JPS63121247A - Negative electrode of secondary battery - Google Patents

Negative electrode of secondary battery

Info

Publication number
JPS63121247A
JPS63121247A JP61265836A JP26583686A JPS63121247A JP S63121247 A JPS63121247 A JP S63121247A JP 61265836 A JP61265836 A JP 61265836A JP 26583686 A JP26583686 A JP 26583686A JP S63121247 A JPS63121247 A JP S63121247A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
active substance
binder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61265836A
Other languages
Japanese (ja)
Other versions
JPH0782839B2 (en
Inventor
Ei Yoshino
吉野 影
Kenichi Sanechika
健一 実近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61265836A priority Critical patent/JPH0782839B2/en
Publication of JPS63121247A publication Critical patent/JPS63121247A/en
Publication of JPH0782839B2 publication Critical patent/JPH0782839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a compact, lightweight power source with particularly excellent cycle characteristics and self-discharging characteristics by increasing the ratio of bonding agent to carbon on an interface where a partial area of active substance layer makes contact with collectors compared with that on the surface of active substance layer. CONSTITUTION:In the negative electrode of a nonaqueous secondary battery, which comprises at least an active substance layer formed by carbon, serving as a negative electrode active substance, and bonding agent and collectors in contact wherewith, the ratio of bonding agent to carbon is increased on an interface where a partial area of active substance layer makes contact with collectors compared with that on the surface of active substance layer. The increased ratio of bonding agent on the interface between carbon active substance layer of negative electrode and collector is remarkably decreased to show stable battery characteristics.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は新規な二次電池、更には小型、軽量二次電池に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel secondary battery, and more particularly to a small and lightweight secondary battery.

[従来の技術] 近年、電子機器の小型化、軽量化は目覚ましく、それに
伴い電源となる電池に対しても化型軽量化の要望が非常
に大きい、−次電池の分野では既にリチウム電池等の小
型軽量電池が実用化されているが、これらは−次電池で
あるが故に繰り返し使用できず、その用途分野は限られ
たものであった。一方、二次電池の分野では従来より鉛
電池、ニッケルーカドミ電池が用いられてきたが両者共
、小型軽量化という点で大きな問題点を有している。か
かる観点から、非水系二次電池が非常に注目されてきて
いるが、未だ実用化に至っていない、その理由の一つは
該二次電池に用いる電極活物質でサイクル性、自己放電
特性等の実用物性を満足するものが見出されていない点
にある。
[Conventional technology] In recent years, electronic devices have become smaller and lighter, and as a result, there is a strong demand for batteries that serve as power sources to be made smaller and lighter.In the field of secondary batteries, lithium batteries and other Although small and lightweight batteries have been put into practical use, since these are secondary batteries, they cannot be used repeatedly, and their fields of application are limited. On the other hand, in the field of secondary batteries, lead batteries and nickel-cadmium batteries have conventionally been used, but both have major problems in terms of miniaturization and weight reduction. From this point of view, non-aqueous secondary batteries have been attracting a lot of attention, but they have not yet been put into practical use.One of the reasons for this is that the electrode active materials used in these secondary batteries have poor cycleability, self-discharge characteristics, etc. The problem is that no material has been found that satisfies practical physical properties.

一方、従来のニッケルーカドミ電池、鉛電池などと木質
的に異なる反応形式である層状化合物のインターカレー
ジオン、又はドーピング現象を利用した新しい群の電極
活物質が注目を集めている。
On the other hand, a new group of electrode active materials that utilize intercalation of layered compounds or doping phenomena, which have a different reaction type from conventional nickel-cadmium batteries, lead-acid batteries, etc., are attracting attention.

かかる新しい電極活物質は、その充電、放電における電
気化学的反応において、複雑な化学反応を起こさないこ
とから、極めて優れた充放電サイクル性が期待されてい
る。
Such new electrode active materials do not cause complex chemical reactions during electrochemical reactions during charging and discharging, and are therefore expected to have extremely excellent charge-discharge cycle performance.

