JPH02263107A - Method for inspecting linear defect - Google Patents
Method for inspecting linear defectInfo
- Publication number
- JPH02263107A JPH02263107A JP8495389A JP8495389A JPH02263107A JP H02263107 A JPH02263107 A JP H02263107A JP 8495389 A JP8495389 A JP 8495389A JP 8495389 A JP8495389 A JP 8495389A JP H02263107 A JPH02263107 A JP H02263107A
- Authority
- JP
- Japan
- Prior art keywords
- defective
- defect
- picture elements
- cells
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007547 defect Effects 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims description 15
- 230000002950 deficient Effects 0.000 claims abstract description 55
- 238000003384 imaging method Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 238000007689 inspection Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 102100023185 Transcriptional repressor scratch 1 Human genes 0.000 description 1
- 101710171414 Transcriptional repressor scratch 1 Proteins 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電子部品若しくは精密加工品の表面に存在す
るクラック、スクラッチ等の線状欠陥を画像処理によっ
て検査する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of inspecting linear defects such as cracks and scratches existing on the surface of electronic parts or precision processed products by image processing.
従来、電子部品若しくは精密加工品の表面に存在するク
ランク、スクラッチ等の線状欠陥の検出を画像を利用し
て行なう方法として下記に示すものが提案されている。BACKGROUND ART Conventionally, the following methods have been proposed as methods for detecting linear defects such as cranks and scratches existing on the surface of electronic components or precision-processed products using images.
まず、特開昭59−37450号公報で提案されている
方法は、第5図(a) (b)に示すように、線状欠陥
〔第5図(a)〕に外接する長方形を求め〔第5図(b
)L該長方形をある量だけ拡大して他の近傍領域に存在
する長方形と接触せしめ、不連続欠陥画像から妥当な欠
陥長さを求めるものである。First, the method proposed in JP-A-59-37450 calculates a rectangle circumscribing a linear defect [Fig. 5(a)], as shown in Fig. 5(a) and (b). Figure 5 (b
) L The rectangle is enlarged by a certain amount and brought into contact with a rectangle existing in another nearby area, and an appropriate defect length is determined from the discontinuous defect image.
又、特開昭63−85432号公報で提案されている方
法を第6図(a) (b)に示すが、これは線状欠陥を
含む画像〔第6図(a)〕を複数ケの画素からなるセル
〔第6図(b)〕としてxy軸方向に複数個夫々行列に
設定し、夫々のセル内の欠陥画素数を計算し、欠陥画素
数が予め定めた数基上にあるセルを欠陥セルとして抽出
し、ごれらの欠陥セルの連結度を計算し、連続度が予め
定めた値以上のものを不良と判断する方法である。Furthermore, the method proposed in JP-A No. 63-85432 is shown in FIGS. 6(a) and 6(b), which involves converting an image containing linear defects (FIG. 6(a)) into multiple images. A plurality of cells consisting of pixels [Fig. 6(b)] are set in a matrix in the x and y axis directions, and the number of defective pixels in each cell is calculated, and cells whose number of defective pixels is on a predetermined number of groups are selected. This method extracts defective cells as defective cells, calculates the degree of connectivity of these defective cells, and judges those whose degree of continuity exceeds a predetermined value as defective.
上記従来例のうち、外接直方形を用いるものでは、欠陥
の他にノイズが多(存在する場合、各々のノイズの外接
直方形を不用意に拡大すると線状欠陥のそれと接触して
しまい、本来の欠陥の検出ができなくなる。更には、外
接直方形の算出・拡大を各々のノイズに対して行なうた
め、処理時間がかかる。或は、装置が大がかりとなる問
題があった。Among the conventional examples mentioned above, those using circumscribed rectangular parallelepipeds have a lot of noise in addition to defects (if such noise exists, if the circumscribed rectangular parallelepiped of each noise is carelessly enlarged, it will come into contact with that of a linear defect, Furthermore, since the circumscribed rectangular rectangle is calculated and enlarged for each noise, it takes a long processing time.Alternatively, there is a problem that the apparatus becomes large-scale.
又、欠陥セルを用いた例では、ノイズを除去する余り、
抽出した欠陥セルが不連続になってしまい、本来の線状
欠陥長を検出できないという問題があった。In addition, in an example using a defective cell, the amount of noise removed is
There was a problem in that the extracted defective cells became discontinuous and the original linear defect length could not be detected.
