JP2006032321A - Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it - Google Patents

Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it Download PDF

Info

Publication number
JP2006032321A
JP2006032321A JP2005168131A JP2005168131A JP2006032321A JP 2006032321 A JP2006032321 A JP 2006032321A JP 2005168131 A JP2005168131 A JP 2005168131A JP 2005168131 A JP2005168131 A JP 2005168131A JP 2006032321 A JP2006032321 A JP 2006032321A
Authority
JP
Japan
Prior art keywords
active material
oxide
nitrogen
resistivity
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005168131A
Other languages
Japanese (ja)
Inventor
Koji Yoshizawa
浩司 芳澤
Shinji Nakanishi
真二 中西
Hide Koshina
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005168131A priority Critical patent/JP2006032321A/en
Publication of JP2006032321A publication Critical patent/JP2006032321A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high capacity by tremendously decreasing the adding amount of conductive auxiliaries by lowering the resistivity of an active material. <P>SOLUTION: Material represented by composition formula: Li<SB>x</SB>MeO<SB>y</SB>N<SB>z</SB>(wherein, 0≤x≤2; 0.1<y<2.2; 0<z<1.4; Me represents at least one element out of Ti, Co, Ni, Mn, Si, Ge, and Sn.) is used as the active material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解質二次電池に用いる活物質材料、およびその製造方法に関する。   The present invention relates to an active material used for a nonaqueous electrolyte secondary battery and a method for producing the same.

移動体通信機器、携帯電子機器の主電源として利用されているリチウムイオン電池は、高い起電力および高エネルギー密度を有するという特長を持つ。
このリチウムイオン電池に用いられる正極活物質としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガンスピネル(LiMn24)、およびこれらの混合物などが挙げられる。これらの正極活物質は、リチウムに対し4V以上の電圧を有している。そして、負極には一般的にカーボン材料が使用され、前述の正極と組み合わせることで4V級のリチウムイオン電池が構成される。
A lithium ion battery used as a main power source for mobile communication devices and portable electronic devices has a feature of high electromotive force and high energy density.
Examples of the positive electrode active material used in this lithium ion battery include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), manganese spinel (LiMn 2 O 4 ), and mixtures thereof. These positive electrode active materials have a voltage of 4 V or more with respect to lithium. A carbon material is generally used for the negative electrode, and a 4V class lithium ion battery is formed by combining with the above-described positive electrode.

また、負極活物質としてチタン酸化物を用いる技術も種々報告されている。
例えば特許文献1には、チタン酸化物を負極に用い、スピネル型マンガン酸化物またはLiCoO2を正極に用いた電池が開示されており、特許文献2には、スピネル型構造のリチウム−チタン酸化物(Li4/3Ti5/34)を活物質として用いた負極と、Li2MnO3またはLiMnO2を活物質として用いた正極と、非水電解液とからなる非水電解液リチウム二次電池が開示されている。
また、特許文献3には、Li2Ti37を負極に用いたリチウム二次電池が開示されており、特許文献4には、好ましいチタン酸化物を用いた負極の製造方法が開示されている。
Various techniques using titanium oxide as a negative electrode active material have also been reported.
For example, Patent Document 1 discloses a battery using titanium oxide as a negative electrode and spinel manganese oxide or LiCoO 2 as a positive electrode. Patent Document 2 discloses a lithium-titanium oxide having a spinel structure. A non-aqueous electrolyte comprising a negative electrode using (Li 4/3 Ti 5/3 O 4 ) as an active material, a positive electrode using Li 2 MnO 3 or LiMnO 2 as an active material, and a non-aqueous electrolyte. A secondary battery is disclosed.
Patent Document 3 discloses a lithium secondary battery using Li 2 Ti 3 O 7 as a negative electrode, and Patent Document 4 discloses a method of manufacturing a negative electrode using a preferable titanium oxide. Yes.

負極に用いられる黒鉛とは異なり、上記特許文献1〜4に開示されている活物質として有用なチタン酸化物の電子伝導性は低い。また、比較的導電性の良好なLiCoO2でも、その抵抗率は1×104Ωcm程度である。
したがって、上記のようなチタン酸化物を電池に用いる場合には、導電助剤としてアセチレンブラックや黒鉛などの導電性の高い材料を併用することが一般的である。
Unlike graphite used in the negative electrode, titanium oxide useful as an active material disclosed in Patent Documents 1 to 4 has low electronic conductivity. Further, even LiCoO 2 having relatively good conductivity has a resistivity of about 1 × 10 4 Ωcm.
Therefore, when the above titanium oxide is used in a battery, it is common to use a highly conductive material such as acetylene black or graphite as a conductive assistant.

一方、特許文献5には、シリコン、ゲルマニウムおよび錫の少なくとも1つと、酸素と、窒素と、を含む化合物を負極の活物質として用いることが開示されている。この活物質は、一般式:M(式中、MはSi、GeおよびSnの少なくとも1つの元素、x、yおよびzはそれぞれ1.4<x<2.1、1.4<y<2.1、0.9<z<1.6である。)で表される。
当該特許文献5に係る発明の目的は、高容量の負極用活物質を提供することにある。特許文献5記載の活物質においては、シリコンとチッ素とからなるチェア型6員環で構成される擬似平面がマトリックス状に広がり、その平面間(層間)にシリコン−酸素−シリコン結合が架橋するように存在して1次元のトンネル状部分を形成している。そして、このトンネル状部分がリチウムのドープ・脱ドープサイトとなり、得られる負極材料は大きな容量を発揮する。
On the other hand, Patent Document 5 discloses that a compound containing at least one of silicon, germanium, and tin, oxygen, and nitrogen is used as an active material for the negative electrode. This active material has a general formula: M x N y O z (wherein M is at least one element of Si, Ge and Sn, and x, y and z are 1.4 <x <2.1, 1.. 4 <y <2.1, 0.9 <z <1.6.)
An object of the invention according to Patent Document 5 is to provide a high-capacity negative electrode active material. In the active material described in Patent Document 5, a pseudo-plane composed of a chair-type six-membered ring made of silicon and nitrogen spreads in a matrix, and a silicon-oxygen-silicon bond is bridged between the planes (interlayers). Exist to form a one-dimensional tunnel-like portion. This tunnel-like portion becomes a lithium doping / undoping site, and the obtained negative electrode material exhibits a large capacity.

したがって、特許文献5の実施例に示されている負極活物質は、Nを有する酸素窒化物であるSi22O、Ge22OまたはSn22Oからなるマトリックスとしての結晶構造が重要である。ただし、特許文献5には、上記負極活物質の電子導電性に関する開示や示唆は無く、実施例においては導電助剤として炭素材料が単純に混合されている。
また、特許文献6には、SiOxをチッ素気流中で焼成することによってSixyを得ることが示されている。
特開平06−275263号公報 特開平07−320784号公報 特開平11−283624号公報 特開2000−302547号公報 特開平11−102705号公報 特開2002−356314号公報
Therefore, the negative electrode active material shown in the example of Patent Document 5 has a crystal structure as a matrix made of Si 2 N 2 O, Ge 2 N 2 O, or Sn 2 N 2 O, which is an oxygen nitride containing N is important. However, Patent Document 5 does not disclose or suggest the electronic conductivity of the negative electrode active material, and in the examples, a carbon material is simply mixed as a conductive additive.
Patent Document 6 discloses that Si x N y is obtained by baking SiO x in a nitrogen stream.
Japanese Patent Laid-Open No. 06-275263 Japanese Patent Application Laid-Open No. 07-320784 Japanese Patent Laid-Open No. 11-283624 JP 2000-302547 A JP-A-11-102705 JP 2002-356314 A

上述のように、チタン酸化物などの酸化物を負極用の活物質に用いる場合、当該酸化物の電子伝導性が低いため、導電助剤としてアセチレンブラックや黒鉛などの導電性の高い材料を併用する必要がある。しかし、これら導電助剤は発電要素ではないため、電池の単位体積あたりの容量を著しく低下させる要因となってしまう。
さらに、例えばチタン酸化物であるTiO2は、抵抗率が1×1014Ωcm程度の絶縁材料である。このように電子伝導性に乏しい材料を活物質として用いる場合には、単純に導電助剤を混合するだけでは不十分であり、活物質粒子の比表面積を増大させたり、表面を黒鉛質材料でコーティングしたりするといった工夫が必要である。しかし、粉砕による細粒化は充填量の低下、ならびにさらなる容量の低下に繋がる。また、製造工程のコストアップにも繋がる。
そこで、本発明は、上記のような問題を解決し、酸化物を主体とするも導電性の高い活物質を提供し、容量の高い非水電解質二次電池を提供することを目的とする。
As described above, when an oxide such as titanium oxide is used as an active material for a negative electrode, since the oxide has low electronic conductivity, a highly conductive material such as acetylene black or graphite is used in combination as a conductive aid. There is a need to. However, since these conductive assistants are not power generation elements, they cause a significant reduction in the capacity per unit volume of the battery.
Further, for example, TiO 2 which is a titanium oxide is an insulating material having a resistivity of about 1 × 10 14 Ωcm. When using a material with poor electron conductivity as an active material in this way, it is not sufficient to simply mix a conductive additive, increasing the specific surface area of the active material particles, or using a graphite material for the surface. It is necessary to devise such as coating. However, refinement by pulverization leads to a decrease in filling amount and a further decrease in capacity. Moreover, it leads to the cost increase of a manufacturing process.
In view of the above, an object of the present invention is to solve the above problems, to provide an active material that is mainly composed of oxides but has high conductivity, and to provide a high capacity non-aqueous electrolyte secondary battery.