中でも注目されているのはカーボンを活物質として用い
た新規な二次電池であり、例えば特開昭58−3588
1. #開開59−173979 、特開昭58−20
7588、特開昭58−209884 、特開昭81−
111907号公報、更には本発明者らによる特願昭E
ll−103785号1等種々のカーボンを活物質とし
て用いることが提案されており、その実用化が期待され
ている。
Among them, a new secondary battery using carbon as an active material is attracting attention, for example, Japanese Patent Application Laid-Open No. 58-3588
1. #Kaikai59-173979, Unexamined Japanese Patent Publication No. 58-20
7588, JP-A-58-209884, JP-A-81-
No. 111907, and also the patent application ShoE by the present inventors.
It has been proposed to use various carbons as active materials, such as No. II-103785 No. 1, and its practical application is expected.

しかしながら、従来の他の活物質に比ベカーボンは電導
度に優れているにも拘らず、意外なことに集電体との界
面の接触抵抗が大きく、実際に電極として用いる場合に
大きな問題点となっていた。
However, although carbon has superior conductivity compared to other conventional active materials, it surprisingly has a large contact resistance at the interface with a current collector, which poses a major problem when actually used as an electrode. It had become.

[発明が解決しようとする問題点] 前述の如く、カーボンを活物質として用いる二次電池に
おいて、内部抵抗の増大等の問題点を残していた。特に
この現象はカーボンを負極活物質として用いた場合に著
しい。
[Problems to be Solved by the Invention] As mentioned above, secondary batteries using carbon as an active material still have problems such as an increase in internal resistance. This phenomenon is particularly remarkable when carbon is used as the negative electrode active material.

[問題点を解決するための手段及び作用]本発明は前述
の問題点を解決し、電池性能、特にサイクル性、出力特
性に優れた高性能、高エネルギー密度の小型軽量二次電
池を提供するためになされたものである。
[Means and effects for solving the problems] The present invention solves the above-mentioned problems and provides a high-performance, high-energy-density, compact, lightweight secondary battery with excellent battery performance, especially cycleability and output characteristics. It was made for the purpose of

本発明によれば、構成要素として少くとも負極活物質で
あるカーボンと結着剤とで形成される活物質層と、それ
と接する集電体とからなる非水系二次電池負極であって
、該活物質層の集電体と接する部分の界面における結着
剤とカーボンの比率が活物質層表面における結着剤とカ
ーボンの比率よりも大きいことを特徴とする非水系二次
電池負極が提供される。
According to the present invention, there is provided a non-aqueous secondary battery negative electrode comprising an active material layer formed of at least carbon as a negative electrode active material and a binder, and a current collector in contact with the active material layer. A non-aqueous secondary battery negative electrode is provided, wherein the ratio of the binder to carbon at the interface of the active material layer in contact with the current collector is larger than the ratio of the binder to carbon at the surface of the active material layer. Ru.

本発明で用いるカーボンとは、特に限定しないが前述の
公報等にて開示されている、活性炭、フェノール樹脂炭
化物、縮合多環系炭化水素又は多環複素環系化合物の炭
化で得られるカーボンウィスカー、炭素繊維、気相成長
法炭素繊維、ニードルコークス、ピッチコースク等がそ
の一例として挙げられる。
The carbon used in the present invention includes, but is not particularly limited to, carbon whiskers obtained by carbonizing activated carbon, phenol resin carbide, condensed polycyclic hydrocarbons, or polycyclic heterocyclic compounds, as disclosed in the above-mentioned publications, etc. Examples include carbon fiber, vapor grown carbon fiber, needle coke, and pitch coke.

結着剤としては特に限定しないが、ポリエチレン、テフ
ロン、ブチルゴム、ニトリルゴム、スチレン/ブタジェ
ンゴム、ポリアクリロニトリル、ポリスフ化ビニリデン
、ポリフッ化ビニル、スチレン/ブタジェンブロック共
重合体及びその水添カルボキシル化変性体等がその一例
として挙げられる。
Examples of binders include, but are not limited to, polyethylene, Teflon, butyl rubber, nitrile rubber, styrene/butadiene rubber, polyacrylonitrile, polyvinylidene sulfide, polyvinyl fluoride, styrene/butadiene block copolymers, and hydrogenated carboxylated modified products thereof. etc. are given as an example.

集電体としては特に限定しないがニッケル、銅、SUS
 、チタン、等の金属材料が一例として挙げられる。又
、その形状としては、箔状、ネット状、スポンジ状、エ
キスバンドメタル、パンチングメタル等任意の形状が用
いられる。
As a current collector, there are no particular limitations, but nickel, copper, SUS
Examples include metal materials such as , titanium, and the like. Further, as for its shape, any shape such as a foil shape, a net shape, a sponge shape, an expanded metal shape, a punched metal shape, etc. can be used.

