JPH02158054A - Plastic battery - Google Patents

Plastic battery

Info

Publication number
JPH02158054A
JPH02158054A JP63310213A JP31021388A JPH02158054A JP H02158054 A JPH02158054 A JP H02158054A JP 63310213 A JP63310213 A JP 63310213A JP 31021388 A JP31021388 A JP 31021388A JP H02158054 A JPH02158054 A JP H02158054A
Authority
JP
Japan
Prior art keywords
active material
electrode active
electrode
battery
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63310213A
Other languages
Japanese (ja)
Inventor
Minoru Oda
稔 織田
Shinji Higo
肥後 信司
Akira Sumiya
住谷 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP63310213A priority Critical patent/JPH02158054A/en
Publication of JPH02158054A publication Critical patent/JPH02158054A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To decrease internal resistance by vapor-depositing a conductive material on the surface of an electrode active material in contact with a current collecting electrode. CONSTITUTION:A conductive material such as metal, a metal oxide, and conductive carbon is vapor-deposited in the contacting part of a current collecting electrode made of a conductive material such as nickel plate and stainless steel with an electrode active material. The internal resistance of a battery caused by contact resistance produced by surface irregularity of the electrode active material can be decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性プラスチックを電極活物質とするプラ
スチック電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plastic battery using conductive plastic as an electrode active material.

〔従来の技術〕[Conventional technology]

プラスチック電池の電極活物質としては、その電池性能
からポリアニリン類やポリピロールが最も優れていると
考えられている。とりわけ、ポリアニリンはその優れた
自己放電特性から最良のものと考えられている。しかし
ながら、ポリアニリンは電気伝導度が小さく、高々数S
/c1の値しかない。このため、ポリアニリンを電極活
物質に利用した電池では、充電電流値を大きくとれない
、大電流で放電できないといった問題があった。これら
の問題に対しては、電極面積を大きくしたり、活物質の
内部に集電体を配するといった対策が打たれているし、
活物質自身の電気伝導度を高める目的で導電性のカーボ
ンを混合して成形することも行なわれている。
Polyanilines and polypyrrole are considered to be the most excellent electrode active materials for plastic batteries due to their battery performance. In particular, polyaniline is considered the best because of its excellent self-discharge properties. However, polyaniline has low electrical conductivity, at most several S
There is only a value of /c1. For this reason, batteries using polyaniline as an electrode active material have problems such as not being able to maintain a large charging current value or being unable to discharge at a large current. Countermeasures have been taken to address these problems, such as increasing the electrode area and placing a current collector inside the active material.
In order to increase the electrical conductivity of the active material itself, conductive carbon is also mixed and molded.

しかし、これらの対策のうち、活物質の内部や片面に集
電体を設ける工夫は、小型の電池に対しては有効である
が、大型の電池(例えば、自動車用バッテリーなど)で
は重量増、コスト増につながり、採用することはできな
い。このため、電極面積に比べて小さな集電極を設けて
いかに効率良く電気の出し入れをするかが、プラスチッ
ク電池の性能を左右することになる。
However, among these measures, the idea of providing a current collector inside or on one side of the active material is effective for small batteries, but for large batteries (for example, automobile batteries), it increases weight, This will lead to increased costs and cannot be adopted. For this reason, the performance of plastic batteries is determined by how efficiently electricity can be taken in and out by providing a collector electrode that is smaller than the electrode area.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

導電性プラスチックを電極活物質とするプラスチック電
池は、内部抵抗が既存の鉛蓄電池やニッケルカドミウム
電池に比べて高い。
Plastic batteries that use conductive plastic as the electrode active material have higher internal resistance than existing lead-acid batteries and nickel-cadmium batteries.