上記の課題を解決すべく、本発明は、抵抗率が1×104Ωcm未満のチッ素酸化物を活物質材料として用いることを提案する。
当該チッ素酸化物は、非晶質であるのが好ましく、また、組成式:LixMeOyz(式中、0≦x≦2、0.1<y<2.2、0<z<1.4、MeはTi、Co、Ni、Mn、Si、GeおよびSnよりなる群から選択される少なくとも1種)で表されるものであるのが好ましい。
In order to solve the above problems, the present invention proposes to use a nitrogen oxide having a resistivity of less than 1 × 10 4 Ωcm as an active material.
The nitrogen oxide is preferably amorphous and has a composition formula: Li x MeO y N z (where 0 ≦ x ≦ 2, 0.1 <y <2.2, 0 <z <1.4, Me is preferably represented by at least one selected from the group consisting of Ti, Co, Ni, Mn, Si, Ge, and Sn.

本発明に係る活物質材料は、抵抗率が1×104Ωcm以上の酸化物を還元性雰囲気下で加熱し、加熱後の前記酸化物をアンモニアガスと反応させて、組成式:LixMeOyz(式中、0≦x≦2、0.1<y<2.2、0<z<1.4、MeはTi、Co、Ni、Mn、Si、GeおよびSnよりなる群から選択される少なくとも1種)で表される、抵抗率が1×104Ωcm未満のチッ素酸化物を得ることによって製造することができる。 In the active material according to the present invention, an oxide having a resistivity of 1 × 10 4 Ωcm or more is heated in a reducing atmosphere, and the heated oxide is reacted with ammonia gas to obtain a composition formula: Li x MeO y N z (where 0 ≦ x ≦ 2, 0.1 <y <2.2, 0 <z <1.4, Me is from the group consisting of Ti, Co, Ni, Mn, Si, Ge and Sn) It can be produced by obtaining a nitrogen oxide having a resistivity of less than 1 × 10 4 Ωcm, represented by at least one selected.

前記還元性雰囲気を構成するガスは、アルゴン、窒素、一酸化炭素および水素よりなる群から選択される少なくとも1種であればよく、前記加熱温度が500℃〜1500℃であればよい。
また、前記アンモニアガスとの反応後、前記チッ素酸化物を還元雰囲気下で400℃以下の温度で加熱するのが好ましい。
The gas constituting the reducing atmosphere may be at least one selected from the group consisting of argon, nitrogen, carbon monoxide and hydrogen, and the heating temperature may be 500 ° C to 1500 ° C.
In addition, after the reaction with the ammonia gas, the nitrogen oxide is preferably heated at a temperature of 400 ° C. or lower in a reducing atmosphere.

本発明によれば、活物質材料の抵抗率を低下させることで、導電助剤の添加量を飛躍的に低減させることができ、高容量の非水電解質二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the addition amount of a conductive support agent can be drastically reduced by reducing the resistivity of an active material, and a high capacity nonaqueous electrolyte secondary battery can be provided.

(1)本発明に係る活物質の合成
本発明に係る活物質は抵抗率が1×104Ωcm未満、好ましくは1×103Ωcm以下のチッ素酸化物からなり、抵抗率が1×104Ωcm以上の酸化物を還元性雰囲気下で加熱し、加熱後の前記酸化物をアンモニアガスと反応させて、組成式:LixMeOyz(式中、0≦x≦2、0.1<y<2.2、0<z<1.4、MeはTi、Co、Ni、Mn、Si、GeおよびSnよりなる群から選択される少なくとも1種)で表されるチッ素酸化物を得ることにより合成することができる。
なかでも、上記チッ素酸化物は非晶質であるのが好ましい。非晶質であると、サイクル寿命をより向上させることができ、有効である。
(1) Synthesis of active material according to the present invention The active material according to the present invention comprises a nitrogen oxide having a resistivity of less than 1 × 10 4 Ωcm, preferably 1 × 10 3 Ωcm or less, and has a resistivity of 1 × 10. An oxide of 4 Ωcm or more is heated in a reducing atmosphere, the heated oxide is reacted with ammonia gas, and a composition formula: Li x MeO y N z (where 0 ≦ x ≦ 2, 0. 1 <y <2.2, 0 <z <1.4, Me is at least one selected from the group consisting of Ti, Co, Ni, Mn, Si, Ge, and Sn) Can be synthesized.
Among these, the nitrogen oxide is preferably amorphous. If it is amorphous, the cycle life can be further improved, which is effective.

本発明においては、原材料である金属酸化物、遷移金属酸化物、リチウム含有金属酸化物、リチウム含有遷移金属酸化物などの酸化物(例えばTiO2、LiNi1/3Mn1/3Co1/32、LiCoO2、LiNi5/6Co1/62、LiMn24、LiVO2、MnO2、V25、SnO、SiOy(yは好ましくは1.0〜1.5)など)の粉末を、アンモニアガスや水素ガスなどの還元雰囲気中で、500℃以上1500℃以下の温度で加熱して導電性の材料(上記チッ素酸化物)を得る。
また、非晶質のチッ素酸化物を得るためには、原材料として非晶質の酸化物を用いるのが好ましい。
In the present invention, oxides such as metal oxides, transition metal oxides, lithium-containing metal oxides, and lithium-containing transition metal oxides (for example, TiO 2 , LiNi 1/3 Mn 1/3 Co 1/3 , which are raw materials) O 2 , LiCoO 2 , LiNi 5/6 Co 1/6 O 2 , LiMn 2 O 4 , LiVO 2 , MnO 2 , V 2 O 5 , SnO, SiO y (y is preferably 1.0 to 1.5) Etc.) is heated in a reducing atmosphere such as ammonia gas or hydrogen gas at a temperature of 500 ° C. or higher and 1500 ° C. or lower to obtain a conductive material (the above nitrogen oxide).
In order to obtain an amorphous nitrogen oxide, it is preferable to use an amorphous oxide as a raw material.

上記温度が500℃未満では反応時間が長く、一方、1500℃を超えると必要以上の高温となり、いずれの場合もコストアップになる。コストおよび導入するチッ素の量などから、500〜1100℃であるのが好ましい。
また、特に非晶質のチッ素酸化物を容易かつ確実に得るためには、上記温度は500〜900℃であるのが好ましい
If the temperature is less than 500 ° C., the reaction time is long. On the other hand, if the temperature exceeds 1500 ° C., the temperature becomes higher than necessary, and the cost increases in any case. In view of cost and the amount of nitrogen to be introduced, the temperature is preferably 500 to 1100 ° C.
Further, in order to obtain an amorphous nitrogen oxide easily and reliably, the temperature is preferably 500 to 900 ° C.

ただし、得られた導電性の材料が上述の加熱によって焼結している場合、その焼結体をそのまま活物質として二次電池に利用することは困難な場合がある。
この場合、例えば、前記焼結体を溶剤など存在下で機械的に粉砕して乾燥すれば、活物質として利用し易い。
また、原材料である酸化物を、水素ガス雰囲気で低次の酸化物にした後に、アンモニアガスと反応させてもよい。
However, when the obtained conductive material is sintered by the above-described heating, it may be difficult to use the sintered body as an active material as it is for a secondary battery.
In this case, for example, if the sintered body is mechanically pulverized and dried in the presence of a solvent or the like, it can be easily used as an active material.
Alternatively, the raw material oxide may be reacted with ammonia gas after being converted into a low-order oxide in a hydrogen gas atmosphere.

さらに、上記の工程で得たチッ素酸化物を、還元雰囲気下400℃以下の温度で加熱処理する後工程を行うのが好ましい。還元雰囲気はチッ素ガスであってもよい。また、例えば、メタノールやブタノールなどのアルコール類の有機還元剤共存下、またはアンモニアガスなどの雰囲気下、400℃以下で加熱処理し、その粒子表面にある余剰の酸素、アンモニアガスに由来するチッ素やアンモニアなどの吸着種を除去することができる。これにより、得られる粉末状の活物質の抵抗率が低下する。この場合の有機還元剤としては、アルコール類のほかに、ケトン類、エステル類、アミン類などでもよい。   Furthermore, it is preferable to perform a post-process in which the nitrogen oxide obtained in the above process is heat-treated at a temperature of 400 ° C. or lower in a reducing atmosphere. The reducing atmosphere may be nitrogen gas. Further, for example, heat treatment is performed at 400 ° C. or lower in the presence of an organic reducing agent such as methanol or butanol, or in an atmosphere such as ammonia gas, and nitrogen derived from excess oxygen and ammonia gas on the particle surface. And adsorption species such as ammonia can be removed. Thereby, the resistivity of the obtained powdery active material falls. In this case, as the organic reducing agent, in addition to alcohols, ketones, esters, amines and the like may be used.

以上のような方法によって、原材料である酸化物の表面からチッ素原子を導入することで、当該酸化物の表面の酸素配列に変化を与え、電導に関与するキャリアーを発生させることで抵抗率を低下させることができるものと考えられる。
組成に関しては、使用する原材料である酸化物の種類や反応条件を種々変化させ、MeとOおよびNとの比率を分析した結果、上記組成式において、0.1<y<2.2、0<z<1.4を満たすことがわかった。また、Liに関しては、原材料の種類や組成に依存するが、従来から知られているLiMeO2やLi2MeO2などから0≦x≦2を満たすのが適当であると考えられる。
By introducing nitrogen atoms from the surface of the oxide, which is a raw material, by the above-described method, the oxygen arrangement on the surface of the oxide is changed, and the resistivity is increased by generating carriers involved in conduction. It is thought that it can be reduced.
As for the composition, various kinds of oxides and reaction conditions as raw materials to be used were analyzed, and the ratio of Me, O, and N was analyzed. As a result, in the above composition formula, 0.1 <y <2.2, 0 It was found that <z <1.4 was satisfied. Further, regarding Li, depending on the type and composition of raw materials, it is considered appropriate to satisfy 0 ≦ x ≦ 2 from the conventionally known LiMeO 2 and Li 2 MeO 2 .

