JP2004296305A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2004296305A
JP2004296305A JP2003088097A JP2003088097A JP2004296305A JP 2004296305 A JP2004296305 A JP 2004296305A JP 2003088097 A JP2003088097 A JP 2003088097A JP 2003088097 A JP2003088097 A JP 2003088097A JP 2004296305 A JP2004296305 A JP 2004296305A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003088097A
Other languages
Japanese (ja)
Other versions
JP4120439B2 (en
Inventor
Yuichi Ito
勇一 伊藤
Itsuki Sasaki
厳 佐々木
Yoji Takeuchi
要二 竹内
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003088097A priority Critical patent/JP4120439B2/en
Publication of JP2004296305A publication Critical patent/JP2004296305A/en
Application granted granted Critical
Publication of JP4120439B2 publication Critical patent/JP4120439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery showing superior characteristics, especially under a low-temperature environment. <P>SOLUTION: This is a lithium ion secondary battery provided with superior output characteristics. This lithium ion secondary battery is characterised in that it is provided with a negative electrode active material composed of a carbonaceous material, with its specific surface of 1.2 m<SP>2</SP>or more and 6 m<SP>2</SP>/g or less, and the negative electrode active material is installed at a negative electrode sheet by a filling density of 0.8 g/cm<SP>3</SP>or more and 1.5 g/cm<SP>3</SP>or less. By having such a constitution, this lithium ion secondary battery is provided with superior output characteristics and shows superior output characteristics especially under the low-temperature environment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムの吸蔵、脱離現象を利用したリチウムイオン2次電池であり、特に低温環境下で良好な特性を示すリチウムイオン2次電池に関する。
【0002】
【従来の技術】
リチウムの吸蔵、脱離現象を利用したリチウムイオン2次電池は、高エネルギー密度であることから、携帯電話、パソコン等の小型化に伴い、通信機器、情報関連機器の分野で広く普及するに至っている。一方で、環境問題、資源問題から、自動車の分野でも電気自動車の開発が急がれており、この電気自動車用の電源としても、リチウムイオン2次電池が検討されている。
【0003】
リチウムイオン2次電池を電気自動車(ハイブリッドカーを含む)用電源として用いる場合、他の用途とは異なる特性が要求される。自動車は屋外を走行するものであり、リチウム2次電池が置かれる環境を想定した場合、60℃程度の高温から−30℃程度の低温において良好な特性を発揮する必要がある。また、発進時、加速時等には、大きな電流を放電しなければならず、特に電池反応が不活性な低温域において良好なパワー特性(単位時間当たりにどの程度大きな出力を得られるかという特性)を有することが必要となる。
【0004】
現在一般的に用いられているリチウムイオン2次電池は常温域で使用することが前提であり、また高エネルギー密度化の要求から負極活物質の比表面積を1.0m/g前後とし、負極電極シートの負極活物質の充填密度を1.2g/cm以上としたものが主流となっている。
【0005】
【特許文献1】
特開平10−261406号公報
【特許文献2】
特開平10−116619号公報
【0006】
【発明が解決しようとする課題】
従来のリチウム2次電池は低温環境下(−30℃)での使用は想定されておらず、そのような環境下で用いた場合、小さな出力値しか取り出すことが出来なかった。これはリチウムイオン2次電池の内部抵抗が大きいことが原因である。
【0007】
リチウムイオン2次電池の内部抵抗は、負極活性物質の表面と電解液の界面でのLiイオンの挿入、脱離に伴う抵抗、すなわち反応抵抗成分が大きな割合を占めている。つまり低温環境下でも良好な特性を得るためには、この負極活性物質の表面と電解液の界面の面積を増大させれば良い。
【0008】
しかしながら、単純に負極活性物質の表面と電解液の界面の面積を増加させた場合、リチウムイオン2次電池そのもののエネルギー密度が低下し、結果とし低温環境下での良好な特性を得ることができない。
【0009】
本発明は負極活性物質の表面と電解液の界面の面積を増大させ負極側の電極反応抵抗を低減させながらも、リチウムイオン2次電池全体としてのエネルギー密度のバランスを保ち、低温環境下でも電気自動車等のパワーソースとして用いることが出来るリチウムイオン2次電池を提供するものである。
【0010】
【課題を解決するための手段】
本発明のリチウムイオン2次電池は、炭素材料からなる負極活物質の比表面積が1.2m/g以上6m/g以下であり、該負極活物質を負極電極シートに0.8g/cm以上1.5g/cm以下の充填密度で設けたことを特徴とする。 つまり、負極活物質の比表面積をより大きな値とし、また負極電極シートに設けた負極活物質の密度をより小さい値とするものである。このことにより内部抵抗が小さくなり、低温環境下でも良好な特性を示すものである。
【0011】
さらに負極活物質に用いる炭素材料には粒状グラファイトを含有することを特徴とする。このことにより、炭素材料が低密度状態であっても十分な電子導電性を確保する。
【0012】
【実施の形態】
本発明のリチウム2次電池は、リチウム含有遷移金属複合酸化物を正極活物質とした正極と、炭素材料を負極活物質とした負極とを主要構成要素とし、この正極および負極、そして正極と負極との間に狭装されるセパレータ、非水電解液等を電池ケースに組み付けることによって構成することができる。
以下に、本発明のリチウムイオン2次電池の実施形態について、各構成要素に分けて詳細に記載する。
【0013】
〈正極の構成〉
正極は、正極活物質であるリチウム含有遷移金属複合酸化物の粉状体に導電助材および結着材を混合し、適当な溶剤を加えてペースト状の正極合材としたものを、アルミニウム等の金属箔製の集電体表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。
【0014】
正極活物質となるリチウム含有遷移金属複合酸化物は、Co、Ni、Mn、Fe、Ti、V、Mo等の1種以上をその構成元素とする。 中でも酸化還元電位が高く、4V級のリチウムイオン2次電池を構成できる等の理由から、基本組成をLiNiO、LiCoO、LiMnO、LiFePO等とするリチウム含有遷移合金複合酸化物を用いることが望ましい。
