JP2010009948A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2010009948A JP2010009948A JP2008168225A JP2008168225A JP2010009948A JP 2010009948 A JP2010009948 A JP 2010009948A JP 2008168225 A JP2008168225 A JP 2008168225A JP 2008168225 A JP2008168225 A JP 2008168225A JP 2010009948 A JP2010009948 A JP 2010009948A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- active material
- electrolyte secondary
- secondary battery
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非晶質炭素層で表面を被覆した易黒鉛化性炭素を負極活物質とする非水電解質二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery using easily graphitizable carbon whose surface is covered with an amorphous carbon layer as a negative electrode active material.
非水電解質二次電池は、正極活物質としてコバルト酸リチウム(LiCoO2)やスピネル型二酸化マンガン(LiMn2O4)などの遷移金属複合酸化物、負極活物質として各種炭素材料、珪素、珪素酸化物などのリチウムを吸蔵・放出可能な材料、電解質として有機溶媒にLiPF6などのリチウム塩を溶解した有機電解液を用い、帯状電極をセパレータを介して巻回した巻回型発電要素または平板状電極をセパレータを介して積層した積層型発電要素を電池ケースに収納し、電池蓋で密閉封口し、正極端子および負極端子を電池外部に取り付けたものである。 Non-aqueous electrolyte secondary batteries include a transition metal composite oxide such as lithium cobaltate (LiCoO 2 ) and spinel-type manganese dioxide (LiMn 2 O 4 ) as a positive electrode active material, various carbon materials, silicon, silicon oxide as a negative electrode active material A material that can occlude and release lithium, such as a product, an organic electrolyte solution in which a lithium salt such as LiPF 6 is dissolved in an organic solvent as an electrolyte, and a wound power generation element in which a strip electrode is wound through a separator or a flat plate A laminated power generation element in which electrodes are laminated via a separator is housed in a battery case, hermetically sealed with a battery lid, and a positive electrode terminal and a negative electrode terminal are attached to the outside of the battery.
この非水電解質二次電池は、小型・軽量で、高エネルギー密度であるという特徴を生かし、携帯電話、パソコン、ビデオカメラなどの各種携帯用電子機器の電源として、広く利用されている。 This non-aqueous electrolyte secondary battery is widely used as a power source for various portable electronic devices such as a mobile phone, a personal computer, and a video camera, taking advantage of its small size, light weight, and high energy density.
非水電解質二次電池の負極活物質には、充放電サイクル特性に優れた黒鉛が主に用いられてきた。しかし、黒鉛は単位重量当りの容量が小さいという問題がある。この問題を解決するため、負極活物質として、黒鉛に代えて非晶質炭素を用いることが提案されたが、非晶質炭素は単位重量当りの容量は大きいが、充放電サイクル特性が劣るという問題があった。 As the negative electrode active material for non-aqueous electrolyte secondary batteries, graphite having excellent charge / discharge cycle characteristics has been mainly used. However, there is a problem that graphite has a small capacity per unit weight. In order to solve this problem, it has been proposed to use amorphous carbon as the negative electrode active material instead of graphite. However, amorphous carbon has a large capacity per unit weight, but is inferior in charge / discharge cycle characteristics. There was a problem.
そこで、例えば特許文献1には、負極活物質として、黒鉛粉末粒子の表面に非晶質炭素薄膜を形成した複合炭素材料を用いることにより、高容量で、充放電サイクル特性に優れた非水電解質二次電池が得られることが記載されている。また、特許文献2には、母材としての易黒鉛化性炭素の表面を非晶質炭素でコーティングした複合炭素材料を負極活物質に用いることで、充放電サイクル特性に優れた非水電解質二次電池が得られることが記載されている。 Therefore, for example, Patent Document 1 discloses a non-aqueous electrolyte having a high capacity and excellent charge / discharge cycle characteristics by using a composite carbon material in which an amorphous carbon thin film is formed on the surface of graphite powder particles as a negative electrode active material. It is described that a secondary battery can be obtained. Patent Document 2 discloses a non-aqueous electrolyte that has excellent charge / discharge cycle characteristics by using, as a negative electrode active material, a composite carbon material in which the surface of graphitizable carbon as a base material is coated with amorphous carbon. It is described that a secondary battery can be obtained.
最近では、非水電解質二次電池を、電気自動車や産業用の大型電気機器の電源に応用しようとする動きが強まっている。これらの大型機器の電源に用いる非水電解質二次電池には、高エネルギー密度で、優れた入出力特性を備えていることが要求される。 Recently, there has been an increasing trend to apply non-aqueous electrolyte secondary batteries to power sources for electric vehicles and industrial large electric devices. Non-aqueous electrolyte secondary batteries used for power supplies of these large devices are required to have high energy density and excellent input / output characteristics.
非水電解質二次電池の負極活物質に、比較的結晶構造の発達した易黒鉛化性炭素を用いた場合、高エネルギー密度という優れた特性を得ることができるが、結晶構造の発達していない材料と比較して、電解液との反応性が高く、長期使用後に優れた入出力特性を得ることができなかった。 When graphitizable carbon with a relatively developed crystal structure is used as the negative electrode active material of the non-aqueous electrolyte secondary battery, excellent characteristics such as high energy density can be obtained, but the crystal structure is not developed. Compared with the material, the reactivity with the electrolytic solution was high, and excellent input / output characteristics could not be obtained after long-term use.
非水電解質二次電池の負極活物質に用いる黒鉛の平均粒子径については、例えば特許文献2に、1〜30μmの範囲とすることにより、高率充放電特性に優れた電池が得られることが記載されている。しかし、易黒鉛化性炭素の平均粒子径については、正極に混合する場合に50μm以下の粉末を用いることが特許文献3に記載されているが、負極活物質に用いる場合の最適範囲について記載された文献はなかった。 Regarding the average particle diameter of graphite used for the negative electrode active material of the non-aqueous electrolyte secondary battery, for example, in Patent Document 2, a battery having excellent high rate charge / discharge characteristics can be obtained by setting the average particle diameter in the range of 1 to 30 μm. Are listed. However, regarding the average particle diameter of graphitizable carbon, Patent Document 3 describes that a powder of 50 μm or less is used when mixed with the positive electrode, but describes the optimum range when used for the negative electrode active material. There was no literature.
そこで、負極活物質として、核材に易黒鉛化性炭素を用い、この易黒鉛化性炭素の表面を、結晶性が低く、電解液との反応性の低い非晶質炭素で被覆した複合炭素材料を用いることが考えられる。しかし、このような複合炭素材料を用いた場合、条件によっては入出力特性に優れた非水電解質二次電池を得ることはできなかった。 Therefore, as the negative electrode active material, graphitizable carbon is used as the core material, and the surface of the graphitizable carbon is coated with amorphous carbon having low crystallinity and low reactivity with the electrolyte. It is conceivable to use materials. However, when such a composite carbon material is used, a non-aqueous electrolyte secondary battery excellent in input / output characteristics cannot be obtained depending on conditions.