(2)抵抗率の測定
本発明においていう抵抗率は以下の方法で測定されるものである。すなわち、原材料または上記方法によって作製したチッ素酸化物の粉末を、電導度測定用の金型に定量で充填する。そして、充填した粉末に圧力を加え、徐々にその強さを増し、圧力に伴う粉末の抵抗率変化を測定する。このとき、圧力上昇に伴って粉末の抵抗率は低下していくが、徐々に低下の度合いが小さくなり、一定の値に近づく。この一定の値を抵抗率とする。
(2) Measurement of resistivity The resistivity referred to in the present invention is measured by the following method. That is, the raw material or the nitrogen oxide powder produced by the above method is quantitatively filled into a conductivity measurement mold. Then, pressure is applied to the filled powder, the strength is gradually increased, and the change in resistivity of the powder with pressure is measured. At this time, the resistivity of the powder decreases as the pressure increases, but the degree of decrease gradually decreases and approaches a certain value. This constant value is defined as the resistivity.

(3)電気化学測定
本発明に係る活物質の電気化学特性測定をモデル的に行う場合には、以下のように電気化学特性測定用のセルを作成して行う。
まず、活物質80重量部と、導電助剤であるアセチレンブラック10重量部と、結着剤であるPVdF(ポリフッ化ビニリデン)10重量と、を混合して混合物を得、得られた混合物をNMP(N−メチル−2−ピロリドン)で希釈してアルミフォイル製の集電体上に塗布する。これを真空中60℃で30分間乾燥した後、15mm×20mmに切断し、さらに真空中で150℃、14時間乾燥する。得られる電極の厚みは120μm〜190μmの間で作成する。
(3) Electrochemical measurement When measuring the electrochemical characteristics of the active material according to the present invention as a model, a cell for measuring electrochemical characteristics is prepared as follows.
First, 80 parts by weight of an active material, 10 parts by weight of acetylene black as a conductive additive, and 10 parts by weight of PVdF (polyvinylidene fluoride) as a binder are mixed to obtain a mixture. It is diluted with (N-methyl-2-pyrrolidone) and coated on an aluminum foil current collector. This is dried in vacuum at 60 ° C. for 30 minutes, then cut into 15 mm × 20 mm, and further dried in vacuum at 150 ° C. for 14 hours. The thickness of the obtained electrode is made between 120 μm and 190 μm.

また、対極としては、例えばステンレス鋼製の板の上にリチウム金属シートを圧着して得られるもの用いる。セパレータとしては、例えばポリエチレン製のポーラスフィルムを用い、電解液としては、例えばEC(エチレンカーボネート)とDMC(ジメチルカーボネート)を3:7の容量比で混合した溶媒に、1.0MのLiPF6を溶解させたものを用いる。そして、充放電試験においては、例えば0.17mA/cm2の電流密度で、所定の電圧領域の間で充放電を繰り返す。 As the counter electrode, for example, a material obtained by pressure bonding a lithium metal sheet on a stainless steel plate is used. As the separator, for example, using a polyethylene porous film, as the electrolyte solution, for example, EC (ethylene carbonate) and DMC (dimethyl carbonate) 3: 7 mixed solvent of a volume ratio of the LiPF 6 of 1.0M Use the dissolved one. In the charge / discharge test, charge / discharge is repeated between predetermined voltage regions at a current density of 0.17 mA / cm 2 , for example.

(4)その他の部材について
ここで、セパレータとしては、ポリオレフィンの微多孔膜や不織布などが使用できる。ポリエステルなどでもよい。一般的に、正極用の集電体にはアルミニウムやアルミニウム合金箔が用いられ、負極用の集電体には銅箔が用いられる。本発明における集電体は各活物質の充放電電位に応じて選択される。例えばチッ素原子含有チタン酸化物などからなる本発明の活物質を負極に用いる場合には、アルミニウムのリチウム吸蔵電位より高い電位を有するため、アルミニウムやアルミニウム合金の薄膜を集電体として使用することが可能である。
(4) Other members Here, as the separator, a polyolefin microporous film or a nonwoven fabric can be used. Polyester may be used. Generally, aluminum or aluminum alloy foil is used for the current collector for the positive electrode, and copper foil is used for the current collector for the negative electrode. The current collector in the present invention is selected according to the charge / discharge potential of each active material. For example, when the active material of the present invention made of, for example, a nitrogen atom-containing titanium oxide is used for the negative electrode, a thin film of aluminum or an aluminum alloy should be used as a current collector because it has a potential higher than the lithium occlusion potential of aluminum. Is possible.

本発明に係る活物質を用いて得られる円筒型電池の一例の概略縦断面図を図2に示す。
図2においては、正極板および負極板がセパレータを介して複数回渦巻状に巻回された極板群4が電池ケース1に収納されている。そして、正極板から正極リード5が引き出されて封口板2に接続され、負極板から負極リード6が引き出されて電池ケース1の底部に接続されている。電池ケースやリード板には耐有機電解液性の電子伝導性をもつ金属や合金を用いることができる。
例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウムなどの金属またはそれらの合金である。特に、電池ケースはステンレス鋼板、Al−Mn合金板を加工したもの、正極リードはアルミニウム、負極リードはニッケルが最も好ましい。また、電池ケースには、軽量化を図るため各種エンジニアリングプラスチックスおよびこれと金属の併用したものを用いることも可能である。
FIG. 2 shows a schematic longitudinal sectional view of an example of a cylindrical battery obtained using the active material according to the present invention.
In FIG. 2, an electrode plate group 4 in which a positive electrode plate and a negative electrode plate are wound in a spiral shape through a separator is housed in a battery case 1. Then, the positive electrode lead 5 is drawn from the positive electrode plate and connected to the sealing plate 2, and the negative electrode lead 6 is drawn from the negative electrode plate and connected to the bottom of the battery case 1. For the battery case and the lead plate, a metal or an alloy having an organic electrolyte resistance and an electron conductivity can be used.
For example, a metal such as iron, nickel, titanium, chromium, molybdenum, copper, aluminum, or an alloy thereof. In particular, the battery case is most preferably a stainless steel plate or an Al—Mn alloy plate processed, the positive electrode lead is aluminum, and the negative electrode lead is most preferably nickel. In addition, various engineering plastics and a combination of these and a metal can be used for the battery case in order to reduce the weight.

極板群4の上下部にはそれぞれ絶縁リング7が設けられている。そして、電解液を注入し、封口板を用いて電池ケースを密封する。このとき、安全弁を封口板に設けることができる。安全弁の他、従来から知られている種々の安全素子を備えつけてもよい。
例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子などが用いられる。また、電池ケースの内圧上昇の対策として、電池ケースに切込を入れる方法、ガスケット亀裂方法、封口板亀裂方法またはリード板との切断方法を利用することができる。また、充電器に過充電や過放電対策を組み込んだ保護回路を具備させたり、独立に接続してもよい。
Insulating rings 7 are respectively provided on the upper and lower portions of the electrode plate group 4. And electrolyte solution is inject | poured and a battery case is sealed using a sealing board. At this time, a safety valve can be provided on the sealing plate. In addition to the safety valve, various conventionally known safety elements may be provided.
For example, a fuse, bimetal, PTC element, or the like is used as the overcurrent prevention element. Moreover, as a countermeasure against the increase in the internal pressure of the battery case, a method of cutting the battery case, a gasket cracking method, a sealing plate cracking method, or a cutting method with a lead plate can be used. Further, the charger may be provided with a protection circuit incorporating measures against overcharge and overdischarge, or may be connected independently.

また、過充電対策として、電池内圧の上昇により電流を遮断する方式を具備することができる。このとき、内圧を上げる化合物を合剤の中あるいは電解質の中に含ませることができる。内圧を上げる化合物としてはLi2CO3、LiHCO3、Na2CO3、NaHCO3、CaCO3およびMgCO3などの炭酸塩などがあげられる。
キャップ、電池ケース、シート、リード板の溶接法は、公知の方法(直流もしくは交流の電気溶接、レーザー溶接または超音波溶接など)を用いることができる。また、封口用シール剤は、アスファルトなどの従来から知られている化合物や混合物を用いることができる。
In addition, as a measure against overcharging, a method of cutting off current by increasing the battery internal pressure can be provided. At this time, a compound for increasing the internal pressure can be contained in the mixture or the electrolyte. Examples of the compound raising the internal pressure and carbonates such as Li 2 CO 3, LiHCO 3, Na 2 CO 3, NaHCO 3, CaCO 3 and MgCO 3 and the like.
As a welding method for the cap, the battery case, the sheet, and the lead plate, a known method (such as direct current or alternating current electric welding, laser welding, or ultrasonic welding) can be used. As the sealing agent for sealing, a conventionally known compound or mixture such as asphalt can be used.

これらの要素を組み合わせて本発明の非水電解質二次電池を構成することができるが、本発明に係る非水電解質二次電池を作製するために用いる他の材料としては従来公知のものを用いればよい。例えば正極板や負極板を作製する際に用いる結着剤としては、ポリフッ化ビニリデンやスチレンブタジエンゴムなどを用いればよい。
以下、実施例にて本発明を説明するが、本発明はこれらのみに限定されるものではない。
Although these elements can be combined to form the nonaqueous electrolyte secondary battery of the present invention, conventionally known materials are used as other materials used for producing the nonaqueous electrolyte secondary battery according to the present invention. That's fine. For example, polyvinylidene fluoride, styrene butadiene rubber, or the like may be used as a binder used when producing a positive electrode plate or a negative electrode plate.
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited only to these.