これは、前記したよう−こ活物質自身の電気伝導度が低
いことと、活物質と集電体との間の密着性が良くないた
めに起こる接触抵抗に起因している。すなわち、ポリア
ニリンをはじめ多くの導電性プラスチックは、表面に凹
凸を持っている。たとえ、電極表面の形状を鋳形として
合成される電解酸化重合で合成されるフィルム状のポリ
マーでも、その後の乾燥工程で収縮が起こり、表面には
凹凸が発生する。このため、活物質自身の電気伝導度が
低い問題を改善すべく前記したように小面積の集電極を
設けても、小面積の集電極の接触部分が抵抗となり、電
池の内部抵抗の増大につながる。
This is due to the low electrical conductivity of the active material itself, as described above, and the contact resistance caused by poor adhesion between the active material and the current collector. That is, many conductive plastics including polyaniline have uneven surfaces. Even if a film-like polymer is synthesized by electrolytic oxidative polymerization using the shape of the electrode surface as a template, shrinkage occurs during the subsequent drying process, resulting in unevenness on the surface. Therefore, even if a small-area collector electrode is provided as described above to improve the problem of low electrical conductivity of the active material itself, the contact portion of the small-area collector electrode becomes a resistance, which increases the internal resistance of the battery. Connect.

従って、本発明の目的は、前記したような問題を調和し
て解決し、プラスチック電池の持つ軽量、フレキシブル
といった特徴を活かしたまま、電池の内部抵抗の低減を
図ることにある。
Therefore, an object of the present invention is to harmoniously solve the above-mentioned problems and reduce the internal resistance of a plastic battery while taking advantage of its characteristics such as light weight and flexibility.

〔課題を解決するための手段及び作用〕本発明は、前記
目的を達成するため、導電性プラスチックを電極活物質
とするプラスチック電池において、集電極と接触する電
極活物質の表面に導電性物質を蒸着せしめたことを特徴
としている。
[Means and effects for solving the problems] In order to achieve the above object, the present invention provides a plastic battery using conductive plastic as an electrode active material, in which a conductive material is applied to the surface of the electrode active material in contact with the collector electrode. It is characterized by being vapor-deposited.

すなわち、本発明は、電極活物質と集電極にッケル板、
ステンレス鋼等の導電性飼料からなる集電体)との接触
部ないし接触面に導電性物質を蒸着せしめて、電極活物
質の表面の凹凸による接触抵抗に起因する電池の内部抵
抗の低減を図るものである。
That is, the present invention provides an electrode active material and a collector electrode with a nickel plate,
A conductive substance is deposited on the contact area or contact surface with a current collector (made of conductive material such as stainless steel) to reduce internal resistance of the battery caused by contact resistance due to unevenness on the surface of the electrode active material. It is something.

このための構成態様としては種々の態様が考えられるが
、例えば集電極と接触する電極活物質側の表面の接触面
部又は全面に金属、金属酸化物、導電性カーボン等の導
電性物質を蒸召したり、あるいはこのように導電性物質
を蒸着した2枚の電極活物質を、それぞれ上記導電性物
質が集電極と接触するように層状に構成することができ
る。蒸着する材料としては、金、白金、カーボン、スズ
酸化物など種々のものがあり、特定の材料に限定される
ものではない。
Various configurations can be considered for this purpose, but for example, a conductive substance such as metal, metal oxide, conductive carbon, etc. is steamed on the contact surface part or the entire surface of the electrode active material side that contacts the collector electrode. Alternatively, two sheets of electrode active material on which a conductive material is deposited in this manner can be configured in a layered manner such that the conductive material is in contact with the collector electrode. There are various materials to be deposited, such as gold, platinum, carbon, and tin oxide, and the material is not limited to a specific material.

また、本発明では、前記作用説明から明らかなように、
電極活物質としての導電性プラスチックも特定の種類に
限定されるものではない。
Furthermore, in the present invention, as is clear from the above description of the action,
The conductive plastic used as the electrode active material is also not limited to a specific type.

例としてポリアニリンを用いて製造工程の一例を説明す
れば、(1)ポリアニリンの合成、(2)脱ドープ処理
、(3)洗浄・乾燥などの後処理、(4)加圧成形・切
断、(5)電池の組立というステップで電池が作られる
が、本発明では(5)の電池組立の前に前記したような
蒸着工程が入る。勿論、本発明では(1)の合成手段(
14気化学的か化学的か)を規定するものではないし、
合成される形態(フィルム状か粉末状か)を指定するも
のでもない。
To explain an example of the manufacturing process using polyaniline as an example, (1) synthesis of polyaniline, (2) dedoping treatment, (3) post-treatment such as washing and drying, (4) pressure molding and cutting, ( A battery is manufactured in the step of 5) battery assembly, but in the present invention, a vapor deposition process as described above is performed before battery assembly in step (5). Of course, in the present invention, the synthesis means (1) (
14 (gas-chemical or chemical).
Nor does it specify the form in which it will be synthesized (film or powder).

