JP2002356314A - Partially nitrided silicon oxynitride powder and its producing method - Google Patents

Partially nitrided silicon oxynitride powder and its producing method

Info

Publication number
JP2002356314A
JP2002356314A JP2001279679A JP2001279679A JP2002356314A JP 2002356314 A JP2002356314 A JP 2002356314A JP 2001279679 A JP2001279679 A JP 2001279679A JP 2001279679 A JP2001279679 A JP 2001279679A JP 2002356314 A JP2002356314 A JP 2002356314A
Authority
JP
Japan
Prior art keywords
oxide powder
partially
powder
silicon nitride
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001279679A
Other languages
Japanese (ja)
Inventor
Hirofumi Fukuoka
宏文 福岡
Satoru Miyawaki
悟 宮脇
Kenji Ooka
憲司 大岡
Mikio Aramata
幹夫 荒又
Susumu Ueno
進 上野
Kazuma Momii
一磨 籾井
Takeshi Fukuda
健 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001279679A priority Critical patent/JP2002356314A/en
Publication of JP2002356314A publication Critical patent/JP2002356314A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a partially nitrided silicon oxynitride powder without cycle deterioration and capable of increasing a charge or discharge capacity of a battery when it is used for a lithium ion secondary battery or the like as an anode active substance. SOLUTION: The partially nitrided silicon oxynitride powder is obtained by heating and partially nitriding a silicon oxide powder of SiOz (0<z<2) in a nitrogen containing atmosphere, and its general formula is denoted as SiNxOy. The ranges of (x) and (y) are 0<x<1.3 and 0<y<1.5 respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池等の二次電池の負極活物質として有効な部分窒化
酸化珪素粉末およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a partial silicon nitride oxide powder effective as a negative electrode active material for a secondary battery such as a lithium ion secondary battery and a method for producing the same.

【0002】[0002]

【従来の技術】近年、携帯型の電子機器、通信機器等の
著しい発展に伴い、経済性および機器の小型化、軽量化
の観点から、高エネルギー密度の二次電池が強く要望さ
れている。
2. Description of the Related Art In recent years, with the remarkable development of portable electronic devices, communication devices, and the like, a secondary battery having a high energy density has been strongly demanded from the viewpoints of economy and reduction in size and weight of the devices.

【0003】従来、この種の二次電池の高容量化策とし
て、例えば、V,Si,B,Zr,Snなどの酸化物、
およびそれらの複合酸化物を負極材として用いる方法
(特開平5−174818号公報、特開平6−6086
7号公報等)、溶融急冷した金属酸化物を負極材として
用いる方法(特開平10−294112号公報)、負極
材料として酸化珪素を用いる方法(特許第299774
1号公報)、負極材料としてSi22OおよびGe22
Oを用いる方法(特開平11−102705号公報)等
が挙げられる。
Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, oxides such as V, Si, B, Zr, and Sn,
And methods of using these composite oxides as negative electrode materials (JP-A-5-174818, JP-A-6-6086)
No. 7, JP-A-10-294112), a method using a molten and quenched metal oxide as a negative electrode material (JP-A-10-294112), and a method using silicon oxide as a negative electrode material (Japanese Patent No. 299774).
No. 1), Si 2 N 2 O and Ge 2 N 2
O (Japanese Unexamined Patent Publication No. 11-102705) and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た各従来法は、充放電容量が上がり、エネルギー密度の
向上は見られるものの、必ずしも満足できるほどではな
い場合も多い上、サイクル性が不十分であり、市場の要
求特性を十分に満足する二次電池は得られていないのが
現状であり、さらなるエネルギー密度等の向上が望まれ
ていた。
However, in each of the above-mentioned conventional methods, although the charge / discharge capacity is increased and the energy density is improved, it is often not always satisfactory, and the cyclability is insufficient. At present, a secondary battery that sufficiently satisfies the characteristics required in the market has not been obtained, and further improvement in energy density and the like has been desired.

【0005】本発明は、このような事情に鑑みてなされ
たものであり、リチウムイオン二次電池等の二次電池の
負極活物質として用いた場合に、電池の充放電容量の向
上を図ることができるとともに、サイクル劣化を生じさ
せることのない部分窒化酸化珪素粉末およびその製造方
法を提供することを目的とする。
The present invention has been made in view of such circumstances, and aims to improve the charge / discharge capacity of a battery when used as a negative electrode active material of a secondary battery such as a lithium ion secondary battery. It is an object of the present invention to provide a partial silicon nitride oxide powder which does not cause cycle deterioration and a method for producing the same.

【0006】[0006]

【課題を解決するための手段および発明の実施の形態】
本発明者らは、上記目的を達成するために鋭意検討を行
った結果、特に、酸化珪素粉末SiOz(但し、0<z
<2)を、窒素ガス含有雰囲気下で加熱し、部分的に窒
化させることにより得られる、一般式SiNxyで表さ
れる一部窒化した酸化珪素粉末が、リチウムイオン二次
電池等の負極材として用いた場合に、高容量を維持しつ
つ、サイクル劣化を防止できることを知見するととも
に、酸化珪素粉末SiOz(但し、0<z<2)を窒素
ガス含有雰囲気下、所定温度で部分的に窒化すること
で、上記負極材として好適な部分窒化酸化珪素粉末を効
率的に製造できることを見いだし、本発明を完成した。
Means for Solving the Problems and Embodiments of the Invention
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, in particular, have found that silicon oxide powder SiO z (where 0 <z
<2) is heated in a nitrogen gas-containing atmosphere and partially nitrided to obtain a partially nitrided silicon oxide powder represented by the general formula SiN x O y , which is used in a lithium ion secondary battery or the like. When used as a negative electrode material, it was found that cycle deterioration could be prevented while maintaining high capacity, and silicon oxide powder SiO z (0 <z <2) was partially removed under a nitrogen gas-containing atmosphere at a predetermined temperature. It has been found that by partially nitriding, a partially silicon nitride oxide powder suitable as the negative electrode material can be efficiently produced, and the present invention has been completed.

【0007】すなわち、本発明は、[1]酸化珪素粉末
SiOz(但し、0<z<2)を、窒素ガス含有雰囲気
下で加熱して部分的に窒化させることにより得られる、
一般式SiNxyで表され、x,yの範囲が、0<x<
1.3,0<y<1.5であることを特徴とする部分窒
化酸化珪素粉末、[2]前記加熱温度が1,000〜
1,600℃であることを特徴とする[1]の部分窒化
酸化珪素粉末、[3]BET比表面積が0.5〜50m
2/gであることを特徴とする[1]または[2]の部
分窒化酸化珪素粉末、[4]二次電池の負極活物質用で
あることを特徴とする[1]〜[3]のいずれかの部分
窒化酸化珪素粉末、[5]酸化珪素粉末SiOz(但
し、0<z<2)を、窒素ガス含有雰囲気下、1,00
0〜1,600℃の温度範囲で加熱し、部分的に窒化さ
せることを特徴とする部分窒化酸化珪素粉末の製造方
法、[6]前記SiOz粉末におけるzの範囲が1.0
≦z<1.6であり、BET比表面積が1〜100m2
/gであることを特徴とする[5]の部分窒化酸化珪素
粉末の製造方法を提供する。
That is, the present invention provides [1] a method in which silicon oxide powder SiO z (where 0 <z <2) is partially nitrided by heating in a nitrogen gas-containing atmosphere.
It is represented by the general formula SiN x O y , and the range of x and y is 0 <x <
1.3, 0 <y <1.5, partial silicon nitride oxide powder, [2] the heating temperature is 1,000 to
A partial silicon nitride oxide powder according to [1], wherein the powder has a BET specific surface area of 0.5 to 50 m
Characterized in that it is a 2 / g [1] or [2] moiety silicon nitride oxide powder, [4], characterized in that it is used for the negative electrode active material for a secondary battery [1] to [3] Either partial silicon nitride oxide powder or [5] silicon oxide powder SiO z (where 0 <z <2) was
A method for producing a partially nitrided silicon oxide powder, wherein the powder is heated in a temperature range of 0 to 1,600 ° C. and partially nitrided; [6] the range of z in the SiO z powder is 1.0
≦ z <1.6, and the BET specific surface area is 1 to 100 m 2.
/ G, the method for producing a partially silicon oxynitride powder according to [5].