活物質、結着剤、集電体を成形し電極とする方法として
は活物質をテフロン粉末、ポリエチレン粉末等の粉末状
結着剤と共に混合し圧縮成形する方法が一般的であ゛る
A common method for forming an electrode by molding an active material, a binder, and a current collector is to mix the active material with a powdery binder such as Teflon powder or polyethylene powder, and then compression mold the mixture.

更に好ましい方法として溶媒に溶解及び/又は分散した
結着剤をバインダーとして電極活物質を成形する方法が
挙げられる。 2 本発明は前記向れの方法も用いることができる。
A more preferable method includes a method of forming an electrode active material using a binder dissolved and/or dispersed in a solvent as a binder. 2 The present invention can also use the method described above.

本発明において、カーボン負極活物質と結着剤との比率
は、特に限定しない、が、カーボン100重量部に対し
0.1〜15重量部、好ましくは0.5〜10重量部で
ある。0.1未満の場合は活物質層の強度が不十分であ
り、電池組立工程において支障が生じる。又、15重量
部を越す場合は、電池性能に悪影響が顕著となり好まし
くない。
In the present invention, the ratio of the carbon negative electrode active material to the binder is not particularly limited, but is 0.1 to 15 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of carbon. If it is less than 0.1, the strength of the active material layer is insufficient, causing problems in the battery assembly process. Moreover, if it exceeds 15 parts by weight, it is not preferable because it will have a significant adverse effect on battery performance.

前述の如く、本発明においてカーボン負極活物質層と集
電体界面において結着剤量の比率を大きくすることが極
めて重要であり、かかる構造を用いることにより集電体
と活物質層間の接触抵抗は極めて小さくなり、安定した
電池性能を示すようになる。かかる層におけるカーボン
と結着剤との比率は、特に限定しないが、カーボン10
0 m ti 部に対し結着剤20〜800重量部、好
ましくは75〜300重量部である。20重量部未満の
場合は結着剤の量が少く本発明の効果が発揮できない、
又900重量部を越す場合は、かかる層の体積電気抵抗
が大となり逆効果が生じ好ましくない。
As mentioned above, in the present invention, it is extremely important to increase the ratio of the amount of binder at the interface between the carbon negative electrode active material layer and the current collector, and by using such a structure, the contact resistance between the current collector and the active material layer can be reduced. becomes extremely small and exhibits stable battery performance. The ratio of carbon to binder in such a layer is not particularly limited, but carbon 10
The amount of binder is 20 to 800 parts by weight, preferably 75 to 300 parts by weight per 0 m ti part. If the amount is less than 20 parts by weight, the amount of binder is too small to exhibit the effects of the present invention.
If the amount exceeds 900 parts by weight, the volume electrical resistance of the layer becomes large, which is not preferred.

かかる結着剤量なる層の厚みは特に限定しないが、前記
カーボン負極活物質層の115〜1/100 。
The thickness of the layer corresponding to the amount of binder is not particularly limited, but is 115 to 1/100 of the thickness of the carbon negative electrode active material layer.

好ましくは1/10〜l/75の範囲である。Preferably it is in the range of 1/10 to 1/75.

カーボンを負極活物質とする負極において何故かかる効
果が発現するのか未だ定かではないが、第一に考えられ
ることは集電体界面において結着剤量を大とすることに
より該集電体と活物質層との接着力が増しているものと
思われる。第二に通常常識的には結着剤量を増やすと、
その層目体の体積電気抵抗が著しく大となり、絶縁層的
な挙動をとるがカーボンの場合はこの点において他の活
物質と異なり、体積電気抵抗の低下が少いものと思われ
る。上記、第一、及び第二の効果が相乗的に発現し、予
期しない効果が発現する。これは他の活物質には見出さ
れない、カーボン独特の挙動である。
It is not yet clear why such an effect occurs in a negative electrode that uses carbon as the negative electrode active material, but the first possibility is that increasing the amount of binder at the current collector interface will bond the current collector and the active material. It seems that the adhesive force with the material layer is increasing. Second, common sense suggests that if you increase the amount of binder,
The volume electrical resistance of the layer becomes extremely large and behaves like an insulating layer, but in the case of carbon, unlike other active materials, the drop in volume electrical resistance is thought to be small. The above, first, and second effects are expressed synergistically, resulting in an unexpected effect. This behavior is unique to carbon and is not found in other active materials.

前記本発明の構造を有するカーボン負極を得るには種々
の方法を採用することができる。
Various methods can be employed to obtain the carbon negative electrode having the structure of the present invention.

その−例をいくつか示せば (1)結着剤量大なる合剤もしくは塗工剤を用い予め集
電体上に形成した後、結着剤最小なる層を形成する方法
Here are some examples: (1) A method in which a mixture or coating agent with a large amount of binder is previously formed on the current collector, and then a layer with a minimum amount of binder is formed.

(2)結着剤のみを予め集電体上に形成した後、結着剤
小なる層を形成する方法、該方法は特に塗布法により負
極を形成する場合に好ましい方法である。
(2) A method in which only the binder is previously formed on the current collector and then a small layer of the binder is formed. This method is particularly preferred when forming the negative electrode by a coating method.

等の方法が一例として挙げられる。ここにおいて、結着
剤量なる層と結着剤小なる層に用いる結着剤及びカーボ
ンの種類は同一であっても良いし、異っていても良い。
An example of such a method is as follows. Here, the type of binder and carbon used in the binder amount layer and the binder small layer may be the same or different.

又、当然の事ながら木刀法の一つの変形として、結着剤
量なる層を二層以上有する場合、更には連続的に結着剤
量比を変化させた、即ち濃度傾斜をもたせる場合等も考
えられる。
Also, as a matter of course, as a modification of the Bokuto method, there are cases in which there are two or more layers of binder amount, and furthermore, cases in which the binder amount ratio is continuously changed, that is, a concentration gradient is provided. Conceivable.

更に1本発明における結着剤量大なる層のカーボンが活
物質として実際に機能する場合もあれば、機能していな
い場合もあるが、本発明において木質的な問題ではない
Furthermore, in the present invention, carbon in a layer with a large amount of binder may or may not actually function as an active material, but this is not a wood-related problem in the present invention.

その理由は、本発明の効果は結着剤量なる層は薄くても
その機能を十分に発揮するからである。
The reason for this is that the effect of the present invention is that even if the layer containing the binder is thin, it can sufficiently exhibit its function.

前述の如く負極として用いた場合に特に優れた性能を発
揮するが、この時用いられる正極としては特に限定され
ないが、−例で示せば、Tl52@Ti53. MO8
3,Fl!S2. Lin−x)Mn02. Liu−
x)co02+Lin−x)旧02. V2O5,Li
(+−x)co、5nz0?+ V6O13が挙げられ
る。
As mentioned above, it exhibits particularly excellent performance when used as a negative electrode, but the positive electrode used at this time is not particularly limited, but as an example, Tl52@Ti53. MO8
3, Fl! S2. Lin-x) Mn02. Liu-
x) co02+Lin-x) Old 02. V2O5, Li
(+-x)co, 5nz0? +V6O13 is mentioned.

本発明の非水系二次電池を組立てる場合の基本構成要素
として、前記本発明の活物質を用いた電極、更にはセパ
レーター、非水電解液が挙げられる。セパレーターとし
ては特に限定されないが、織布、不織布、ガラス織布、
合成樹脂微多孔膜等が挙げられるが、前述の如く、薄膜
、大面積電極を用いる場合には1例えば特開昭58−5
9072号に開示される合成樹脂微多孔膜、特にポリオ
レフィン系微多孔膜が、厚み、強度、膜抵抗の面で好ま
しい。
Basic components for assembling the non-aqueous secondary battery of the present invention include an electrode using the active material of the present invention, a separator, and a non-aqueous electrolyte. Separators include, but are not limited to, woven fabrics, non-woven fabrics, glass woven fabrics,
Examples include synthetic resin microporous membranes, but as mentioned above, when using thin membranes and large-area electrodes, 1, for example, JP-A-58-5
The synthetic resin microporous membrane disclosed in No. 9072, particularly the polyolefin microporous membrane, is preferable in terms of thickness, strength, and membrane resistance.

非水電解液の電解質としては特に限定されないが、−例
を示せば、LiC1’On、 LiBFn、 LiAs
F6゜CF3SO3Li、 LiPF6. LiI、 
LiA1’Gj!4. NaC1’04゜NaBFn、
 Mal、 (n−nu)4N”(j)On、 (n−
Bu)4N@BFa。
The electrolyte of the non-aqueous electrolyte is not particularly limited, but examples include: LiC1'On, LiBFn, LiAs
F6゜CF3SO3Li, LiPF6. LiI,
LiA1'Gj! 4. NaC1'04゜NaBFn,
Mal, (n-nu)4N”(j)On, (n-
Bu)4N@BFa.

KPF b等が挙げられる。又、用いられる電解液の有
機溶媒としては例えばエーテル類、ケトン類、ラクトン
類、ニトリル類、アミン類、アミド類。
Examples include KPF b. Examples of organic solvents used in the electrolytic solution include ethers, ketones, lactones, nitriles, amines, and amides.

硫黄化合物、塩素化炭化水素類、エステル類、カーボネ
ート類、ニトロ化合物、リン酸エステル系化合物、スル
ホラン系化合物等を用いることができるが、これらのう
ちでもエーテル類、ケトン類、ニトリル類、塩素化炭化
水素類、カーボネート類、スルホラン系化合物が好まし
い、更に好ましくは環状カーボネート類である。
Sulfur compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, phosphate ester compounds, sulfolane compounds, etc. can be used, but among these, ethers, ketones, nitriles, chlorinated Hydrocarbons, carbonates, and sulfolane compounds are preferred, and cyclic carbonates are more preferred.

これらの代表例としては、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、1.4−ジオキサン、アニソ
ール、モノグライム、アセトニトリル、プロピオニトリ
ル、4−メチル−2−ペンタノン、ブチロニトリル、バ
レロニトリル、ベンゾニ) IJ 、IL/、 1.2
−ジクロロエタン、γ−ブチロラクトン、ジメトキシエ
タン、メチルフォルメイト、プロピレンカーボネート、
エチレンカーボネート。
Representative examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzoni) IJ, IL/, 1.2
-dichloroethane, γ-butyrolactone, dimethoxyethane, methylformate, propylene carbonate,
ethylene carbonate.

ビニレンカーボネート、ジメチルホルムアミド、ジメチ
ルスルホキシド、ジメチルチオホルムアミド、スルホラ
ン、3−メチル−スルホラン、リン酸トリメチル、リン
酸トリエチルおよびこれらの混合溶媒等をあげることが
できるが、必ずしもこれらに限定されるものではない。
Examples include vinylene carbonate, dimethylformamide, dimethyl sulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, triethyl phosphate, and mixed solvents thereof, but are not necessarily limited to these. .

更に要すれば、集電体、端子、絶縁板等の部品を用いて
電池が構成される。又、電池の構造としては、特に限定
されるものではないが、正極、負極、更に要すればセパ
レーターを単層又は複層としたペーパー型電池、 [7
!を型電池、又は正極、負極、更に要すればセパレータ
ーをロール状に巻いた円筒状電池等の形態が一例として
挙げられる。
Furthermore, if necessary, the battery is constructed using parts such as a current collector, a terminal, and an insulating plate. In addition, the structure of the battery is not particularly limited, but it may include a paper type battery with a positive electrode, a negative electrode, and, if necessary, a separator in a single layer or a multilayer.[7
! Examples include a cylindrical battery in which a positive electrode, a negative electrode, and, if necessary, a separator are wound into a roll.

[発明の効果] 本発明の電池は小型軽量であり、特にサイクル特性、自
己放電特性に優れ、小型電子機器用、電気自動車用、電
力貯蔵用等の電源として極めて有用である。
[Effects of the Invention] The battery of the present invention is small and lightweight, has particularly excellent cycle characteristics and self-discharge characteristics, and is extremely useful as a power source for small electronic devices, electric vehicles, power storage, and the like.

[実施例] 以下、実施例、比較例により本発明を更に詳しく説明す
る。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例に 一ドルコークス(興亜石油社製KOA−9J−Coke
)の平均粒径10ILの粉末を用いて次の二つの塗工液
を調製した。
One dollar coke (KOA-9J-Coke manufactured by Koa Oil Co., Ltd.) was used as an example.
) The following two coating solutions were prepared using powder with an average particle size of 10 IL.