すなわち、負極活物質の表面に存在する非晶質炭素は、核材に用いた易黒鉛化性炭素に比べて脆く、非晶質炭素層の厚みが厚くなりすぎると、電池の充放電反応によって負極活物質が膨張・収縮を繰り返した場合、脆性破壊を起こし、易黒鉛化性炭素が露出し、電解液と反応するという問題があった。しかしながら、特許文献4では、コーティング層である非晶質炭素の厚みについては検討されていないため、非晶質炭素の厚みと電池の入出力特性との関係は不明であった。 In other words, the amorphous carbon present on the surface of the negative electrode active material is brittle compared to the graphitizable carbon used as the core material, and if the amorphous carbon layer becomes too thick, the charge / discharge reaction of the battery When the negative electrode active material repeatedly expands and contracts, there is a problem that brittle fracture occurs, graphitizable carbon is exposed, and reacts with the electrolytic solution. However, in Patent Document 4, since the thickness of the amorphous carbon that is the coating layer is not studied, the relationship between the thickness of the amorphous carbon and the input / output characteristics of the battery is unknown.
そこで、負極合剤層の充填密度を最適化することが考えられる。負極合剤層の充填密度については、例えば、特許文献5に記載されているが、負極活物質に黒鉛を用いたもので、易黒鉛化性炭素の表面を非晶質炭素で被覆した複合炭素の場合の、負極合剤層の充填密度の最適値は不明なため、負極合剤層の充填密度と入出力特性との関係はわからなかった。 Thus, it is conceivable to optimize the packing density of the negative electrode mixture layer. The packing density of the negative electrode mixture layer is described in, for example, Patent Document 5, and is a composite carbon in which graphite is used as the negative electrode active material and the surface of graphitizable carbon is coated with amorphous carbon. In this case, since the optimum value of the packing density of the negative electrode mixture layer was unknown, the relationship between the packing density of the negative electrode mixture layer and the input / output characteristics was not known.
しかしながら、負極合剤層の充填密度が高すぎる場合には、プレス工程で無理なプレス圧を加える必要があるために表面の非晶質炭素層が破壊され、易黒鉛化性炭素が露出し、電解液と反応するという問題があった。 However, when the packing density of the negative electrode mixture layer is too high, the surface amorphous carbon layer is destroyed because it is necessary to apply an excessive pressing pressure in the pressing step, and graphitizable carbon is exposed, There was a problem of reacting with the electrolyte.
そこで、本発明の目的は、非水電解質二次電池の負極活物質に非晶質炭素層で表面を被覆した易黒鉛化性炭素を用い、非晶質炭素層の厚みの範囲を最適化することにより、長期使用後も優れた入出力特性を保持できる非水電解質二次電池を得ることにある。
請求項1の発明は、正極と、負極活物質を含む負極と、非水電解質とを備えた非水電解質二次電池において、前記負極活物質は非晶質炭素層で表面を被覆した易黒鉛化性炭素で、前記非晶質炭素層の厚みが0.005〜1.5μmであることを特徴とする。 The invention according to claim 1 is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing a negative electrode active material, and a non-aqueous electrolyte, wherein the negative electrode active material is easily graphite whose surface is coated with an amorphous carbon layer. Carbon is characterized in that the amorphous carbon layer has a thickness of 0.005 to 1.5 μm.
また、請求項2の発明は、上記非水電解質二次電池において、負極活物質の粒子径が4〜40μmの範囲にあることを特徴とする。 The invention of claim 2 is characterized in that, in the non-aqueous electrolyte secondary battery, the particle diameter of the negative electrode active material is in the range of 4 to 40 μm.
さらに、請求項3の発明は、上記非水電解質二次電池において、負極活物質を含む負極合剤層の充填密度が1.0〜1.3g/cm3であることを特徴とする。 Furthermore, the invention of claim 3 is characterized in that, in the non-aqueous electrolyte secondary battery, the filling density of the negative electrode mixture layer containing the negative electrode active material is 1.0 to 1.3 g / cm 3 .
請求項1の発明によれば、負極活物質の表面の非晶質炭素層の厚みが最適化されることにより、高エネルギー密度で、入出力特性に優れた非水電解質二次電池を得ることができる。 According to the invention of claim 1, a non-aqueous electrolyte secondary battery having high energy density and excellent input / output characteristics is obtained by optimizing the thickness of the amorphous carbon layer on the surface of the negative electrode active material. Can do.
請求項2の発明によれば、充放電サイクル特性に優れた非水電解質二次電池を得ることができる。 According to the invention of claim 2, a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics can be obtained.
請求項3の発明によれば、さらに入出力特性に優れた非水電解質二次電池を得ることができる。 According to the invention of claim 3, it is possible to obtain a non-aqueous electrolyte secondary battery further excellent in input / output characteristics.
以下、本発明の最良の実施形態について説明する。 Hereinafter, the best embodiment of the present invention will be described.
本発明の非水電解質二次電池においては、負極活物質に非晶質炭素層で表面を被覆した易黒鉛化性炭素を用いる。そして、表面の非晶質炭素層の厚みの範囲を0.005〜1.5μmとするものである。また、この負極活物質の平均粒子径の範囲を4〜40μmとし、さらに、この負極活物質を含む負極合剤層の充填密度の範囲を1.0〜1.3g/cm3とすることが好ましい。 In the non-aqueous electrolyte secondary battery of the present invention, graphitizable carbon whose surface is covered with an amorphous carbon layer is used as the negative electrode active material. And the range of the thickness of the surface amorphous carbon layer shall be 0.005-1.5 micrometers. Moreover, the range of the average particle diameter of this negative electrode active material shall be 4-40 micrometers, and also the range of the packing density of the negative mix layer containing this negative electrode active material shall be 1.0-1.3 g / cm < 3 >. preferable.
本発明の負極活物質の核材に用いる易黒鉛化性炭素とは、X線回折による格子面(d002)の平均面間隔が0.339〜0.355nm、結晶子の大きさがc軸方向(Lc)で1.6〜3.0nmで表される高温処理により黒鉛に変換しうる非黒鉛質炭素であり、ピッチ、タール類を熱処理した炭素材料やコークス、メソフェーズ小球体などである。 The graphitizable carbon used for the core material of the negative electrode active material of the present invention is that the average plane spacing of the lattice plane (d002) by X-ray diffraction is 0.339 to 0.355 nm, and the crystallite size is c-axis direction. Non-graphitic carbon that can be converted to graphite by a high-temperature treatment represented by 1.6 to 3.0 nm in (Lc), such as carbon materials, coke, and mesophase microspheres obtained by heat-treating pitches and tars.