特に、理論容量が大きくかつ比較的安価であるという利点を考慮すれば、Niを主要構成とした基本組成をLiNiOとする規則配列層状岩塩構造リチウムニッケル複合酸化物を用いることが望ましい。
また、必要とする特性に応じてAl、Mg、Co、Mn、Ni等を添加することも可能である。
【0015】
なお、上記「基本組成を〜とする」とは、その組成式で表される組成のものだけでなく、結晶構造におけるLi、Co、Ni、Mn等のサイトの一部を他の元素で置換したものも含むことを意味する。さらに、化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものも含むことを意味する。
【0016】
正極を形成する際、活物質であるリチウム含有遷移金属複合酸化物に混合させる導導電助材は正極の電気伝導性を確保するためのものであり、カーボンブラック、アセチレンブラック、黒鉛、ケッチェンブラック等の炭素質粉状体の1種又は2種以上を混合したものを用いることができる。
【0017】
結着材は活物質粒子および導電助材を繋ぎ止める役割を果たすもので、フッ素系高分子材料であるポリフッ化ビニリデン(PVDF)、テフロン(登録商標)(PTFE)、アクリル系ゴム質共重合体、スチレン−ブタジエン共重合体、ポリエチレンなどのポリマーバインダーを用いることができる。
【0018】
これら活物質、導電助材、結着剤を分散させる溶剤としてはN−メチル−2−ピロリドン(NMP)等の有機溶剤を用いることができる。
【0019】
このようにして得られた正極合材のペーストをアルミニウム等の金属箔の両面に塗布乾燥させ、正極電極シートを作製する。この正極電極シートにロールプレスを行い、正極合材と金属箔の密着力の向上および正極活物質の充填密度の調整を行う。
【0020】
〈負極の構成〉
負極は、負極活物質にリチウムを吸蔵、放出できる炭素材料の粉状体を用い、この炭素材料に結着剤を混合し、溶剤を加えてペースト状にした負極合材を、銅等の金属箔集合体の表面に塗布乾燥し、必要に応じて充填密度を高めるべく圧縮して形成することができる。
【0021】
負極活物質として用いる炭素材料は、比表面積が1.2m/g以上6m/g以下であるものを用いるのが望ましい。比表面積を大きくすることにより負極活物質の表面と電解液の界面の面積を増大させることができ、出力向上を図ることができる。
しかし後述する金属箔集合体への塗布時の接着強度が低下するので上限を6m/gとしている。また1.2m/g以下であれば負極活物質の表面と電解液の界面の面積が増大せず出力向上が望めない。
より望ましい範囲は1.4m/g以上5.4m/g以下であり、さらに望ましくは1.8m/g以上4.2m/g以下である。
【0022】
なお炭素材料は上記比表面積を備えるのもであれば特に種類を限定するものでなく、黒鉛系、易黒鉛化性炭素系(コークス系)、難黒鉛化性炭素系、低温焼成炭素等、種々の材料を用いることが出来る。なお、これらは単独で用いることも、2種以上を混合して活物質とするものでもよい。
【0023】
また炭素材料は副成分として粒状グラファイトを含有するものが望ましい。粒状グラファイトは主成分である炭素材料間の導電性を確保する働きがあるため、炭素材料が低密度状態であっても良好な導電性を示すからである。
粒状グラファイトに限らず炭素材料の導電性を確保するものであればよく、鱗片状黒鉛、球状黒鉛、塊状黒鉛、繊維状黒鉛等を副成分として含むものであってもよい。
【0024】
負極活物質を結着する結着剤は、既に公知の結着剤を用いることができ、その種類を限定するものではない。例えば、フッ素系高分子材料であるポリフッ化ビニリデン(PVDF)、同じくテフロン(登録商標)(PTFE)、アクリル系ゴム質共重合体、スチレン−ブタジエン共重合体等のポリマーバインダー、またはスチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等の水系バインダーなどを用いることができる。
【0025】
負極合材は、上記負極活物質に上記結着剤を混合して行う。混合の方法は特に限定するものでない。例えば攪拌機、混練機、ボールミル等の装置を用いて均一になるように行えばよい。
これら活物質、結着剤を溶剤に分散させ負極合材ペーストとする。分散させる溶剤としてはN−メチル−2−ピロリドン(NMP)等の有機溶剤を用いることができる。
【0026】
このようにして得られた負極合材のペーストを銅等の金属箔集合体の両面に塗布乾燥させ、負極電極シートを作製する。この負極電極シートにロールプレスを行い負極合材と金属箔の密着力の向上、および負極活物質の充填密度の調整を行う。
負極活物質の充填密度は0.8g/cm以上、1.5g/cm以下の範囲とするのが望ましい。
【0027】
リチウム2次電池の内部抵抗を低減すべく、負極活性物質の表面と電解液の界面の面積を増大させるためには、負極活物質の充填密度が低いほど良い。しかし負極活物質の密度が小さくなるとリチウムイオン2次電池自体のエネルギー密度も低下し、その結果必要な出力を得るためにリチウムイオン2次電池そのものを巨大化させる必要がある。
【0028】
そこで本発明者は低温環境下における負極活物質の充填密度とリチウムイオン2次電池の単位体積あたりの出力との関係について後述する実験、検討を行った結果、負極活物質の充填密度が1.0g/cm付近でリチウム2次電池の単位体積あたりの出力が極大値を示すことが判明した。
よって負極活物質の充填密度を上記の範囲とする。さらに望ましくは0.8g/cm以上、1.2g/cm以下であり、より望ましくは0.9g/cm以上、1.1g/cm以下である。
【0029】
〈その他の構成要素〉
上記正極及び負極の他の構成要素として、正極及び負極の間に挟装されるセパレータ、電解液があり、これらを電池ケースに収納し、正極集電体及び負極集電体から外部に通ずる正極端子及び負極端子までの間を集電用リード等を用いて接続し、電池ケースを密閉し電池系を外部と隔離してリチウムイオン2次電池を完成する。
なお、リチウムイオン2次電池の形状は円筒型、積層型、コイン型等、様々なものとすることができる。
【0030】
正極及び負極に挟装させるセパレータは、正極と負極とを分離し電解液を保持するものであれば特に限定するものではないが、ポリエチレン、ポリプロピレン、ポリエチレンとポリプロピレンを重ね合わせたもの、紙、ポリフッ化ビニリデン等の薄い微多孔膜を用いることができる。
【0031】
電解液は電解質としてのリチウム塩を有機溶媒に溶解させたものである。リチウム塩は有機溶媒中に溶解することによって解離し、リチウムイオンとなって電解液中に存在する。使用できるリチウム塩としてはLiPF、LiBF、LiClO、LiCFSO、LiAsF、LiSbF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)等が挙げられる。これらのリチウム塩は、それぞれ単独で用いてもよく、また2種以上のものを併用することもできる。
【0032】
以上、本発明のリチウムイオン2次電池の実施形態について説明したが、上述した実施形態は一実施形態にすぎず、本発明のリチウム2次電池は、上記実施形態を始めとして、当業者の知識の基づいて種々の変更、改良を施した形態で実施することもできる。
【0033】
【実施例】
上記実施形態に基づき、本発明のリチウムイオン2次電池を作製し、従来のリチウムイオン2次電池とで特性比較を行った。また負極活物質の充填密度が異なる種々のリチウムイオン2次電池も作製し、負極活物質の充填密度とエネルギー出力との関係も調査した。
以下これらについて記載する。
【0034】
〈実施例のリチウムイオン2次電池〉
本発明のリチウムイオン2次電池の実施例として、以下の構成のリチウムイオン2次電池を作製した。
正極活物質としてニッケル酸リチウムLiNiCo0.15Al0.05、導電助材としてカーボンブラック(東海カーボン製TB5500)、バインダとしてポリフッ化ビニリデン(呉羽化学工業製 KFポリマ)を用い、これら正極活物質/導電助材/バインダを85/10/5wt%の比で混合した正極合材を作製した。
【0035】