第  1  表 (重量部) 10ル銅箔上に上記塗工漆工をロールコータ−により塗
布乾燥し12ルの膜厚を有する層を形成した。その後該
層の上に上記塗工液■をロールコータ−により塗布乾燥
し、合計175ルの膜厚を有する層を形成してなる負極
を得た。この負極は活物質は集電体に強固に密着してい
た。
Table 1 (Parts by weight) The above coated lacquer was coated on a 10l copper foil using a roll coater and dried to form a layer having a thickness of 12l. Thereafter, the above coating solution (1) was applied onto the layer using a roll coater and dried to obtain a negative electrode having a total thickness of 175 μl. In this negative electrode, the active material was firmly adhered to the current collector.

この負極の集電体と活物質層との接触抵抗は10鳳2当
り8.1オームであった。
The contact resistance between the current collector and the active material layer of this negative electrode was 8.1 ohms per 10 ohms.

又、この負極を用い、正極としてLiCoO2。Moreover, using this negative electrode, LiCoO2 was used as a positive electrode.

1.0 M−過塩素酸リチウムのプロピレンカーボ電池
の1.0mA/c朧2の電流密度における過電圧は0.
03オームであった。
The overvoltage of a 1.0 M lithium perchlorate propylene carbon battery at a current density of 1.0 mA/c Oboro2 is 0.
It was 0.03 ohm.

実施例2 実施例1における塗工漆工のニードルコークスをカーボ
ンブラック(コロンビアカーボン社製Raven 41
G )に代えた以外は同じ操作を行い3ILの膜厚を有
する層を形成させ、以後同じ操作を行い得られた負極の
特性評価結果を第2表に示す。
Example 2 The needle coke of the coated lacquer in Example 1 was replaced with carbon black (Raven 41 manufactured by Columbia Carbon Co., Ltd.).
The same operation was performed except that G) was used to form a layer having a film thickness of 3IL, and the same operation was performed thereafter, and the results of the characteristic evaluation of the obtained negative electrode are shown in Table 2.

この負極は集電体に強固に密着していた。This negative electrode was firmly adhered to the current collector.

実施例3 実施例1における塗工漆工のニードルコークス100重
量部を0重量部にした塗工液を用い、2井の膜厚を有す
る層を形成させた後、同じ操作を行い得られた負極の特
性の評価結果を第2表に示す、この負極は集電体に強固
に密着していた。
Example 3 Using a coating liquid in which 100 parts by weight of needle coke for coating lacquer in Example 1 was reduced to 0 parts by weight, a layer having a thickness of 2 wells was formed, and the same operation was performed to obtain the obtained negative electrode. The evaluation results of the characteristics are shown in Table 2. This negative electrode was firmly adhered to the current collector.

実施例4 成させた。この上に、実施例1で用いたニードルコーク
ス粉末100 fi重量部ポリエチレン粉末8重量部か
らなる合剤を圧縮形成せしめ合計膜厚350絡の負極を
得た。
Example 4 On top of this, a mixture consisting of 100 parts by weight of needle coke powder and 8 parts by weight of polyethylene powder used in Example 1 was compressed and formed to obtain a negative electrode having a total film thickness of 350 mm.

この負極の特性評価結果を第2表に示す、この負極は集
電体に強固に密着していた。
The characteristics evaluation results of this negative electrode are shown in Table 2. This negative electrode was firmly adhered to the current collector.

比較例1.2 実施例1及び実施例4において塗工漆工による膜形成を
行うことなく、後は同じ操作を行い負極を作成した。
Comparative Example 1.2 A negative electrode was produced by performing the same operations as in Examples 1 and 4 without forming a film by coating lacquer.

この負極の特性評価結果を第2表に示す、この負極はい
ずれも集電体との密着が弱く、容易に活物質がはがれた
The characteristics evaluation results of this negative electrode are shown in Table 2. All of these negative electrodes had weak adhesion to the current collector, and the active material was easily peeled off.

(以 下 余 白ン 第  2  表(Hereafter, the rest are white) Table 2

Claims (1)

【特許請求の範囲】[Claims] (1)構成要素として少くとも負極活物質であるカーボ
ンと結着剤とで形成される活物質層と、それと接する集
電体とからなる非水系二次電池負極であって、該活物質
層の集電体と接する部分の界面における結着剤とカーボ
ンの比率が活物質層表面における結着剤とカーボンの比
率よりも大きいことを特徴とする非水系二次電池負極。
(1) A non-aqueous secondary battery negative electrode comprising an active material layer formed of at least carbon as a negative electrode active material and a binder, and a current collector in contact with the active material layer, the active material layer A negative electrode for a non-aqueous secondary battery, characterized in that the ratio of the binder to carbon at the interface of the portion in contact with the current collector is greater than the ratio of the binder to carbon at the surface of the active material layer.
JP61265836A 1986-11-08 1986-11-08 Secondary battery negative electrode Expired - Lifetime JPH0782839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265836A JPH0782839B2 (en) 1986-11-08 1986-11-08 Secondary battery negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265836A JPH0782839B2 (en) 1986-11-08 1986-11-08 Secondary battery negative electrode

Publications (2)

Publication Number Publication Date
JPS63121247A true JPS63121247A (en) 1988-05-25
JPH0782839B2 JPH0782839B2 (en) 1995-09-06

Family

ID=17422733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265836A Expired - Lifetime JPH0782839B2 (en) 1986-11-08 1986-11-08 Secondary battery negative electrode

Country Status (1)

Country Link
JP (1) JPH0782839B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255670A (en) * 1991-01-30 1992-09-10 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolytic secondary battery
JPH10284059A (en) * 1997-04-03 1998-10-23 Shin Kobe Electric Mach Co Ltd Negative electrode plate for lithium ion battery and manufacture therefor
WO2008155885A1 (en) * 2007-06-18 2008-12-24 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for producing electrode for nonaqueous electrolyte secondary battery
JP2010043237A (en) * 2008-08-14 2010-02-25 Korea Electrotechnology Research Inst Carbon nanotube-coated transparent conductive polycarbonate film and touch panel using the same
US7951491B2 (en) 2007-11-06 2011-05-31 Sony Corporation Positive electrode and lithium ion secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238734B2 (en) * 2019-11-13 2023-03-14 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery and all-solid-state battery
JP7149028B1 (en) * 2022-06-27 2022-10-06 株式会社エルボーション Sliding door and operation part structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255670A (en) * 1991-01-30 1992-09-10 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolytic secondary battery
JPH10284059A (en) * 1997-04-03 1998-10-23 Shin Kobe Electric Mach Co Ltd Negative electrode plate for lithium ion battery and manufacture therefor
WO2008155885A1 (en) * 2007-06-18 2008-12-24 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for producing electrode for nonaqueous electrolyte secondary battery
US8124278B2 (en) * 2007-06-18 2012-02-28 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing electrode of nonaqueous electrolyte secondary battery
US7951491B2 (en) 2007-11-06 2011-05-31 Sony Corporation Positive electrode and lithium ion secondary battery
JP2010043237A (en) * 2008-08-14 2010-02-25 Korea Electrotechnology Research Inst Carbon nanotube-coated transparent conductive polycarbonate film and touch panel using the same

Also Published As

Publication number Publication date
JPH0782839B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US6815121B2 (en) Particulate electrode including electrolyte for a rechargeable lithium battery
JP3225864B2 (en) Lithium ion secondary battery and method of manufacturing the same
US6051343A (en) Polymeric solid electrolyte and lithium secondary cell using the same
US20100159334A1 (en) Lithium secondary battery
JPH09213338A (en) Battery and lithium ion secondary battery
JP3471238B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
KR20150137541A (en) Li Secondary Battery
JP2000067920A (en) Solid electrolyte battery
JP2003017041A (en) Electrode film manufacturing method and battery element including electrode film
JP4355970B2 (en) Solid electrolyte battery and manufacturing method thereof
CN111971769A (en) Incorporation of lithium ion source materials into activated carbon electrodes for capacitor-assisted batteries
JPH11176419A (en) Lithium secondary battery and manufacture thereof
JP5167584B2 (en) Non-aqueous electrolyte secondary battery
JP4053657B2 (en) Lithium secondary battery and manufacturing method thereof
KR20030045625A (en) Method for Manufacturing Galvanic Elements Having a Liquid Organic Electrolyte
JPS63121247A (en) Negative electrode of secondary battery
JPS63121258A (en) Nonaqueous secondary battery
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
JPH1050345A (en) Polymer electrolyte and lithium polymer battery using the same
JPH11111341A (en) Gel electrolyte secondary battery
KR100385701B1 (en) Lithium battery and method for preparing the same
JP2004296305A (en) Lithium ion secondary battery
CN1255250A (en) Method for manufacturing lithium ion battery
JP3618022B2 (en) Electric double layer capacitor and EL element
JP2002324581A (en) Solid electrolyte battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term