また、表面被膜層の非晶質炭素とは、易黒鉛化性樹脂あるいは難黒鉛化性樹脂を前駆体として熱処理をすることによって得られるものである。これらは無定形炭素とも呼ばれる前記易黒鉛化製炭素よりも結晶性の低い炭素のことで、高温処理により黒鉛に変換しうる易黒鉛化炭素の低温処理品および高温処理しても黒鉛に変換されない難黒鉛化性炭素を含むものである。 The amorphous carbon of the surface coating layer is obtained by heat treatment using an easily graphitizable resin or a hardly graphitizable resin as a precursor. These are carbons that have lower crystallinity than the graphitizable carbon, also called amorphous carbon, and are low-temperature treated products of graphitizable carbon that can be converted to graphite by high-temperature treatment, and are not converted to graphite even by high-temperature treatment. It contains non-graphitizable carbon.
本発明において、非晶質炭素層で表面を被覆した易黒鉛化性炭素の製造方法は特に制限はないが、前記易黒鉛化性樹脂あるいは難黒鉛化性樹脂を溶媒に溶解した溶液に、前記易黒鉛化製炭素を混合分散し、前記溶媒を除去し乾燥して、これを炭素化する方法が、簡易に、非晶質炭素層で均一に表面を被覆した易黒鉛化性炭素を得ることができるため好ましい。 In the present invention, the method for producing graphitizable carbon whose surface is coated with an amorphous carbon layer is not particularly limited, but in the solution of the graphitizable resin or the hardly graphitizable resin dissolved in a solvent, A method of mixing and dispersing graphitizable carbon, removing the solvent and drying, and carbonizing this easily obtains graphitizable carbon whose surface is uniformly coated with an amorphous carbon layer. Is preferable.
前記易黒鉛化性樹脂あるいは難黒鉛化性樹脂の溶液を作製する際に用いる溶媒としては、用いる樹脂を溶解できるものであれば特に制限はなく、キノリン、ピリジン、トルエン、ベンゼン、テトラヒドロフラン、クレオソート油等が使用できる。 The solvent used in preparing the solution of the graphitizable resin or the non-graphitizable resin is not particularly limited as long as it can dissolve the resin used, and quinoline, pyridine, toluene, benzene, tetrahydrofuran, creosote Oil etc. can be used.
易黒鉛化性炭素と樹脂の複合体を作製した後、樹脂を炭素化させ、易黒鉛化性炭素と非晶質炭素との複合炭素粒子とする方法としては、得られた樹脂と易黒鉛化製炭素の混合物を加熱し、樹脂を炭素化させる方法がある。炭素化に用いる雰囲気としては、不活性雰囲気、真空雰囲気、低酸素含有雰囲気が採用できる。炭素化の際の最高温度は800〜2000℃とすることが好ましい。また、得られた複合体は必要に応じて、解砕、分級する。解砕にはカッターミル、ピンミル等の粉砕機が使用でき、分級には風力式、機械式分級機等が使用できる。 After preparing a composite of graphitizable carbon and resin, the resin is carbonized to obtain composite carbon particles of graphitizable carbon and amorphous carbon. There is a method in which a carbon mixture is heated to heat a resin. As the atmosphere used for carbonization, an inert atmosphere, a vacuum atmosphere, or a low oxygen-containing atmosphere can be employed. The maximum temperature during carbonization is preferably 800 to 2000 ° C. Moreover, the obtained composite_body | complex is crushed and classified as needed. A crusher such as a cutter mill or a pin mill can be used for crushing, and a wind-type or mechanical classifier can be used for classification.
また、本発明の負極活物質において、表面の非晶質炭素層は核材に用いる易黒鉛化性炭素に比べて脆いため、表面層の厚みが大きすぎると、充放電サイクル時の活物質粒子の膨張・収縮によって、脆性破壊が起こるという問題があり、また、表面層の厚みが小さすぎると、核材に用いる易黒鉛化性炭素と電解液との反応を防止することができない。そこで本発明の、非晶質炭素層で表面を被覆した易黒鉛化性炭素における非晶質炭素層の厚みを0.005〜1.5μmとするものである。 Further, in the negative electrode active material of the present invention, since the surface amorphous carbon layer is more brittle than the graphitizable carbon used for the core material, if the surface layer is too thick, the active material particles during the charge / discharge cycle There is a problem that brittle fracture occurs due to expansion and contraction of the material, and if the thickness of the surface layer is too small, the reaction between the graphitizable carbon used for the core material and the electrolytic solution cannot be prevented. Therefore, the thickness of the amorphous carbon layer in the graphitizable carbon whose surface is coated with the amorphous carbon layer of the present invention is set to 0.005 to 1.5 μm.
なお、表面の非晶質炭素層の厚みは、核材に用いる易黒鉛化性炭素と、表面を被覆する非晶質炭素層の原料となる易黒鉛化性樹脂あるいは難黒鉛化性樹脂との複合体を作製する際の、両者の混合比率(重量比)によってコントロールすることができる。 The thickness of the amorphous carbon layer on the surface is such that the graphitizable carbon used for the core material and the graphitizable resin or non-graphitizable resin used as the raw material for the amorphous carbon layer covering the surface It can be controlled by the mixing ratio (weight ratio) of the two when producing the composite.
本発明の非水電解質二次電池において、負極活物質の粒子が大きすぎると活物質同士および活物質と集電体との接合面が少ないため、充放電にともなう活物質の膨張収縮によって導電パスが切断されやすくなり、また、小さすぎると比表面積の増大にともなう負極表面被膜層の成長が促進されるという問題があるため、いずれの場合も充放電サイクル特性が低下する。そこで、負極活物質の平均粒子径の範囲を4〜40μmとするものである。 In the non-aqueous electrolyte secondary battery of the present invention, if the particles of the negative electrode active material are too large, there are few active materials and the bonding surface between the active material and the current collector. Is liable to be cut, and if it is too small, the growth of the negative electrode surface coating layer is promoted with an increase in the specific surface area. Therefore, the range of the average particle diameter of the negative electrode active material is 4 to 40 μm.
なお、本発明において、負極活物質の「平均粒子径」とは、粒度分布における相対粒子量の積算曲線において、50%積算量の軸と交差するポイントでの粒子径を意味し、メディアン径とも呼ばれる値である。負極活物質の粒子の平均粒子径については、日機装製マイクロトラックUPAおよびHRAを用い、レーザー回折・散乱法により測定した。 In the present invention, the “average particle diameter” of the negative electrode active material means a particle diameter at a point that intersects the axis of 50% integrated amount in an integrated curve of relative particle amounts in the particle size distribution, and is also referred to as median diameter. It is a called value. The average particle size of the negative electrode active material particles was measured by a laser diffraction / scattering method using Nikkiso Microtrac UPA and HRA.