上記正極合材をN−メチル−2−ピロリドン(NMP)で分散させたペーストを、厚さ20μmのアルミニウム箔の両面に塗布乾燥させた。その後、ロールプレスにて充填密度を2.3g/mとしたものを正極シート電極として用いた。正極シート電極サイズは54mm×450mmとした。
【0036】
負極活物質としてグラファイト添加炭素繊維材(ペトカ製 GMCF:比表面積2.6m/g)を、バインダとしてポリフッ化ビニリデン(呉羽化学工業製 KFポリマ)を用い、それぞれ95/5wt%で混合し、N−メチル−2−ピロリドン(NMP)で分散させた負極合材のペーストを、厚さ10μmの銅箔の両面に塗布乾燥させ、ロールプレスしたものを負極シート電極とした。なお、負極活物質の充填密度はロールプレスの圧力を変化させることにより0.8g/mから1.5g/mとした。
【0037】
電池の作製は、上記正極、負極シート電極をセパレータ(東燃タルピス製、PE製25μm厚、幅58mm)を介してロール状に巻回し、18650電池缶に挿入し、電解液(富山薬品工業製、1MLiPF6 EC+DEC〔溶媒:3/7vol比〕)を注入した後に、トップキャップをかしめて密閉した。
【0038】
〈比較例のリチウムイオン2次電池〉
比較例として負極活物質に球状人造黒鉛(大阪ガスケミカル製 MCMB25−28:比表面積1.0m/g)を使用したリチウム2次電池を作製した。負極シートサイズを56mm×500mmとし、負極活物質の充填密度を1.1g/cmから1.4g/cmとした以外は実施例と同様とした。
【0039】
〈電池性能評価〉
上記実施例と比較例の各リチウムイオン2次電池について電池性能評価を行った。−30℃において所定の電流を一定時間流したときの電位降下を測定することで電池性能を評価した。
測定方法はそれぞれ負極活物質の充填密度を1.3g/cmとした実施例及び比較例の各リチウムイオン2次電池を20℃環境下で充電率50%に調整した後、−30℃において所定の電流(0.12A、0.4A、1.2A、1.8A、2.4A、4.8A)を10秒間通電し、その際の10秒目電圧と通電した電流値の関係をプロットした。結果を図1に表す。
【0040】
図1より、実施例の方が通電した電流値が同じでも電位降下が小さく、低抵抗化していることがわかる。また低抵抗化により出力W(=2.5V×〔2.5V時の電流値〕)は5.5Wとなっている。
比較例の出力Wは3.2Wであり、実施例の方が70%程度大きな出力を得ることができる。
【0041】
〈低密度化の評価〉
負極活物質の充填密度と、リチウムイオン2次電としての単位体積あたりの出力の関係について評価した。
評価方法は、負極活物質の充填密度を0.8g/m、1.0g/m、1.3g/m、1.5g/mとした各実施例のリチウム2次電池において、前記(電池性能評価)と同様の測定を行った。結果を図2に示す。なお図2には図1の比較例も併せてプロットしておく。
また各実施例の負極活物質の充填密度と出力W(=2.5V×〔2.5V時の電流値〕)の関係を図3に示す。
【0042】
この結果より負極活物質の充填密度を低くすると出力値が高くなり、低温環境下でも大きな電力を取り出すことができることが確認できた。
しかしながら負極活物質の充填密度を低くすると、必要な出力を取り出すためのリチウムイオン2次電池のサイズを大きくする必要がある。そこで図3の結果をもとに、リチウムイオン2次電池としたときの巻き電極の単位体積あたりの出力値(W/mm)を計算し、負極活物質の充填密度との関係を図4に示した。
【0043】
図4により、負極活物質の充填密度を1.6g/mから低くしていくと単位体積あたりの出力は増加していき、1.0g/m前後で極大点を示す。しかし、それ以上負極活物質の充填密度が低下すると単位体積あたりの出力値は低くなっていく。
【0044】
なお比較例についても実施例と同様に、負極活物質の充填密度を変化させた場合の−30℃における「電流−10秒目電圧」を測定した。結果を図5に示す。
比較例では実施例と異なり、負極活物質の充填密度が低下するほど取り出せる電流値が小さくなり、得られる出力値が下がることが判明した。
【0045】
〈特性向上の解析〉
以上のように実施例では低温環境下での出力値を大幅に向上することができた。ここで特性向上の要因について解析するため、リチウムイオン2次電池の複素インピーダンス解析を実施した。
【0046】
図6にリチウム2次電池の抵抗成分を模式的に示す。各成分の詳細は下記の通りである。
sol:液抵抗 電子移動に関わる抵抗成分
dl:電気二重層容量 電解液−電極界面に形成される電気二重層の容量
ct:反応抵抗 電解液−電極界面で電荷を交換する際に発生する抵抗
D:拡散抵抗 電解液−電極界面に酸化体・還元体を補給するための物質拡散に伴う抵抗
【0047】
実施例と比較例における負極活物質の複素インピーダンス解析例を図7に示す。このときの実施例はグラファイト添加炭素繊維材(充填密度0.87g/cm)であり、比較例は球状人造黒鉛(充填密度1.3g/cm)である。
【0048】
なお交流における抵抗を意味するインピーダンスZの一般式はZ=Zre+Zim(Zre:実数成分 Zim:虚数成分)で示さる。図7の横軸はZre、縦軸はZimを示し、電池反応の複素インピーダンスプロットの周波数依存性を示している。
【0049】
高周波側では抵抗とコンデンサの並列回路に類似した半円が表れ、低周波側では45度の傾きの直線が現れている。円弧の始まり部がRSOLに、円弧の径がRctに相当する。図7では反応抵抗Rctを示す円弧の径が小さくなっている。図7における各成分のそれぞれの密充填度における詳細を表1に表す。
【0050】
実施例の負極活物質は比較例の負極活物質に比べ、ほぼ同じ充填密度のときであっても負極の反応抵抗Rctを小さくすることができている。ただし電気二重層容量Cdlはほとんど変化していないことから、負極活物質と電解液の界面での反応そのものが起こり易くなっていると考えられる。
【0051】
また実施例では負極活物質の充填密度を低くすることによっても負極の反応抵抗Rctを小さくすることができている。それと同時に電気二重層容量Cdlは増加していることから負極活物質の低充填密度化により、負極活物質と電解液の界面での反応有効面積が増加し、それに伴い抵抗を減少できたと考えられる。
ただし比較例では図5に示したように、負極活物質の低充填密度化により逆に出力が低下している。これは以下のように考えられる。
【0052】
図8に表したのは実施例(グラファイト添加炭素繊維材料)と比較例(球状人造黒鉛)との負極電極シートの断面模式図である。
電極反応の際、電解液へのLiイオンの挿入離脱に伴い集電箔Wを通じて、電子(e)の移動が起こる。比較材では、密度が高ければ負極活物質同士の接触性が確保され、電子伝導性は良好に保たれる。しかし充填密度が低い場合は、負極活物質同士の接触性が悪くなり、電極シート内の導電性が低下する。
そのため比較材では低充填密度化により負極活物質と電解液の界面における反応有効面積を増加しても、出力を向上させることができないと考えられる。
【0053】
一方、実施例での負極活物質は、副成分である板状グラファイトが、主成分である炭素繊維同士の電子導電性を確保する効果があり、図8に示すように低充填密度化しても、電極シート内での導電性が低下しない。よってリチウム2次電池の出力を向上することができると考えられる。
【0054】
【表1】

Figure 2004296305
【0055】
【発明の効果】
本発明はリチウム2次電池において負極活性物質の比表面積と充填密度の最適化を図ることにより、特に低温環境下で良好な特性を得ることができる。
【図面の簡単な説明】
【図1】実施例と比較例における電流と10秒目電圧の関係
【図2】実施例での各負極活物質の充填密度における電流と10秒目電圧の関係
【図3】実施例における出力と負極活物質の充填密度との関係
【図4】実施例における単位体積あたりの出力と負極活物質の充填密度との関係
【図5】比較例での各負極活物質の充填密度における電流と10秒目電圧の関係
【図6】電極反応に伴う抵抗成分の模式図
【図7】複素インピーダンス解析図