〔実 施 例〕〔Example〕

以下、実施例を示して本発明について具体的に説明する
が、本発明が下記実施例に限定されるものでないことは
もとよりである。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but it goes without saying that the present invention is not limited to the following Examples.

実施例1 1規定塩酸400 mlにアニリン36.5mlを溶解
した液に、過硫酸アンモニウム30gを100 mlの
精製水に溶かした液を徐々に加え、約1時間5℃で撹拌
し続けた。得られた緑色粉末を吸引濾過して回収した後
、1規定の塩酸500 ml中で洗浄した。この塩酸洗
浄−吸引濾過の操作を数回繰り返した後、約50℃の真
空オーブン中で48時間乾燥した。得られた緑色粉末を
120kg/cdの圧力でコイン状(直径25mm1厚
さ0.1a+m)に成形し、これを真空ライン装置でさ
らに24時間乾燥した。
Example 1 A solution prepared by dissolving 30 g of ammonium persulfate in 100 ml of purified water was gradually added to a solution prepared by dissolving 36.5 ml of aniline in 400 ml of 1N hydrochloric acid, and stirring was continued at 5° C. for about 1 hour. The obtained green powder was collected by suction filtration and washed in 500 ml of 1N hydrochloric acid. After repeating this operation of hydrochloric acid washing and suction filtration several times, it was dried in a vacuum oven at about 50°C for 48 hours. The obtained green powder was molded into a coin shape (diameter 25 mm, thickness 0.1 a+m) under a pressure of 120 kg/cd, and this was further dried for 24 hours using a vacuum line device.

得られたコイン状のポリアニリンの片面に金を薄く蒸着
した後、アルゴンガスで置換したチャンバー内でリチウ
ムを対極としたボタン型電池とした。なお、集電体とし
て5U3430製の外蓋をそのまま使用し、セパレータ
としてポリプロピレンの不織布を、電解液として5モル
/gの濃度でLiBF4をプロピレンカーボネートに溶
解した液を使用した。
After thinly depositing gold on one side of the resulting coin-shaped polyaniline, a button-shaped battery was made with lithium as a counter electrode in a chamber purged with argon gas. The outer lid made of 5U3430 was used as it was as a current collector, a polypropylene nonwoven fabric was used as a separator, and a solution of LiBF4 dissolved in propylene carbonate at a concentration of 5 mol/g was used as an electrolyte.

このようにして作成した電池と、比較のために金の蒸着
のみを行なわずに作成した電池の性能比較を表−1に示
す。
Table 1 shows a performance comparison between the battery thus produced and the battery produced without gold vapor deposition for comparison.

表−1=電池の性能比較 実施例2 p−トルエンスルホン酸ナトリウム1.0モル/j2、
ピロール0.25モル/pを含む溶液に3枚のNi箔を
挿入し、真中のNi箔を正極、両側2枚のNi箔を負極
として、両電極間に2、Ovの定電圧を印加してポリピ
ロールを合成した。重合後、直ちに一〇、2Vの逆バイ
アスをかけて逆ドープ処理を行ない、電流が殆ど流れな
くなるのを待ってポリピロール被覆Ni箔を精製水で洗
浄した。
Table-1 = Battery performance comparison example 2 Sodium p-toluenesulfonate 1.0 mol/j2,
Three Ni foils were inserted into a solution containing 0.25 mol/p of pyrrole, and a constant voltage of 2 Ov was applied between the two electrodes, with the middle Ni foil as the positive electrode and the two Ni foils on both sides as the negative electrodes. Polypyrrole was synthesized. Immediately after polymerization, reverse doping was performed by applying a reverse bias of 10.2 V, and after waiting until almost no current flowed, the polypyrrole-coated Ni foil was washed with purified water.

得られたポリピロールをNi箔から剥し、真空ラインに
て24時間真空乾燥した。乾燥後、70I5+1×45
11I11の大きさに切断し、片面に直径15止の円形
状に金を蒸着した。これを2枚重ね、金蒸着部分に厚さ
50μmのNi箔(15++++sX15ms)が接す
るようにサンドイッチ構造とし、これを集電極とした。
The obtained polypyrrole was peeled off from the Ni foil and vacuum dried in a vacuum line for 24 hours. After drying, 70I5+1x45
It was cut to a size of 11I11, and gold was deposited on one side in a circular shape with a diameter of 15mm. Two sheets of this were stacked to form a sandwich structure such that a 50 μm thick Ni foil (15+++s×15 ms) was in contact with the gold vapor-deposited portion, and this was used as a collector electrode.