【0008】以下、本発明についてさらに詳しく説明す
る。
Hereinafter, the present invention will be described in more detail.

【0009】本発明に係る部分窒化酸化珪素粉末は、上
述のように、酸化珪素粉末SiOz(但し、0<z<
2)を、窒素ガス含有雰囲気下で加熱して部分的に窒化
させることにより得られるものであり、一般式SiNx
yで表され、x,yの範囲が、0<x<1.3,0<
y<1.5であることを特徴とするものである。
The partial silicon nitride oxide powder according to the present invention is, as described above, a silicon oxide powder SiO z (where 0 <z <
2) is obtained by heating in an atmosphere containing nitrogen gas to partially nitride the compound, and has the general formula SiN x
Is represented by O y, x, the range of y is, 0 <x <1.3,0 <
y <1.5.

【0010】ここで、上記x値が0の場合、本発明の特
徴である部分窒化が行われていないこととなり、該粉末
を二次電池等の負極活物質として用いても、高容量、か
つ、サイクル劣化の無い二次電池を得ることができない
こととなる。一方、x値が1.3以上の場合、リチウム
のドープおよび脱ドープを行うことが困難になる。
Here, when the above-mentioned x value is 0, it means that partial nitriding, which is a feature of the present invention, has not been performed, and even if the powder is used as a negative electrode active material for a secondary battery or the like, a high capacity and Thus, a secondary battery without cycle deterioration cannot be obtained. On the other hand, when the x value is 1.3 or more, it becomes difficult to perform doping and undoping of lithium.

【0011】また、上記y値が0の場合、得られる二次
電池のサイクル性が低下することとなり、一方、y値が
1.5以上の場合、高容量の二次電池を得ることができ
ないこととなる。上記部分窒化酸化珪素粉末を負極活物
質として用いた二次電池の電池特性を一層向上させるこ
とを考慮すると、上記x,yの範囲は、0.5≦x≦
1.0,0.3≦y≦1.0であることが好ましい。
When the y value is 0, the cyclability of the obtained secondary battery is reduced. On the other hand, when the y value is 1.5 or more, a high capacity secondary battery cannot be obtained. It will be. In consideration of further improving the battery characteristics of the secondary battery using the partial silicon nitride oxide powder as the negative electrode active material, the range of x and y is 0.5 ≦ x ≦
Preferably, 1.0, 0.3 ≦ y ≦ 1.0.

【0012】本発明の部分窒化酸化珪素粉末は、特にそ
の物性が限定されるものではないが、該粉末のBET比
表面積が0.5〜50m2/g、特に1〜30m2/gで
あることが好ましい。
Although the physical properties of the partially nitrided silicon oxide powder of the present invention are not particularly limited, the powder has a BET specific surface area of 0.5 to 50 m 2 / g, particularly 1 to 30 m 2 / g. Is preferred.

【0013】ここで、BET比表面積が0.5m2/g
未満の場合、該粉末の表面活性が小さくなり、高容量の
リチウムイオン二次電池等が得られにくくなる虞があ
る。一方、BET比表面積が50m2/gを超えると、
電極作製時のハンドリング性が悪くなる虞がある。な
お、ここでいうBET比表面積は、窒素ガス吸着による
BET1点法によって測定した値である。
Here, the BET specific surface area is 0.5 m 2 / g.
If it is less than 3, the surface activity of the powder becomes small, and it may be difficult to obtain a high capacity lithium ion secondary battery or the like. On the other hand, when the BET specific surface area exceeds 50 m 2 / g,
There is a possibility that the handling property at the time of manufacturing the electrode is deteriorated. Here, the BET specific surface area is a value measured by a BET one-point method by nitrogen gas adsorption.

【0014】次に、本発明に係る部分窒化酸化珪素粉末
の製造方法について説明する。
Next, a method for producing a partially silicon nitride oxide powder according to the present invention will be described.

【0015】本発明に係る部分窒化酸化珪素粉末の製造
方法は、上述のように、SiOガスを発生する原料粉末
として特に、酸化珪素粉末SiOz(但し、0<z<
2)を使用し、該粉末を窒素ガス含有雰囲気下、1,0
00〜1,600℃の温度範囲で加熱し、部分的に窒化
させることを特徴とする。
As described above, the method for producing a partially nitrided silicon oxide powder according to the present invention uses a silicon oxide powder SiO z (where 0 <z <) as a raw material powder for generating SiO gas.
Using 2), the powder was placed in an atmosphere containing
It is characterized in that it is heated in a temperature range of 00 to 1,600 ° C. and partially nitrided.

【0016】ここで、SiOガスを発生する原料粉末と
して、上記の本発明で使用される特定の酸化珪素粉末S
iOz以外に、二酸化珪素とこれを還元する粉末(例え
ば、金属珪素化合物、炭素含有粉末等)との混合物を用
いた場合には、部分窒化酸化珪素粉末(SiNxy)の
x,y値を制御し易くすることが困難であるばかりでな
く、高容量で、かつ、サイクル劣化防止性に優れたリチ
ウムイオン二次電池等の二次電池用の負極活物質が得ら
れないものである。
Here, the specific silicon oxide powder S used in the present invention is used as a raw material powder for generating SiO gas.
When a mixture of silicon dioxide and a powder for reducing the same (eg, a metal silicon compound, a carbon-containing powder, etc.) is used in addition to iO z , x and y of the partially silicon nitride oxide powder (SiN x O y ) are used. Not only is it difficult to control the value, but also a negative electrode active material for a secondary battery such as a lithium ion secondary battery having a high capacity and excellent cycle deterioration prevention properties cannot be obtained. .

【0017】この場合、SiOz粉末の物性は、特に限
定されるものではないが、zの範囲が1.0≦z<1.
6、特に1.0≦z≦1.3であり、BET比表面積が
1〜100m2/g、特に3〜50m2/gであることが
好ましい。
In this case, the physical properties of the SiO z powder are not particularly limited, but the range of z is 1.0 ≦ z <1.
6, particularly 1.0 ≦ z ≦ 1.3, and the BET specific surface area is preferably 1 to 100 m 2 / g, particularly preferably 3 to 50 m 2 / g.

