JPS6380474A - Manufacture of electrode for cell - Google Patents

Manufacture of electrode for cell

Info

Publication number
JPS6380474A
JPS6380474A JP61226512A JP22651286A JPS6380474A JP S6380474 A JPS6380474 A JP S6380474A JP 61226512 A JP61226512 A JP 61226512A JP 22651286 A JP22651286 A JP 22651286A JP S6380474 A JPS6380474 A JP S6380474A
Authority
JP
Japan
Prior art keywords
electrode
conductive polymer
active material
battery
polyaniline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61226512A
Other languages
Japanese (ja)
Inventor
Akio Nojiri
昭夫 野尻
Kenji Shinozaki
研二 篠崎
Masao Morishita
森下 真夫
Sueki Abe
安部 季記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP61226512A priority Critical patent/JPS6380474A/en
Publication of JPS6380474A publication Critical patent/JPS6380474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make it possible to electrically charge the electrode in the caption to heighten its energy density by pressing a powdered conductive polymer on a collector made of a grid-shaped metal body for being made into an electrode active material. CONSTITUTION:A powdered conductive polymer is fixed to a collector from its both sides by means of a press in the form of burrying the collector made of a grid-shaped metal body therein by using a powdered conductive polymer synthesized by an electrochemical or chemical method. As the conductive polymer, polyaniline, polypyrrole or polyazurine is used. And, when pressing conductive polymer powder on the collector, pressing pressure is so set up that active material density may be as high as possible to be more than 1.0g/cc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は充電可能で、重ロエネルギー密度及び容積エネ
ルギー密度が共に高いプラスチック電池用電極の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an electrode for a plastic battery that is rechargeable and has a high gravitational energy density and a high volumetric energy density.

(従来の技術とその問題点) 近年電子機器の普及に伴い、より小型で軽量な電池が種
々の用途で用いられるようになってきた。特にリチウム
電池は高いエネルギー密度を有するため、最近その需要
は急速に高まっている。
(Prior art and its problems) With the spread of electronic devices in recent years, smaller and lighter batteries have come to be used for various purposes. In particular, lithium batteries have a high energy density, so the demand for them has been increasing rapidly recently.

これに伴い、従来−次Ti池であるリチウム電池を二次
電池化することも、強く望まれるに至った。
Along with this, there has been a strong desire to convert the conventional lithium battery, which is a secondary Ti battery, into a secondary battery.

ところで最近、ポリアセチレンやポリアニリンなどのよ
うな有機高分子材料を電極活物質として用いることによ
り、u!mで充電可能な電池を製造し得ることが見いだ
された( AJ、MacDIar+sldら。
By the way, recently, by using organic polymer materials such as polyacetylene and polyaniline as electrode active materials, u! It has been found that rechargeable batteries can be produced in m (AJ, MacDIar+sld et al.).

J、EIectrochem、  Soc、v、+28
  p、1851  (19B+)  )  。
J, EIectrochem, Soc, v, +28
p, 1851 (19B+)).