本発明は、上記のような従来技術に存在する問題点を解
消し、入力画像におけるノイズを除去すると共に、見か
け土工連続に表示される線状欠陥を完全に検査する信頼
性の高い線状欠陥の検査方法を提供することを目的とす
る。The present invention solves the problems existing in the prior art as described above, eliminates noise in input images, and provides a highly reliable linear defect system that completely inspects linear defects that appear continuously in apparent earthworks. The purpose is to provide an inspection method for
上記問題点を解決するため本発明においては、A、撮像
手段を介して得た被検査物の撮像信号をXY軸方向の2
値化画素データとして画像メモリに記憶する。In order to solve the above problems, in the present invention, A.
It is stored in the image memory as valued pixel data.
B、中央制御装置を介して前記2値化画素データについ
て、複数個の画素からなるセルをXY軸方向に複数個夫
々行列に設定する。B. For the binarized pixel data, a plurality of cells each consisting of a plurality of pixels are set in a matrix in the XY-axis directions through the central control device.
C1夫々のセル内の欠陥候補画素に対して、下記処理を
行ない、線状欠陥の一部か、ノイズの一部か判断する。The defect candidate pixels in each cell of C1 are subjected to the following processing to determine whether they are part of a linear defect or part of noise.
即ち、検査ラインに隣接するライン以外で、検査ライン
を中心とする上下複数のラインにあって、欠陥候補画素
を中心とする予め定めた弁別領域内の欠陥画素を調べる
。That is, other than the lines adjacent to the inspection line, defective pixels are examined in a plurality of lines above and below the inspection line and within a predetermined discrimination area centered on the defective candidate pixel.
D、すべての弁別領域に欠陥画素がある場合欠陥候補画
素は欠陥画素と判断する。そして該画素が含まれるセル
を欠陥セルとして抽出する。D. If there are defective pixels in all discrimination areas, the defective candidate pixel is determined to be a defective pixel. Then, the cell containing the pixel is extracted as a defective cell.
E、欠陥セルのY軸方向度数分布を作成する。E. Create the Y-axis direction frequency distribution of defective cells.
F0度数分布において、予め定めたスライスレベルを越
える値をもつものの累積を算出し、線状欠陥全長とする
。In the F0 frequency distribution, the cumulative value of those having values exceeding a predetermined slice level is calculated and taken as the total length of linear defects.
という技術的手段を採用したものである。This is a technical method that has been adopted.
上記の構成により、被検査物の入力画像中におけるノイ
ズは、通常は、点状、塊状となっているため、ノイズの
場合は上記弁別領域には欠陥画素が存在しておらず、欠
陥セルの抽出段階において殆んど除去され、本来欠陥で
はないノイズを欠陥であると認識する誤りを排除する作
用がある。With the above configuration, noise in the input image of the inspected object is usually in the form of points or blocks. Most of the noise is removed in the extraction stage, and has the effect of eliminating errors in recognizing noise that is not originally a defect as being a defect.
また、線状欠陥に不連続部があっても、欠陥セル度数値
の累積算出することで線状欠陥全長算出には殆んど影響
を与えないようにできる。Further, even if a linear defect has a discontinuous portion, it can be made to have almost no influence on the calculation of the total length of the linear defect by cumulatively calculating the defective cell frequency value.
上記のようにしてノイズ除去後、線状欠陥からなる欠陥
セルの度数値を累積することで、線状欠陥全長を正確に
算出することが出来るのである。After removing noise as described above, by accumulating the frequency values of defective cells consisting of linear defects, the total length of linear defects can be accurately calculated.
第3図は本発明の実施例における装置のブロック図であ
る。第3図において、まず被検査物31をレンズ32を
介してTVカメラ等の撮像装置33に結像する。次に撮
像装置33からの撮像信号^D変換装置34により2値
化画素データに変換して、メモリ35に入力する。36
はメモリ35の内容を処理する処理回路、37は処理回
路による処理結果を記憶するメモリである。FIG. 3 is a block diagram of an apparatus in an embodiment of the present invention. In FIG. 3, first, an image of an object to be inspected 31 is imaged through a lens 32 on an imaging device 33 such as a TV camera. Next, the imaging signal from the imaging device 33 is converted into binarized pixel data by the D conversion device 34 and input into the memory 35 . 36
3 is a processing circuit that processes the contents of the memory 35, and 37 is a memory that stores the processing results of the processing circuit.
次に第1図(a) (c) (d)第2図(b) (c
)は夫々本発明の処理手順の要部を示す模式図である。Next, Figure 1 (a) (c) (d) Figure 2 (b) (c
) are schematic diagrams showing main parts of the processing procedure of the present invention.
まず第1図(a)は、前記第3図においてメモリ35内
に記憶された2値化画素データの一部を示す。First, FIG. 1(a) shows a part of the binarized pixel data stored in the memory 35 in FIG.
