って検出すべきクラック10の
大きさとの関係において前記欠陥画素の数mを設定して
おけば、第2図fdlの段階においてノイズを殆んど除
去することができ、前記のクランク10に関与する欠陥
セル12aのみを抽出することができるのである。
The noise 11 that appears as an input image in FIG. By setting , most of the noise can be removed at the stage shown in FIG. 2 fdl, and only the defective cell 12a related to the crank 10 can be extracted.

従って第2図(alにおいて、loaで示されるような
不連続状態の欠陥であっても、第2図(d)に示すよう
に欠陥セル12aとして抽出できる。
Therefore, even a defect in a discontinuous state as shown by loa in FIG. 2(al) can be extracted as a defective cell 12a as shown in FIG. 2(d).

第2図(Q)は前記欠陥セル12aについて、連結度を
計算して、一連の線状欠陥像13として、前記クラック
10.10aを創成した状態を示す。
FIG. 2(Q) shows a state in which the degree of connectivity is calculated for the defective cell 12a and the crack 10.10a is created as a series of linear defect images 13.

これにより、予め定めた値以上のものについては不良と
判定し、上記の値未満のものは容認して良と判定する。
As a result, anything above a predetermined value is determined to be defective, and anything below the above value is accepted and determined to be good.

本実施例においては、被検査物の線状欠陥がクランクで
ある例について記述したが、線状欠陥がスクラッチ、打
ち疵等であっても、セル内の画素に濃淡を表示させ得る
ものである限り検出可能である。またセルサイズは8X
8=64に限定せず、検出すべき線状欠陥および排除す
べきノイズの態様に対応して適宜選定すべきである。
In this embodiment, an example in which the linear defect of the object to be inspected is a crank has been described, but even if the linear defect is a scratch, a dent, etc., it is possible to display shading on the pixels in the cell. detectable as long as possible. Also, the cell size is 8X
The number should not be limited to 8=64, but should be appropriately selected depending on the type of linear defect to be detected and the noise to be eliminated.

〔発明の効果〕〔Effect of the invention〕

本発明は以上記述のような構成および作用であるから、
下記の効果を期待することができる。
Since the present invention has the structure and operation as described above,
The following effects can be expected.

(1)従来の人手による目視検査を排除することができ
るため、労働衛生環境を飛躍的に向上させ得るのみなら
ず、生産性を大幅に向上させることができる。
(1) Since the conventional manual visual inspection can be eliminated, not only can the occupational health environment be dramatically improved, but also productivity can be greatly improved.

(2)入力画像信号中に本来の線状欠陥以外のノイズを
包含していても、個々のセル内の欠陥画素数を計算して
、予め定めた数基上のセルのみを抽出することができる
ため、誤差が極めて小さく、信頼性が極めて高い。
(2) Even if the input image signal contains noise other than the original linear defect, it is possible to calculate the number of defective pixels in each cell and extract only the cells above a predetermined number. Therefore, the error is extremely small and the reliability is extremely high.

(3)入力画像信号において、不連続状の欠陥であって
も、本来連続した状態の線状欠陥は、連結度の計算によ
って連続状態として認識して処理するため、信頼性およ
び再現性が極めて高い。
(3) In the input image signal, even if the defect is discontinuous, linear defects that are originally continuous are recognized and processed as continuous by calculating the degree of connectivity, so reliability and reproducibility are extremely high. expensive.

(4)中央制御装置を介して検査作業を自動化し得るの
みならず、処理結果を直ちに生産工程にフィードハック
できるため、生産効率を高め得ると共に品質の向上に寄
与し得る。
(4) Not only can the inspection work be automated through the central control device, but also the processing results can be immediately feed-hacked into the production process, which can improve production efficiency and contribute to quality improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における装置のブロック図、第
2図(al〜(e)は夫々本発明の処理手順の要部を示
す模式図である。 1:被検査物、5.7:メモリ、6:処理回路、10.
10a:クラック、11:ノイズ、12:セル。
Fig. 1 is a block diagram of an apparatus in an embodiment of the present invention, and Fig. 2 (al to e) are schematic diagrams showing main parts of the processing procedure of the present invention. 1: Object to be inspected, 5.7 : memory, 6: processing circuit, 10.
10a: crack, 11: noise, 12: cell.