【0018】上記z値が1.0より小さいSiOz粉末
の製造は困難である一方、z値が1.6以上の場合、S
iOz粉末の活性が低下するため、部分窒化酸化珪素粉
末(SiNxy)のx,y値を上述した所定値に制御す
ることが困難になる場合がある。
While it is difficult to produce SiO z powder having the above z value smaller than 1.0, when the z value is 1.6 or more, S
Since the activity of iO z powder is lowered, there is a case where x parts silicon nitride oxide powder (SiN x O y), is possible to control the y value to the predetermined value described above it becomes difficult.

【0019】また、BET比表面積が1m2/g未満の
場合もSiOz粉末の活性が低下するため、所定のx,
y値を有する部分窒化酸化珪素粉末を得ることが困難に
なる場合があり、一方、100m2/gを超えると、不
活性なSiOz成分が多くなるため、部分窒化反応が進
行しにくくなる虞がある。
Also, when the BET specific surface area is less than 1 m 2 / g, the activity of the SiO z powder is reduced.
In some cases, it may be difficult to obtain a partially nitrided silicon oxide powder having a y-value. On the other hand, if it exceeds 100 m 2 / g, the inactive SiO z component increases, and the partial nitridation reaction may not easily proceed. There is.

【0020】なお、BET比表面積については、上記部
分窒化酸化珪素粉末の場合と同様の方法で測定した値で
ある。
The BET specific surface area is a value measured by the same method as in the case of the above partial silicon nitride oxide powder.

【0021】上記「窒素ガス含有雰囲気下」としては、
窒素ガスを含んでいる非酸化性雰囲気下であれば、特に
限定されず、窒素ガス単独雰囲気下の他、例えば、反応
性を制御する等の目的で減圧にした窒素ガス含有雰囲気
下、または窒素分圧を調整する目的で窒素ガスにAr、
2、He等の非酸化性ガスを混合した窒素ガス含有雰
囲気下等が挙げられる。
The above "under a nitrogen gas-containing atmosphere" includes:
There is no particular limitation as long as it is under a non-oxidizing atmosphere containing nitrogen gas.In addition to the atmosphere under nitrogen gas alone, for example, under an atmosphere containing nitrogen gas reduced in pressure for the purpose of controlling reactivity, or under nitrogen Ar, nitrogen gas for the purpose of adjusting the partial pressure
For example, under a nitrogen gas-containing atmosphere in which a non-oxidizing gas such as H 2 or He is mixed.

【0022】上記原料粉末を、窒素ガス含有雰囲気下で
部分的に窒化させる温度範囲は1,000〜1,600
℃であり、より効率的に部分窒化反応を進行させること
を考慮すると、1,100〜1,500℃の範囲がより
好ましい。反応温度が1,000℃未満の場合、部分窒
化反応が進行しないこととなり、一方、1,600℃を
超えると、反応性が高くなりすぎるため、負極材として
不活性なSi34粉末が主生成物となってしまう。
The temperature range in which the raw material powder is partially nitrided in an atmosphere containing nitrogen gas is 1,000 to 1,600.
In consideration of making the partial nitriding reaction proceed more efficiently, the range of 1,100 to 1,500 ° C. is more preferable. When the reaction temperature is lower than 1,000 ° C., will be partially nitriding reaction does not proceed, while when it exceeds 1,600 ° C., since the reactivity too high, an inactive Si 3 N 4 powder as a negative electrode material It becomes a main product.

【0023】以上のように、本発明の製造方法では、原
料として用いるSiOzの物性(z値)、窒素分圧、反
応温度を適宜調整することで、部分窒化酸化珪素粉末
(SiNxy)のx,y値を所定範囲に制御することが
できる。
As described above, in the production method of the present invention, the partial silicon nitride oxide powder (SiN x O y ) is obtained by appropriately adjusting the physical properties (z value), the nitrogen partial pressure, and the reaction temperature of SiO z used as a raw material. ) Can be controlled within a predetermined range.

【0024】上記部分窒化酸化珪素粉末の具体的な製造
方法としては、例えば、以下に示す方法が挙げられる。
As a specific method for producing the above partial silicon nitride oxide powder, for example, the following method can be mentioned.

【0025】まず、SiOz(0<z<2、特に1.0
≦z≦1.6)粉末を、窒化珪素製トレイに仕込んだ
後、反応炉内(例えば、有効容積10〜15L(リット
ル))に投入し、N2ガスを1〜30NL/min、特
に3〜15NL/minで流入させつつ、1,000〜
1,600℃に加熱し、0.5〜10時間、特に2〜8
時間(例えば、1,200℃の場合、3〜10時間、特
に5〜8時間程度、1,400℃の場合、1〜10時
間、特に2〜5時間程度)部分窒化する。このようにし
て得られる部分窒化酸化珪素を粉砕し、微粉化すること
で、部分窒化酸化珪素粉末を製造することができる。
First, SiO z (0 <z <2, particularly 1.0
≦ z ≦ 1.6) After the powder is charged into a silicon nitride tray, it is charged into a reaction furnace (for example, an effective volume of 10 to 15 L (liter)), and N 2 gas is supplied at 1 to 30 NL / min, particularly 3 While flowing at ~ 15NL / min, 1,000 ~
Heat to 1600 ° C. for 0.5-10 hours, especially 2-8
Partial nitriding is performed for a time (for example, at 1,200 ° C., 3 to 10 hours, particularly about 5 to 8 hours, and at 1,400 ° C., 1 to 10 hours, particularly about 2 to 5 hours). By pulverizing and pulverizing the thus obtained partial silicon nitride oxide, a partial silicon nitride oxide powder can be manufactured.

【0026】なお、製造方式については特に限定はな
く、連続法、回分法での反応が可能であり、具体的には
流動層反応炉、回転炉、竪型移動層反応炉、トンネル
炉、バッチ炉等を、その目的等に応じて適宜選択して用
いることができる。
The production method is not particularly limited, and the reaction can be carried out by a continuous method or a batch method. Specifically, a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, A furnace or the like can be appropriately selected and used depending on the purpose or the like.

【0027】以上で説明した本発明の部分窒化酸化珪素
粉末は、リチウムイオン二次電池等の負極活物質として
利用した場合に、該二次電池の充放電容量を高めること
ができるとともに、サイクル劣化を防止することができ
るものである。
When the partially silicon nitride oxide powder of the present invention described above is used as a negative electrode active material for a lithium ion secondary battery or the like, the charge and discharge capacity of the secondary battery can be increased, and the cycle deterioration Can be prevented.

【0028】ここで、上記部分窒化酸化珪素粉末は絶縁
体であるため、二次電池負極材として利用する場合、導
電材を添加する必要がある。
Here, since the above partially silicon nitride oxide powder is an insulator, when it is used as a negative electrode material for a secondary battery, it is necessary to add a conductive material.

【0029】この場合、使用可能な導電材としては、構
成された電池等において分解や変質を起こさない電子伝
導性の材料であれば特に限定はなく、例えば、Al,T
i,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金
属粉末または金属繊維、天然黒鉛、人造黒鉛、各種のコ
ークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピ
ッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体
等を用いることができる。
In this case, the conductive material that can be used is not particularly limited as long as it is an electronic conductive material that does not cause decomposition or deterioration in the constructed battery or the like.
Metal powder or metal fiber such as i, Fe, Ni, Cu, Zn, Ag, Sn, Si, etc., natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based Carbon fibers, various types of resin fired bodies, and the like can be used.