《実験例1》
二酸化チタンTiO2は、抵抗率が1×1014Ωcmであり、ほぼ絶縁体である。しかし、二酸化チタンに充分な量の導電助剤と結着剤を加えて得た電極を用いれば、Li金属に対して約1.7V付近の放電電位で放電可能な電池が得られる。例えば正極にLiCoO2を用い、負極にTiO2を用いると、2V級のリチウムイオン電池を構成することができる。
しかし、TiO2の導電性は極めて低いため、TiO2粒子を細かくし、さらに大量の導電助剤が必要になるため、エネルギー容量が小さくコストが高い電池となってしまう。また、二酸化チタンを正極に用い、負極にLi金属を用いると、1.7Vのリチウム電池を構成することができるが、前述のような問題は同様に残る。そこで、本実験例においては、二酸化チタンTiO2から、本発明に係る製造方法によって活物質を作製した。
<< Experiment 1 >>
Titanium dioxide TiO 2 has a resistivity of 1 × 10 14 Ωcm and is almost an insulator. However, if an electrode obtained by adding a sufficient amount of a conductive additive and a binder to titanium dioxide is used, a battery that can be discharged at a discharge potential of about 1.7 V with respect to Li metal can be obtained. For example, LiCoO 2 used for the positive electrode, the use of TiO 2 in the negative electrode, it is possible to construct a lithium ion battery 2V grade.
However, since the conductivity of TiO 2 is very low, the TiO 2 particles are made finer and a larger amount of conductive aid is required, resulting in a battery with a small energy capacity and high cost. Moreover, when titanium dioxide is used for the positive electrode and Li metal is used for the negative electrode, a 1.7 V lithium battery can be constructed, but the above-mentioned problems remain similarly. Therefore, in this experimental example, an active material was produced from titanium dioxide TiO 2 by the production method according to the present invention.

白色の二酸化チタンTiO2の粉末を石英製の反応管に入れ、チッ素ガス雰囲気下で800℃に加熱した。その後、反応管中にアンモニアガスを流し、10時間反応させてチッ素酸化物を得た。
反応後、得られたチッ素酸化物に焼結が認められたため、ボールミルを用いて当該チッ素酸化物を水中で粉砕し、本発明に係る活物質1(TiO1.70.3)を得た。得られた活物質の体積抵抗率を上述のように測定し、表1に示した。
White titanium dioxide TiO 2 powder was placed in a quartz reaction tube and heated to 800 ° C. in a nitrogen gas atmosphere. Thereafter, ammonia gas was allowed to flow through the reaction tube and reacted for 10 hours to obtain a nitrogen oxide.
After the reaction, since the obtained nitrogen oxide was found to be sintered, the nitrogen oxide was pulverized in water using a ball mill to obtain an active material 1 (TiO 1.7 N 0.3 ) according to the present invention. The volume resistivity of the obtained active material was measured as described above and shown in Table 1.

また、上記で作製した活物質1にメタノールを加え、さらにチッ素ガス雰囲気下、300℃で10分間反応させ、本発明に係る活物質2を得た。
これによって得られた本発明に係る活物質1および2の体積抵抗率を表1に示した。さらに比較のために、未処理のTiO2(活物質3)の値も同様に測定し表1に示した。
Further, methanol was added to the active material 1 produced above, and further reacted at 300 ° C. for 10 minutes in a nitrogen gas atmosphere to obtain an active material 2 according to the present invention.
Table 1 shows the volume resistivity of the active materials 1 and 2 according to the present invention thus obtained. For comparison, the value of untreated TiO 2 (active material 3) was also measured and shown in Table 1.

Figure 2006032321
Figure 2006032321

表1から明らかなように、絶縁体であるTiO2の抵抗率が、チッ素原子を導入することによって飛躍的に下がっていることがわかる。また、後工程である低温での還元処理を加えた場合には、さらに抵抗率の低下が認められた。
ここで、図1に上記で得られた活物質1の電気化学特性を示した。電気化学特性の測定は上述した方法で行った。
As is clear from Table 1, it can be seen that the resistivity of TiO 2 as an insulator is drastically lowered by introducing nitrogen atoms. Moreover, when the reduction process at a low temperature, which is a subsequent process, was added, a decrease in resistivity was further observed.
Here, the electrochemical characteristics of the active material 1 obtained above are shown in FIG. The electrochemical characteristics were measured by the method described above.

すなわち、活物質80重量部と、導電助剤であるアセチレンブラック10重量部と、結着剤であるPVdF(ポリフッ化ビニリデン)10重量と、を混合して混合物を得、得られた混合物をNMP(N−メチル−2−ピロリドン)で希釈してアルミフォイル製の集電体上に塗布した。塗布後の集電体を真空中60℃で30分間乾燥した後、15mm×20mmに切断し、さらに真空中で150℃、14時間乾燥し、厚みは120μmの電極を得た。   That is, 80 parts by weight of an active material, 10 parts by weight of acetylene black as a conductive additive, and 10 parts by weight of PVdF (polyvinylidene fluoride) as a binder are mixed to obtain a mixture. The solution was diluted with (N-methyl-2-pyrrolidone) and coated on an aluminum foil current collector. The coated current collector was dried in vacuum at 60 ° C. for 30 minutes, then cut to 15 mm × 20 mm, and further dried in vacuum at 150 ° C. for 14 hours to obtain an electrode having a thickness of 120 μm.

ついで、対極としてはリチウム金属を使用し、セパレータとしてはポリエチレン製のポーラスフィルムを用い、電解液としてはEC(エチレンカーボネート)とDMC(ジメチルカーボネート)を3:7の容量比で混合した溶媒に、1.0MのLiPF6を溶解させたものを用いた。そして、0.17mA/cm2の電流密度で、放電は1.0Vまで充電は2.5Vまでの所定の電圧領域間で充放電を繰り返した。まず放電から測定を開始し、初回充放電の結果を図1に示した。 Next, lithium metal is used as the counter electrode, a polyethylene porous film is used as the separator, and EC (ethylene carbonate) and DMC (dimethyl carbonate) are mixed in a volume ratio of 3: 7 as the electrolyte. It was used by dissolving LiPF 6 of 1.0 M. And charging / discharging was repeated between predetermined voltage area | regions with the current density of 0.17mA / cm < 2 >, discharging to 1.0V, and charging to 2.5V. First, the measurement was started from the discharge, and the results of the first charge / discharge are shown in FIG.

図1より、この活物質はチッ素原子を導入する前の酸化物の挙動とほぼ同じ電位で充放電が可能であることがわかる。また、上記で得られた活物質2も、図1に示した結果とほぼ同様の結果が得られた。   FIG. 1 shows that this active material can be charged and discharged at substantially the same potential as the behavior of the oxide before introducing nitrogen atoms. In addition, the active material 2 obtained above also gave almost the same result as shown in FIG.

《実験例2》
白色の二酸化チタンTiO2の粉末を石英製の反応管に入れ、チッ素ガス雰囲気下で700℃に加熱した。その後、反応管中に流量300ml/minでアンモニアガスを流すとともに、流量50ml/minでチッ素ガスを流し、28時間反応させてチッ素酸化物を得た。反応後、得られたチッ素酸化物に焼結が認められたため、ボールミルを用いて当該チッ素酸化物を水中で粉砕した。
さらに、粉砕後のチッ素酸化物をメチルエチルケトンとともに石英管に入れ、チッ素雰囲気下、300℃で20分間加熱し、急冷して本発明に係る活物質4(TiO1.01.0)を得た。得られた活物質の体積抵抗率を上述のように測定したところ、1.0Ωcmであった。
<< Experiment 2 >>
White titanium dioxide TiO 2 powder was placed in a quartz reaction tube and heated to 700 ° C. in a nitrogen gas atmosphere. Thereafter, ammonia gas was allowed to flow through the reaction tube at a flow rate of 300 ml / min, and nitrogen gas was allowed to flow at a flow rate of 50 ml / min to react for 28 hours to obtain a nitrogen oxide. After the reaction, since sintering was observed in the obtained nitrogen oxide, the nitrogen oxide was pulverized in water using a ball mill.
Further, the pulverized nitrogen oxide was put in a quartz tube together with methyl ethyl ketone, heated at 300 ° C. for 20 minutes in a nitrogen atmosphere, and rapidly cooled to obtain an active material 4 (TiO 1.0 N 1.0 ) according to the present invention. When the volume resistivity of the obtained active material was measured as described above, it was 1.0 Ωcm.

また、白色の二酸化チタンTiO2の粉末を石英製の反応管に入れ、チッ素ガス雰囲気下で800℃に加熱した。その後、反応管中に水流量300ml/minでアンモニアガスを流すとともに、流量50ml/minでチッ素ガスを流し、5時間反応させてチッ素酸化物を得た。
反応後、得られたチッ素酸化物に焼結が認められたため、ボールミルを用いて当該チッ素酸化物を水中で粉砕し、本発明に係る活物質5(TiO1.890.11)を得た。得られた活物質の体積抵抗率を上述のように測定したところ、10Ωcmであった。
Further, white titanium dioxide TiO 2 powder was put in a quartz reaction tube and heated to 800 ° C. in a nitrogen gas atmosphere. Thereafter, ammonia gas was allowed to flow through the reaction tube at a water flow rate of 300 ml / min, and nitrogen gas was allowed to flow at a flow rate of 50 ml / min to react for 5 hours to obtain a nitrogen oxide.
After the reaction, since the obtained nitrogen oxide was found to be sintered, the nitrogen oxide was pulverized in water using a ball mill to obtain an active material 5 (TiO 1.89 N 0.11 ) according to the present invention. When the volume resistivity of the obtained active material was measured as described above, it was 10 Ωcm.