【図8】実施例と比較例の負極における電極シートの模式断面図[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a lithium ion secondary battery utilizing the occlusion and desorption phenomena of lithium, and more particularly to a lithium ion secondary battery exhibiting good characteristics under a low temperature environment.
[0002]
[Prior art]
Due to the high energy density of lithium ion secondary batteries utilizing the occlusion and desorption phenomena of lithium, they have become widespread in the field of communication equipment and information-related equipment as mobile phones and personal computers have become smaller. I have. On the other hand, development of electric vehicles is urgently required in the field of automobiles due to environmental problems and resource problems, and lithium-ion secondary batteries are being studied as power sources for electric vehicles.
[0003]
When a lithium ion secondary battery is used as a power source for an electric vehicle (including a hybrid car), characteristics different from those of other uses are required. An automobile runs outdoors, and assuming an environment in which a lithium secondary battery is placed, it is necessary to exhibit good characteristics at a high temperature of about 60 ° C. to a low temperature of about −30 ° C. In addition, when starting or accelerating, a large current must be discharged. Especially in a low temperature region where the battery reaction is inactive, good power characteristics (characteristics such as how much output can be obtained per unit time) ) Is required.
[0004]
It is premised that a lithium ion secondary battery generally used at present is used in a room temperature range, and the specific surface area of the negative electrode active material is set to about 1.0 m 2 / g due to a demand for high energy density. The mainstream is an electrode sheet in which the packing density of the negative electrode active material is 1.2 g / cm 3 or more.
[0005]
[Patent Document 1]
JP-A-10-261406 [Patent Document 2]
Japanese Patent Application Laid-Open No. 10-116519
[Problems to be solved by the invention]
Conventional lithium secondary batteries are not intended for use in a low-temperature environment (-30 ° C.), and when used in such an environment, only small output values could be taken out. This is because the internal resistance of the lithium ion secondary battery is large.
[0007]
The internal resistance of a lithium ion secondary battery is largely due to the resistance associated with the insertion and desorption of Li ions at the interface between the surface of the negative electrode active material and the electrolyte, that is, the reaction resistance component. That is, in order to obtain good characteristics even in a low temperature environment, the area of the interface between the surface of the negative electrode active material and the electrolyte may be increased.
[0008]
However, when the area of the interface between the surface of the negative electrode active material and the electrolyte is simply increased, the energy density of the lithium ion secondary battery itself decreases, and as a result, good characteristics cannot be obtained in a low temperature environment. .
[0009]
The present invention increases the area of the interface between the surface of the negative electrode active material and the electrolyte and reduces the electrode reaction resistance on the negative electrode side, while maintaining the balance of the energy density of the lithium ion secondary battery as a whole, and maintaining the electric power even in a low temperature environment. An object of the present invention is to provide a lithium-ion secondary battery that can be used as a power source of an automobile or the like.