なお、本発明において、目的の平均粒子径をもつ易黒鉛化性炭素は、ボールミルで微粉砕した後、ふるいわけによって得ることができる。 In the present invention, the graphitizable carbon having the target average particle diameter can be obtained by sieving after finely pulverizing with a ball mill.
非水電解質二次電池の負極合剤層は、通常は活物質としての炭素材料と結着剤としての高分子材料からなる。場合によっては、導電助剤としてのアセチレンブラックなどを含んでいてもよい。 The negative electrode mixture layer of the nonaqueous electrolyte secondary battery is usually composed of a carbon material as an active material and a polymer material as a binder. In some cases, acetylene black or the like as a conductive additive may be included.
負極板は、負極活物質と結着剤と(場合によっては導電助剤と)を混合し、この混合物に有機溶媒を加えて負極合剤ペーストとし、この負極合剤ペーストを帯状集電体に塗布、乾燥することにより作製され、帯状集電体の表面に、負極活物質と結着剤と(場合によっては導電助剤と)を含む負極合剤層が取りつけられたものである。 The negative electrode plate is made by mixing a negative electrode active material and a binder (in some cases with a conductive auxiliary agent), adding an organic solvent to the mixture to form a negative electrode mixture paste, and using this negative electrode mixture paste as a strip-shaped current collector A negative electrode mixture layer containing a negative electrode active material, a binder, and (in some cases, a conductive auxiliary agent) is attached to the surface of the belt-shaped current collector.
本発明において、負極合剤層の充填密度は、負極合剤層の塗布質量とプレス後の合剤層厚さで制御される。ロールプレスは、低い線圧で高い充填密度が得られるように、ロールを100〜170℃の範囲に加熱しておこなう。 In the present invention, the filling density of the negative electrode mixture layer is controlled by the coating mass of the negative electrode mixture layer and the thickness of the mixture layer after pressing. The roll press is performed by heating the roll in the range of 100 to 170 ° C. so that a high packing density can be obtained with a low linear pressure.
本発明において、負極合剤層に充填密度の算出方法は、両面に合剤層を塗布した負極を10cm×10cmの大きさに切り出し、電極の質量と厚さとを測定し、次の式から算出した。 In the present invention, the method for calculating the packing density on the negative electrode mixture layer is to cut out a negative electrode having a mixture layer applied on both sides into a size of 10 cm × 10 cm, measure the mass and thickness of the electrode, and calculate from the following formula: did.
(電極質量−集電体質量)/[(電極厚さ−集電体厚さ)×面積]
本発明の負極活物質において、負極合剤層の充填密度が高すぎると、プレス工程で無理なプレス圧を加える必要があるため表面の非晶質炭素層が破壊されるという問題があり、一方、充填密度が低すぎると負極活物質同士の接触面が少なくなるため、充放電サイクルに伴う導電パスの切断によって内部抵抗が上昇し、入出力特性の低下を引き起こす。そこで本発明の負極合剤層の充填密度の範囲を1.0〜1.3g/cm3とするものである。
(Electrode mass−current collector mass) / [(electrode thickness−current collector thickness) × area]
In the negative electrode active material of the present invention, if the packing density of the negative electrode mixture layer is too high, there is a problem that the amorphous carbon layer on the surface is destroyed because it is necessary to apply an excessive pressing pressure in the pressing step. If the packing density is too low, the contact surfaces between the negative electrode active materials are reduced, so that the internal resistance increases due to the cutting of the conductive path accompanying the charge / discharge cycle, and the input / output characteristics are degraded. Therefore, the range of the packing density of the negative electrode mixture layer of the present invention is set to 1.0 to 1.3 g / cm 3 .
本発明の非水電解質二次電池において、正極活物質としては、組成式LixMO2、LiyM2O4、組成式NaxMO2(ただし、Mは一種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造または層状構造の金属カルコゲン化物または金属酸化物を用いることができる。その具体例としては、LiCoO2、LiCoxNi1−xO2、LiMn2O4、Li2Mn2O4、MnO2、FeO2、V2O5、V6O13等が挙げられる。また、これらの各種活物質を混合して用いてもよい。 In the non-aqueous electrolyte secondary battery of the present invention, as the positive electrode active material, the composition formula Li x MO 2 , Li y M 2 O 4 , the composition formula Na x MO 2 (where M is one or more transition metals, 0 A composite oxide represented by ≦ x ≦ 1, 0 ≦ y ≦ 2), a metal chalcogenide or a metal oxide having a tunnel structure or a layered structure can be used. Specific examples thereof include LiCoO 2 , LiCo x Ni 1-x O 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 and the like. Moreover, you may use these various active materials in mixture.
非水電解液の溶媒として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、ジブチルカーボネート等の非水溶媒を、単独でまたはこれらの混合溶媒を使用することができる。 As a solvent for the non-aqueous electrolyte, ethylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, Non-aqueous solvents such as 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate, dibutyl carbonate, etc. These solvents can be used alone or in combination.
非水電解質は、これらの非水溶媒に支持塩を溶解して使用する。支持塩としては、LiClO4、LiPF6、LiBF4、LiAsF6、LiCF3CO2、LiCF3SO3、LiCF3CF2SO3、LiCF3CF2CF2SO3、LiN(SO2CF3)2、LiN(SO2CF2CF3)2、LiN(COCF3)2、LiN(COCF2CF3)2およびLiPF3(CF2CF3)3などの塩もしくはこれらの混合物を使用することができる。 The nonaqueous electrolyte is used by dissolving the supporting salt in these nonaqueous solvents. Examples of the supporting salt include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (SO 2 CF 3 ). 2 , salts such as LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 and LiPF 3 (CF 2 CF 3 ) 3 or mixtures thereof may be used. it can.
また、セパレータとしては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に、合成樹脂微多孔膜を好適に用いることができる。中でもポリエチレン及びポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いられる。 Moreover, as a separator, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. can be used, and especially a synthetic resin microporous film can be used suitably. Among these, polyolefin microporous membranes such as polyethylene and polypropylene microporous membranes, or microporous membranes composed of these are preferably used in terms of thickness, membrane strength, membrane resistance, and the like.
電池形状また、電池の形状は特に限定されるものではなく、本発明は、角形、楕円形、コイン形、ボタン形、シート形電池等の様々な形状の非水電解質二次電池に適用可能である。 The shape of the battery and the shape of the battery are not particularly limited, and the present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a square, an oval, a coin, a button, and a sheet. is there.