これらの電極材料は負極としてリチウムを用いた場合に
は高エネルギー密度の二次電池が得られるためその実用
化は強く望まれている。しかし、従来の有機高分子材料
を電極活物質として用いて構成した電池は、いわゆる山
川法や電解工合法によって得られるフィルム状の材料を
そのまま用いているが、これらの材料は軽■ではあるも
のの、密度が0.2−0.5g/cc程度の低い値であ
り、従って電池の小型化が困難であった。またこのよう
にして得られるフィルムの厚さは最大で0.51■程度
が限界であり、従って電池を大容量化するためには、該
フィルムの面積を極めて太き(しなければならず、この
ことは電池の製造上の遠点となっていた。かかる事情か
ら、実際に製造された電池は、その8但が数mAH程度
であり実用には耐えないものであった。この点を数倍す
るため、フィルム状の材料をプレスして活物質の密度を
上げる試みが成されたが、フィルム伏材料の高密度化は
常に電池特性の劣化を招来した。この原因は、このよう
なn機高分子材料の充放電反応であるドープ/脱ドープ
反応の特質に出来する。すなわちこの反応は一般に (P ) n+nyA −+ (PAy) n+nye
で表される。ここでPはポリマーの繰り返し単位、nは
重合度、yはドープffi、Aはドーパントとなるイオ
ンである。ここで、リチウムを対極としたときに開路電
圧が3.5v以上となって、高エネルギー密度を実現す
るためには、ドーパントはいわゆるアクセプターとなる
ものを用いる必要がある。このためにはAとしてCI 
04 + BF4 + PF* + AsF5等の大き
なイオン半径を有するアニオンを用いなければならない
。これらのイオンがポリマー材料と上記の反応を起こす
ためには、溶媒和されてさらに大きくなったイオンがポ
リマーフィルム内部によく浸透しなければならない。そ
のため、ポリマーの固体構造はかなり多孔的であること
が要求される。しかしながら、このような要語は、高エ
ネルギー密度化への要求とは相いれないものであり、こ
の問題の解決が強く望まれていた。
When these electrode materials use lithium as a negative electrode, a secondary battery with high energy density can be obtained, and therefore, their practical application is strongly desired. However, conventional batteries constructed using organic polymer materials as electrode active materials use film-like materials obtained by the so-called Yamakawa method or electrolytic method, but although these materials are lightweight, However, the density was as low as 0.2-0.5 g/cc, making it difficult to miniaturize the battery. Furthermore, the maximum thickness of the film obtained in this way is approximately 0.51 square meters, so in order to increase the capacity of the battery, the area of the film must be extremely thick. This was a turning point in the production of batteries.For this reason, the batteries that were actually manufactured had a power rating of several mAH, which made them unusable for practical use. Attempts have been made to increase the density of the active material by pressing film materials to increase the density of the active material, but increasing the density of the film material always resulted in deterioration of battery characteristics. This is due to the characteristics of the doping/dedoping reaction, which is a charging/discharging reaction of polymeric materials.In other words, this reaction is generally (P) n+nyA -+ (PAy) n+nye
It is expressed as Here, P is a repeating unit of a polymer, n is a degree of polymerization, y is a dope ffi, and A is an ion serving as a dopant. Here, in order to achieve a high energy density with an open circuit voltage of 3.5 V or more when lithium is used as a counter electrode, it is necessary to use a dopant that serves as a so-called acceptor. For this, CI as A
An anion with a large ionic radius such as 04 + BF4 + PF* + AsF5 must be used. In order for these ions to undergo the above reaction with the polymer material, the solvated and larger ions must penetrate well into the interior of the polymer film. Therefore, the solid structure of the polymer is required to be quite porous. However, such terms are incompatible with the demand for higher energy density, and a solution to this problem has been strongly desired.

(問題を解決するための手段) 本発明者等は、かかる実情に鑑み鋭意研究の結果、高い
活物質密度を有しかつイオンの拡散が速やかな電極の製
造方法を見い出し、充電可能でエネルギー密度の高いプ
ラスチック電池を得るに至った。
(Means for Solving the Problem) In view of the above-mentioned circumstances, the present inventors have conducted intensive research and have discovered a method for manufacturing an electrode that has a high active material density and rapid ion diffusion, and has developed a method for manufacturing an electrode that is rechargeable and has an energy density. This led to the creation of high-quality plastic batteries.

本発明は、格子状の金属体からなる集電体上に粉末状導
電性高分子をプレスによって固着させて電極活物質とし
たことを特徴とする電池用電極の製造方法で、さらに詳
しくは電気化学的な方法または化学的な方法によって合
成された導電性高分子を粉末吠としたものを用い、格子
伏の金属体からなる集電体を中に埋め込む形で、前記粉
末状導電性高分子をプレスによって該集電体の両側から
固着することによって上記電極を製造するものである。
The present invention is a method for manufacturing an electrode for a battery, characterized in that a powdery conductive polymer is fixed on a current collector made of a grid-like metal body by pressing to form an electrode active material. Using a powdered conductive polymer synthesized by a chemical method or a chemical method, the powdered conductive polymer is embedded in a current collector made of a lattice-shaped metal body. The above electrode is manufactured by fixing the current collector from both sides using a press.