[0010]
[Means for Solving the Problems]
In the lithium ion secondary battery of the present invention, the specific surface area of the negative electrode active material made of a carbon material is 1.2 m 2 / g or more and 6 m 2 / g or less, and the negative electrode active material is added to the negative electrode sheet at 0.8 g / cm 2. wherein the 3 or more 1.5 g / cm 3 that is provided in the following packing density. That is, the specific surface area of the negative electrode active material is set to a larger value, and the density of the negative electrode active material provided on the negative electrode sheet is set to a smaller value. As a result, the internal resistance is reduced, and good characteristics are exhibited even in a low-temperature environment.
[0011]
Further, the carbon material used for the negative electrode active material is characterized by containing granular graphite. This ensures sufficient electronic conductivity even when the carbon material is in a low density state.
[0012]
Embodiment
The lithium secondary battery of the present invention comprises, as main components, a positive electrode using a lithium-containing transition metal composite oxide as a positive electrode active material, and a negative electrode using a carbon material as a negative electrode active material. And a non-aqueous electrolytic solution or the like which is narrowly mounted between the battery case and the battery case.
Hereinafter, embodiments of the lithium ion secondary battery of the present invention will be described in detail for each component.
[0013]
<Positive electrode configuration>
The positive electrode is prepared by mixing a powder of a lithium-containing transition metal composite oxide, which is a positive electrode active material, with a conductive additive and a binder, and adding an appropriate solvent to form a paste-like positive electrode mixture. It can be formed by coating and drying on the surface of the metal foil current collector, and compressing it as necessary to increase the electrode density.
[0014]
The lithium-containing transition metal composite oxide serving as the positive electrode active material has one or more of Co, Ni, Mn, Fe, Ti, V, and Mo as its constituent elements. Among them, a lithium-containing transition alloy composite oxide having a basic composition of LiNiO 2 , LiCoO 2 , LiMnO 4 , LiFePO 4, or the like is used because a redox potential is high and a 4V-class lithium ion secondary battery can be formed. Is desirable.
In particular, in view of the advantages that the theoretical capacity is large and that it is relatively inexpensive, it is desirable to use an ordered layered rock-salt-structure lithium nickel composite oxide whose main composition is Ni and whose basic composition is LiNiO 2 .
Further, it is also possible to add Al, Mg, Co, Mn, Ni, etc. according to the required characteristics.
[0015]
In addition, the above-mentioned "basic composition is not limited to" means not only the composition represented by the composition formula but also a part of sites such as Li, Co, Ni, and Mn in the crystal structure are replaced with other elements. It means to include those that did. Further, it is meant that not only those having a stoichiometric composition but also those having a non-stoichiometric composition in which some elements are missing or the like are included.
[0016]
When forming the positive electrode, the conductive additive to be mixed with the lithium-containing transition metal composite oxide, which is the active material, is for ensuring the electrical conductivity of the positive electrode. Carbon black, acetylene black, graphite, Ketjen black One or a mixture of two or more of such carbonaceous powders can be used.
[0017]
The binder plays a role of binding the active material particles and the conductive additive, and is a fluorine-based polymer such as polyvinylidene fluoride (PVDF), Teflon (registered trademark) (PTFE), and an acrylic rubbery copolymer. And a polymer binder such as styrene-butadiene copolymer and polyethylene.
[0018]
An organic solvent such as N-methyl-2-pyrrolidone (NMP) can be used as a solvent for dispersing the active material, the conductive additive, and the binder.
[0019]
The paste of the positive electrode mixture thus obtained is applied to both surfaces of a metal foil such as aluminum and dried to prepare a positive electrode sheet. The positive electrode sheet is subjected to roll pressing to improve the adhesion between the positive electrode mixture and the metal foil and adjust the packing density of the positive electrode active material.
[0020]
<Configuration of negative electrode>
The negative electrode uses a powder of a carbon material capable of occluding and releasing lithium as a negative electrode active material. A binder is mixed with the carbon material, and a solvent is added to form a negative electrode mixture into a paste. It can be formed by coating and drying on the surface of the foil assembly and, if necessary, compressing it to increase the packing density.
[0021]
It is preferable that the carbon material used as the negative electrode active material has a specific surface area of 1.2 m 2 / g or more and 6 m 2 / g or less. By increasing the specific surface area, the area of the interface between the surface of the negative electrode active material and the electrolytic solution can be increased, and the output can be improved.
However, since the adhesive strength at the time of application to a metal foil aggregate described later decreases, the upper limit is set to 6 m 2 / g. If it is less than 1.2 m 2 / g, the area of the interface between the surface of the negative electrode active material and the electrolyte does not increase, and the output cannot be improved.
A more desirable range is 1.4 m 2 / g or more and 5.4 m 2 / g or less, and still more preferably 1.8 m 2 / g or more and 4.2 m 2 / g or less.
[0022]
The type of the carbon material is not particularly limited as long as it has the above specific surface area. Various types of carbon materials such as graphite, easily graphitizable carbon (coke-based), non-graphitizable carbon, and low-temperature fired carbon can be used. Can be used. These may be used alone or as a mixture of two or more kinds to form an active material.
[0023]
Further, the carbon material desirably contains granular graphite as an auxiliary component. This is because the granular graphite has a function of securing conductivity between carbon materials as main components, and thus shows good conductivity even when the carbon material is in a low density state.
The material is not limited to the granular graphite, and any material may be used as long as it secures the conductivity of the carbon material, and may include flaky graphite, spherical graphite, massive graphite, fibrous graphite, and the like as auxiliary components.
[0024]
As the binder for binding the negative electrode active material, a known binder can be used, and the kind thereof is not limited. For example, a polymer binder such as polyvinylidene fluoride (PVDF) which is a fluorine-based polymer material, Teflon (registered trademark) (PTFE), an acrylic rubbery copolymer, a styrene-butadiene copolymer, or styrene-butadiene rubber An aqueous binder such as (SBR) and carboxymethylcellulose (CMC) can be used.
[0025]
The negative electrode mixture is obtained by mixing the above binder with the above negative electrode active material. The method of mixing is not particularly limited. For example, it may be performed uniformly using a device such as a stirrer, a kneader, and a ball mill.
The active material and the binder are dispersed in a solvent to obtain a negative electrode mixture paste. As a solvent to be dispersed, an organic solvent such as N-methyl-2-pyrrolidone (NMP) can be used.
[0026]
The paste of the negative electrode mixture obtained in this manner is applied and dried on both surfaces of a metal foil aggregate such as copper to prepare a negative electrode sheet. The negative electrode sheet is roll-pressed to improve the adhesion between the negative electrode mixture and the metal foil, and to adjust the packing density of the negative electrode active material.