[実施例1〜5および比較例1〜3]
[実施例1]
巻回型発電要素を角型電池ケースに収納した非水電解質二次電池を作製した。正極活物質にコバルト酸リチウム、負極活物質に非晶質炭素層で表面を被覆した易黒鉛化性炭素、電解液にエチレンカーボネート(EC)とエチルメチルカーボネートの体積比1:1混合溶媒にLiPF6を1mol/Lの濃度となるように溶解した有機電解液を用いたものを使用した。
[Examples 1 to 5 and Comparative Examples 1 to 3]
[Example 1]
A nonaqueous electrolyte secondary battery in which a wound power generation element was housed in a rectangular battery case was produced. Lithium cobaltate as the positive electrode active material, graphitizable carbon whose surface is coated with an amorphous carbon layer as the negative electrode active material, LiPF as a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate in a volume ratio of 1: 1 as the electrolyte solution An organic electrolyte solution in which 6 was dissolved to a concentration of 1 mol / L was used.
正極板は、正極活物質としてのLiMn2O488wt%と、導電助剤としてのアセチレンブラック(AB)4wt%と、結着剤としてのポリフッ化ビニリデン(PVdF)8wt%とを混合し、この混合物にN−メチルピロリドン(NMP)を加えて正極合剤ペーストとし、この正極合剤ペーストを厚さ20μmの帯状アルミニウム集電体の両面に塗布し、乾燥後、ロールプレスで圧縮成型したものである。帯状正極板の大きさは、長さ493mm、幅30mm、正極合剤層未塗布部の幅72mm、アルミニウム集電体と両面の正極合剤層を合わせた厚みは220μmであった。 The positive electrode plate is prepared by mixing 88 wt% of LiMn 2 O 4 as a positive electrode active material, 4 wt% of acetylene black (AB) as a conductive additive, and 8 wt% of polyvinylidene fluoride (PVdF) as a binder. N-methylpyrrolidone (NMP) is added to the mixture to form a positive electrode mixture paste, this positive electrode mixture paste is applied to both sides of a 20 μm-thick belt-shaped aluminum current collector, dried, and then compression molded by a roll press. is there. The size of the strip-like positive electrode plate was 493 mm in length, 30 mm in width, 72 mm in width of the positive electrode mixture layer uncoated portion, and the total thickness of the aluminum current collector and the positive electrode mixture layers on both sides was 220 μm.
負極活物質としてはピッチコークスを用い、このピッチコークスの表面を、厚み0.10μmの易黒鉛化性樹脂を炭素化した非晶質炭素層で被覆した。得られた負極活物質の平均粒子径は20μmであった。そして、負極板は、この負極活物質95wt%と結着剤としてのPVdF5wt%とを混合し、この混合物にNMPを加えて負極合剤ペーストとし、この負極合剤ペーストを厚さ10μmの帯状銅集電体の両面に塗布し、乾燥後、ロールプレスで圧縮成型したものである。得られた負極合剤層の充填密度は1.2g/cm3とした。帯状負極板の大きさは、長さ444mm、幅31mm、負極合剤層未塗布部の幅17mm、銅集電体と両面の負極合剤層を合わせた厚みは146μmであった。 Pitch coke was used as the negative electrode active material, and the surface of this pitch coke was coated with an amorphous carbon layer obtained by carbonizing an easily graphitizable resin having a thickness of 0.10 μm. The average particle diameter of the obtained negative electrode active material was 20 μm. The negative electrode plate is prepared by mixing 95 wt% of the negative electrode active material and 5 wt% of PVdF as a binder, adding NMP to the mixture to form a negative electrode mixture paste, and forming the negative electrode mixture paste with a 10 μm-thick strip-shaped copper It is applied to both sides of the current collector, dried and then compression molded with a roll press. The packing density of the obtained negative electrode mixture layer was 1.2 g / cm 3 . The size of the strip-shaped negative electrode plate was 444 mm in length, 31 mm in width, 17 mm in width of the negative electrode mixture layer uncoated portion, and the total thickness of the copper current collector and the negative electrode mixture layers on both sides was 146 μm.
セパレータには、幅34mm、厚さ25μmの微多孔性ポリエチレンフィルムを用いた。巻回型発電要素は、巻芯の周囲に、帯状の正極板と帯状の負極板とを、帯状のセパレータを介して長円筒型に巻きつけたものである。そして、巻回型発電要素をアルミニウム製電池ケースに収納した、実施例1の非水電解質二次電池Aを作製した。 As the separator, a microporous polyethylene film having a width of 34 mm and a thickness of 25 μm was used. The wound power generation element is obtained by winding a belt-like positive electrode plate and a belt-like negative electrode plate around a winding core in a long cylindrical shape via a belt-like separator. And the nonaqueous electrolyte secondary battery A of Example 1 which produced the winding type electric power generation element in the aluminum battery case was produced.
得られた非水電解質二次電池Aの設計容量は400mAhであった。なお、「設計容量」とは、初期の、25℃での4.1〜2.75V間の放電容量を意味する。 The design capacity of the obtained nonaqueous electrolyte secondary battery A was 400 mAh. The “design capacity” means an initial discharge capacity between 4.1 and 2.75 V at 25 ° C.
図1は得られた非水電解質二次電池の外観を示したもので、図1において、1は非水電解質二次電池、2は電池ケース、3は電池缶、4は電池蓋、5は正極端子、6は負極端子、7は絶縁体、8は電解液注液口、9は安全弁である。 FIG. 1 shows the appearance of the obtained nonaqueous electrolyte secondary battery. In FIG. 1, 1 is a nonaqueous electrolyte secondary battery, 2 is a battery case, 3 is a battery can, 4 is a battery lid, A positive electrode terminal, 6 is a negative electrode terminal, 7 is an insulator, 8 is an electrolyte injection port, and 9 is a safety valve.
[実施例2]
負極活物質として、ピッチコークスの表面を易黒鉛化性樹脂を炭素化した非晶質炭素層で被覆し、非晶質炭素層の厚みを0.005μmとしたこと以外は実施例1と同様にして、実施例2の非水電解質二次電池Bを作製した。
[Example 2]
As a negative electrode active material, the surface of pitch coke was coated with an amorphous carbon layer obtained by carbonizing an easily graphitizable resin, and the thickness of the amorphous carbon layer was 0.005 μm. Thus, a nonaqueous electrolyte secondary battery B of Example 2 was produced.
[実施例3]
負極活物質として、ピッチコークスの表面を易黒鉛化性樹脂を炭素化した非晶質炭素層で被覆し、非晶質炭素層の厚みを0.01μmとしたこと以外は実施例1と同様にして、実施例3の非水電解質二次電池Cを作製した。
[Example 3]
As a negative electrode active material, the surface of pitch coke was coated with an amorphous carbon layer obtained by carbonizing a graphitizable resin, and the thickness of the amorphous carbon layer was set to 0.01 μm. Thus, a non-aqueous electrolyte secondary battery C of Example 3 was produced.