第1図(a)において1はスクラッチであり、被検査物
31の表面に存在する。線状欠陥の一種である。In FIG. 1(a), 1 is a scratch, which exists on the surface of the object 31 to be inspected. It is a type of linear defect.
而してスクラッチ1は本来連続しているのであるが、2
値化画素データとしては一部が不連続部2で示されるよ
うに不連続状態となっている。Therefore, scratch 1 is originally continuous, but scratch 2
Part of the converted pixel data is in a discontinuous state as shown by a discontinuous portion 2.
3はノイズであり、被検査物31の表面の地肌ムラその
他に起因して2値化画素データとして記憶されている。3 is noise, which is caused by uneven background on the surface of the object 31 to be inspected and is stored as binary pixel data.
次に第2図(b)は本実施例で設定したセルと欠陥セル
の抽出を計算している状態を示す。即ら、21はセルで
あり、例えば本実施例でば8×1−8の画素からなり、
中央制御装置(図示せず)を介してxYy軸方向複数個
をそれぞれ行列に設定する。第2図(b)において22
は無欠陥画素(例えば白画素)であり、23は欠陥画素
(同黒画素)であり、24ば検査ラインにおける黒画素
であるものの、ノイズの一部か欠陥の一部か判断ずべき
画素であり、欠陥候補画素24であることを示す。Next, FIG. 2(b) shows a state in which calculations are being made to extract cells set in this embodiment and defective cells. That is, 21 is a cell, and for example, in this embodiment, it is composed of 8×1-8 pixels,
A plurality of pieces in the x, y, and y axes are each set in a matrix via a central control device (not shown). 22 in Figure 2(b)
is a non-defective pixel (for example, a white pixel), 23 is a defective pixel (also a black pixel), and 24 is a black pixel on the inspection line, but it is a pixel that should not be determined whether it is part of noise or part of a defect. Yes, indicating that the pixel is a defective candidate pixel 24.
即ち、ノイズであれば無欠陥画素、欠陥であれば欠陥画
素となる画素である。この判断は第2(b)に示す弁別
領域25を用いて行なう。弁別領域はy軸方向幅は検査
ライン26に隣接するラインを越える上下の複数ライン
、本実施例ではそれぞれ2ラインであって、χ軸方向幅
は欠陥候補画素24を中心とする数画素幅、本実施例で
は7画素の幅30をもつ領域である。弁別領域25は欠
陥候補画素24の移動に伴って場所が変わる。That is, if the pixel is a noise, it is a non-defective pixel, and if it is a defect, it is a defective pixel. This determination is made using the discrimination area 25 shown in second (b). The discrimination area has a width in the y-axis direction of a plurality of lines above and below a line adjacent to the inspection line 26, in this embodiment two lines each, and a width in the chi-axis direction of several pixels width centered on the defect candidate pixel 24. In this embodiment, it is an area having a width of 30 and 7 pixels. The location of the discrimination area 25 changes as the defective candidate pixel 24 moves.
この弁別領域25において、領域(イ) (TI) (
ハ)(ニ)のすべてに亘って欠陥画素23がある場合に
限り、欠陥候補画素24は欠陥画素23であると判断す
る。次に欠陥候補画素24を含むセル27は欠陥セル2
日とする。本判断では、第2図(b)で示すノイズ3ば
欠陥セルとならない。In this discrimination area 25, area (a) (TI) (
Only when there are defective pixels 23 in all of (c) and (d), it is determined that the defective pixel 24 is a defective pixel 23. Next, the cell 27 including the defective candidate pixel 24 is the defective cell 2
day. In this judgment, the noise 3 shown in FIG. 2(b) does not indicate a defective cell.
上記処理をすべての画素に対して行なうと第2図(c)
に示す欠陥セル画像となる。When the above processing is performed for all pixels, Figure 2 (c)
The defective cell image is shown in .
本願出願人が実施して抽出した欠陥セル画像を第1図(
c)に示す。ノイズ3はほとんど排除され、線状欠陥に
よる欠陥セル28だけが残っていることがわかる。The defective cell images extracted by the applicant are shown in Figure 1 (
Shown in c). It can be seen that the noise 3 is almost eliminated and only the defective cell 28 due to the linear defect remains.