上記のようにして得られた活物質4および5の表面元素分析を、ESCAを用いて行ったところ、組成が層状に異なっており、徐々に変化していることが確認された。
表面層は主としてチッ化チタンで構成されており、表面層から内部にかけては酸チッ化チタンで構成されており、チッ素含有量が次第に減少する一方、酸素含有量が増加していた。
また、上記活物質4および5には、表面層も内部も酸チッ化チタンで構成されている粒子(A)や、チッ素がほとんど観測されず、酸素の含有量が二酸化チタンから減少している粒子(B)も認められた。なお、上記粒子は必ずしも球状ではなく、種々の形状を有していた。
When surface elemental analysis of the active materials 4 and 5 obtained as described above was performed using ESCA, it was confirmed that the compositions were different in layers and gradually changed.
The surface layer is mainly composed of titanium nitride, and is composed of titanium oxynitride from the surface layer to the inside. The nitrogen content gradually decreases, while the oxygen content increases.
Further, in the active materials 4 and 5, particles (A) whose surface layer and inside are composed of titanium oxynitride and nitrogen are hardly observed, and the oxygen content is reduced from titanium dioxide. Particles (B) were also observed. The particles were not necessarily spherical but had various shapes.

上記実験例において得られた本発明に係る活物質1、2、4および5では、こういったAまたはBのいずれか単独の構造を有している粒子もあれば、AおよびBの両方の構造が混合された粒子も観測された。このように、好ましい活物質としてTiO1.70.3やTiO1.890.11(TiO2-aaにおいてa=0.3または1.0)が得られ、上記のような表面分析の結果が得られたことから、好ましい活物質の組成をLixMeOyz(x=0、0.1<y<2、0<z<1.4、MeはTi)と特定した。yおよびzの値は分析値の誤差などを考慮して決定した。また、チッ素化の程度の下限値に関しては、上記活物質5においてTiO2-aaのaが0.11であったことから、酸素の一部がチッ素と入れ替わっていると考えられるが、厳密に分析するのが困難であることや、aが0.11と小さいことを考慮して0.1<y<2と特定した。 In the active materials 1, 2, 4, and 5 according to the present invention obtained in the above experimental examples, there are particles having a single structure of either A or B, and both of A and B Particles with mixed structures were also observed. Thus, TiO 1.7 N 0.3 and TiO 1.89 N 0.11 (a = 0.3 or 1.0 in TiO 2-a N a) is obtained as the preferred active material, surface analysis of the results as described above can be obtained Therefore, the composition of a preferable active material was specified as Li x MeO y N z (x = 0, 0.1 <y <2, 0 <z <1.4, Me is Ti). The values of y and z were determined in consideration of errors in analysis values. Further, regarding the lower limit of the degree of nitrogenation, since a of TiO 2-a Na is 0.11 in the active material 5, it is considered that a part of oxygen is replaced with nitrogen. However, 0.1 <y <2 was specified in consideration of the fact that it is difficult to analyze strictly and that a is as small as 0.11.

《実験例3》
つぎに、本発明に係る活物質は導電性が向上するため、これを用いて電池を構成する場合に用いる導電助剤の量の削減が期待できるが、これを評価するために実験例1で得られた活物質を用いて導電助剤の減量に伴う容量の比較を行った。結果を表2に示した。
評価として、上述した電気化学特性の測定方法を、加える導電助剤であるアセチレンブラックの量を変化させて行った。放電容量は、活物質1を用い、かつ導電助剤を10重量部添加して電極を作製した場合の容量を100とし、これに対する比較値として示した。
<< Experimental Example 3 >>
Next, since the conductivity of the active material according to the present invention is improved, it can be expected to reduce the amount of the conductive auxiliary agent used in the case of constituting a battery using the active material. The capacity | capacitance accompanying the weight loss of a conductive support agent was compared using the obtained active material. The results are shown in Table 2.
As an evaluation, the above-described method for measuring electrochemical characteristics was performed by changing the amount of acetylene black as a conductive auxiliary agent to be added. The discharge capacity was shown as a comparative value with respect to 100 when the active material 1 was used and 10 parts by weight of a conductive additive was added to produce an electrode.

Figure 2006032321
Figure 2006032321

表2より、本発明に係る活物質は、飛躍的に導電助剤を減量しても容量を維持できることがわかった。結果として、この活物質を非水電解質二次電池に適用した場合、体積あたりの容量が導電助剤の減量によって増加させることができる。
また、本発明に係る活物質は、正極に用いることができることは明らかであるが、本発明に活物質より高い電位を有する、例えばLiCoO2などの活物質と組み合わせることにより、負極用の活物質として用いることができ、この場合には2V級の電池を実現することができる。
From Table 2, it was found that the active material according to the present invention can maintain the capacity even when the amount of the conductive auxiliary agent is drastically reduced. As a result, when this active material is applied to a non-aqueous electrolyte secondary battery, the capacity per volume can be increased by reducing the conductive additive.
In addition, it is clear that the active material according to the present invention can be used for the positive electrode, but by combining the active material with an active material such as LiCoO 2 having a higher potential than the active material in the present invention, the active material for the negative electrode In this case, a 2V class battery can be realized.

《実験例4》
本実験例においては、原材料としてリチウム含有遷移金属酸化物を用いて、チッ素原子を導入して本発明に係る活物質を合成した。遷移金属酸化物であるLiNi1/3Mn1/3Co1/32の抵抗率はTiO2に比較して高いが、1×104Ωcm程度である。しかし、この遷移金属酸化物を活物質として使用する場合には、少なくとも3重量%程度の導電助剤を添加しないと実用電池として充分な放電特性は得られないのが現状である。
<< Experimental Example 4 >>
In this experimental example, a lithium-containing transition metal oxide was used as a raw material, and a nitrogen atom was introduced to synthesize an active material according to the present invention. The resistivity of LiNi 1/3 Mn 1/3 Co 1/3 O 2 , which is a transition metal oxide, is higher than that of TiO 2 , but is about 1 × 10 4 Ωcm. However, in the case where this transition metal oxide is used as an active material, at present, sufficient discharge characteristics as a practical battery cannot be obtained unless at least about 3% by weight of a conductive additive is added.

そこで、実験例1と同様の方法で、原材料であるLiNi1/3Mn1/3Co1/32にチッ素原子を導入し、本発明に係る活物質6(LiNi1/3Mn1/3Co1/31.90.1)を得た。得られた活物質の抵抗率を測定した結果、2×102Ωcmであった。また、この活物質の電気化学特性も上述と同様に評価したが、チッ素原子導入前後において充放電挙動に大差は見られず、リチウム金属を対極として用いた場合には、4V級の活物質として作動した。 Therefore, nitrogen atoms are introduced into the raw material LiNi 1/3 Mn 1/3 Co 1/3 O 2 in the same manner as in Experimental Example 1, and the active material 6 (LiNi 1/3 Mn 1) according to the present invention is introduced. / 3 Co 1/3 O 1.9 N 0.1 ). The resistivity of the obtained active material was measured and found to be 2 × 10 2 Ωcm. In addition, the electrochemical characteristics of this active material were also evaluated in the same manner as described above. However, there was no significant difference in charge / discharge behavior before and after introduction of nitrogen atoms, and when lithium metal was used as the counter electrode, a 4V class active material was obtained. Operated as.

この活物質は、黒鉛などと組み合わせることで正極として使用することができるが、負極としても使用可能であった。リチウム金属を対極に用いた場合は、1V〜1.5Vに充放電電位を示した。したがって、正極にLiCoO2を使用すると約2Vの電池を構成することができ、電位の高いLiNi1/2Mn3/24を組み合わせた場合には、約3Vの電池を構成することができた。 This active material can be used as a positive electrode in combination with graphite or the like, but can also be used as a negative electrode. When lithium metal was used for the counter electrode, the charge / discharge potential was 1 V to 1.5 V. Therefore, when LiCoO 2 is used for the positive electrode, a battery of about 2V can be formed, and when a high potential LiNi 1/2 Mn 3/2 O 4 is combined, a battery of about 3V can be formed. It was.

ここで、チッ化率について調べるため、合成条件を変えてLiNi1/3Mn1/3Co1/32-xxにおけるx値を表3に示す値に変化させた。合成条件は、チッ素ガス雰囲気下で800℃に加熱し、アンモニアガスを流して反応させる時間を変化させた。また、後工程は、メチルエチルケトンを添加してチッ素ガス雰囲気下300℃で反応させ、その反応時間を変化させた。 Here, in order to investigate the nitride ratio, the x value in LiNi 1/3 Mn 1/3 Co 1/3 O 2−x N x was changed to the values shown in Table 3 by changing the synthesis conditions. As the synthesis conditions, heating was performed at 800 ° C. in a nitrogen gas atmosphere, and the reaction time was changed by flowing ammonia gas. In the post-process, methyl ethyl ketone was added and reacted at 300 ° C. in a nitrogen gas atmosphere, and the reaction time was changed.

Figure 2006032321
Figure 2006032321

本実験例において、体積抵抗率はすべて1×102Ωcmであった。
また、上記と同様に活物質7〜9の表面元素分析を、ESCAを用いて行ったところ、組成が層状に異なっており、徐々に変化していることが確認された。表面層は主としてチッ化チタンで構成されており、表面層から内部にかけては酸チッ化チタンで構成されており、チッ素含有量が次第に減少する一方、酸素含有量が増加していた。また、表面層も内部も酸チッ化チタンで構成されている粒子(A)や、チッ素がほとんど観測されず、酸素の含有量が二酸化チタンから減少している粒子(B)も認められた。
In this experimental example, the volume resistivity was all 1 × 10 2 Ωcm.
Moreover, when the surface elemental analysis of the active materials 7-9 was performed using ESCA similarly to the above, it was confirmed that the composition is layered and gradually changed. The surface layer is mainly composed of titanium nitride, and is composed of titanium oxynitride from the surface layer to the inside. The nitrogen content gradually decreases, while the oxygen content increases. Further, particles (A) composed of titanium oxynitride both in the surface layer and inside, and particles (B) in which almost no nitrogen was observed and the oxygen content decreased from titanium dioxide were also observed. .