[実施例4]
負極活物質として、ピッチコークスの表面を易黒鉛化性樹脂を炭素化した非晶質炭素層で被覆し、非晶質炭素層の厚みを1.0μmとしたこと以外は実施例1と同様にして、実施例4の非水電解質二次電池Dを作製した。
[Example 4]
As the negative electrode active material, the surface of pitch coke was coated with an amorphous carbon layer obtained by carbonizing a graphitizable resin, and the thickness of the amorphous carbon layer was 1.0 μm. Thus, a non-aqueous electrolyte secondary battery D of Example 4 was produced.
[実施例5]
負極活物質として、ピッチコークスの表面を易黒鉛化性樹脂を炭素化した非晶質炭素層で被覆し、非晶質炭素層の厚みを1.5μmとしたこと以外は実施例1と同様にして、実施例5の非水電解質二次電池Eを作製した。
[Example 5]
As the negative electrode active material, the surface of pitch coke was coated with an amorphous carbon layer obtained by carbonizing a graphitizable resin, and the thickness of the amorphous carbon layer was 1.5 μm. Thus, a nonaqueous electrolyte secondary battery E of Example 5 was produced.
[比較例1]
負極活物質として、ピッチコークスのみを用いた(表面の非晶質炭素層なし)としたこと以外は実施例1と同様にして、比較例1の非水電解質二次電池Fを作製した。
[Comparative Example 1]
A nonaqueous electrolyte secondary battery F of Comparative Example 1 was produced in the same manner as in Example 1 except that only pitch coke was used as the negative electrode active material (no amorphous carbon layer on the surface).
[比較例2]
負極活物質として、ピッチコークスの表面を易黒鉛化性樹脂を炭素化した非晶質炭素層で被覆し、非晶質炭素層の厚みを0.003μmとしたこと以外は実施例1と同様にして、比較例2の非水電解質二次電池Gを作製した。
[Comparative Example 2]
As the negative electrode active material, the surface of pitch coke was coated with an amorphous carbon layer obtained by carbonizing a graphitizable resin, and the thickness of the amorphous carbon layer was 0.003 μm. Thus, a non-aqueous electrolyte secondary battery G of Comparative Example 2 was produced.
[比較例3]
負極活物質として、ピッチコークスの表面を易黒鉛化性樹脂を炭素化した非晶質炭素層で被覆し、非晶質炭素層の厚みを2.0μmとしたこと以外は実施例1と同様にして、比較例3の非水電解質二次電池Hを作製した。
[Comparative Example 3]
As the negative electrode active material, the surface of pitch coke was coated with an amorphous carbon layer obtained by carbonizing a graphitizable resin, and the thickness of the amorphous carbon layer was set to 2.0 μm. Thus, a nonaqueous electrolyte secondary battery H of Comparative Example 3 was produced.
[初期出力とサイクル後の出力低下測定結果]
実施例1〜5および比較例1〜3の非水電解質二次電池A〜Hについて、充放電サイクル試験をおこない、また、初期出力および300サイクル充放電後の出力を測定した。電池の初期出力は放電深度(DOD)50%において、80mA、200mA、400mAでの放電を10秒間おこなった後、各電流値で放電した際の10秒目の電圧と電流との関係から、下限電圧を2.5Vとした際の電流値を外挿し、得られた電流値および下限電圧から出力を測定した。
[Initial output and output drop measurement result after cycle]
The non-aqueous electrolyte secondary batteries A to H of Examples 1 to 5 and Comparative Examples 1 to 3 were subjected to a charge / discharge cycle test, and the initial output and the output after 300 cycles of charge / discharge were measured. The initial output of the battery is the lower limit from the relationship between the voltage and current at the 10th second when discharging at 80 mA, 200 mA and 400 mA for 10 seconds at a discharge depth (DOD) of 50% and then discharging at each current value. The current value when the voltage was 2.5 V was extrapolated, and the output was measured from the obtained current value and the lower limit voltage.
なお、ここで「初期出力」の測定は、電池を作製した後、次に述べる充放電サイクル試験と同じ条件で1サイクルの充放電を行った電池を、放電深度(DOD)50%に調整して行ったものである。 In addition, the measurement of "initial output" here adjusts the battery which carried out 1 cycle charge / discharge on the same conditions as the charge / discharge cycle test described below to 50% of depth of discharge (DOD) after producing a battery. It was done.
また、充放電サイクル試験は、充電は400mA定電流で4.2Vまで、さらに4.2V定電圧で3時間の、定電流・定電圧で行い、放電は400mA定電流で終止電圧は2.8Vとし、300サイクル行った。また、初期出力測定と同様の方法と条件で、300サイクル充放電後の出力を測定し、初期出力に対する300サイクル充放電後の出力の比率を求め、これを「サイクル後の出力低下率、%」とした。結果を表1にまとめた。 In the charge / discharge cycle test, charging is performed at a constant current / constant voltage of up to 4.2 V at a constant current of 400 mA, and further at a constant voltage of 4.2 V for 3 hours, and discharging is performed at a constant current of 400 mA and a final voltage of 2.8 V. And 300 cycles were performed. Also, the output after 300 cycles of charge / discharge was measured under the same method and conditions as the initial output measurement, and the ratio of the output after 300 cycles of charge / discharge with respect to the initial output was determined. " The results are summarized in Table 1.
表1の結果から、負極活物質表面の非晶質炭素層の厚みが0.005〜1.5μmの範囲にある実施例1〜5の電池の場合に、300サイクル充放電後の出力低下率が20%以下となる非水電解質二次電池が得られることがわかった。 From the results of Table 1, in the case of the batteries of Examples 1 to 5 in which the thickness of the amorphous carbon layer on the negative electrode active material surface is in the range of 0.005 to 1.5 μm, the output reduction rate after 300 cycles of charge and discharge It was found that a non-aqueous electrolyte secondary battery having an A of 20% or less can be obtained.
[実施例6〜15]
[実施例6]
負極活物質の平均粒子径を50μmとしたこと以外は実施例2と同様にして、実施例6の非水電解質二次電池Iを作製した。
[Examples 6 to 15]
[Example 6]
A nonaqueous electrolyte secondary battery I of Example 6 was produced in the same manner as in Example 2 except that the average particle diameter of the negative electrode active material was 50 μm.
[実施例7]
負極活物質の平均粒子径を40μmとしたこと以外は実施例2と同様にして、実施例7の非水電解質二次電池Jを作製した。
[Example 7]
A nonaqueous electrolyte secondary battery J of Example 7 was produced in the same manner as in Example 2 except that the average particle diameter of the negative electrode active material was 40 μm.
[実施例8]
負極活物質の平均粒子径を4μmとしたこと以外は実施例2と同様にして、実施例8の非水電解質二次電池Kを作製した。
[Example 8]
A nonaqueous electrolyte secondary battery K of Example 8 was produced in the same manner as in Example 2 except that the average particle diameter of the negative electrode active material was 4 μm.