The packing density of the negative electrode active material is desirably in the range of 0.8 g / cm 3 or more and 1.5 g / cm 3 or less.
[0027]
In order to reduce the internal resistance of the lithium secondary battery and increase the area of the interface between the surface of the negative electrode active material and the electrolyte, the lower the packing density of the negative electrode active material, the better. However, as the density of the negative electrode active material decreases, the energy density of the lithium ion secondary battery itself also decreases. As a result, it is necessary to enlarge the lithium ion secondary battery itself to obtain a required output.
[0028]
The present inventor has conducted experiments and studies described below on the relationship between the packing density of the negative electrode active material and the output per unit volume of the lithium ion secondary battery under a low temperature environment. As a result, the packing density of the negative electrode active material was 1. It was found that the output per unit volume of the lithium secondary battery showed a maximum value near 0 g / cm 3 .
Therefore, the packing density of the negative electrode active material is set in the above range. More preferably, it is 0.8 g / cm 3 or more and 1.2 g / cm 3 or less, and more preferably 0.9 g / cm 3 or more and 1.1 g / cm 3 or less.
[0029]
<Other components>
Other components of the positive electrode and the negative electrode include a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution. These are housed in a battery case, and the positive electrode passes from the positive electrode current collector and the negative electrode current collector to the outside. The terminal and the negative electrode terminal are connected using a current collecting lead or the like, the battery case is sealed, and the battery system is isolated from the outside to complete a lithium ion secondary battery.
The shape of the lithium ion secondary battery can be various such as a cylindrical type, a stacked type, a coin type, and the like.
[0030]
The separator to be sandwiched between the positive electrode and the negative electrode is not particularly limited as long as it separates the positive electrode and the negative electrode and retains the electrolytic solution, but polyethylene, polypropylene, a laminate of polyethylene and polypropylene, paper, and polyolefin. A thin microporous film such as vinylidene fluoride can be used.
[0031]
The electrolytic solution is obtained by dissolving a lithium salt as an electrolyte in an organic solvent. The lithium salt is dissociated by dissolving in the organic solvent, and is present in the electrolyte as lithium ions. LiPF 6 as the lithium salt can be used, LiBF 4, LiClO 4, LiCF 3 SO 3, LiAsF 6, LiSbF 6, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and the like. Each of these lithium salts may be used alone, or two or more of them may be used in combination.
[0032]
As described above, the embodiment of the lithium ion secondary battery of the present invention has been described. However, the above-described embodiment is merely an embodiment, and the lithium secondary battery of the present invention includes the above-described embodiment and the knowledge of those skilled in the art. Various modifications and improvements can be made on the basis of the above.
[0033]
【Example】
Based on the above embodiment, a lithium ion secondary battery of the present invention was manufactured, and characteristics were compared with those of a conventional lithium ion secondary battery. Various lithium ion secondary batteries having different packing densities of the negative electrode active material were also manufactured, and the relationship between the packing density of the negative electrode active material and energy output was also investigated.
These are described below.
[0034]
<Lithium ion secondary battery of Example>
As an example of the lithium ion secondary battery of the present invention, a lithium ion secondary battery having the following configuration was manufactured.
Lithium nickelate LiNiCo 0.15 Al 0.05 O 2 was used as the positive electrode active material, carbon black (TB5500 manufactured by Tokai Carbon) as a conductive additive, and polyvinylidene fluoride (KF polymer manufactured by Kureha Chemical Industry) was used as the binder. A positive electrode mixture was prepared by mixing the substance / conductive additive / binder at a ratio of 85/10/5 wt%.
[0035]
A paste in which the above-mentioned positive electrode mixture was dispersed in N-methyl-2-pyrrolidone (NMP) was applied to both surfaces of an aluminum foil having a thickness of 20 μm and dried. Thereafter, a material having a packing density of 2.3 g / m 3 by a roll press was used as a positive electrode sheet electrode. The size of the positive electrode electrode was 54 mm × 450 mm.
[0036]
A graphite-added carbon fiber material (GMCF made by Petka: specific surface area 2.6 m 2 / g) is mixed as a negative electrode active material, and polyvinylidene fluoride (KF polymer made by Kureha Chemical Industry) is mixed as a binder at 95/5 wt%, respectively. A paste of a negative electrode mixture dispersed in N-methyl-2-pyrrolidone (NMP) was applied to both sides of a copper foil having a thickness of 10 μm, dried and roll-pressed to obtain a negative electrode sheet electrode. The filling density of the negative electrode active material was from 0.8 g / m 3 and 1.5 g / m 3 by changing the pressure of the roll press.
[0037]
The battery was manufactured by winding the above positive electrode and negative electrode sheet electrodes into a roll via a separator (manufactured by Tonen Talpis, 25 μm in thickness, 58 mm in width, made of PE), inserted into a 18650 battery can, and used an electrolytic solution (manufactured by Toyama Pharmaceutical Co., Ltd. After injecting 1M LiPF6 EC + DEC [solvent: 3/7 vol], the top cap was caulked and sealed.
[0038]
<Lithium ion secondary battery of comparative example>
As a comparative example, a lithium secondary battery using spherical artificial graphite (MCMB25-28 manufactured by Osaka Gas Chemicals: specific surface area 1.0 m 2 / g) as a negative electrode active material was produced. Except that the negative electrode sheet size was set to 56 mm × 500 mm and the packing density of the negative electrode active material was changed from 1.1 g / cm 3 to 1.4 g / cm 3 , it was the same as in the example.
[0039]
<Battery performance evaluation>
The battery performance of each of the lithium ion secondary batteries of the above example and comparative example was evaluated. Battery performance was evaluated by measuring a potential drop when a predetermined current was passed for a predetermined time at −30 ° C.
In the measurement method, each of the lithium ion secondary batteries of Examples and Comparative Examples in which the packing density of the negative electrode active material was 1.3 g / cm 3 was adjusted to a charging rate of 50% in a 20 ° C environment, and then at −30 ° C. A predetermined current (0.12 A, 0.4 A, 1.2 A, 1.8 A, 2.4 A, 4.8 A) was supplied for 10 seconds, and the relationship between the voltage at the 10th second and the supplied current was plotted. did. The results are shown in FIG.