上記実験例において得られた本発明に係る活物質7〜9では、こういったAまたはBのいずれか単独の構造を有しているものもあれば、AおよびBの両方の構造が混合されたものも観測された。以上の結果から、本発明に係る活物質の好ましい組成を、LixMeOyz(0≦x≦0、0.1<y<2.2、0<z<1.4)と特定した。 In the active materials 7 to 9 according to the present invention obtained in the above experimental examples, there are those having any one of these A or B structures, and both A and B structures are mixed. Some were also observed. From the above results, the preferable composition of the active material according to the present invention was specified as Li x MeO y N z (0 ≦ x ≦ 0, 0.1 <y <2.2, 0 <z <1.4). .

《実験例5》
原材料としてそれぞれSiOおよびSnOを用いて実験例1と同様にして本発明に係る活物質10(SiOxy)および活物質11(SnOxy)を合成した。
得られた活物質のX線回折を行ったところ、特開平11−102705号公報に開示されているようなSi22Oに同定されるパターンは確認されなかった。これは、本発明に係る活物質においては、マトリックス全体にチッ素原子が導入されるのではなく、活物質表面にチッ素原子が導入され、その酸素配列に変化を与えることで電子伝導性が付与されるからであると考えられる。また、活物質10(SiOxy)および活物質11(SnOxy)の抵抗率は、それぞれ1×103Ωcmおよび1×102Ωcmであった。
<< Experimental Example 5 >>
Active material 10 (SiO x N y ) and active material 11 (SnO x N y ) according to the present invention were synthesized in the same manner as in Experimental Example 1 using SiO and SnO as raw materials.
When the obtained active material was subjected to X-ray diffraction, a pattern identified as Si 2 N 2 O as disclosed in JP-A-11-102705 was not confirmed. This is because, in the active material according to the present invention, nitrogen atoms are not introduced into the entire matrix, but nitrogen atoms are introduced into the active material surface, and the oxygen conductivity is changed by changing the oxygen arrangement. This is considered to be given. The resistivity of the active material 10 (SiO x N y ) and the active material 11 (SnO x N y ) was 1 × 10 3 Ωcm and 1 × 10 2 Ωcm, respectively.

《実験例6》
上記実験例で作製した本発明に係る活物質6(LiNi1/3Mn1/3Co1/31.90.1)、活物質10(SiOxy)および活物質11(SnOxy)の導電助剤減量の効果を、上記実験例3と同様の方法で検討した。その結果を表4に示した。
また、比較のために、活物質として本発明における原材料となるLiNi1/3Mn1/3Co1/32、SiOおよびSnOを用いた場合も同様に評価した。なお、容量は、それぞれの原材料に導電助剤を20重量%添加した場合の値を100とし、比率で示した。
<< Experimental Example 6 >>
Active material 6 (LiNi 1/3 Mn 1/3 Co 1/3 O 1.9 N 0.1 ), active material 10 (SiO x N y ) and active material 11 (SnO x N y ) according to the present invention prepared in the above experimental example. ), The effect of reducing the conductive assistant was examined in the same manner as in Experimental Example 3. The results are shown in Table 4.
For comparison, the same evaluation was performed when LiNi 1/3 Mn 1/3 Co 1/3 O 2 , SiO, and SnO as raw materials in the present invention were used as the active material. In addition, the capacity | capacitance was shown by the ratio when the value at the time of adding 20 weight% of conductive support agents to each raw material was set to 100.

Figure 2006032321
Figure 2006032321

表4より、本発明に係る活物質は、飛躍的に導電助剤を減量しても容量を維持できることがわかった。結果として、この活物質を非水電解質二次電池に適用した場合、体積あたりの容量が導電助剤の減量によって増加させることができる。   From Table 4, it was found that the active material according to the present invention can maintain the capacity even when the conductive aid is drastically reduced. As a result, when this active material is applied to a non-aqueous electrolyte secondary battery, the capacity per volume can be increased by reducing the conductive additive.

《実験例7》
本実験例においては、図2を用いて上記において説明した円筒型電池を作製した。
負極板は以下のように作製した。本発明に係る粉末状の負極活物質(TiO1.70.3)100重量部に対し、導電剤である炭素粉末1重量部と、結着剤であるポリフッ化ビニリデン樹脂3重量部とを混合した。得られた混合物を脱水N−メチルピロリジノンに分散させてスラリーを得、アルミニウム箔からなる集電体上に塗布し、乾燥・圧延した後、所定の大きさに切断して負極を得た。
<< Experimental Example 7 >>
In this experimental example, the cylindrical battery described above with reference to FIG. 2 was produced.
The negative electrode plate was produced as follows. 1 part by weight of carbon powder as a conductive agent and 3 parts by weight of polyvinylidene fluoride resin as a binder were mixed with 100 parts by weight of the powdered negative electrode active material (TiO 1.7 N 0.3 ) according to the present invention. The obtained mixture was dispersed in dehydrated N-methylpyrrolidinone to obtain a slurry, which was applied onto a current collector made of aluminum foil, dried and rolled, and then cut into a predetermined size to obtain a negative electrode.

正極板は、活物質を本発明に係るLiNi1/3Mn1/3Co1/32-xxに変更した以外は、上記負極板と同じようにして作製した。
セパレータとしてはポリプロピレン製の不織布を用い、また、有機電解液には、エチレンカーボネート(EC)とプロピレンカーボネート(PC)の体積比1:1の混合溶媒に、LiPF6を1.0mol/リットル溶解させたものを使用した。作製した円筒型電池は直径14.1mm、高さ50.0mmであった。
The positive electrode plate was produced in the same manner as the negative electrode plate except that the active material was changed to LiNi 1/3 Mn 1/3 Co 1/3 O 2-x N x according to the present invention.
As the separator, a polypropylene nonwoven fabric is used, and in the organic electrolyte, LiPF 6 is dissolved in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) in a volume ratio of 1: 1 by 1.0 mol / liter. Used. The produced cylindrical battery had a diameter of 14.1 mm and a height of 50.0 mm.

このようにして作製した円筒型電池において3.0Vの定電圧充電を行い、放電は100mAの定電流で1Vまで放電した。このとき得られた放電容量は550mAhであった。同様に正極の活物質にLiNi1/3Mn1/3Co1/32を用い負極の活物質にTiO2を用いて構成した比較用の電池は放電容量が90mAhと低かった。 The cylindrical battery thus produced was charged at a constant voltage of 3.0 V and discharged to 1 V at a constant current of 100 mA. The discharge capacity obtained at this time was 550 mAh. Similarly, a comparative battery constructed using LiNi 1/3 Mn 1/3 Co 1/3 O 2 as the positive electrode active material and TiO 2 as the negative electrode active material had a low discharge capacity of 90 mAh.

《実験例8》
原材料として表5に示す種々の酸化物を、以下の方法でチッ素化し、上記と同様にして体積抵抗率を測定した。
また、実験例6で示したように、アセチレンブラック(AB)を1重量%に減量した場合の容量%を同様に測定した。表5においては、[チッ素化後の容量比率(AB1重量%)/(チッ素化前の容量比率(AB1重量%)]を容量アップ率の値として示した。
<< Experimental Example 8 >>
Various oxides shown in Table 5 as raw materials were nitrided by the following method, and volume resistivity was measured in the same manner as described above.
Further, as shown in Experimental Example 6, the volume% when acetylene black (AB) was reduced to 1% by weight was similarly measured. In Table 5, [capacity ratio after nitrogenation (AB 1 wt%) / (capacity ratio before nitrogenation (AB 1 wt%)]] is shown as a value of the capacity increase rate.

Figure 2006032321
Figure 2006032321

表5より、電池の活物質材料として知られているリチウム含有酸化物あるいは酸化物をチッ素化することによって、導電性が飛躍的に改善され、結果として得られる電池の容量アップが可能であることがわかる。   From Table 5, by nitriding a lithium-containing oxide or oxide known as a battery active material, the conductivity is dramatically improved, and the resulting battery capacity can be increased. I understand that.

《実験例9》
ここでは原材料として非晶質のSiO1.03を用いて本願発明に係る活物質(SiOyz)を合成した。まず、図3に、非晶質のSiO1.03のXRDパターンを示した。図3より、明瞭(シャープ)な結晶のピークパターンは観察されず、ブロードなピーク(ブロードな回折)のみが観察され、非晶質であることがわかる。
非晶質のSiO1.03の粉末(平均粒径8μm)を石英製の反応管にいれ、チッ素ガス雰囲気下で600℃に加熱した。その後、反応管にアンモニアガスを流し、8時間反応させてチッ素酸化物を得た。得られたチッ素酸化物を水中で粉砕し、本発明の活物質12(非晶質SiOxy)を得た。
得られた本発明の活物質12の体積抵抗率を、上記実験例1と同様にして測定したところ、1×103Ωcmであった。また、得られた活物質12のXRD解析を行ったところ、原材料である非晶質のSiO1.03と同様の非晶質パターンが観察された。
<< Experimental Example 9 >>
Here, an active material (SiO y N z ) according to the present invention was synthesized using amorphous SiO 1.03 as a raw material. First, in FIG. 3, showing the XRD pattern of amorphous SiO 1.03. FIG. 3 shows that a clear (sharp) crystal peak pattern is not observed, and only a broad peak (broad diffraction) is observed, which is amorphous.
Amorphous SiO 1.03 powder (average particle size 8 μm) was placed in a quartz reaction tube and heated to 600 ° C. in a nitrogen gas atmosphere. Thereafter, ammonia gas was passed through the reaction tube and reacted for 8 hours to obtain a nitrogen oxide. The obtained nitrogen oxide was pulverized in water to obtain an active material 12 (amorphous SiO x N y ) of the present invention.
The volume resistivity of the obtained active material 12 of the present invention was measured in the same manner as in Experimental Example 1 and found to be 1 × 10 3 Ωcm. Further, when an XRD analysis of the obtained active material 12 was performed, an amorphous pattern similar to the amorphous SiO 1.03 as a raw material was observed.