【0030】上記二次電池においては、本発明の部分窒
化酸化珪素粉末を二次電池の負極活物質として用いる点
が特徴であるため、その他の二次電池構成部材、すなわ
ち、正極,負極,電解質,セパレータ等の材質や、電池
形状等は任意に選択することができる。
The above secondary battery is characterized in that the partially silicon nitride oxide powder of the present invention is used as the negative electrode active material of the secondary battery. Therefore, the other secondary battery components, that is, the positive electrode, the negative electrode, and the electrolyte are used. The material of the separator, the shape of the battery, etc. can be arbitrarily selected.

【0031】正極を構成する正極活物質としては、例え
ば、LiCoO2,LiNiO2,LiMn24,V
25,MnO2,TiS2,MoS2等の遷移金属の酸化
物、カルコゲン化合物等を用いることができる。
As the positive electrode active material constituting the positive electrode, for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V
Oxides of transition metals such as 2 O 5 , MnO 2 , TiS 2 , MoS 2 , chalcogen compounds and the like can be used.

【0032】電解質としては、特に限定はなく、例え
ば、過塩素酸リチウム等のリチウム塩と非水溶媒とを含
む非水系電解質、その他の電解質塩と非水溶媒とを含む
非水系電解質、固体電解質等が用いられる。また、非水
系電解質に用いられる非水溶媒としては、プロピレンカ
ーボネート,エチレンカーボネート,ジメトキシエタ
ン,γ−ブチロラクトン,2−メチルテトラヒドロフラ
ン等を単独で、または2種以上を混合して用いることが
できる。
The electrolyte is not particularly limited. For example, a non-aqueous electrolyte containing a lithium salt such as lithium perchlorate and a non-aqueous solvent, a non-aqueous electrolyte containing another electrolyte salt and a non-aqueous solvent, a solid electrolyte Are used. As the non-aqueous solvent used for the non-aqueous electrolyte, propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran, or the like can be used alone or in combination of two or more.

【0033】[0033]

【実施例】以下、実施例および比較例を挙げて、本発明
をより具体的に説明するが、本発明は、下記の実施例に
限定されるものではない。なお、以下の説明において、
wt、wt%は、それぞれ重量、重量%を意味する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In the following description,
wt and wt% mean weight and weight%, respectively.

【0034】[実施例1] [1]部分窒化酸化珪素粉末の製造 SiOz(z=1.05,BET比表面積:33.5m2
/g)粉末200gを窒化珪素製トレイに仕込んだ後、
反応炉(有効容積:15L)内に投入し、N2ガスを1
0NL/minで流入させつつ、1,400℃の温度で
3時間部分窒化し、部分窒化酸化珪素の灰色塊状物中間
体190gを得た。この灰色塊状物中間体のBET比表
面積は、5.7m2/gであった。
[Example 1] [1] Production of partial silicon nitride oxide powder SiO z (z = 1.05, BET specific surface area: 33.5 m 2)
/ G) After charging 200 g of powder into a silicon nitride tray,
Charge into a reactor (effective volume: 15L) and add 1 N 2 gas
While flowing at 0 NL / min, partial nitriding was performed at a temperature of 1,400 ° C. for 3 hours to obtain 190 g of a gray lump intermediate of partially silicon nitrided oxide. The BET specific surface area of this gray lump intermediate was 5.7 m 2 / g.

【0035】次に、得られた灰色塊状物中間体100g
を2Lアルミナ製ボールに仕込み、該ボールに粉砕媒体
としてφ5mmアルミナボール1,000gと溶媒とし
てヘキサン500gとを加え、1rpmの回転条件で湿
式粉砕を行った。
Next, 100 g of the obtained gray lump intermediate was obtained.
Was charged into a 2L alumina ball, 1,000 g of a φ5 mm alumina ball as a grinding medium and 500 g of hexane as a solvent were added to the ball, and wet grinding was performed under a rotation condition of 1 rpm.

【0036】粉砕して得られた部分窒化酸化珪素粉末
は、平均粒子径5.5μm、BET比表面積18.2m
2/g、窒素含有率14.1wt%、酸素含有量26.
5wt%であり、一般式SiNxy(x=0.47,y
=0.78)であった。
The partially silicon nitride oxide powder obtained by pulverization has an average particle size of 5.5 μm and a BET specific surface area of 18.2 m.
2 / g, nitrogen content 14.1 wt%, oxygen content 26.
5 wt%, and the general formula SiN x O y (x = 0.47, y
= 0.78).

【0037】表1,2に反応条件および得られた部分窒
化酸化珪素粉末の物性値を示した。
Tables 1 and 2 show the reaction conditions and the physical properties of the obtained partial silicon nitride oxide powder.

【0038】[2]リチウムイオン二次電池作製 上述のようにして得られた部分窒化酸化珪素粉末を負極
活物質として用い、以下に示す方法で、リチウムイオン
二次電池を作製した。
[2] Preparation of Lithium Ion Secondary Battery Using the partially silicon nitride oxide powder obtained as described above as a negative electrode active material, a lithium ion secondary battery was prepared by the following method.

【0039】まず、上記部分窒化酸化珪素粉末に人造黒
鉛(平均粒子径5μm)を炭素の割合が50wt%とな
るように配合し、混合物を調製した。得られた混合物に
ポリフッ化ビニリデンを10wt%加え、さらにN−メ
チルピロリドン5wt%を添加してスラリーとした。
First, artificial graphite (average particle size: 5 μm) was blended with the above partial silicon oxynitride powder so that the ratio of carbon became 50 wt% to prepare a mixture. 10 wt% of polyvinylidene fluoride was added to the obtained mixture, and 5 wt% of N-methylpyrrolidone was further added to form a slurry.

【0040】得られたスラリーを厚さ20μmの銅箔に
塗布し、120℃で1時間乾燥後、ローラープレスによ
り加圧成形して電極を作製し、最終的に20mmに打ち
抜いて負極とした。
The obtained slurry was applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 1 hour, and then press-molded by a roller press to produce an electrode, and finally punched out to a thickness of 20 mm to obtain a negative electrode.

【0041】次に、得られた負極の対極にリチウム箔を
使用し、非水電解質として6フッ化リンリチウムをエチ
レンカーボネートと1,2−ジメトキシエタンとの1/
1(体積比)混合液に1mol/Lの濃度で溶解した非
水電解質溶液を用い、セパレーターに厚さ30μmのポ
リエチレン製多孔質フィルムを用い、評価用リチウムイ
オン二次電池を作製した。
Next, a lithium foil was used as a counter electrode of the obtained negative electrode, and lithium phosphate hexafluoride was used as a non-aqueous electrolyte to prepare 1 / of ethylene carbonate and 1,2-dimethoxyethane.
A lithium ion secondary battery for evaluation was produced using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L in a 1 (volume ratio) mixed solution and a polyethylene porous film having a thickness of 30 μm as a separator.