第1図(c)で示す欠陥セル画像において2に対応する
4の不連続部があるが、次に、かかる不連続部4をもつ
欠陥セル画像(c)から線状欠陥の全長を算出する方法
を第1図(d)に示す。即ち、第1図(d)は横軸はX
軸方向位置であり、縦軸は各々のX軸位置におけるy軸
方向に数えた欠陥セル画像28の度数分布を示したもの
である。かかる度数分布において予め定めたスライスレ
ヘル5と比較し、越える度数値の累積を計算すると欠陥
全長が算出できる。There are 4 discontinuous parts corresponding to 2 in the defective cell image shown in FIG. 1(c). Next, the total length of the linear defect is calculated from the defective cell image (c) having such discontinuous parts 4 The method is shown in FIG. 1(d). That is, in FIG. 1(d), the horizontal axis is
This is the axial position, and the vertical axis shows the frequency distribution of defective cell images 28 counted in the y-axis direction at each X-axis position. The total length of the defect can be calculated by comparing the frequency distribution with a predetermined slice level 5 and calculating the cumulative number of frequency values exceeding the slice level 5.
第1図(c)に示す不連続部4に示すように一般に、線
状欠陥の不連続部は欠陥全長に比べると無視できる程小
であるため、本方法により線状欠陥の全長を正確に求め
ることができる。Generally, the discontinuous part of a linear defect is so small that it can be ignored compared to the total length of the defect, as shown in the discontinuous part 4 shown in FIG. You can ask for it.
なお、本実施例では、弁別領域25 (() 、、(o
) (ハ)(ニ)中に黒画素の取扱いを、すべて黒画素
がある場合該セルを欠陥セルとしたが、本願出願人によ
る実施によれば、その取扱いを下記のように変えること
によりノイズと線状欠陥の弁別度合を自由に変えること
ができる。In addition, in this embodiment, the discrimination area 25 (() , (o
) Regarding the handling of black pixels in (c) and (d), if there are all black pixels, the cell is considered a defective cell, but according to the implementation by the applicant, noise can be detected by changing the handling as follows. and the degree of discrimination of linear defects can be freely changed.
(1)領域(0)と(ハ)に黒画素があれば欠陥セルと
する。(1) If there are black pixels in areas (0) and (c), they are determined to be defective cells.
第4図(a)に示すようにノイズが増えている。As shown in FIG. 4(a), noise is increasing.
2値画像作成時点でノイズが減れば本判断でも可能
(11)領域(イ)と(ニ)に黒画素があれば欠陥セル
とする。This judgment is also possible if the noise is reduced at the time of creating the binary image (11) If there are black pixels in areas (a) and (d), it is determined that the cells are defective.
第4図(b)に示すようにノイズがかなり残っている。As shown in FIG. 4(b), a considerable amount of noise remains.
がまだ残っている。is still left.
(iii)本実施例で示したように、領域(イ) (0
) (ハ)(ニ)に黒画、素があれば欠陥セルとする。(iii) As shown in this example, area (A) (0
) If there is a black pixel or pixel in (c) or (d), it is considered a defective cell.
第4図(c)に示すようにノイズが大巾に減っており、
しかも線状欠陥の欠陥セル化は損われていない。As shown in Figure 4(c), the noise has been greatly reduced,
Furthermore, the formation of linear defects into defective cells is not impaired.
本発明は以上記述のような構成および作用であるから、
下記に示す効果がある。Since the present invention has the structure and operation as described above,
It has the following effects.
(1)入力画像信号中に本来の線状欠陥以外のノイズが
含まれていても、検査ラインに隣接するラインを越える
弁別領域を使って、欠陥の一部かノイズの一部か判断し
てノイズ除去するため、欠陥検出の信頼性が極めて高い
。(1) Even if the input image signal contains noise other than the original linear defect, it can be determined whether it is part of the defect or part of the noise using the discrimination area that goes beyond the line adjacent to the inspection line. Since noise is removed, defect detection is extremely reliable.
(2)入力画像信号において、不連続な線状欠陥であっ
ても、度数分布の累積値にて欠陥全長を算出するため、
本来連続した状態の線状欠陥全長を信頼性高く求めるこ
とができる。(2) In the input image signal, even if it is a discontinuous linear defect, the total defect length is calculated based on the cumulative value of the frequency distribution.
The total length of linear defects that are originally continuous can be determined with high reliability.
(3)弁別領域の大きさ、領域内黒画素取扱い方法によ
って自由にノイズと線状欠陥の弁別度合を変える事がで
きるため、融通性に冨んでいる。(3) The degree of discrimination between noise and linear defects can be freely changed depending on the size of the discrimination area and the method of handling black pixels within the area, so it is highly flexible.