また、上記の非晶質のSiO1.03の粉末(平均粒径8μm)を石英製の反応管にいれ、チッ素ガス雰囲気下で1400℃に加熱して得られたチッ素酸化物を、水中で粉砕し、活物質13(結晶質SiOxy)を得た
実験例1と同様の方法で、上記活物質12および13の電気化学測定を行った。ただし、電極などはアルミラミネート袋に入れて熱封止して用いた。電極および対極には、それぞれアルミリードおよびニッケルリードを付けて端子を構成した。また、SiOを実電池で負極活物質として使用する場合を想定して、0Vまで充電し1.5Vまで放電する充放電(電圧領域0〜1.5V)を行った。3サイクル目の放電容量を100とした場合、20サイクル後の放電容量の比率を表6に示した。
In addition, the above-mentioned amorphous SiO 1.03 powder (average particle size 8 μm) is put in a quartz reaction tube and heated to 1400 ° C. in a nitrogen gas atmosphere. The active material 13 (crystalline SiO x N y ) was pulverized to obtain an electrochemical measurement of the active materials 12 and 13 in the same manner as in Experimental Example 1. However, the electrodes were put in an aluminum laminate bag and heat sealed. Aluminum and nickel leads were attached to the electrode and counter electrode, respectively, to form terminals. In addition, assuming that SiO y N z is used as a negative electrode active material in an actual battery, charging / discharging (voltage region 0 to 1.5 V) was performed by charging to 0 V and discharging to 1.5 V. Assuming that the discharge capacity at the third cycle is 100, the ratio of the discharge capacity after 20 cycles is shown in Table 6.

Figure 2006032321
Figure 2006032321

表6より、非晶質である活物質12を用いた場合に、サイクル寿命が良好であることがわかる。たとえ活物質の表面近傍のみに結晶質が存在したとしても、結晶質部分が充放電によって破壊されることにより、サイクル寿命の低下を引き起こしているものと考えられる。   Table 6 shows that the cycle life is good when the amorphous active material 12 is used. Even if the crystal is present only in the vicinity of the surface of the active material, it is considered that the crystal part is destroyed by charge / discharge, thereby causing a decrease in cycle life.

《実験例10》
電気化学特性に悪影響を及ぼすと考えられる結晶質は焼成温度が高温になると生成されると考えられるが、この温度を明らかにする目的で、上記実験例9に示した方法において、温度を500℃から1400℃まで100℃ずつ変化させた。
XRD解析で結晶質が現れたかどうかを観察するとともに、上記実験例9と同様の電気化学測定を行った。結果を表7に示した。
<< Experimental Example 10 >>
Crystalline, which is considered to have an adverse effect on the electrochemical characteristics, is considered to be produced when the firing temperature becomes high. For the purpose of clarifying this temperature, in the method shown in Experimental Example 9, the temperature is set to 500 ° C. To 1400 ° C. at 100 ° C. increments.
While observing whether or not crystalline material appeared by XRD analysis, the same electrochemical measurement as in Experimental Example 9 was performed. The results are shown in Table 7.

Figure 2006032321
Figure 2006032321

表7より、1100℃から結晶化が現れ、それに伴ってサイクル寿命も低下した。したがって、好ましい温度は1000℃以下であり、チッ素化の時間を短縮する意味も含めると500〜1000℃が好ましい。   From Table 7, crystallization appeared from 1100 ° C., and the cycle life was reduced accordingly. Therefore, a preferable temperature is 1000 ° C. or less, and 500 to 1000 ° C. is preferable including the meaning of shortening the nitriding time.

本発明に係る活物質を用いれば高い起電力および高エネルギー密度を有する電池が得られ、当該電池は、移動体通信機器、携帯電子機器の主電源として好適である。   When the active material according to the present invention is used, a battery having a high electromotive force and a high energy density can be obtained, and the battery is suitable as a main power source for mobile communication devices and portable electronic devices.

本発明に係る活物質のTiO2-xxの充放電カーブを示す図である。Is a diagram showing a charge-discharge curve of the TiO 2-x N x of the active material according to the present invention. 本実施例において作製した円筒型電池の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the cylindrical battery produced in the present Example. 非晶質のSiO1.03のXRDパターンを示す図である。It is a figure which shows the XRD pattern of amorphous SiO1.03 .

符号の説明Explanation of symbols

1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極リード
6 負極リード
7 絶縁リング
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

Claims (9)

抵抗率が1×104Ωcm未満のチッ素酸化物からなる活物質材料。 An active material made of a nitrogen oxide having a resistivity of less than 1 × 10 4 Ωcm. 前記チッ素酸化物が非晶質である請求項1記載の活物質材料。   The active material according to claim 1, wherein the nitrogen oxide is amorphous. 組成式:LixMeOyz(式中、0≦x≦2、0.1<y<2.2、0<z<1.4、MeはTi、Co、Ni、Mn、Si、GeおよびSnよりなる群から選択される少なくとも1種)で表される請求項1または2記載の活物質材料。 Composition formula: Li x MeO y N z (where 0 ≦ x ≦ 2, 0.1 <y <2.2, 0 <z <1.4, Me is Ti, Co, Ni, Mn, Si, Ge And at least one selected from the group consisting of Sn and the active material according to claim 1 or 2. 抵抗率が1×104Ωcm以上の酸化物を還元性雰囲気下で加熱した後、前記酸化物をアンモニアガスと反応させて、組成式:LixMeOyz(式中、0≦x≦2、0.1<y<2.2、0<z<1.4、MeはTi、Co、Ni、Mn、Si、GeおよびSnよりなる群から選択される少なくとも1種)で表される、抵抗率が1×104Ωcm未満のチッ素酸化物を得ること、を特徴とする活物質材料の製造方法。 An oxide having a resistivity of 1 × 10 4 Ωcm or higher is heated in a reducing atmosphere, and then the oxide is reacted with ammonia gas to obtain a composition formula: Li x MeO y N z (where 0 ≦ x ≦ 2, 0.1 <y <2.2, 0 <z <1.4, Me is at least one selected from the group consisting of Ti, Co, Ni, Mn, Si, Ge and Sn) Obtaining a nitrogen oxide having a resistivity of less than 1 × 10 4 Ωcm. 前記チッ素酸化物が非晶質である請求項4記載の活物質材料の製造方法。   The method for producing an active material according to claim 4, wherein the nitrogen oxide is amorphous. 前記還元性雰囲気を構成するガスが、アルゴン、窒素、一酸化炭素および水素よりなる群から選択される少なくとも1種である請求項4または5記載の活物質材料の製造方法。   The method for producing an active material according to claim 4 or 5, wherein the gas constituting the reducing atmosphere is at least one selected from the group consisting of argon, nitrogen, carbon monoxide and hydrogen. 前記加熱温度が500℃〜1500℃である請求項4〜6のいずれかに記載の活物質材料の製造方法。   The method for producing an active material according to any one of claims 4 to 6, wherein the heating temperature is 500C to 1500C. 前記アンモニアガスとの反応後、前記チッ素酸化物を還元雰囲気下で400℃以下の温度で加熱する請求項4〜7のいずれかに記載の活物質材料の製造方法。   The method for producing an active material according to any one of claims 4 to 7, wherein after the reaction with the ammonia gas, the nitrogen oxide is heated at a temperature of 400 ° C or lower in a reducing atmosphere. 請求項1〜3のいずれかに記載の活物質材料を含む正極および/または負極を具備することを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode and / or a negative electrode comprising the active material according to claim 1.
JP2005168131A 2004-06-16 2005-06-08 Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it Pending JP2006032321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005168131A JP2006032321A (en) 2004-06-16 2005-06-08 Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004178518 2004-06-16
JP2005168131A JP2006032321A (en) 2004-06-16 2005-06-08 Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it

Publications (1)

Publication Number Publication Date
JP2006032321A true JP2006032321A (en) 2006-02-02

Family

ID=35898377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168131A Pending JP2006032321A (en) 2004-06-16 2005-06-08 Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it

Country Status (1)