【0042】[実施例2〜5] [1]部分窒化酸化珪素粉末の製造 部分窒化反応条件(反応温度、N2ガス分圧、原料Si
z粉末のz値)を表1のように変更した以外は、実施
例1と同様にして、部分窒化酸化珪素粉末を得た。
[Examples 2 to 5] [1] Production of partial silicon nitride oxide powder Partial nitridation reaction conditions (reaction temperature, N 2 gas partial pressure, raw material Si
A partial silicon nitride oxide powder was obtained in the same manner as in Example 1 except that the z value of O z powder) was changed as shown in Table 1.

【0043】得られた部分窒化酸化珪素粉末について、
平均粒子径、BET比表面積、窒素含有率、酸素含有
率、x,y値を測定した。これらの結果を表2に示す。
With respect to the obtained partial silicon nitride oxide powder,
The average particle diameter, BET specific surface area, nitrogen content, oxygen content, and x, y values were measured. Table 2 shows the results.

【0044】[2]リチウムイオン二次電池の作製 上記各部分窒化酸化珪素粉末を用い、実施例1と同様に
して評価用リチウムイオン二次電池を作製した。
[2] Preparation of Lithium Ion Secondary Battery A lithium ion secondary battery for evaluation was prepared in the same manner as in Example 1 using each of the above partial silicon nitride oxide powders.

【0045】[実施例6] [1]部分窒化酸化珪素粉末の製造 金属珪素粉末(BET比表面積:5.2m2/g)と、
二酸化珪素粉末(BET比表面積:200m2/g)と
を等量モルの割合で混合した混合原料粉末を減圧下、
1,300℃の温度に加熱保持し、一酸化珪素ガスを発
生させ、この一酸化珪素ガスを水冷析出管にて急冷析出
させることでSiOz(z=1)粉末を製造した。続い
て、得られたSiOz(z=1)粉末を、高温雰囲気炉
(有効容積:15L)に200g仕込み、N2ガスを1
0NL/min流入させつつ、1,400℃に加熱して
2時間保持し、部分窒化酸化珪素粉末を185g得た。
得られた部分窒化酸化珪素粉末(SiNxy)のx,y
値は、x=1.0,y=0.5であった。
Example 6 [1] Production of Partial Silicon Nitride Oxide Powder Metal silicon powder (BET specific surface area: 5.2 m 2 / g)
A mixed raw material powder obtained by mixing silicon dioxide powder (BET specific surface area: 200 m 2 / g) at an equimolar ratio was mixed under reduced pressure.
By heating and maintaining the temperature at 1,300 ° C., a silicon monoxide gas was generated, and the silicon monoxide gas was rapidly cooled and deposited in a water-cooled deposition tube to produce a SiO z (z = 1) powder. Subsequently, 200 g of the obtained SiO z (z = 1) powder was charged into a high-temperature atmosphere furnace (effective volume: 15 L), and N 2 gas was added in an amount of 1 g.
While flowing at 0 NL / min, the mixture was heated to 1,400 ° C. and maintained for 2 hours to obtain 185 g of a partially silicon nitride oxide powder.
X, y of the obtained partial silicon nitride oxide powder (SiN x O y )
The values were x = 1.0, y = 0.5.

【0046】この部分窒化酸化珪素粉末のX線回折図を
図1に示す。得られた部分窒化酸化珪素粉末は、他の不
純物を含まないほぼ純粋なものであることが確認され
た。
FIG. 1 shows an X-ray diffraction diagram of this partially silicon oxynitride powder. It was confirmed that the obtained partial silicon nitride oxide powder was substantially pure without other impurities.

【0047】[実施例7] [1]部分窒化酸化珪素粉末の製造 実施例6と同様の酸化珪素粉末の製造方法にて、z=
1.20の酸化珪素(SiOz)粉末を製造し、この酸
化珪素粉末を用いて実施例6と同様な条件で部分窒化酸
化珪素粉末を180g製造した。得られた部分窒化酸化
珪素粉末(SiN xy)のx,y値は、x=1.05,
y=0.54であった。
Example 7 [1] Production of Partially Silicon Nitride Oxide Powder By the same method for producing silicon oxide powder as in Example 6, z =
1.20 silicon oxide (SiOzA) make a powder and use this acid
Partial nitric acid was obtained using silicon nitride powder under the same conditions as in Example 6.
180 g of silicon oxide powder was produced. Obtained partial oxynitride
Silicon powder (SiN xOy) Is x = 1.05,
y = 0.54.

【0048】この部分窒化酸化珪素粉末のX線回折図を
図2に示す。得られた部分窒化酸化珪素粉末は、他の不
純物を含まないほぼ純粋なものであることが確認され
た。
FIG. 2 shows an X-ray diffraction diagram of the partially silicon nitride oxide powder. It was confirmed that the obtained partial silicon nitride oxide powder was substantially pure without other impurities.

【0049】[実施例8] [1]部分窒化酸化珪素粉末の製造 窒化反応温度を1,550℃とした以外は、実施例6と
同様な方法により、部分窒化酸化珪素粉末を190g得
た。得られた部分窒化酸化珪素粉末(SiNxy)の
x,y値は、x=1.18,y=0.38であった。
Example 8 [1] Production of Partial Silicon Nitride Oxide Powder 190 g of partially silicon nitride oxide powder was obtained in the same manner as in Example 6 except that the nitriding reaction temperature was 1,550 ° C. The x, y values of the obtained partially silicon nitride oxide powder (SiN x O y ) were x = 1.18, y = 0.38.

【0050】この部分窒化酸化珪素粉末のX線回折図を
図3に示す。反応温度が多少高めであるため、得られた
部分窒化酸化珪素粉末中には少量の窒化珪素の混在が認
められる。
FIG. 3 shows an X-ray diffraction chart of the partially silicon nitride oxide powder. Since the reaction temperature is somewhat higher, a small amount of silicon nitride is found in the obtained partially nitrided silicon oxide powder.

【0051】[実施例9] [1]部分窒化酸化珪素粉末の製造 実施例6と同様の酸化珪素粉末の製造方法にて、z=
0.87の酸化珪素(SiOz)粉末を製造し、この酸
化珪素粉末を用いて実施例6と同様な条件で部分窒化酸
化珪素粉末を185g製造した。得られた部分窒化酸化
珪素粉末(SiN xy)のx,y値は、x=0.92,
y=0.71であった。
[Example 9] [1] Production of partially silicon nitrided oxide powder
0.87 silicon oxide (SiOzA) make a powder and use this acid
Partial nitric acid was obtained using silicon nitride powder under the same conditions as in Example 6.
185 g of silicon oxide powder was produced. Obtained partial oxynitride
Silicon powder (SiN xOy) Is x = 0.92,
y = 0.71.

【0052】この部分窒化酸化珪素粉末のX線回折図を
図4に示す。酸化珪素(SiOz)粉末のz値が0.8
7と低めであるため、得られた部分窒化酸化珪素粉末中
には窒化珪素の混在が認められることがわかる。
FIG. 4 shows an X-ray diffraction diagram of this partially silicon oxynitride powder. The z value of the silicon oxide (SiO z ) powder is 0.8
7, which is relatively low, it can be seen that silicon nitride is mixed in the obtained partial silicon nitride oxide powder.