Claims (1)

【特許請求の範囲】[Claims] 撮像手段を介して得た被検査物の撮像信号をXY軸方向
の2値化画素データとして画像メモリに記憶し、中央制
御装置を介して前記2値化画素データについて複数個の
画素からなるセルをXY軸方向に複数個夫々行列に設定
し、夫々のセル内の欠陥画素数を計算し、欠陥画素数が
予め定めた数以上であるセルを欠陥セルとして抽出し、
これらの欠陥セルの連結度を計算し、連結度が予め定め
た値以上のものを不良と判定することを特徴とする線状
欠陥の検査方法。
The imaging signal of the object to be inspected obtained through the imaging means is stored in an image memory as binarized pixel data in the XY axis directions, and the binarized pixel data is sent to a cell consisting of a plurality of pixels via a central controller. Set a plurality of cells in a matrix in the X and Y axis directions, calculate the number of defective pixels in each cell, and extract cells with a predetermined number or more of defective pixels as defective cells,
A method for inspecting linear defects, characterized in that the connectivity of these defective cells is calculated, and those whose connectivity is greater than a predetermined value are determined to be defective.
JP23277286A 1986-09-30 1986-09-30 Inspecting method for linear defect Granted JPS6385432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23277286A JPS6385432A (en) 1986-09-30 1986-09-30 Inspecting method for linear defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23277286A JPS6385432A (en) 1986-09-30 1986-09-30 Inspecting method for linear defect

Publications (2)

Publication Number Publication Date
JPS6385432A true JPS6385432A (en) 1988-04-15
JPH0569375B2 JPH0569375B2 (en) 1993-09-30

Family

ID=16944497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23277286A Granted JPS6385432A (en) 1986-09-30 1986-09-30 Inspecting method for linear defect

Country Status (1)

Country Link
JP (1) JPS6385432A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138504A (en) * 1989-10-24 1991-06-12 Kobe Steel Ltd Method for detecting spot position and slit position
JPH04323544A (en) * 1991-04-23 1992-11-12 Shin Etsu Polymer Co Ltd Method for inspecting plastic film roll
JP2010197177A (en) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd Visual inspection method and apparatus
JP2018004389A (en) * 2016-06-30 2018-01-11 鹿島建設株式会社 Crack analysis method and crack analysis system
JP2021148674A (en) * 2020-03-23 2021-09-27 国際航業株式会社 Crack shape generation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138504A (en) * 1989-10-24 1991-06-12 Kobe Steel Ltd Method for detecting spot position and slit position
JPH04323544A (en) * 1991-04-23 1992-11-12 Shin Etsu Polymer Co Ltd Method for inspecting plastic film roll
JP2010197177A (en) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd Visual inspection method and apparatus
JP2018004389A (en) * 2016-06-30 2018-01-11 鹿島建設株式会社 Crack analysis method and crack analysis system
JP2021148674A (en) * 2020-03-23 2021-09-27 国際航業株式会社 Crack shape generation device

Also Published As

Publication number Publication date
JPH0569375B2 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
KR100730051B1 (en) Defect detection apparatus and defect detection method
JP2742240B2 (en) Defect detection method in inspection of structure surface
JPS60215286A (en) Method and apparatus for optoelectronic inspection of surface pattern of object
JP2001264257A (en) Image defect detecting device and method, and storage medium storing procedure for image defect detecting method
JP2003085558A (en) Method of pattern inspection and inspection device
JP2005121546A (en) Defect inspection method
JPS6385432A (en) Inspecting method for linear defect
JP2011232303A (en) Image inspection method and image inspection device
JPH06229941A (en) Inspection apparatus for image
JPS6115343A (en) Method of optically inspecting and analyzing integrated circuit
JP3127598B2 (en) Method for extracting density-varying constituent pixels in image and method for determining density-fluctuation block
JP4956077B2 (en) Defect inspection apparatus and defect inspection method
JPH08145907A (en) Inspection equipment of defect
TW200842339A (en) Mura detection method and system
JPH04236343A (en) Detecting method of defect of glass edge
JPH0735532A (en) Method of measuring length of crack on road surface
JPH04194905A (en) Microscopic image mapping device and method
JP2728789B2 (en) Inspection system for color solid-state imaging device
JPH0735699A (en) Method and apparatus for detecting surface defect
JP2638121B2 (en) Surface defect inspection equipment
JPH06161378A (en) Inspecting device for liquid crystal display device
CN117495846B (en) Image detection method, device, electronic equipment and storage medium
JPH0682724B2 (en) Wafer defect inspection system
JPH02263107A (en) Method for inspecting linear defect
JPH0332723B2 (en)