[実施例9]
負極活物質の平均粒子径を2μmとしたこと以外は実施例2と同様にして、実施例9の非水電解質二次電池Lを作製した。
[Example 9]
A nonaqueous electrolyte secondary battery L of Example 9 was produced in the same manner as in Example 2 except that the average particle diameter of the negative electrode active material was 2 μm.
[実施例10]
負極活物質の平均粒子径を40μmとしたこと以外は実施例1と同様にして、実施例10の非水電解質二次電池Mを作製した。
[Example 10]
A nonaqueous electrolyte secondary battery M of Example 10 was produced in the same manner as in Example 1 except that the average particle diameter of the negative electrode active material was 40 μm.
[実施例11]
負極活物質の平均粒子径を4μmとしたこと以外は実施例1と同様にして、実施例11の非水電解質二次電池Nを作製した。
[Example 11]
A nonaqueous electrolyte secondary battery N of Example 11 was produced in the same manner as in Example 1 except that the average particle diameter of the negative electrode active material was 4 μm.
[実施例12]
負極活物質の平均粒子径を50μmとしたこと以外は実施例5と同様にして、実施例12の非水電解質二次電池Oを作製した。
[Example 12]
A nonaqueous electrolyte secondary battery O of Example 12 was produced in the same manner as in Example 5 except that the average particle size of the negative electrode active material was 50 μm.
[実施例13]
負極活物質の平均粒子径を40μmとしたこと以外は実施例5と同様にして、実施例13の非水電解質二次電池Pを作製した。
[Example 13]
A nonaqueous electrolyte secondary battery P of Example 13 was produced in the same manner as in Example 5 except that the average particle diameter of the negative electrode active material was 40 μm.
[実施例14]
負極活物質の平均粒子径を4μmとしたこと以外は実施例5と同様にして、実施例14の非水電解質二次電池Qを作製した。
[Example 14]
A nonaqueous electrolyte secondary battery Q of Example 14 was produced in the same manner as Example 5 except that the average particle diameter of the negative electrode active material was 4 μm.
[実施例15]
負極活物質の平均粒子径を2μmとしたこと以外は実施例5と同様にして、実施例15の非水電解質二次電池Rを作製した。
[Example 15]
A nonaqueous electrolyte secondary battery R of Example 15 was produced in the same manner as in Example 5 except that the average particle diameter of the negative electrode active material was 2 μm.
[サイクル特性測定結果]
実施例6〜15の非水電解質二次電池I〜Rについて、充放電サイクル試験をおこなった。電池の充放電サイクル試験の測定方法および条件は実施例1と同様とした。そして、1サイクル目の放電容量に対する300サイクル目の放電容量の比を容量維持率とした。
[Cycle characteristic measurement results]
The non-aqueous electrolyte secondary batteries I to R of Examples 6 to 15 were subjected to a charge / discharge cycle test. The measurement method and conditions of the battery charge / discharge cycle test were the same as in Example 1. The ratio of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle was defined as the capacity retention rate.
結果を表2にまとめた。なお、表2には、比較のため、実施例1、2、5の結果も示した。 The results are summarized in Table 2. Table 2 also shows the results of Examples 1, 2, and 5 for comparison.
表2の結果から、負極活物質表面の非晶質炭素層の厚みが0.005〜1.5μmの範囲にあり、負極活物質の平均粒子径が4〜40μmの範囲にある場合に、300サイクル充放電後の容量維持率が80%以上の、優れた充放電サイクル特性が得られることがわかった。 From the results of Table 2, when the thickness of the amorphous carbon layer on the negative electrode active material surface is in the range of 0.005 to 1.5 μm and the average particle diameter of the negative electrode active material is in the range of 4 to 40 μm, 300 It was found that excellent charge / discharge cycle characteristics with a capacity retention rate of 80% or more after cycle charge / discharge were obtained.
[実施例16〜20]
[実施例16]
負極合剤層の充填密度を0.9g/cm3としたこと以外は実施例1と同様にして、実施例16の非水電解質二次電池Sを作製した。
[Examples 16 to 20]
[Example 16]
A nonaqueous electrolyte secondary battery S of Example 16 was produced in the same manner as in Example 1, except that the packing density of the negative electrode mixture layer was 0.9 g / cm 3 .
[実施例17]
負極合剤層の充填密度を1.0g/cm3としたこと以外は実施例1と同様にして、実施例17の非水電解質二次電池Tを作製した。
[Example 17]
A nonaqueous electrolyte secondary battery T of Example 17 was produced in the same manner as in Example 1, except that the packing density of the negative electrode mixture layer was 1.0 g / cm 3 .
[実施例18]
負極合剤層の充填密度を1.1g/cm3としたこと以外は実施例1と同様にして、実施例18の非水電解質二次電池Uを作製した。
[Example 18]
A nonaqueous electrolyte secondary battery U of Example 18 was produced in the same manner as in Example 1 except that the negative electrode mixture layer had a packing density of 1.1 g / cm 3 .
[実施例19]
負極合剤層の充填密度を1.3g/cm3としたこと以外は実施例1と同様にして、実施例19の非水電解質二次電池Vを作製した。
[Example 19]
A nonaqueous electrolyte secondary battery V of Example 19 was produced in the same manner as in Example 1 except that the packing density of the negative electrode mixture layer was 1.3 g / cm 3 .
[実施例20]
負極合剤層の充填密度を1.4g/cm3としたこと以外は実施例1と同様にして、実施例20の非水電解質二次電池Wを作製した。
[Example 20]
A nonaqueous electrolyte secondary battery W of Example 20 was produced in the same manner as in Example 1 except that the packing density of the negative electrode mixture layer was 1.4 g / cm 3 .
[初期出力とサイクル後の出力低下測定結果]
実施例16〜20の非水電解質二次電池S〜Wについて、充放電サイクル試験をおこない、また、初期出力および300サイクル充放電後の出力を測定した。出力および充放電サイクル試験の測定方法および条件は実施例1と同様とした。結果を表3にまとめた。なお、表3には、比較のため、実施例1の結果も示した。
[Initial output and output drop measurement result after cycle]
The non-aqueous electrolyte secondary batteries S to W of Examples 16 to 20 were subjected to a charge / discharge cycle test, and the initial output and the output after 300 cycles of charge / discharge were measured. The measurement method and conditions for the output and charge / discharge cycle tests were the same as in Example 1. The results are summarized in Table 3. Table 3 also shows the results of Example 1 for comparison.