その後、アルゴンガスで置換したチャンバー内でリチウ
ムを対極としたカード型電池とした。なお、電解液は5
モル/gの濃度のLfBF4をプロピレンカーボネート
に溶解したものを用い、またセパレータとしてポリプロ
ピレンの不織布を使用した。
Thereafter, a card-type battery was created using lithium as a counter electrode in a chamber purged with argon gas. In addition, the electrolyte is 5
LfBF4 dissolved in propylene carbonate at a concentration of mol/g was used, and a polypropylene nonwoven fabric was used as a separator.

このようにして作成した電池と、比較のために金蒸着の
みを行なわずに作成した電池の性能比較を表−2に示す
Table 2 shows a performance comparison between the battery thus produced and the battery produced without gold vapor deposition for comparison.

表−2 実施例3 p−トルエンスルホン酸1.0モル/II、アニリン0
.5モル/pを含む水−メタノール同量混合溶媒に3枚
のNi箔(20cmX18cm。
Table-2 Example 3 p-toluenesulfonic acid 1.0 mol/II, aniline 0
.. Three sheets of Ni foil (20 cm x 18 cm) were placed in a mixed solvent of equal amounts of water and methanol containing 5 mol/p.

厚さ10μm)を挿入し、真中のNi箔を正極、両側の
2枚を負極として、両電極間に1,2vの定電圧を印加
し、ポリアニリンを合成した。
10 μm thick) was inserted, the middle Ni foil was used as a positive electrode, the two on both sides were used as negative electrodes, and a constant voltage of 1.2 V was applied between both electrodes to synthesize polyaniline.

重合に要した電気量は単位面積当り20クーロンであっ
た。重合後、直ちに一〇、2vの逆バイアスをかけ、重
合時に取り込まれた陰イオンを放出させる逆ドープ処理
を行なった。単位面積当りの電流値が30μA以下にな
るまでこの処理を行なったところ、単位面積当り2.6
8クーロンの電気量が放出された。
The amount of electricity required for polymerization was 20 coulombs per unit area. Immediately after the polymerization, a reverse bias of 10.2 V was applied to perform reverse doping treatment to release the anions incorporated during polymerization. When this process was carried out until the current value per unit area became 30μA or less, the current value per unit area was 2.6μA or less.
8 coulombs of electricity were released.

逆ドープ処理終了後、正極Ni箔ごとポリアニリンをメ
タノール洗浄し、風乾した。その後、ポリアニリンをN
i箔から剥し、真空オーブンを用いて50℃で48時間
乾燥した。
After the reverse doping process was completed, the polyaniline together with the positive electrode Ni foil was washed with methanol and air-dried. After that, polyaniline was
It was peeled off from the i-foil and dried in a vacuum oven at 50°C for 48 hours.

乾燥後、70關X45龍の大きさに切断したポリアニリ
ンの片面に、直径15mmの円形状に金を蒸着した。こ
れを2枚用意し、金蒸着部分に厚さ50μmのNi箔(
15mmX15nos)が接するようにサンドイッチ状
に重ね、電池の正極を作成した。一方、セパレータとし
てポリプロピレン製の不織布を9011III×501
11の大きさに熱溶着した袋状のものを用意し、この中
に上記ポリアニリン電極を入れ、リード部を取り付けた
。その後、アルゴンガスで置換したチャンバー内でリチ
ウムを対極としたカード型の電池を作成した。なお、電
解液としては5モル/IIの濃度のLiBF4をプロビ
レンカーボネートに溶解したものを使用した。
After drying, gold was deposited in a circular shape with a diameter of 15 mm on one side of the polyaniline cut into a size of 70 mm x 45 mm. Prepare two sheets of this, and cover the gold-deposited part with a 50 μm thick Ni foil (
15 mm x 15 nos) were stacked in a sandwich fashion so that they were in contact with each other to create a positive electrode for a battery. On the other hand, as a separator, polypropylene nonwoven fabric was used as 9011III x 501
A heat-welded bag having a size of 11 was prepared, the polyaniline electrode was placed in the bag, and a lead portion was attached. Afterwards, a card-shaped battery was created with lithium as the counter electrode in a chamber purged with argon gas. The electrolyte used was LiBF4 dissolved in propylene carbonate at a concentration of 5 mol/II.