【0053】[実施例10] [1]部分窒化酸化珪素粉末の製造 実施例6と同様の酸化珪素粉末の製造方法にて、z=
1.4の酸化珪素(SiOz)粉末を製造し、この酸化
珪素粉末を用いて実施例6と同様な条件で部分窒化酸化
珪素粉末を190g製造した。得られた部分窒化酸化珪
素粉末(SiNxy)のx,y値は、x=0.88,y
=0.93であった。
Example 10 [1] Production of Partial Silicon Nitride Oxide Powder A method for producing silicon oxide powder similar to that of Example 6
1.4 silicon oxide (SiO z ) powder was produced, and 190 g of a partially nitrided silicon oxide powder was produced using this silicon oxide powder under the same conditions as in Example 6. The x and y values of the obtained partially nitrided silicon oxide powder (SiN x O y ) are x = 0.88, y
= 0.93.

【0054】この部分窒化酸化珪素粉末のX線回折図を
図5に示す。酸化珪素(SiOz)粉末のz値が1.4
と高めであるため、得られた部分窒化酸化珪素粉末中に
はクリストバライト(SiO2)の混在が認められるこ
とがわかる。
FIG. 5 shows an X-ray diffraction pattern of the partially silicon nitride oxide powder. The z-value of silicon oxide (SiO z ) powder is 1.4
It is understood that cristobalite (SiO 2 ) was mixed in the obtained partially silicon nitride oxide powder.

【0055】[比較例1〜3] [1](部分窒化)酸化珪素粉末の製造 部分窒化反応条件(反応温度、N2ガス分圧、原料Si
z粉末のz値)を表1のように変更した以外は、実施
例1と同様にして、(部分窒化)酸化珪素粉末を得た。
[Comparative Examples 1 to 3] [1] Production of (partially nitrided) silicon oxide powder Partial nitridation reaction conditions (reaction temperature, N 2 gas partial pressure, raw material Si
A (partially nitrided) silicon oxide powder was obtained in the same manner as in Example 1 except that the z value of O z powder) was changed as shown in Table 1.

【0056】得られた(部分窒化)酸化珪素粉末につい
て、平均粒子径、BET比表面積、窒素含有率、酸素含
有率、x,y値を測定した。これらの結果を表2に示
す。
The obtained (partially nitrided) silicon oxide powder was measured for average particle diameter, BET specific surface area, nitrogen content, oxygen content, and x, y values. Table 2 shows the results.

【0057】[2]リチウムイオン二次電池の作製 上記各部分窒化酸化珪素粉末を用い、実施例1と同様に
して評価用リチウムイオン二次電池を作製した。
[2] Production of Lithium-Ion Secondary Battery A lithium-ion secondary battery for evaluation was produced in the same manner as in Example 1 using each of the above partial silicon nitride oxide powders.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】上記実施例1〜5および比較例1〜3で作
製した評価用リチウムイオン二次電池について、以下に
示す充放電試験を行った。
The lithium ion secondary batteries for evaluation produced in Examples 1 to 5 and Comparative Examples 1 to 3 were subjected to the following charge / discharge tests.

【0061】[充放電試験]作製した各評価用リチウム
イオン二次電池を、一晩室温で放置した後、二次電池充
放電試験装置((株)ナガノ製)を用い、テストセルの
電圧が0Vに達するまで、1mAの定電流で充電を行
い、0Vに達した後、セル電圧を0Vに保つように電流
を減少させて充電を行った。そして、電流値が20μA
を下回った時点で充電を終了した。
[Charge / Discharge Test] Each of the prepared lithium ion secondary batteries for evaluation was left overnight at room temperature, and then the voltage of the test cell was measured using a secondary battery charge / discharge tester (manufactured by Nagano Corporation). The battery was charged at a constant current of 1 mA until the voltage reached 0 V, and after the voltage reached 0 V, the current was reduced to keep the cell voltage at 0 V, and the battery was charged. And the current value is 20 μA
The charging was terminated when the value fell below the threshold.

【0062】その後、1mAの定電流で放電を行い、セ
ル電圧が1.8Vを上回った時点で放電を終了し、放電
容量を測定した。
Thereafter, discharging was performed at a constant current of 1 mA. When the cell voltage exceeded 1.8 V, the discharging was terminated, and the discharge capacity was measured.

【0063】続いて、上記充放電試験を繰り返し、各評
価用リチウムイオン二次電池について、10サイクル後
の充放電試験を行い、10サイクル後の放電容量および
10サイクル後の容量維持率を測定した。得られた結果
を表3に示す。
Subsequently, the above charge / discharge test was repeated, and a charge / discharge test after 10 cycles was performed for each lithium ion secondary battery for evaluation, and a discharge capacity after 10 cycles and a capacity retention rate after 10 cycles were measured. . Table 3 shows the obtained results.

【0064】[0064]

【表3】 [Table 3]

【0065】表3に示されるように、実施例1〜5の部
分窒化酸化珪素粉末を負極活物質に用いているリチウム
イオン二次電池は、初回放電容量が980〜1150m
Ah/gと高容量であるとともに、10サイクル後の容
量維持率も80〜89.8%と高い、すなわち、高容量
かつサイクル性に優れた二次電池であることがわかる。
As shown in Table 3, the lithium ion secondary batteries using the partial silicon nitride oxide powders of Examples 1 to 5 as the negative electrode active material had an initial discharge capacity of 980 to 1150 m.
It is understood that the secondary battery has a high capacity of Ah / g and a high capacity retention rate after 10 cycles of 80 to 89.8%, that is, a high capacity and excellent cycleability.

【0066】これに対して、比較例1〜3では、本発明
の部分窒化酸化珪素粉末(SiNxy)のx,y値を満
たしていないため、容量およびサイクル性の両者を満足
する二次電池が得られていないことがわかる。
On the other hand, Comparative Examples 1 to 3 do not satisfy the x and y values of the partially silicon oxynitride powder (SiN x O y ) of the present invention, and thus satisfy both the capacity and the cycleability. It can be seen that a secondary battery has not been obtained.

【0067】すなわち、比較例1では、初回放電容量が
高いものの、サイクル維持率が各実施例よりも低く、比
較例2,3では、サイクル維持率には優れるものの、放
電容量が極めて低くなっている。
That is, in Comparative Example 1, although the initial discharge capacity was high, the cycle retention rate was lower than in each of the examples. In Comparative Examples 2 and 3, the cycle retention rate was excellent, but the discharge capacity was extremely low. I have.

【0068】[比較例4]ヒュームドシリカ(Si
2、BET比表面積:200m2/g)と試薬グレード
金属珪素(Si、BET比表面積:3.5m2/g)を
SiO2/Si=1/3のモル比で混合した混合粉末2
00gを反応炉内に投入し、N2ガスを10NL/mi
nで流入させつつ、1,450℃の温度で3時間窒化反
応を行い、部分窒化酸化珪素粉末を得た。
Comparative Example 4 Fumed silica (Si
Mixed powder 2 in which O 2 , BET specific surface area: 200 m 2 / g) and reagent grade metallic silicon (Si, BET specific surface area: 3.5 m 2 / g) were mixed at a molar ratio of SiO 2 / Si = 1/3.
00 g was charged into the reactor, and N 2 gas was supplied at 10 NL / mi.
While flowing in with n, a nitriding reaction was carried out at a temperature of 1,450 ° C. for 3 hours to obtain a partially silicon nitrided oxide powder.