Country Link
JP (1) JP2006032321A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129440A (en) * 2008-11-28 2010-06-10 National Institute Of Advanced Industrial Science & Technology Three-component system electrode material particles for lithium battery or hybrid capacitor, and their manufacturing method
JP2011001256A (en) * 2009-05-21 2011-01-06 Toyota Motor Corp Method for producing nitrided lithium-transition metal compound oxide, nitrided lithium-transition metal compound oxide and lithium battery
JP2011165372A (en) * 2010-02-05 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> Negative electrode material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery
WO2011111227A1 (en) * 2010-03-12 2011-09-15 トヨタ自動車株式会社 Electrode active material and method for producing electrode active material
WO2011122046A1 (en) * 2010-03-31 2011-10-06 日本ケミコン株式会社 Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor
JP2011213556A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Lithium titanate nanoparticle, composite of lithium titanate nanoparticle and carbon, method for producing the composite, electrode material comprising the composite, and electrode, electrochemical element and electrochemical capacitor using the electrode material
JP2011216749A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Electrochemical capacitor
JP2011216746A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Electrochemical capacitor
JP2011216747A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Electrochemical capacitor
JP2011222521A (en) * 2010-04-12 2011-11-04 Belenos Clean Power Holding Ag Transition metal oxynitride
JP2012146763A (en) * 2011-01-11 2012-08-02 Nippon Chemicon Corp Electrochemical capacitor
JP2013053054A (en) * 2011-09-06 2013-03-21 National Institute For Materials Science Lithium silicon nitride having electron conductivity and method for manufacturing the same
US20140120416A1 (en) * 2012-10-26 2014-05-01 Industry-University Cooperation Foundation Hanyang University (IUCF-HYU) Negative electrode for lithium secondary battery and method of manufacturing the same
JP2014143194A (en) * 2012-12-26 2014-08-07 Showa Denko Kk Positive electrode active material for magnesium ion secondary battery, method for producing the same, and magnesium ion secondary battery
US8852740B2 (en) 2010-03-12 2014-10-07 Toyota Jidosha Kabushiki Kaisha Electrode active material and electrode active material production method
KR101463114B1 (en) * 2008-02-15 2014-11-20 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
WO2015015548A1 (en) * 2013-07-29 2015-02-05 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary batteries
JP2015227281A (en) * 2015-06-22 2015-12-17 日本ケミコン株式会社 Lithium titanate nano-particle, production method of the nano-particle, composite of lithium titanate nano-particle and carbon, electrode material consisting of the composite, electrode using the electrode material, and electrochemical element and electrochemical capacitor
JP2016119459A (en) * 2010-03-31 2016-06-30 日本ケミコン株式会社 Composite of metal oxide nanoparticle and carbon, method for producing the same, electrode using composite, and electrochemical element
WO2017045945A1 (en) * 2015-09-16 2017-03-23 Robert Bosch Gmbh Active material for a positive electrode of a battery cell, positive electrode and battery cell
US10109431B2 (en) 2010-03-31 2018-10-23 Nippon Chemi-Con Corporation Composite of metal oxide nanoparticles and carbon, method of production thereof, electrode and electrochemical element employing said composite
US10224542B2 (en) 2014-11-27 2019-03-05 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery module, battery pack, automobile and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334914A (en) * 1997-05-29 1998-12-18 Sony Corp Positive electorde material and nonaqueous electrolyte secondary battery with it
JPH11102705A (en) * 1997-07-29 1999-04-13 Sony Corp Negative electrode material, and nonaqueous electrolyte secondary battery using the same
JP2001015111A (en) * 1999-04-30 2001-01-19 Hydro Quebec New high surface conductivity electrode material
JP2002356314A (en) * 2001-03-26 2002-12-13 Shin Etsu Chem Co Ltd Partially nitrided silicon oxynitride powder and its producing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334914A (en) * 1997-05-29 1998-12-18 Sony Corp Positive electorde material and nonaqueous electrolyte secondary battery with it
JPH11102705A (en) * 1997-07-29 1999-04-13 Sony Corp Negative electrode material, and nonaqueous electrolyte secondary battery using the same
JP2001015111A (en) * 1999-04-30 2001-01-19 Hydro Quebec New high surface conductivity electrode material
JP2002356314A (en) * 2001-03-26 2002-12-13 Shin Etsu Chem Co Ltd Partially nitrided silicon oxynitride powder and its producing method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463114B1 (en) * 2008-02-15 2014-11-20 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2010129440A (en) * 2008-11-28 2010-06-10 National Institute Of Advanced Industrial Science & Technology Three-component system electrode material particles for lithium battery or hybrid capacitor, and their manufacturing method
JP2011001256A (en) * 2009-05-21 2011-01-06 Toyota Motor Corp Method for producing nitrided lithium-transition metal compound oxide, nitrided lithium-transition metal compound oxide and lithium battery
US8920975B2 (en) 2009-05-21 2014-12-30 Toyota Jidosha Kabushiki Kaisha Method of producing nitrided lithium-transition metal compound oxide, nitrided lithium-transition metal compound oxide, and lithium-ion battery
JP2011165372A (en) * 2010-02-05 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> Negative electrode material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery
WO2011111227A1 (en) * 2010-03-12 2011-09-15 トヨタ自動車株式会社 Electrode active material and method for producing electrode active material
US8852740B2 (en) 2010-03-12 2014-10-07 Toyota Jidosha Kabushiki Kaisha Electrode active material and electrode active material production method
JP2011216747A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Electrochemical capacitor
JP2011216746A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Electrochemical capacitor
JP2016119459A (en) * 2010-03-31 2016-06-30 日本ケミコン株式会社 Composite of metal oxide nanoparticle and carbon, method for producing the same, electrode using composite, and electrochemical element
EP2554517A4 (en) * 2010-03-31 2015-03-18 Nippon Chemicon Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor
CN102869611A (en) * 2010-03-31 2013-01-09 日本贵弥功株式会社 Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electroch
KR101793762B1 (en) * 2010-03-31 2017-11-03 닛뽄 케미콘 가부시끼가이샤 Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor
CN102869611B (en) * 2010-03-31 2016-09-07 日本贵弥功株式会社 The complex of nanoscale lithium titanate particles, nanoscale lithium titanate particles and carbon, its manufacture method, the electrode material being made up of this complex, use the electrode of this electrode material, electrochemical element and electrochemical capacitor
US9296623B2 (en) 2010-03-31 2016-03-29 Nippon Chemi-Con Corporation Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method of production thereof, electrode material consisting of said composite, electrode, electrochemical element, and electrochemical capacitor employing said electrode material
JP2011216749A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Electrochemical capacitor
JP2011213556A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Lithium titanate nanoparticle, composite of lithium titanate nanoparticle and carbon, method for producing the composite, electrode material comprising the composite, and electrode, electrochemical element and electrochemical capacitor using the electrode material
WO2011122046A1 (en) * 2010-03-31 2011-10-06 日本ケミコン株式会社 Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor
US10109431B2 (en) 2010-03-31 2018-10-23 Nippon Chemi-Con Corporation Composite of metal oxide nanoparticles and carbon, method of production thereof, electrode and electrochemical element employing said composite
JP2011222521A (en) * 2010-04-12 2011-11-04 Belenos Clean Power Holding Ag Transition metal oxynitride
JP2012146763A (en) * 2011-01-11 2012-08-02 Nippon Chemicon Corp Electrochemical capacitor
JP2013053054A (en) * 2011-09-06 2013-03-21 National Institute For Materials Science Lithium silicon nitride having electron conductivity and method for manufacturing the same
KR101814738B1 (en) * 2012-10-26 2018-01-03 삼성에스디아이 주식회사 Negative electrode for lithium secondary battery and method of manufacturing the same
US20140120416A1 (en) * 2012-10-26 2014-05-01 Industry-University Cooperation Foundation Hanyang University (IUCF-HYU) Negative electrode for lithium secondary battery and method of manufacturing the same
US9845522B2 (en) * 2012-10-26 2017-12-19 Samsung Sdi Co., Ltd. Negative electrode for lithium secondary battery and method of manufacturing the same
JP2014143194A (en) * 2012-12-26 2014-08-07 Showa Denko Kk Positive electrode active material for magnesium ion secondary battery, method for producing the same, and magnesium ion secondary battery
WO2015015548A1 (en) * 2013-07-29 2015-02-05 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary batteries
US10224542B2 (en) 2014-11-27 2019-03-05 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery module, battery pack, automobile and vehicle
JP2015227281A (en) * 2015-06-22 2015-12-17 日本ケミコン株式会社 Lithium titanate nano-particle, production method of the nano-particle, composite of lithium titanate nano-particle and carbon, electrode material consisting of the composite, electrode using the electrode material, and electrochemical element and electrochemical capacitor
WO2017045945A1 (en) * 2015-09-16 2017-03-23 Robert Bosch Gmbh Active material for a positive electrode of a battery cell, positive electrode and battery cell
JP2018529198A (en) * 2015-09-16 2018-10-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Active material for positive electrode of battery cell, positive electrode, and battery cell
US10790502B2 (en) 2015-09-16 2020-09-29 Robert Bosch Gmbh Active material for a positive electrode of a battery cell, positive electrode, and battery cell

Similar Documents

Publication Publication Date Title
KR100677029B1 (en) Active material, production method thereof and non-aqueous electrolyte secondary battery comprising the same
JP2006032321A (en) Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it
JP5315591B2 (en) Positive electrode active material and battery
KR100237580B1 (en) Non-aqueous electrolyte battery and its production method
JP3543437B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material
JP4644895B2 (en) Lithium secondary battery
JP3032757B1 (en) Non-aqueous electrolyte secondary battery
EP1655793A1 (en) Nonaqueous electrolyte secondary battery and charge/discharge system thereof
JP2000215884A (en) Positive electrode for nonaqueous electrolyte battery, its manufacture, nonaqueous electrolyte battery using the positive electrode, and manufacture of the battery
JP2008305777A (en) Lithium transition metal compound powder, its production method, spray dried product being baking precursor of the powder, positive electrode for lithium secondary battery using the product, and lithium secondary battery
JP4813450B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
KR20020080448A (en) Positive electrode active material and nonaqueous electrolyte secondary cell
JPH09237631A (en) Positive electrode active substance for lithium secondary battery, manufacture thereof and lithium secondary battery
JPH08124559A (en) Manufacture of lithium secondary battery and of negative electrode active material
JPWO2012111813A1 (en) Positive electrode, non-aqueous electrolyte battery and battery pack
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2004362895A (en) Negative electrode material, and battery using it
JP2009080979A (en) Active materials for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2018008260A1 (en) Negative electrode active material, negative electrode, lithium-ion secondary battery, method for using lithium-ion secondary battery, method for producing negative electrode active material, and method for producing lithium-ion secondary battery
JP2001243943A (en) Non-aqueous electrolyte secondary battery
JP6096985B1 (en) Nonaqueous electrolyte battery and battery pack
JP2008115075A5 (en)
CN112424976A (en) Positive electrode active material and secondary battery
JP2006318926A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP6493408B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120719