このようにして作成した電池と、比較のために金蒸着の
みを省略して作成した電池の性能比較を表−3に示す。
Table 3 shows a performance comparison between the battery thus produced and the battery produced by omitting only the gold deposition for comparison.

電性能及び出力密度の大巾な向上が達成できるる。Significant improvements in electrical performance and power density can be achieved.

表−3Table-3

Claims (2)

【特許請求の範囲】[Claims] (1)導電性プラスチックを電極活物質とするプラスチ
ック電池において、集電極と接触する電極活物質の表面
に導電性物質を蒸着せしめたことを特徴とするプラスチ
ック電池。
(1) A plastic battery using conductive plastic as an electrode active material, characterized in that a conductive material is deposited on the surface of the electrode active material that comes into contact with a collector electrode.
(2)導電性物質を蒸着した2枚の電極活物質を、それ
ぞれ上記導電性物質が集電極と接触するように層状に構
成してなる請求項1記載のプラスチック電池。
(2) The plastic battery according to claim 1, wherein two sheets of electrode active material each having a conductive material deposited thereon are arranged in a layered manner such that each of the conductive materials contacts the collector electrode.
JP63310213A 1988-12-09 1988-12-09 Plastic battery Pending JPH02158054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310213A JPH02158054A (en) 1988-12-09 1988-12-09 Plastic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310213A JPH02158054A (en) 1988-12-09 1988-12-09 Plastic battery

Publications (1)

Publication Number Publication Date
JPH02158054A true JPH02158054A (en) 1990-06-18

Family

ID=18002558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310213A Pending JPH02158054A (en) 1988-12-09 1988-12-09 Plastic battery

Country Status (1)

Country Link
JP (1) JPH02158054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060685A1 (en) * 1999-03-31 2000-10-12 Koninklijke Philips Electronics N.V. Method of applying an electrically conducting current collector on a self-supporting electrode and assembly of electrode and current collector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112584A (en) * 1982-12-20 1984-06-29 Showa Denko Kk Battery
JPS6380474A (en) * 1986-09-25 1988-04-11 Furukawa Electric Co Ltd:The Manufacture of electrode for cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112584A (en) * 1982-12-20 1984-06-29 Showa Denko Kk Battery
JPS6380474A (en) * 1986-09-25 1988-04-11 Furukawa Electric Co Ltd:The Manufacture of electrode for cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060685A1 (en) * 1999-03-31 2000-10-12 Koninklijke Philips Electronics N.V. Method of applying an electrically conducting current collector on a self-supporting electrode and assembly of electrode and current collector

Similar Documents

Publication Publication Date Title
KR20020018180A (en) Lithium secondary battery comprising individual cells connected with one another, as well as watches, computers and communication equipment provided with such a battery
JPS5973864A (en) Layer-built sheet-like polymer secondary battery
JP4358340B2 (en) Non-sintered nickel electrode
JP4586292B2 (en) Electrode binder and electrode and battery manufactured using the same
JP3508514B2 (en) Organic electrolyte battery
JPH07161346A (en) Pole plate for secondary battery and high polymer solid electrolyte lithium secondary battery and its manufacture
JPH02158054A (en) Plastic battery
CN114188503B (en) Battery pack
JP4132945B2 (en) Nonaqueous electrolyte lithium ion battery and separator therefor
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPS636752A (en) Conductive polymer electrode
CN211556039U (en) Current collector and secondary battery
EP3465813A1 (en) Devices
JP2003022800A (en) Production process of separator/electrode composite and battery element containing the composite
CN111710831A (en) Solid-state battery negative electrode foil and production process thereof
JP2666382B2 (en) Rechargeable battery
JPS63121247A (en) Negative electrode of secondary battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JPH05205777A (en) Macromolecular solid electrolyte battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JP3023129B2 (en) Wet condenser using organic semiconductor
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JPH0473862A (en) Lithium secondary battery
JPH04540Y2 (en)
EP4203092A1 (en) Electrode including active material layer in bilayer structure, manufacturing method therefor, and secondary battery comprising same