【0069】得られた部分窒化酸化珪素粉末は、平均粒
子径6.2μm、BET比表面積15.3m2/g、窒
素含有量28wt%。酸素含有量14wt%の一般式S
iNxy(x=1.0,y=0.5)の部分窒化酸化珪
素粉末であった。
The obtained partially silicon nitride oxide powder has an average particle diameter of 6.2 μm, a BET specific surface area of 15.3 m 2 / g, and a nitrogen content of 28 wt%. General formula S with an oxygen content of 14 wt%
It was a partially silicon nitride oxide powder of iN x O y (x = 1.0, y = 0.5).

【0070】この粉末を用い、上記実施例1と同様な方
法で評価用リチウムイオン二次電池を作製し、電池評価
を行ったところ、初回放電容量210mAh/g、10
サイクル後の放電容量200mAh/g、容量維持率9
5.2%であり、ほぼ添加した黒鉛のみの容量に等しい
ほとんど不活性な物質であった。
Using this powder, a lithium ion secondary battery for evaluation was produced in the same manner as in Example 1 above, and the battery was evaluated. The initial discharge capacity was 210 mAh / g, and the initial discharge capacity was 210 mAh / g.
Discharge capacity after cycling 200 mAh / g, capacity retention 9
It was 5.2%, which was almost an inert substance almost equivalent to the volume of only graphite added.

【0071】[0071]

【発明の効果】以上に述べたように、本発明の部分窒化
酸化珪素粉末は、一般式SiNxyで表され、x,yの
範囲が、0<x<1.3,0<y<1.5を満たすもの
であるから、リチウムイオン二次電池等の二次電池負極
活物質として用いた場合、高容量、かつ、サイクル特性
に優れた二次電池を得ることができる。
As described above, the partially nitrided silicon oxide powder of the present invention is represented by the general formula SiN x O y , and the range of x, y is 0 <x <1.3, 0 <y. Since it satisfies <1.5, when used as a negative electrode active material for a secondary battery such as a lithium ion secondary battery, a secondary battery having high capacity and excellent cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例6で得られた部分窒化酸化珪素粉末のX
線回折図である。
FIG. 1 shows the X of the partially silicon oxynitride powder obtained in Example 6.
FIG.

【図2】実施例7で得られた部分窒化酸化珪素粉末のX
線回折図である。
FIG. 2 shows the X of the partially silicon oxynitride powder obtained in Example 7.
FIG.

【図3】実施例8で得られた部分窒化酸化珪素粉末のX
線回折図である。
FIG. 3 shows the X of the partially silicon oxynitride powder obtained in Example 8.
FIG.

【図4】実施例9で得られた部分窒化酸化珪素粉末のX
線回折図である。
FIG. 4 shows the X of the partially silicon oxynitride powder obtained in Example 9.
FIG.

【図5】実施例10で得られた部分窒化酸化珪素粉末の
X線回折図である。
FIG. 5 is an X-ray diffraction diagram of the partially silicon oxynitride powder obtained in Example 10.

フロントページの続き (72)発明者 大岡 憲司 群馬県安中市磯部2丁目13番1号 有限会 社磯部サービス内 (72)発明者 荒又 幹夫 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 (72)発明者 上野 進 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 (72)発明者 籾井 一磨 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 (72)発明者 福田 健 東京都千代田区大手町二丁目6番1号 信 越化学工業株式会社内 Fターム(参考) 4G072 AA38 BB05 GG01 GG03 HH14 JJ50 RR07 TT06 UU30 5H029 AJ03 AJ05 AK02 AK03 AK05 AL01 AM03 AM04 AM05 AM07 AM16 CJ02 CJ11 CJ28 DJ16 DJ17 EJ03 EJ09 HJ02 HJ07 HJ14 5H050 AA07 AA08 BA15 CA02 CA08 CA09 CA10 CA11 CB01 FA17 FA19 GA02 GA11 GA27 HA02 HA07 HA14 Continuing from the front page (72) Inventor Kenji Ooka 2-13-1, Isobe, Annaka-shi, Gunma Inside the Isobe Service Co., Ltd. (72) Inventor Mikio Arata 2- 13-1, Isobe, Annaka-shi, Gunma Shin-Etsu (72) Inventor Susumu Ueno 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Gunma Office (72) Inventor Kazuma Kuii Isobe, Annaka-shi, Gunma No. 13-1, Shin-Etsu Kagaku Kogyo Co., Ltd. Gunma Office (72) Inventor Ken Fukuda 2-6-1 Otemachi, Chiyoda-ku, Tokyo Shin-Etsu Chemical Co., Ltd. F term (reference) 4G072 AA38 BB05 GG01 GG03 HH14 JJ50 RR07 TT06 UU30 5H029 AJ03 AJ05 AK02 AK03 AK05 AL01 AM03 AM04 AM05 AM07 AM16 CJ02 CJ11 CJ28 DJ16 DJ17 EJ03 EJ09 HJ02 HJ07 HJ14 5H050 AA07 AA08 BA15 CA02 CA08 CA09 CA10 CA11 GA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化珪素粉末SiOz(但し、0<z<
2)を、窒素ガス含有雰囲気下で加熱して部分的に窒化
させることにより得られる、一般式SiNxyで表さ
れ、x,yの範囲が、0<x<1.3,0<y<1.5
であることを特徴とする部分窒化酸化珪素粉末。
A silicon oxide powder SiO z (where 0 <z <
2) is represented by a general formula SiN x O y obtained by heating and partially nitriding in an atmosphere containing nitrogen gas, and the range of x and y is 0 <x <1.3, 0 < y <1.5
A partially silicon nitrided oxide powder, characterized in that:
【請求項2】 前記加熱温度が1,000〜1,600
℃であることを特徴とする請求項1記載の部分窒化酸化
珪素粉末。
2. The heating temperature is 1,000 to 1,600.
2. The partially silicon nitride oxide powder according to claim 1, wherein the temperature is ° C. 3.
【請求項3】 BET比表面積が0.5〜50m2/g
であることを特徴とする請求項1または2記載の部分窒
化酸化珪素粉末。
3. A BET specific surface area of 0.5 to 50 m 2 / g.
The partially silicon nitride oxide powder according to claim 1 or 2, wherein:
【請求項4】 二次電池の負極活物質用であることを特
徴とする請求項1,2または3記載の部分窒化酸化珪素
粉末。
4. The partially silicon nitride oxide powder according to claim 1, which is used for a negative electrode active material of a secondary battery.
【請求項5】 酸化珪素粉末SiOz(但し、0<z<
2)を、窒素ガス含有雰囲気下、1,000〜1,60
0℃の温度範囲で加熱し、部分的に窒化させることを特
徴とする部分窒化酸化珪素粉末の製造方法。
5. Silicon oxide powder SiO z (where 0 <z <
2) in a nitrogen gas-containing atmosphere at 1,000 to 1,60
A method for producing a partially nitrided silicon oxide powder, wherein the powder is heated in a temperature range of 0 ° C. and partially nitrided.
【請求項6】 前記SiOz粉末におけるzの範囲が
1.0≦z<1.6であり、BET比表面積が1〜10
0m2/gであることを特徴とする請求項5記載の部分
窒化酸化珪素粉末の製造方法。
6. The SiO z powder has a z range of 1.0 ≦ z <1.6 and a BET specific surface area of 1 to 10
The process according to claim 5 parts silicon nitride oxide powder, wherein the a 0 m 2 / g.
JP2001279679A 2001-03-26 2001-09-14 Partially nitrided silicon oxynitride powder and its producing method Pending JP2002356314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279679A JP2002356314A (en) 2001-03-26 2001-09-14 Partially nitrided silicon oxynitride powder and its producing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001087336 2001-03-26
JP2001-87336 2001-03-26
JP2001279679A JP2002356314A (en) 2001-03-26 2001-09-14 Partially nitrided silicon oxynitride powder and its producing method