第1図、第2図は夫々本発明の処理手順の要部を示す模
式図である。
第3図は本発明の実、施例における装置のブロック図で
ある。
第4図は本発明の弁別領域内の黒画素の取扱いによるノ
イズと線状欠陥の弁別度合の違いを示す図である。
第5図、第6図はそれぞれ従来例である。
(C)
第2
(a)
(c)
第4
図
(a)
(b)
第
図
(b)
第
図FIG. 1 and FIG. 2 are schematic diagrams showing the main parts of the processing procedure of the present invention, respectively. FIG. 3 is a block diagram of an apparatus in an embodiment of the present invention. FIG. 4 is a diagram showing the difference in the degree of discrimination between noise and linear defects due to the handling of black pixels within the discrimination area according to the present invention. 5 and 6 are conventional examples, respectively. (C) 2nd (a) (c) Fig. 4 (a) (b) Fig. (b) Fig.
Claims (1)
の2値化画素データとして画像メモリに記憶し、中央制
御装置を介して前記2値化画素データについて複数個の
画素からなるセルをXY軸方向に複数個夫々行列に設定
し、夫々のセル内の欠陥候補画素について、欠陥の一部
かノイズの一部かを、y軸方向は検査ラインに隣接する
ラインを除き、該検査ラインを中心とする上下複数のラ
インにあって、x軸方向は欠陥候補画素を中心とする複
数画素の範囲からなる弁別領域を設け、判断することに
より、欠陥セルを抽出し、これらの欠陥セルの度数分布
を求めて、予め定めたスライスレベルを越える値をもつ
ものの累積を算出して欠陥全長とすることを特徴とする
線状欠陥の検査方法。The imaging signal of the object to be inspected obtained through the imaging means is stored in an image memory as binarized pixel data in the XY axis directions, and the binarized pixel data is sent to a cell consisting of a plurality of pixels via a central controller. For each defective candidate pixel in each cell, set a plurality of them in a matrix in the X and Y axes directions, and determine whether the defect candidate pixels in each cell are part of the defect or part of the noise. Defective cells are extracted by setting a discrimination area consisting of a range of multiple pixels centered on the defective candidate pixel in the x-axis direction on multiple lines above and below the line, and making judgments. A method for inspecting linear defects, characterized in that the total length of defects is determined by determining the frequency distribution of defects having values exceeding a predetermined slice level.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8495389A JPH02263107A (en) | 1989-04-04 | 1989-04-04 | Method for inspecting linear defect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8495389A JPH02263107A (en) | 1989-04-04 | 1989-04-04 | Method for inspecting linear defect |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02263107A true JPH02263107A (en) | 1990-10-25 |
Family
ID=13844999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8495389A Pending JPH02263107A (en) | 1989-04-04 | 1989-04-04 | Method for inspecting linear defect |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02263107A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08201305A (en) * | 1995-01-30 | 1996-08-09 | Nec Yamagata Ltd | Inspection method for semiconductor wafer slip line and evaluating method for semiconductor wafer |
-
1989
- 1989-04-04 JP JP8495389A patent/JPH02263107A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08201305A (en) * | 1995-01-30 | 1996-08-09 | Nec Yamagata Ltd | Inspection method for semiconductor wafer slip line and evaluating method for semiconductor wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102175700B (en) | Method for detecting welding seam segmentation and defects of digital X-ray images | |
JP2742240B2 (en) | Defect detection method in inspection of structure surface | |
US7415362B2 (en) | Image defect inspection apparatus | |
JP2000036044A (en) | Defect integrating processor and defect integrating processing method | |
JP4230880B2 (en) | Defect inspection method | |
JP4104213B2 (en) | Defect detection method | |
JPH02263107A (en) | Method for inspecting linear defect | |
US11080860B2 (en) | Image inspection method | |
JPS6385432A (en) | Inspecting method for linear defect | |
JP4956077B2 (en) | Defect inspection apparatus and defect inspection method | |
JP2003203218A (en) | Visual inspection device and method | |
JPH02242382A (en) | Defect checking method | |
JP3753234B2 (en) | Defect detection method | |
JP2000321038A (en) | Method for detecting fault of pattern | |
JP4220061B2 (en) | Periodic pattern defect inspection method and apparatus | |
JP2000258353A (en) | Defect inspection method and device | |
JPH0682724B2 (en) | Wafer defect inspection system | |
JP2508662Y2 (en) | Flaw detection device | |
JPH0453253B2 (en) | ||
JPH06161378A (en) | Inspecting device for liquid crystal display device | |
JP4164636B2 (en) | Pattern inspection method | |
Zhang et al. | Magnetic Ring Detection System Based on Multi-camera Vision Technology | |
JPH0777495A (en) | Pattern inspection method | |
JPH09113244A (en) | External shape inspection device | |
JPH11166817A (en) | Appearance inspecting device |