表3の結果から、負極合剤層の充填密度が1.0〜1.3g/cm3の範囲にある場合に、300サイクル充放電後の出力低下率が20%以下となる非水電解質二次電池が得られることがわかった。 From the results of Table 3, when the filling density of the negative electrode mixture layer is in the range of 1.0 to 1.3 g / cm 3 , the output decrease rate after 300 cycles of charge / discharge is 20% or less. It was found that a secondary battery could be obtained.
1 非水電解質二次電池
2 電池ケース
3 電池缶
4 電池蓋
5 正極端子
6 負極端子
7 絶縁体
8 電解液注液口
9 安全弁
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Battery case 3 Battery can 4 Battery cover 5 Positive electrode terminal 6 Negative electrode terminal 7 Insulator 8 Electrolyte injection port 9 Safety valve
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008168225A JP2010009948A (en) | 2008-06-27 | 2008-06-27 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008168225A JP2010009948A (en) | 2008-06-27 | 2008-06-27 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010009948A true JP2010009948A (en) | 2010-01-14 |
Family
ID=41590185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008168225A Pending JP2010009948A (en) | 2008-06-27 | 2008-06-27 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010009948A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011105444A1 (en) * | 2010-02-25 | 2011-09-01 | 日立化成工業株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery which comprises the negative electrode material, and lithium ion secondary battery |
JP2013239352A (en) * | 2012-05-15 | 2013-11-28 | Toyota Motor Corp | Nonaqueous electrolytic secondary battery |
JP2017037744A (en) * | 2015-08-07 | 2017-02-16 | 日立マクセル株式会社 | Nonaqueous electrolyte secondary battery |
US20180083281A1 (en) * | 2015-03-27 | 2018-03-22 | Nec Corporation | Boron-doped activated carbon material |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10172538A (en) * | 1996-12-05 | 1998-06-26 | Toshiba Battery Co Ltd | Nonaqueous solvent secondary battery and manufacture thereof |
JPH10233206A (en) * | 1997-02-17 | 1998-09-02 | Asahi Chem Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JPH11329436A (en) * | 1998-04-02 | 1999-11-30 | Samsung Display Devices Co Ltd | Negative electrode active material for lithium ion battery and its manufacture and lithium ion battery |
JP2003272630A (en) * | 2002-03-19 | 2003-09-26 | Denso Corp | Manufacturing method of negative electrode active material |
JP2004296305A (en) * | 2003-03-27 | 2004-10-21 | Toyota Central Res & Dev Lab Inc | Lithium ion secondary battery |
JP2006324237A (en) * | 2005-04-21 | 2006-11-30 | Hitachi Chem Co Ltd | Negative electrode material for lithium-ion secondary battery, its manufacturing method, negative electrode for lithium-ion secondary battery using the material, and lithium-ion secondary battery |
JP2009059676A (en) * | 2007-08-30 | 2009-03-19 | Nippon Carbon Co Ltd | Negative electrode active material for lithium ion secondary battery and negative electrode |
-
2008
- 2008-06-27 JP JP2008168225A patent/JP2010009948A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10172538A (en) * | 1996-12-05 | 1998-06-26 | Toshiba Battery Co Ltd | Nonaqueous solvent secondary battery and manufacture thereof |
JPH10233206A (en) * | 1997-02-17 | 1998-09-02 | Asahi Chem Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JPH11329436A (en) * | 1998-04-02 | 1999-11-30 | Samsung Display Devices Co Ltd | Negative electrode active material for lithium ion battery and its manufacture and lithium ion battery |
JP2003272630A (en) * | 2002-03-19 | 2003-09-26 | Denso Corp | Manufacturing method of negative electrode active material |
JP2004296305A (en) * | 2003-03-27 | 2004-10-21 | Toyota Central Res & Dev Lab Inc | Lithium ion secondary battery |
JP2006324237A (en) * | 2005-04-21 | 2006-11-30 | Hitachi Chem Co Ltd | Negative electrode material for lithium-ion secondary battery, its manufacturing method, negative electrode for lithium-ion secondary battery using the material, and lithium-ion secondary battery |
JP2009059676A (en) * | 2007-08-30 | 2009-03-19 | Nippon Carbon Co Ltd | Negative electrode active material for lithium ion secondary battery and negative electrode |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011105444A1 (en) * | 2010-02-25 | 2011-09-01 | 日立化成工業株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery which comprises the negative electrode material, and lithium ion secondary battery |
CN102770994A (en) * | 2010-02-25 | 2012-11-07 | 日立化成工业株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery which comprises the negative electrode material, and lithium ion secondary battery |
JP2013239352A (en) * | 2012-05-15 | 2013-11-28 | Toyota Motor Corp | Nonaqueous electrolytic secondary battery |
US20180083281A1 (en) * | 2015-03-27 | 2018-03-22 | Nec Corporation | Boron-doped activated carbon material |
JP2018514936A (en) * | 2015-03-27 | 2018-06-07 | 日本電気株式会社 | Boron doped activated carbon material |
JP2017037744A (en) * | 2015-08-07 | 2017-02-16 | 日立マクセル株式会社 | Nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3890185B2 (en) | Positive electrode active material and non-aqueous electrolyte secondary battery including the same | |
JP4985524B2 (en) | Lithium secondary battery | |
US20070111102A1 (en) | Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrolyte secondary batteries | |
JP2018163886A (en) | Carbonaceous coated graphite particle for lithium ion secondary battery anode material, lithium ion secondary battery anode and lithium ion secondary battery | |
JP2006032321A (en) | Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it | |
JP2002117833A (en) | Nonaqueous electrolyte secondary battery | |
JP2003323893A (en) | Positive electrode active material, its manufacturing method and nonaqueous electrolyte secondary battery | |
JP2007317534A (en) | Non-aqueous electrolyte secondary battery | |
JP6585238B2 (en) | Method for producing carbonaceous coated graphite particles for negative electrode material of lithium ion secondary battery | |
JP2009295465A (en) | Positive electrode active material for lithium secondary battery and manufacturing method | |
JP6278870B2 (en) | Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same | |
JP2017520892A (en) | Positive electrode for lithium battery | |
JP6285350B2 (en) | Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery | |
JP2018092916A (en) | Carbonous coated graphite particles for lithium ion secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery negative electrode, and lithium ion secondary battery | |
JP3734145B2 (en) | Lithium secondary battery | |
JP2010009948A (en) | Nonaqueous electrolyte secondary battery | |
JP2004299944A (en) | Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it | |
JP6085259B2 (en) | Method for producing carbon-coated graphite particles for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery | |
JP2004063411A (en) | Complex graphite material, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5066132B2 (en) | Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery | |
JP6322525B2 (en) | Method for producing carbon-coated graphite particles | |
JP2007157538A (en) | Battery | |
JP2000012017A (en) | Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery | |
JP4158212B2 (en) | Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery | |
JP4421750B2 (en) | Carbon material manufacturing method and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130402 |