[0040]
From FIG. 1, it can be seen that the potential drop is small and the resistance is reduced in the example even when the current value supplied is the same. The output W (= 2.5 V × [current value at 2.5 V]) is 5.5 W due to the reduction in resistance.
The output W of the comparative example is 3.2 W, and the output of the embodiment can be increased by about 70%.
[0041]
<Evaluation of low density>
The relationship between the packing density of the negative electrode active material and the output per unit volume as lithium ion secondary power was evaluated.
The evaluation method was as follows. In the lithium secondary batteries of Examples, the packing density of the negative electrode active material was 0.8 g / m 3 , 1.0 g / m 3 , 1.3 g / m 3 , and 1.5 g / m 3 . The same measurement as described above (battery performance evaluation) was performed. FIG. 2 shows the results. FIG. 2 also plots the comparative example of FIG.
FIG. 3 shows the relationship between the packing density of the negative electrode active material and the output W (= 2.5 V × [current value at 2.5 V]) in each example.
[0042]
From this result, it was confirmed that when the packing density of the negative electrode active material was reduced, the output value was increased, and large electric power could be taken out even in a low temperature environment.
However, when the packing density of the negative electrode active material is reduced, it is necessary to increase the size of the lithium ion secondary battery for extracting necessary output. Therefore, based on the results of FIG. 3, the output value per unit volume (W / mm 3 ) of the wound electrode when a lithium ion secondary battery was formed was calculated, and the relationship with the packing density of the negative electrode active material was shown in FIG. It was shown to.
[0043]
According to FIG. 4, the output per unit volume increases as the packing density of the negative electrode active material is reduced from 1.6 g / m 3 , and reaches a maximum point at around 1.0 g / m 3 . However, when the packing density of the negative electrode active material further decreases, the output value per unit volume decreases.
[0044]
In the comparative example, as in the example, the “current—the voltage at the 10th second” at −30 ° C. when the packing density of the negative electrode active material was changed was measured. FIG. 5 shows the results.
In the comparative example, unlike the example, it was found that the lower the packing density of the negative electrode active material was, the smaller the current value that could be taken out was, and the lower the obtained output value was.
[0045]
<Analysis of characteristic improvement>
As described above, in the example, the output value under a low temperature environment could be significantly improved. Here, a complex impedance analysis of the lithium ion secondary battery was performed in order to analyze a factor for improving the characteristics.
[0046]
FIG. 6 schematically shows a resistance component of the lithium secondary battery. Details of each component are as follows.
R sol : liquid resistance Resistance component related to electron transfer C dl : electric double layer capacity Electric double layer capacity formed at the electrolyte-electrode interface R ct : reaction resistance generated when charges are exchanged at the electrolyte-electrode interface Resistance D: Diffusion resistance Resistance due to substance diffusion for replenishing oxidant / reductant at the electrolyte-electrode interface
FIG. 7 shows an example of the complex impedance analysis of the negative electrode active material in Examples and Comparative Examples. The example at this time is a graphite-added carbon fiber material (filling density 0.87 g / cm 3 ), and the comparative example is spherical artificial graphite (filling density 1.3 g / cm 3 ).
[0048]
Note the general formula of the impedance Z, which means the resistance in the AC Z = Z re + Z im Shimesaru with (Z re:: real component Z im imaginary component). In FIG. 7, the horizontal axis indicates Z re and the vertical axis indicates Z im, and indicates the frequency dependence of the complex impedance plot of the battery reaction.
[0049]
On the high frequency side, a semicircle similar to a parallel circuit of a resistor and a capacitor appears, and on the low frequency side, a straight line with a 45 degree inclination appears. Arc-starting part is the R SOL, the diameter of the arc corresponds to the R ct. In FIG. 7, the diameter of the arc representing the reaction resistance R ct is small. Table 1 shows details of each component in FIG.
[0050]
The negative electrode active material of the example can reduce the reaction resistance R ct of the negative electrode even at almost the same packing density as the negative electrode active material of the comparative example. However, since the electric double layer capacity C dl hardly changes, it is considered that the reaction itself at the interface between the negative electrode active material and the electrolyte is likely to occur.
[0051]
In the example, the reaction resistance R ct of the negative electrode can be reduced by reducing the packing density of the negative electrode active material. At the same time, since the electric double layer capacity C dl is increasing, it is thought that the reduction of the packing density of the negative electrode active material has increased the effective reaction area at the interface between the negative electrode active material and the electrolyte, and has been able to reduce the resistance accordingly. Can be
However, in the comparative example, as shown in FIG. 5, the output is conversely reduced due to the lower packing density of the negative electrode active material. This is considered as follows.
[0052]
FIG. 8 is a schematic cross-sectional view of a negative electrode sheet of an example (graphite-added carbon fiber material) and a comparative example (spherical artificial graphite).
At the time of the electrode reaction, electrons (e ) move through the current collector foil W as Li ions are inserted into and removed from the electrolytic solution. In the comparative material, if the density is high, the contact between the negative electrode active materials is ensured, and the electron conductivity is kept good. However, when the packing density is low, the contact between the negative electrode active materials becomes poor, and the conductivity in the electrode sheet decreases.
Therefore, it is considered that the output of the comparative material cannot be improved even if the effective reaction area at the interface between the negative electrode active material and the electrolytic solution is increased by lowering the packing density.
[0053]
On the other hand, in the negative electrode active material in Examples, plate-like graphite as an auxiliary component has an effect of securing electronic conductivity between carbon fibers as a main component, and even if the packing density is reduced as shown in FIG. In addition, the conductivity in the electrode sheet does not decrease. Therefore, it is considered that the output of the lithium secondary battery can be improved.
[0054]
[Table 1]
Figure 2004296305
[0055]
【The invention's effect】
According to the present invention, by optimizing the specific surface area and the packing density of the negative electrode active material in a lithium secondary battery, good characteristics can be obtained, particularly in a low temperature environment.
[Brief description of the drawings]
FIG. 1 shows the relationship between the current and the voltage at the 10th second in the example and the comparative example. FIG. 2 shows the relationship between the current and the voltage at the 10th second in the packing density of each negative electrode active material in the example. Fig. 4 shows the relationship between the output per unit volume and the packing density of the negative electrode active material in the examples. Fig. 5 shows the relationship between the current and the packing density of each negative electrode active material in the comparative example. FIG. 6 is a schematic diagram of a resistance component accompanying an electrode reaction. FIG. 7 is a complex impedance analysis diagram. FIG. 8 is a schematic cross-sectional view of an electrode sheet in a negative electrode according to Examples and Comparative Examples.