Publications (1)

Publication Number Publication Date
JP2002356314A true JP2002356314A (en) 2002-12-13

Family

ID=26612030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279679A Pending JP2002356314A (en) 2001-03-26 2001-09-14 Partially nitrided silicon oxynitride powder and its producing method

Country Status (1)

Country Link
JP (1) JP2002356314A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124897A1 (en) * 2004-06-15 2005-12-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery and negative electrode thereof
JP2006032321A (en) * 2004-06-16 2006-02-02 Matsushita Electric Ind Co Ltd Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it
CN100423327C (en) * 2005-06-24 2008-10-01 松下电器产业株式会社 Negative pole for lithium ion secondary battery and producing method thereof
WO2009011132A1 (en) 2007-07-19 2009-01-22 Panasonic Corporation Lithium ion secondary battery
US7740982B2 (en) 2004-06-16 2010-06-22 Panasonic Corporation Active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery including the active material
US8119287B2 (en) 2005-05-16 2012-02-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte rechargeable battery, and negative electrode and material thereof
US20140120416A1 (en) * 2012-10-26 2014-05-01 Industry-University Cooperation Foundation Hanyang University (IUCF-HYU) Negative electrode for lithium secondary battery and method of manufacturing the same
KR101463114B1 (en) * 2008-02-15 2014-11-20 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
WO2015015548A1 (en) * 2013-07-29 2015-02-05 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary batteries
JP2015204192A (en) * 2014-04-14 2015-11-16 信越化学工業株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing negative electrode material for lithium ion secondary battery
CN110071270A (en) * 2019-04-01 2019-07-30 桂林电子科技大学 N doping aoxidizes sub- silicium cathode material and the preparation method and application thereof
WO2020003692A1 (en) * 2018-06-26 2020-01-02 信越化学工業株式会社 Method of manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
WO2022060271A1 (en) * 2020-09-16 2022-03-24 Viaton Ab A silicon oxynitride or an oxydized silicon nitride powder of the general formula si(x)0(y)n(z), a preparation method thereof and the use thereof in antipathogen products

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124897A1 (en) * 2004-06-15 2005-12-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery and negative electrode thereof
KR100860341B1 (en) * 2004-06-15 2008-09-26 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery and negative electrode thereof
JP2006032321A (en) * 2004-06-16 2006-02-02 Matsushita Electric Ind Co Ltd Active material, its manufacturing method, and nonaqueous electrolyte secondary battery containing it
US7740982B2 (en) 2004-06-16 2010-06-22 Panasonic Corporation Active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery including the active material
US8119287B2 (en) 2005-05-16 2012-02-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte rechargeable battery, and negative electrode and material thereof
CN100423327C (en) * 2005-06-24 2008-10-01 松下电器产业株式会社 Negative pole for lithium ion secondary battery and producing method thereof
US7767341B2 (en) 2005-06-24 2010-08-03 Panasonic Corporation Negative electrode for lithium ion secondary battery and method for producing the negative electrode
WO2009011132A1 (en) 2007-07-19 2009-01-22 Panasonic Corporation Lithium ion secondary battery
US8486549B2 (en) 2007-07-19 2013-07-16 Panasonic Corporation Lithium ion secondary battery
KR101463114B1 (en) * 2008-02-15 2014-11-20 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
US20140120416A1 (en) * 2012-10-26 2014-05-01 Industry-University Cooperation Foundation Hanyang University (IUCF-HYU) Negative electrode for lithium secondary battery and method of manufacturing the same
US9845522B2 (en) * 2012-10-26 2017-12-19 Samsung Sdi Co., Ltd. Negative electrode for lithium secondary battery and method of manufacturing the same
WO2015015548A1 (en) * 2013-07-29 2015-02-05 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary batteries
JP2015204192A (en) * 2014-04-14 2015-11-16 信越化学工業株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing negative electrode material for lithium ion secondary battery
WO2020003692A1 (en) * 2018-06-26 2020-01-02 信越化学工業株式会社 Method of manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP2020004523A (en) * 2018-06-26 2020-01-09 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery
JP7003006B2 (en) 2018-06-26 2022-01-20 信越化学工業株式会社 Manufacturing method of negative electrode active material for non-aqueous electrolyte secondary battery
CN110071270A (en) * 2019-04-01 2019-07-30 桂林电子科技大学 N doping aoxidizes sub- silicium cathode material and the preparation method and application thereof
CN110071270B (en) * 2019-04-01 2021-02-09 桂林电子科技大学 Nitrogen-doped silicon monoxide negative electrode material and preparation method and application thereof
WO2022060271A1 (en) * 2020-09-16 2022-03-24 Viaton Ab A silicon oxynitride or an oxydized silicon nitride powder of the general formula si(x)0(y)n(z), a preparation method thereof and the use thereof in antipathogen products

Similar Documents

Publication Publication Date Title
JP4702510B2 (en) Lithium-containing silicon oxide powder and method for producing the same
TWI501456B (en) Non-aqueous electrolyte battery negative electrode material and non-aqueous electrolyte battery anode material manufacturing method and lithium-ion battery
JP4207055B2 (en) Method for producing SiOx (x &lt;1)
JP4752992B2 (en) Anode material for non-aqueous electrolyte secondary battery
US5425932A (en) Method for synthesis of high capacity Lix Mn2 O4 secondary battery electrode compounds
KR100777932B1 (en) Method for the preparation of cathode active material and method for the preparation of non-aqueous electrolyte cell
JP3921931B2 (en) Cathode active material and non-aqueous electrolyte battery
JP4734701B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4734700B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
EP2936592B1 (en) Lmfp cathode materials with improved electrochemical performance
JP5323410B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP3982658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
US20090028772A1 (en) Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
KR102649226B1 (en) lithium ion battery
JP4081676B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP2018060759A (en) Method for manufacturing nickel cobalt manganese-containing composite hydroxide, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material hereof
JP2002356314A (en) Partially nitrided silicon oxynitride powder and its producing method
JP2017188344A (en) Lithium-containing silicon oxide powder and method for manufacturing the same
JP4491949B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4707950B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, electrode for lithium battery, and lithium battery
KR101201752B1 (en) Negative active material for lithium secondary battery, preparing method thereof and lithium secondary battery including same
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JP2021520602A (en) Anode material and its manufacturing method and usage method
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same