本発明における導Tri性高分子としては、電気化学的
な方法または化学的な方法によって重合されたポリアニ
リン、ポリピロール、ポリアズレン等が挙げられる。こ
れらは、電気化学的な方法、いわゆる電解重合法で合成
されるのが好ましく、アニリン、ピロール、アズレン等
のモノマーヲ六フッ化リン酸塩、過塩素塩あるいは四フ
ッ化ホウ酸塩のいずれかを適当な溶媒に溶かした電解液
中でアノード酸化して析出物として得られる。好ましい
溶媒としては、アニリンの場合には水、ビロール、アズ
レンの場合にはプロピレンカーボネート、アセトニトリ
ルなどがあげられる。電解方法は定電位法が特に好まし
く、その電位は飽和甘こう電極基準で400mV〜10
00+sVが特に好ましい。電析させるための基板電極
としてはニッケルまたは白金が好ましい。
Examples of the Tri-conducting polymer in the present invention include polyaniline, polypyrrole, polyazulene, etc. polymerized by an electrochemical method or a chemical method. These are preferably synthesized by an electrochemical method, so-called electrolytic polymerization method, in which monomers such as aniline, pyrrole, azulene, etc. are combined with either hexafluorophosphate, perchlorate, or tetrafluoroborate. It is obtained as a precipitate by anodic oxidation in an electrolyte solution dissolved in a suitable solvent. Preferred solvents include water and virol in the case of aniline, and propylene carbonate and acetonitrile in the case of azulene. As the electrolysis method, a constant potential method is particularly preferable, and the potential is 400 mV to 10
00+sV is particularly preferred. Nickel or platinum is preferred as the substrate electrode for electrodeposition.

合成して得られた上記導電性高分子は純水中で十分に水
洗し、100℃以下で乾燥した後、乳鉢、ボールミル序
で粉砕し粉末吠とする。粉末の粒度は集電体との密若性
、活物質密度および電極としての強度の点から100〜
200メツシユが好ましい。
The synthesized conductive polymer is thoroughly washed in pure water, dried at 100° C. or less, and then ground in a mortar or ball mill to form a powder. The particle size of the powder is 100 to 100% from the viewpoint of density with the current collector, active material density, and strength as an electrode.
200 mesh is preferred.

集電体として用いる格子状の金属体は、軽■で安価であ
るという条件の他に、7r1極をスパイラル状に巻くと
いう工程があるため、十分な機械的強度を有しながら、
かつ大きな可撓性がなければならない。さらに場合によ
っては、プレスによって該集電体に導電性高分子を付け
る前に下塗りとして集電体上に導電性高分子の1居を電
析させておくことが好ましいことが多り、シたがって集
電体として用いる格子伏の金属体は、上記の電析液中で
導電性高分子を電析し得るものであることが好ましい。
The lattice-shaped metal body used as a current collector is not only lightweight and inexpensive, but also has sufficient mechanical strength due to the process of winding 7R1 poles in a spiral shape.
It must also have great flexibility. Furthermore, in some cases, it is often preferable to deposit a conductive polymer on the current collector as an undercoat before applying the conductive polymer to the current collector by pressing. The lattice metal body used as a current collector is preferably one capable of electrodepositing a conductive polymer in the above-mentioned electrodeposition solution.

これらの要件を満すものとして、特にニッケルメツシュ
、打抜きで得られたニッケル格子、ニッケルエキスバン
ドメタル等が好ましく、ニッケルメツシュが最も好まし
い。
As materials that meet these requirements, nickel mesh, nickel lattice obtained by punching, nickel expanded metal, etc. are particularly preferred, and nickel mesh is most preferred.

導電性高分子粉末を集電体上にプレスする時は、活物質
密度が出来るだけ高く、好ましくは1.0g/cc以上
となるようプレス圧を設定することが望ましい。尚、活
物質密度が1.0g/cc未満では、電極としての強度
および電極の小型化が不十分となる。通常プレス圧は2
〜3 t / cJ 、好ましくは2.3〜?、 5 
t / eJとし、例えば小型7ri池では1 cJ当
り90〜110mgの導電性高分子粉末を円管させるの
が好ましい。これによって平均厚さが0.6〜0.81
園の活物質を保持した電極を製造することができる。大
型電池の場合には、200 mg/ cJ以上の導電性
高分子粉末を円管させることもある。いずれの場合にも
電極活物質の密度は1.0〜1.5g/ccとなる。
When pressing the conductive polymer powder onto the current collector, it is desirable to set the pressing pressure so that the active material density is as high as possible, preferably 1.0 g/cc or more. Note that if the active material density is less than 1.0 g/cc, the strength as an electrode and the reduction in size of the electrode will be insufficient. Normal press pressure is 2
~3t/cJ, preferably 2.3~? , 5
t/eJ, and for example, in a small 7ri pond, it is preferable to form a circular tube with 90 to 110 mg of conductive polymer powder per 1 cJ. This results in an average thickness of 0.6 to 0.81
It is possible to manufacture electrodes that retain active materials. In the case of large batteries, conductive polymer powder of 200 mg/cJ or more may be made into a circular tube. In either case, the density of the electrode active material is 1.0 to 1.5 g/cc.

本発明の方法によって製造した電極を用いて電池を製造
する場合には、高エネルギー密度を得るために負極活物
質にはリチウムを用いることが好ましい。電解質として
は、四フッ化ホウ酸リチウム、六フッ化リン酸リチウム
、六フッ化ヒ素リチウム、過塩素酸リチウムまたはこれ
らの混合物を用いるのが好ましい。溶媒としては、ジメ
トキシエタン、プロピレンカーボネート、テトラヒドロ
フラン、スルフオラン、ツメチルフォルムアミドまたは
これらの混合物が好ましい。
When manufacturing a battery using the electrode manufactured by the method of the present invention, it is preferable to use lithium as the negative electrode active material in order to obtain high energy density. As the electrolyte, it is preferable to use lithium tetrafluoroborate, lithium hexafluorophosphate, lithium hexafluoride arsenic, lithium perchlorate, or a mixture thereof. Preferred solvents are dimethoxyethane, propylene carbonate, tetrahydrofuran, sulfolane, trimethylformamide, or mixtures thereof.

(発明の作用・効果) 本発明の方法によって製造した電極は、電極の導電性を
向上させるための導電材や電極の強度を増大させるため
の粘若材を用いておらず、従って従来の有機高分子材料
を用いた電極に比べはるかに高い活物質密度をaしてお
り、従って電極の大巾な小型化が達成でき、かつ剥離や
クラックを生ずることなくスパイラル状に巻くことがで
きる。
(Operations and Effects of the Invention) The electrode manufactured by the method of the present invention does not use a conductive material to improve the conductivity of the electrode or a viscous material to increase the strength of the electrode. The active material density a is much higher than that of electrodes using polymeric materials, so the electrode can be significantly miniaturized and can be spirally wound without peeling or cracking.

また、活物質密度が高いにもかかわらず、理由は不明で
あるが電極内での電解液の拡散が良く、活物質重量当り
100〜150AH/に、程度の容量が得られる。した
がって単位容積当りでは120〜150 AH/  程
度の容量が得られる。また本発明の方法で得られた電極
を用いた電池は、平均放電電圧が3.2〜3.5vであ
るから、エネルギー密度で比較すると通常の鉛電池やニ
ッケルーカドミウム電池を凌ぐ性能ををしており、−シ
かも充放電効率も高いことから、二次電池としてその工
業的価値は極めて大なるものである。
Furthermore, despite the high density of the active material, the electrolytic solution diffuses well within the electrode for unknown reasons, and a capacity of approximately 100 to 150 AH/per weight of the active material is obtained. Therefore, a capacity of about 120 to 150 AH/ can be obtained per unit volume. Furthermore, since a battery using the electrode obtained by the method of the present invention has an average discharge voltage of 3.2 to 3.5V, it has a performance that exceeds ordinary lead batteries and nickel-cadmium batteries when compared in terms of energy density. Since it has a high charging and discharging efficiency, its industrial value as a secondary battery is extremely great.

以下、実施例により本発明をさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例1) [ポリアニリンの合成コ 過塩素酸を水100ccに0.2 M /  の濃度で
とかし、これにアニリンを0.1M/  の濃度で加え
電析液とした。次いで該ガラス容器に10c■×10c
■の大きさのニッケルメツシュ板を2枚対向させて設置
し、一方をアノードとしてこれを餡和せこう電極に対し
て800mVの電位に設定してアノード酸化を開始した
。10時間後電解を停止したところ、19.3gのポリ
アニリンが、アノード側に析出していた。これをとりだ
し、純水中で24時間洗浄した。次いでこれを80℃で
24時間乾煽した後、粉砕し100メツシユのふるいに
かけこれを通った粒度のものだけをとりだした。
(Example 1) Synthesis of polyaniline Co-perchloric acid was dissolved in 100 cc of water at a concentration of 0.2 M/2, and aniline was added at a concentration of 0.1 M/2 to prepare an electrodeposition solution. Next, add 10c x 10c to the glass container.
Two nickel mesh plates of size (1) were placed facing each other, one of which was used as an anode, and anode oxidation was started by setting a potential of 800 mV with respect to the laminated gypsum electrode. When the electrolysis was stopped after 10 hours, 19.3 g of polyaniline was deposited on the anode side. This was taken out and washed in pure water for 24 hours. Next, this was dried at 80° C. for 24 hours, and then pulverized and passed through a 100-mesh sieve, and only the particles that passed through the sieve were taken out.

[ポリアニリン電極の製作コ アクリル製プレス型を用意し、これに、先ず上記のよう
にして装造したポリアニリン粉末を厚さ1.31■で敷
いた。次いでこの上に、厚さ0.1■−で面積23.8
 cJの焼鈍したニッケルメツシュを置き、さらにこの
上にポリアニリン粉末を厚さ1.3■璽で敷いた。これ
をプレス機内に設置し上から、λ4t/c−の圧力で3
秒間プレスした。これによって厚さ0.731−で面積
が23.8 d 、活物質(ポリアニリン)重量が1.
865g(1cJあたり90m1g)、活物質密度が1
.07g/ccのポリアニリン電極ができた。ポリアニ
リンは、ニッケルメツシュの集電体と良く一体化されて
お腫脱落するようなことはなかった。
[Production of Polyaniline Electrode A core acrylic press mold was prepared, and the polyaniline powder prepared as described above was laid on it to a thickness of 1.31 cm. Then, on top of this, a thickness of 0.1 - and an area of 23.8
A cJ annealed nickel mesh was placed on top of which polyaniline powder was spread to a thickness of 1.3 cm. Place this in a press machine and apply a pressure of λ4t/c- from above to
Pressed for seconds. As a result, the thickness is 0.731 mm, the area is 23.8 d, and the weight of the active material (polyaniline) is 1.5 mm.
865g (90ml/g per 1cJ), active material density is 1
.. A polyaniline electrode of 0.07 g/cc was completed. The polyaniline was well integrated with the nickel mesh current collector and did not fall off.

[ポリアニリン電池の製作コ 上記のようにして製造したポリアニリン電極を、袋状に
したポリプロピレン不織布で包み、これにニッケルメツ
シュ上に圧着したリチウムから成るリチウム対極を対向
させ、両極間にさらにポリプロピレンの不織布をはさん
で、これらを、第1図に示すような角型のセル内に装填
した。次いでこれに、四フッ化ホウ酸リチウムを、1M
/の濃度でプロピレンカーボネートとジメトキシエタン
の1:l混合溶媒に溶解させた電解液をa5cc入れた
[Production of polyaniline battery] The polyaniline electrode produced as described above is wrapped in a bag-shaped polypropylene nonwoven fabric, and a lithium counter electrode made of lithium crimped onto a nickel mesh is placed opposite to this. These were loaded into a rectangular cell as shown in FIG. 1 with a nonwoven fabric sandwiched therebetween. Next, 1M lithium tetrafluoroborate was added to this.
A5 cc of an electrolyte solution dissolved in a 1:1 mixed solvent of propylene carbonate and dimethoxyethane at a concentration of 1:1 was added.

このようにして製作したポリアニリン電池は1未充電時
の開路電圧が3.3Vであった。これを101人の定電
流で4.2−2. OVの電圧範囲で充放電させると、
2eomAHの容量が得られ、従って正極活物質の単位
ff1fft当りの容量は139.4AIl/kg N
同単位容積当りの容量は149.8AIl/  であっ
たO 前者の値はポリアニリンの固有容量とほぼ同一であった
The polyaniline battery manufactured in this manner had an open circuit voltage of 3.3V when uncharged. 4.2-2 with a constant current of 101 people. When charging and discharging in the OV voltage range,
A capacity of 2 eomAH is obtained, so the capacity per unit ff1fft of the positive electrode active material is 139.4 AIl/kg N
The capacity per unit volume was 149.8 AIl/O. The former value was almost the same as the specific capacity of polyaniline.

(実施例2) 「実施例1」と同様にして製作したポリアニリン??!
 +iと厚さ0.2婁−のリチウム極とを、間に厚さ0
.31−のポリプロピレンの不織布をセパレータとして
介してスパイラル上に巻きこれをアルミ製の単■型電池
容器内に装填した。スパイラル状に巻く過程でクラック
や剥がれは全然生じなかった。
(Example 2) Polyaniline produced in the same manner as "Example 1"? ? !
+i and a 0.2 mu -thick lithium electrode, with a thickness of 0 between
.. A polypropylene nonwoven fabric of 31 mm was wound into a spiral shape with a separator interposed therebetween, and this was loaded into a single-inch aluminum battery container. No cracks or peeling occurred during the spiral winding process.

これに実施例1と同様の電解液3.5 ccを入れた。3.5 cc of the same electrolytic solution as in Example 1 was added to this.

次いでこれにふたをして密閉した。This was then sealed with a lid.

このようにして製作した電池の重量は15g1体積は7
.3ccであり、mmは同一サイズのニッケルーカドミ
ウム電池の5分の3であった。
The weight of the battery manufactured in this way is 15g, and the volume is 7.
.. 3 cc, and the mm was three-fifths that of a nickel-cadmium battery of the same size.

コノ電池’f−4,2−2,0V 17)電圧範囲テ1
0 mA(7)定電流で充放電させたところ、243a
+AHの容量が得られ、平均放電電圧は約L5Vであっ
た。したがってこの電池のfflエネルギー密度は5a
7wu/kgテアリ、容量 ! * ルギー密度ハ11
6.5 fil/ であった。これらの値はいずれも同
一サイズのニッケルーカドミウム電池を大きく上回って
いた。100回充放電を繰り返した後、電池を分解して
ポリアニリン電極を取り出してその形状を調べたが1、
最初と同様であり損傷は見られなかった。
Kono battery 'f-4, 2-2, 0V 17) Voltage range Te1
When charged and discharged at a constant current of 0 mA (7), 243a
A capacity of +AH was obtained, and the average discharge voltage was about L5V. Therefore, the ffl energy density of this battery is 5a
7wu/kg tear, capacity! *Lugie density Ha11
It was 6.5 fil/. All of these values were significantly higher than those of a nickel-cadmium battery of the same size. After repeating charging and discharging 100 times, the battery was disassembled, the polyaniline electrode was taken out, and its shape was examined.
It was the same as the first time and no damage was seen.

以上の実施例から明らかなように、本発明の方法によっ
て製造したポリアニリン電極を用いた電池は、重量及び
容積エネルギー密度の点で従来の電池に比べて大きく優
れており、その工業的価値は極めて大きい。
As is clear from the above examples, batteries using polyaniline electrodes manufactured by the method of the present invention are significantly superior to conventional batteries in terms of weight and volumetric energy density, and their industrial value is extremely high. big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電極特性評価用の角型セル容器の概略図であ
る。
FIG. 1 is a schematic diagram of a square cell container for evaluating electrode characteristics.

Claims (1)

【特許請求の範囲】 1、格子状の金属体からなる集電体上に粉末状導電性高
分子をプレスによって固着させて電極活物質としたこと
を特徴とする電池用電極の製造方法。 2、電極活物質の密度を1.0g/cc以上となすこと
を特徴とする特許請求の範囲第1項記載の電池用電極の
製造方法。
[Scope of Claims] 1. A method for manufacturing an electrode for a battery, characterized in that a powdery conductive polymer is fixed on a current collector made of a grid-like metal body by pressing to form an electrode active material. 2. The method for manufacturing a battery electrode according to claim 1, wherein the electrode active material has a density of 1.0 g/cc or more.
JP61226512A 1986-09-25 1986-09-25 Manufacture of electrode for cell Pending JPS6380474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61226512A JPS6380474A (en) 1986-09-25 1986-09-25 Manufacture of electrode for cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61226512A JPS6380474A (en) 1986-09-25 1986-09-25 Manufacture of electrode for cell

Publications (1)

Publication Number Publication Date
JPS6380474A true JPS6380474A (en) 1988-04-11

Family

ID=16846285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61226512A Pending JPS6380474A (en) 1986-09-25 1986-09-25 Manufacture of electrode for cell

Country Status (1)

Country Link
JP (1) JPS6380474A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158054A (en) * 1988-12-09 1990-06-18 Komatsu Ltd Plastic battery
GB2572346A (en) * 2018-03-27 2019-10-02 Sumitomo Chemical Co Electrode, battery and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02158054A (en) * 1988-12-09 1990-06-18 Komatsu Ltd Plastic battery
GB2572346A (en) * 2018-03-27 2019-10-02 Sumitomo Chemical Co Electrode, battery and method

Similar Documents

Publication Publication Date Title
EP0987775A2 (en) Organic polymer battery electrode, secondary battery and method of manufacturing same
JP3015411B2 (en) Polyaniline battery
JP4830207B2 (en) battery
JP2003331838A (en) Lithium secondary battery
JPS63102166A (en) Secondary battery
JPS6380474A (en) Manufacture of electrode for cell
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JPH0878058A (en) Lithium secondary battery
JP2003317695A (en) Nonaqueous electrolyte lithium ion cell and separator there for
JPH01132045A (en) Battery
JP3512082B2 (en) Thin lithium battery and method of manufacturing the same
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP3287837B2 (en) Battery electrodes and non-aqueous electrolyte secondary batteries
JP4054925B2 (en) Lithium battery
JP3262647B2 (en) Method for producing positive electrode active material for polymer solid electrolyte lithium battery
JP2001351634A (en) Lithium secondary battery
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JP2819201B2 (en) Lithium secondary battery
JPH03190060A (en) Polyaniline battery
JP3409093B2 (en) Electrode for secondary battery and battery using the same
JPH02239572A (en) Polyaniline battery
JPS62150657A (en) Secondary cell
JPH01292753A (en) Secondary battery
JP2001135312A (en) Lithium secondary battery