Claims (3)

炭素材料からなる負極活物質の比表面積が1.2m/g以上6m/g以下であり、該負極活物質を負極電極シートに0.8g/cm以上1.5g/cm以下の充填密度で設けたことを特徴とするリチウムイオン2次電池。The specific surface area of the negative electrode active material made of a carbon material is 1.2 m 2 / g or more and 6 m 2 / g or less, and the negative electrode active material is coated on the negative electrode sheet with 0.8 g / cm 3 or more and 1.5 g / cm 3 or less. A lithium ion secondary battery provided at a packing density. 負極活物質を負極電極シートに0.8g/cm以上1.2g/cm以下の充填密度で設けたことを特徴とする請求項1記載のリチウムイオン2次電池。2. The lithium ion secondary battery according to claim 1, wherein the negative electrode active material is provided on the negative electrode sheet at a packing density of 0.8 g / cm 3 or more and 1.2 g / cm 3 or less. 前記炭素材料は粒状グラファイトを含有することを特徴とする請求項1乃至請求項2記載のリチウムイオン2次電池。The lithium ion secondary battery according to claim 1, wherein the carbon material contains granular graphite.
JP2003088097A 2003-03-27 2003-03-27 Lithium ion secondary battery Expired - Fee Related JP4120439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088097A JP4120439B2 (en) 2003-03-27 2003-03-27 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088097A JP4120439B2 (en) 2003-03-27 2003-03-27 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2004296305A true JP2004296305A (en) 2004-10-21
JP4120439B2 JP4120439B2 (en) 2008-07-16

Family

ID=33402318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088097A Expired - Fee Related JP4120439B2 (en) 2003-03-27 2003-03-27 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4120439B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032070A (en) * 2004-07-14 2006-02-02 Kri Inc Nonaqueous secondary battery
JP2010009948A (en) * 2008-06-27 2010-01-14 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
JP2012064396A (en) * 2010-09-15 2012-03-29 Toyota Central R&D Labs Inc Lithium secondary battery
JP2012064397A (en) * 2010-09-15 2012-03-29 Toyota Central R&D Labs Inc Lithium ion secondary battery
JP2012169160A (en) * 2011-02-15 2012-09-06 Sumitomo Chemical Co Ltd Electrode for sodium secondary battery and sodium secondary battery
JP2012195239A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Lithium ion secondary battery
WO2014157421A1 (en) * 2013-03-26 2014-10-02 日産自動車株式会社 Nonaqueous-electrolyte secondary battery
US9240701B2 (en) 2011-06-08 2016-01-19 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189052A (en) * 1996-12-24 1998-07-21 Nikkiso Co Ltd Nonaqueous electrolytic secondary battery
JP2000251890A (en) * 1999-02-26 2000-09-14 Osaka Gas Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same
JP2001196095A (en) * 2000-01-07 2001-07-19 At Battery:Kk Manufacturing method for non-aqueous electrolytic solvent secondary battery
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP2002110233A (en) * 2000-09-29 2002-04-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2002367611A (en) * 2001-06-08 2002-12-20 Mitsui Mining Co Ltd Negative electrode material for lithium secondary cell, manufacturing method of the same, and lithium secondary cell
JP2004134245A (en) * 2002-10-10 2004-04-30 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189052A (en) * 1996-12-24 1998-07-21 Nikkiso Co Ltd Nonaqueous electrolytic secondary battery
JP2000251890A (en) * 1999-02-26 2000-09-14 Osaka Gas Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same
JP2001196095A (en) * 2000-01-07 2001-07-19 At Battery:Kk Manufacturing method for non-aqueous electrolytic solvent secondary battery
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP2002110233A (en) * 2000-09-29 2002-04-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2002367611A (en) * 2001-06-08 2002-12-20 Mitsui Mining Co Ltd Negative electrode material for lithium secondary cell, manufacturing method of the same, and lithium secondary cell
JP2004134245A (en) * 2002-10-10 2004-04-30 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032070A (en) * 2004-07-14 2006-02-02 Kri Inc Nonaqueous secondary battery
JP2010009948A (en) * 2008-06-27 2010-01-14 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
JP2012064396A (en) * 2010-09-15 2012-03-29 Toyota Central R&D Labs Inc Lithium secondary battery
JP2012064397A (en) * 2010-09-15 2012-03-29 Toyota Central R&D Labs Inc Lithium ion secondary battery
JP2012169160A (en) * 2011-02-15 2012-09-06 Sumitomo Chemical Co Ltd Electrode for sodium secondary battery and sodium secondary battery
JP2012195239A (en) * 2011-03-17 2012-10-11 Toyota Motor Corp Lithium ion secondary battery
US9240701B2 (en) 2011-06-08 2016-01-19 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
WO2014157421A1 (en) * 2013-03-26 2014-10-02 日産自動車株式会社 Nonaqueous-electrolyte secondary battery
CN105103364A (en) * 2013-03-26 2015-11-25 日产自动车株式会社 Nonaqueous-electrolyte secondary battery
JP6076464B2 (en) * 2013-03-26 2017-02-08 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JPWO2014157421A1 (en) * 2013-03-26 2017-02-16 日産自動車株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4120439B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5760593B2 (en) Method for producing active material, electrode and lithium ion secondary battery
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008166156A (en) Storage element
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
US7651818B2 (en) Lithium ion secondary battery and charging method therefor
JP2020155223A (en) Positive electrode material for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing positive electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2019175657A (en) Lithium ion secondary battery
JP2010225366A (en) Nonaqueous electrolyte secondary battery
JP4120439B2 (en) Lithium ion secondary battery
JP2009054469A (en) Nonaqueous secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP4780361B2 (en) Lithium secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP5668667B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2019169346A (en) Lithium ion secondary battery
JP6668848B2 (en) Lithium ion secondary battery
JP2019175631A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2021077531A (en) Non-aqueous electrolyte secondary battery
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
US20240038996A1 (en) Cellulose-based fiber-type dispersant for hybrid capacitive electrodes and methods of making the same
WO2023106099A1 (en) Battery
WO2022024605A1 (en) Secondary-battery positive electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees