JP4081676B2 - Anode material for non-aqueous electrolyte secondary battery - Google Patents

Anode material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4081676B2
JP4081676B2 JP2003119192A JP2003119192A JP4081676B2 JP 4081676 B2 JP4081676 B2 JP 4081676B2 JP 2003119192 A JP2003119192 A JP 2003119192A JP 2003119192 A JP2003119192 A JP 2003119192A JP 4081676 B2 JP4081676 B2 JP 4081676B2
Authority
JP
Japan
Prior art keywords
silicon
secondary battery
negative electrode
electrode material
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003119192A
Other languages
Japanese (ja)
Other versions
JP2004323284A (en
Inventor
宏文 福岡
幹夫 荒又
悟 宮脇
進 上野
一磨 籾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003119192A priority Critical patent/JP4081676B2/en
Publication of JP2004323284A publication Critical patent/JP2004323284A/en
Application granted granted Critical
Publication of JP4081676B2 publication Critical patent/JP4081676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池用負極活物質として有用とされる珪素複合体を用いた非水電解質二次電池用負極材に関する。
【0002】
【従来の技術】
近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Snなどの酸化物及びそれらの複合酸化物を用いる方法(例えば、特許文献1:特開平5−174818号公報、特許文献2:特開平6−60867号公報参照)、溶融急冷した金属酸化物を負極材として適用する方法(例えば、特許文献3:特開平10−294112号公報参照)、負極材料に酸化珪素を用いる方法(例えば、特許文献4:特許第2997741号公報)、負極材料にSi22O及びGe22Oを用いる方法(例えば、特許文献5:特開平11−102705号公報参照)等が知られている。
【0003】
しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。
特に、特許第2997741号公報(特許文献4)では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らがみる限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったりし、改良する余地がある。
【0004】
【特許文献1】
特開平5−174818号公報
【特許文献2】
特開平6−60867号公報
【特許文献3】
特開平10−294112号公報
【特許文献4】
特許第2997741号公報
【特許文献5】
特開平11−102705号公報
【0005】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みなされたもので、よりサイクル性の高いリチウムイオン二次電池の負極の製造を可能とする珪素複合体を用いた非水電解質二次電池用負極材を提供することを目的とする。
【0006】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を行った結果、よりサイクル性の高い非水電解質二次電池負極用の活剤として有効な珪素複合体を見出した。
即ち、充放電容量の大きな電極材料の開発は極めて重要であり、各所で研究開発が行われている。このような中で、リチウムイオン二次電池用負極活物質として珪素及び無定形である酸化珪素(SiOx)はその容量が大きいということで大きな関心を持たれているが、繰り返し充放電をしたときの劣化が大きい、即ちサイクル性に劣ること、また、特に初期効率が低いことから、ごく一部のものを除き実用化には至っていないのが現状であった。
【0007】
本発明者らは、この酸化珪素(SiOx)をリチウムイオン二次電池用負極活物質として使用した時に、多回数の充放電後の急激な充放電容量低下の原因について、構造そのものからの検討を行い、解析した結果、リチウムを大量に吸蔵・放出することによって大きな体積変化が起こり、これに伴い粒子の破壊が起こることが原因であることがわかった。
そこで、このようなことに基づいて、リチウムの吸蔵・放出に伴う体積変化に対して安定な構造について鋭意検討を行った結果、珪素微結晶又は微粒子を不活性で強固な物質、例えば二酸化珪素に分散させることによって、リチウムイオン二次電池用負極活物質としての上記問題を解決し、安定して大容量の充放電容量を有し、かつ充放電のサイクル性及び効率を大幅に向上させることが出来得ることを見出した。従って、珪素の微結晶及び/又は微粒子を珪素化合物、例えば二酸化珪素の中に細かく分散することが有効であることを知見し、本発明をなすに至った。
【0008】
従って、本発明は、下記珪素複合体を用いた非水電解質二次電池用負極材を提供する。
(1)珪素の微結晶が珪素系化合物に分散した構造を有する粒子である(但し、粒子の表面を炭素でコーティングしてなるものを除く)珪素複合体を用いた非水電解質二次電池用負極材
(2)珪素の微結晶が珪素系化合物に分散した構造を有する粒子である(但し、粒子の表面を炭素でコーティングしてなるものを除く)珪素複合体と導電剤との混合物であって、混合物中の導電剤の含有量が1〜60重量%である混合物を用いた非水電解質二次電池用負極材。
)平均粒子径0.01〜30μm、BET比表面積0.5〜20m2/gである(1)又は(2)記載の非水電解質二次電池用負極材
)珪素微結晶の大きさが1〜500nmであり、珪素系化合物が二酸化珪素であることを特徴とする(1)〜(3)のいずれか1項記載の非水電解質二次電池用負極材
珪素複合体が、X線回折において、Si(111)に帰属される回折ピークが観察され、その回折線の半価幅をもとにシェーラー法により求めた珪素の結晶の大きさが1〜500nmのものであることを特徴とする(1)〜(4)のいずれか1項記載の非水電解質二次電池用負極材
珪素複合体が、酸化珪素を900〜1400℃の温度域において不活性ガス雰囲気下で不均化することにより得られたものである(1)〜(5)のいずれか1項記載の非水電解質二次電池用負極材
)酸化珪素が平均粒子径0.01〜30μm、BET比表面積0.1〜30m2/gの一般式SiOx(1.0≦x<1.6)で表される酸化珪素粉末である(6)記載の非水電解質二次電池用負極材
【0009】
以下、本発明につき更に詳しく説明する。
本発明は、リチウムイオン二次電池用負極活物質として使用した場合、充放電容量が現在主流であるグラファイト系のものと比較してその数倍の容量であることから期待されている反面、繰り返しの充放電による性能低下が大きなネックとなっている珪素系物質のサイクル性及び効率を改善した珪素複合体に関するもので、この珪素複合体は、珪素の微結晶が珪素系化合物、好ましくは二酸化珪素に分散した構造を有するものである。
【0010】
この場合、本発明の珪素複合体は、下記性状を有していることが好ましい。
i.銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた珪素の結晶の粒子径が好ましくは1〜500nm、より好ましくは2〜200nm、更に好ましくは2〜20nmである。珪素の微粒子の大きさが1nmより小さいと、充放電容量が小さくなる場合があるし、逆に500nmより大きいと充放電時の膨張収縮が大きくなり、サイクル性が低下するおそれがある。なお、珪素の微粒子の大きさは透過電子顕微鏡写真により測定することができる。
ii.固体NMR(29Si−DDMAS)測定において、そのスペクトルが−110ppm付近を中心とするブロードな二酸化珪素のピークとともに−84ppm付近にSiのダイヤモンド結晶の特徴であるピークが存在する。なお、このスペクトルは、通常の酸化珪素(SiOx:x=1.0+α)とは全く異なるもので、構造そのものが明らかに異なっているものである。また、透過電子顕微鏡によって、シリコンの結晶が無定形の二酸化珪素に分散していることが確認される。
【0011】
この珪素/二酸化珪素分散中における珪素微粒子の分散量は、2〜36重量%、特に10〜30重量%程度であることが好ましい。この分散珪素量が2重量%未満では、充放電容量が小さくなる場合があり、逆に36重量%を超えるとサイクル性が劣る場合がある。
【0012】
本発明の珪素複合体粉末の平均粒子径は、0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上、特に好ましくは0.3μm以上で、上限として30μm以下、より好ましくは20μm以下、更に好ましくは10μm以下が好ましい。平均粒子径が小さすぎると、嵩密度が小さくなりすぎて、単位体積当たりの充放電容量が低下するし、逆に平均粒子径が大きすぎると、電極膜作製が困難になり、集電体から剥離するおそれがある。なお、平均粒子径は、レーザー光回折法による粒度分布測定における重量平均値D50(即ち、累積重量が50%となる時の粒子径又はメジアン径)として測定した値である。
【0013】
本発明の珪素複合体粉末のBET比表面積は、0.5〜20m2/g、特に1〜10m2/gが好ましい。BET比表面積が0.5m2/gより小さいと、表面活性が小さくなり、電極作製時の結着剤の結着力が小さくなり、結果として充放電を繰り返した時のサイクル性が低下する場合があり、逆にBET比表面積が20m2/gより大きいと、電極作製時に溶媒の吸収量が大きくなり、結着性を維持するために結着剤を大量に添加する場合が生じ、結果として導電性が低下し、サイクル性が低下するおそれがある。なお、BET比表面積はN2ガス吸着量によって測定するBET1点法にて測定した値である。
【0014】
なお、本発明の珪素複合体は、その粒子表面を他物質で被覆することなく、そのままで最終目的物として使用することができ、特に粒子表面が炭素でコーティングされているものではない。本発明の、表面が炭素等の他物質で被覆されていない珪素複合体は、例えばボタン型リチウム二次電池などの可逆容量いっぱいには満たない比較的マイルドな条件下での充放電を繰り返す様な用途においては、サイクル特性に優れた負極材料として特に有用なものである。
【0015】
次に、本発明における珪素複合体の製造方法について説明する。
本発明の珪素複合体粉末は、珪素の微結晶が珪素系化合物に分散した構造を有する粒子であり、好ましくは0.01〜30μm程度の平均粒子径を有するものであれば、その製造方法は特に限定されるものではないが、例えば下記の方法を好適に採用することができる。
一般式SiOx(1.0≦x<1.6)で表される酸化珪素粉末を不活性ガス雰囲気下900〜1400℃の温度域で熱処理を施して不均化する方法。
【0016】
なお、本発明において酸化珪素とは、通常、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称であり、本発明で用いられる酸化珪素粉末は一般式SiOxで表され、平均粒子径は0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上で、上限として30μm以下、より好ましくは20μm以下が好ましい。BET比表面積は0.1m2/g以上、より好ましくは0.2m2/g以上で、上限として30m2/g以下、より好ましくは20m2/g以下が好ましい。xの範囲は1.0≦x<1.6、より好ましくは1.0≦x≦1.3、更に好ましくは1.0≦x≦1.2であることが望ましい。酸化珪素粉末の平均粒子径及びBET比表面積が上記範囲外では所望の平均粒子径及びBET比表面積を有する珪素複合体粉末が得られないし、xの値が1.0より小さいSiOx粉末の製造は困難であるし、xの値が1.6以上のものは、熱処理を行い、不均化反応を行った際に、不活性なSiO2の割合が大きく、リチウムイオン二次電池として使用した場合、充放電容量が低下するおそれがある。
【0017】
一方、酸化珪素の不均化において、熱処理温度が900℃より低いと、不均化が全く進行しないかシリコンの微細なセル(珪素の微結晶)の形成に極めて長時間を要し、効率的でなく、逆に1400℃より高いと、二酸化珪素部の構造化が進み、リチウムイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。より好ましくは熱処理温度は1000〜1300℃、特に1100〜1250℃である。なお、処理時間(不均化時間)は不均化処理温度に応じて10分〜20時間、特に30分〜12時間程度の範囲で適宜制御することができるが、例えば1100℃の処理温度においては5時間程度が好適である。
【0018】
なお、上記不均化処理は、不活性ガス雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。この場合、(処理)ガスとしては、Ar、He、H2、N2等の上記処理温度にて不活性なガス単独もしくはそれらの混合ガスを用いることができる。
【0019】
本発明で得られた珪素複合体の粉末は、これを負極材(負極活物質)として、高容量でかつサイクル特性の優れた非水電解質二次電池、特に、リチウムイオン二次電池を製造することができる。
この場合、得られたリチウムイオン二次電池は、上記負極活物質を用いる点に特徴を有し、その他の正極、負極、電解質、セパレータなどの材料及び電池形状などは限定されない。例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn24、V25、MnO2、TiS2、MoS2などの遷移金属の酸化物及びカルコゲン化合物などが用いられる。電解質としては、例えば、過塩素酸リチウムなどのリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフランなどが単体で又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
【0020】
なお、上記珪素複合体粉末を用いて負極を作製する場合、珪素複合体自体が導電性を有していないため、珪素複合体粉末に黒鉛等の導電剤を添加する必要がある。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl、Ti、Fe、Ni、Cu、Zn、Ag、Sn、Si等の金属粉末や金属繊維、又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
【0021】
ここで、導電剤の添加量は、導電性珪素複合体と導電剤の混合物中1〜60重量%が好ましく、特に10〜50重量%、とりわけ20〜50重量%が好ましい。1重量%未満だと充放電に伴う膨張・収縮に耐えられなくなる場合があり、60重量%を超えると充放電容量が小さくなる場合がある。
【0022】
【実施例】
以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、下記例で%は重量%を示し、grはグラムを示す。
【0023】
[実施例]
平均粒子径3μm、BET比表面積12m2/gの酸化珪素粉末(SiOx:x=1.02)を、窒化珪素製トレイに200g仕込んだ後、雰囲気を保持できる処理炉内に静置した。次にアルゴンガスを流入し、処理炉内をアルゴン置換した後、アルゴンガスを2NL/min流入しつつ300℃/hrの昇温速度で1200℃まで昇温し、3時間保持した。保持終了後、降温を開始し、室温到達後、粉末を回収した。得られた粉末は、平均粒子径3.5μm、BET比表面積11m2/gの粉末であり、この粉末のCu−Kα線によるX線回折パターンより、2θ=28.4°付近のSi(111)に帰属される回折線が存在し、この回折線の半価幅よりシェーラー法により求めた二酸化珪素中に分散した珪素の結晶の大きさが40nmである珪素複合体粉末であることが確認された。
【0024】
[電池評価]
次に得られた珪素複合体粉末を用いて以下の方法にて電池評価を行った。
まず、得られた珪素複合体に人造黒鉛(平均粒子径D50=5μm)を加え、人造黒鉛:珪素複合体=50:50(重量比)となるように調製し、混合物を得た。次にこの混合物にポリフッ化ビニリデンを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、120℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、最終的には2cm2に打ち抜き、負極とした。
ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートと1,2−ジメトキシエタンの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
【0025】
作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、テストセルの電圧が0Vに達するまで3mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が100μAを下回った時点で充電を終了した。放電は3mAの定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の充放電試験を20サイクル行った。
その結果、初回放電量=670mAh/g、20サイクル後の放電容量=480mAh/g、20サイクル後の容量維持率=71.6%のサイクル性に優れるリチウムイオン二次電池であることが確認された。
【0026】
[比較例]
実施例で用いた酸化珪素粉末を熱処理しない他は実施例と同様な方法にて電池評価を行った。
この酸化珪素粉末のCu−Kα線によるX線回折パターンより、酸化珪素は2θ=28.4°付近のSi(111)に帰属される回折線が見られない非晶質な粉末であった。
電池評価の結果、初回放電量=700mAh/g、20サイクル後の放電容量=220mAh/g、20サイクル後の容量維持率=31.4%の明らかに実施例に比べサイクル性に劣るリチウムイオン二次電池であった。
【0027】
【発明の効果】
本発明の珪素複合体は、非水電解質二次電池用負極材として用いられて、良好なサイクル性を与え、その製造方法についても簡便であり、十分工業的規模の生産に耐え得るものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode material for non-aqueous electrolyte secondary battery using the silicon composite which is useful as a negative electrode active material for a lithium ion secondary battery.
[0002]
[Prior art]
In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices. Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, Sn, or a composite oxide thereof as a negative electrode material (for example, Patent Document 1: Kaihei 5-174818, Patent Document 2: Japanese Patent Laid-Open No. 6-60867, and a method of applying a melt-quenched metal oxide as a negative electrode material (for example, see Patent Document 3: Japanese Patent Laid-Open No. 10-294112) Further, a method using silicon oxide as a negative electrode material (for example, Patent Document 4: Japanese Patent No. 2997741), a method using Si 2 N 2 O and Ge 2 N 2 O as a negative electrode material (for example, Patent Document 5: Japanese Patent Laid-Open No. 11-133). -102705) and the like are known.
[0003]
However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycleability is insufficient, or the required characteristics of the market are still insufficient, and are not always satisfactory. However, further improvement in energy density has been desired.
In particular, in Japanese Patent No. 2997741 (Patent Document 4), silicon oxide is used as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. There is room for improvement because the irreversible capacity at the time of discharge is large and the cycle performance has not reached the practical level.
[0004]
[Patent Document 1]
JP-A-5-174818 [Patent Document 2]
Japanese Patent Laid-Open No. 6-60867 [Patent Document 3]
JP-A-10-294112 [Patent Document 4]
Japanese Patent No. 2999741 [Patent Document 5]
Japanese Patent Laid-Open No. 11-102705
[Problems to be solved by the invention]
This invention is made in view of the said situation, and provides the negative electrode material for nonaqueous electrolyte secondary batteries using the silicon composite which enables manufacture of the negative electrode of a lithium ion secondary battery with higher cycle property. With the goal.
[0006]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventor has found a silicon composite that is effective as an activator for a non-aqueous electrolyte secondary battery negative electrode with higher cycleability.
In other words, the development of electrode materials having a large charge / discharge capacity is extremely important, and research and development are being conducted in various places. Under such circumstances, silicon and amorphous silicon oxide (SiO x ) as negative electrode active materials for lithium ion secondary batteries are of great interest because of their large capacity, but were repeatedly charged and discharged. Since the deterioration at the time is large, that is, the cycle property is inferior, and the initial efficiency is particularly low, it has not been put into practical use except for a few.
[0007]
The present inventors have studied from the structure itself about the cause of a sudden decrease in charge / discharge capacity after many times of charge / discharge when this silicon oxide (SiO x ) is used as a negative electrode active material for a lithium ion secondary battery. As a result of analysis, it was found that a large volume change occurs due to insertion and extraction of a large amount of lithium, and this is accompanied by particle destruction.
Therefore, based on these facts, as a result of intensive studies on a structure that is stable with respect to volume changes associated with insertion and extraction of lithium, silicon microcrystals or fine particles are converted into an inert and strong substance such as silicon dioxide. Dispersion can solve the above problems as a negative electrode active material for a lithium ion secondary battery, stably have a large capacity charge / discharge capacity, and greatly improve charge cycle performance and efficiency. I found what I could do. Therefore, it has been found that it is effective to finely disperse silicon microcrystals and / or fine particles in a silicon compound, for example, silicon dioxide, and the present invention has been made.
[0008]
Accordingly, the present invention provides a negative electrode material for a non-aqueous electrolyte secondary battery using the following silicon composite.
(1) crystallites of silicon particles having a dispersed structure in silicon-based compounds (excluding those obtained by coating the surface of particles with carbon) non-aqueous electrolyte secondary battery using the silicofluoride-containing complex Negative electrode material .
(2) Particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound (excluding those obtained by coating the surface of particles with carbon) and a mixture of a silicon composite and a conductive agent, A negative electrode material for a non-aqueous electrolyte secondary battery using a mixture having a conductive agent content of 1 to 60% by weight in the mixture.
( 3 ) The negative electrode material for a nonaqueous electrolyte secondary battery according to (1) or (2), which has an average particle size of 0.01 to 30 μm and a BET specific surface area of 0.5 to 20 m 2 / g.
( 4 ) The size of the silicon microcrystal is 1 to 500 nm, and the silicon-based compound is silicon dioxide. (1) To the nonaqueous electrolyte secondary battery according to any one of (3), Negative electrode material .
( 5 ) In the X-ray diffraction of the silicon composite, a diffraction peak attributed to Si (111) is observed, and the silicon crystal size determined by the Scherrer method based on the half width of the diffraction line is wherein the 1~500nm those of (1) to (4) a non-aqueous electrolyte secondary battery negative electrode material according to any one of.
( 6 ) Any one of (1) to (5) , wherein the silicon composite is obtained by disproportionating silicon oxide in an inert gas atmosphere in a temperature range of 900 to 1400 ° C. Negative electrode material for non-aqueous electrolyte secondary battery .
( 7 ) A silicon oxide powder represented by the general formula SiO x (1.0 ≦ x <1.6) having an average particle diameter of 0.01 to 30 μm and a BET specific surface area of 0.1 to 30 m 2 / g. Oh Ru (6) negative electrode material for a non-aqueous electrolyte secondary battery as claimed.
[0009]
Hereinafter, the present invention will be described in more detail.
The present invention, when used as a negative electrode active material for a lithium ion secondary battery, is expected from the fact that the charge / discharge capacity is several times that of the current mainstream graphite-based materials, but it is repeatedly The present invention relates to a silicon composite in which the cycle performance and efficiency of a silicon-based material in which performance degradation due to charge / discharge of silicon is a major bottleneck has been improved. The silicon composite has silicon microcrystals, preferably silicon dioxide. It has a structure dispersed in.
[0010]
In this case, the silicon composite of the present invention preferably has the following properties.
i. In X-ray diffraction (Cu-Kα) using copper as the counter-cathode, a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° is observed, and based on the broadening of the diffraction line The particle diameter of the silicon crystal determined by the Scherrer equation is preferably 1 to 500 nm, more preferably 2 to 200 nm, and still more preferably 2 to 20 nm. If the size of the silicon fine particles is smaller than 1 nm, the charge / discharge capacity may be reduced. Conversely, if the silicon fine particle is larger than 500 nm, the expansion / contraction during charge / discharge increases, and the cycle performance may decrease. The size of the silicon fine particles can be measured by a transmission electron micrograph.
ii. In solid-state NMR ( 29 Si-DDMAS) measurement, there is a peak characteristic of Si diamond crystals in the vicinity of −84 ppm, along with a broad silicon dioxide peak whose spectrum is centered around −110 ppm. This spectrum is completely different from ordinary silicon oxide (SiO x : x = 1.0 + α), and the structure itself is clearly different. Further, it is confirmed by transmission electron microscope that silicon crystals are dispersed in amorphous silicon dioxide.
[0011]
The dispersion amount of silicon fine particles in the silicon / silicon dioxide dispersion is preferably about 2 to 36% by weight, particularly about 10 to 30% by weight. If the amount of dispersed silicon is less than 2% by weight, the charge / discharge capacity may be reduced, and conversely if it exceeds 36% by weight, the cycle performance may be inferior.
[0012]
The average particle diameter of the silicon composite powder of the present invention is 0.01 μm or more, more preferably 0.1 μm or more, still more preferably 0.2 μm or more, particularly preferably 0.3 μm or more, and the upper limit is 30 μm or less, more preferably Is preferably 20 μm or less, more preferably 10 μm or less. If the average particle size is too small, the bulk density will be too small, and the charge / discharge capacity per unit volume will decrease. Conversely, if the average particle size is too large, it will be difficult to produce an electrode film, There is a risk of peeling. The average particle diameter is a value measured as a weight average value D 50 (that is, a particle diameter or a median diameter when the cumulative weight is 50%) in particle size distribution measurement by a laser light diffraction method.
[0013]
The BET specific surface area of the silicon composite powder of the present invention is preferably 0.5 to 20 m 2 / g, particularly 1 to 10 m 2 / g. When the BET specific surface area is less than 0.5 m 2 / g, the surface activity is reduced, the binding force of the binder during electrode production is reduced, and as a result, the cycle performance when charging and discharging are repeated may be reduced. On the other hand, if the BET specific surface area is larger than 20 m 2 / g, the amount of absorption of the solvent becomes large at the time of producing the electrode, and a large amount of the binder may be added to maintain the binding property. The cycle performance may be reduced, and the cycle performance may be reduced. The BET specific surface area is a value measured by the BET one-point method which is measured by the N 2 gas adsorption amount.
[0014]
The silicon composite of the present invention can be used as it is as an end product without coating the particle surface with other substances, and the particle surface is not particularly coated with carbon. The silicon composite of which the surface of the present invention is not coated with other substances such as carbon is repeatedly charged and discharged under relatively mild conditions that are less than the full reversible capacity of, for example, a button-type lithium secondary battery. In such applications, it is particularly useful as a negative electrode material having excellent cycle characteristics.
[0015]
Next, the manufacturing method of the silicon composite in this invention is demonstrated.
The silicon composite powder of the present invention is a particle having a structure in which silicon microcrystals are dispersed in a silicon-based compound, and preferably has an average particle diameter of about 0.01 to 30 μm. Although not particularly limited, for example, the following method can be suitably employed.
A method in which silicon oxide powder represented by the general formula SiO x (1.0 ≦ x <1.6) is subjected to heat treatment in an inert gas atmosphere at a temperature range of 900 to 1400 ° C. to disproportionate.
[0016]
In the present invention, silicon oxide is a general term for amorphous silicon oxide obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon. The silicon oxide powder used in the present invention is represented by the general formula SiO x , and the average particle diameter is 0.01 μm or more, more preferably 0.1 μm or more, still more preferably 0.5 μm or more, and the upper limit is 30 μm or less. Preferably it is 20 micrometers or less. The BET specific surface area is 0.1 m 2 / g or more, more preferably 0.2 m 2 / g or more, and the upper limit is preferably 30 m 2 / g or less, more preferably 20 m 2 / g or less. The range of x is desirably 1.0 ≦ x <1.6, more preferably 1.0 ≦ x ≦ 1.3, and still more preferably 1.0 ≦ x ≦ 1.2. When the average particle diameter and BET specific surface area of silicon oxide powder are outside the above ranges, a silicon composite powder having a desired average particle diameter and BET specific surface area cannot be obtained, and production of SiO x powder having a value of x smaller than 1.0 When the value of x is 1.6 or more, the proportion of inactive SiO 2 is large when heat treatment is performed and the disproportionation reaction is performed, and it is used as a lithium ion secondary battery. In such a case, the charge / discharge capacity may be reduced.
[0017]
On the other hand, in disproportionation of silicon oxide, if the heat treatment temperature is lower than 900 ° C., disproportionation does not proceed at all or it takes an extremely long time to form fine silicon cells (silicon microcrystals), which is efficient. On the other hand, if the temperature is higher than 1400 ° C., the structure of the silicon dioxide portion is advanced and the lithium ion traffic is hindered, so that the function as the lithium ion secondary battery may be deteriorated. More preferably, the heat treatment temperature is 1000 to 1300 ° C, particularly 1100 to 1250 ° C. The treatment time (disproportionation time) can be appropriately controlled in the range of about 10 minutes to 20 hours, particularly about 30 minutes to 12 hours, depending on the disproportionation treatment temperature. For example, at a treatment temperature of 1100 ° C. Is preferably about 5 hours.
[0018]
The disproportionation treatment is not particularly limited as long as a reaction apparatus having a heating mechanism is used in an inert gas atmosphere, and treatment by a continuous method or a batch method is possible, specifically a fluidized bed reaction. A furnace, a rotary furnace, a vertical moving bed reaction furnace, a tunnel furnace, a batch furnace, a rotary kiln, and the like can be appropriately selected according to the purpose. In this case, as the (treatment) gas, an inert gas alone or a mixed gas thereof such as Ar, He, H 2 , N 2 or the like can be used.
[0019]
The silicon composite powder obtained in the present invention is used as a negative electrode material (negative electrode active material) to produce a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery, having high capacity and excellent cycle characteristics. be able to.
In this case, the obtained lithium ion secondary battery is characterized in that the negative electrode active material is used, and other materials such as positive electrode, negative electrode, electrolyte, separator, and battery shape are not limited. For example, as the positive electrode active material, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , and MoS 2 , chalcogen compounds, and the like are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used, and as the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran or the like is used alone or 2 Used in combination of more than one type. Various other non-aqueous electrolytes and solid electrolytes can also be used.
[0020]
In addition, when producing a negative electrode using the said silicon composite powder, since silicon composite itself does not have electroconductivity, it is necessary to add electrically conductive agents, such as graphite, to silicon composite powder. Also in this case, the type of the conductive agent is not particularly limited, and any conductive material that does not cause decomposition or alteration in the configured battery may be used. Specifically, Al, Ti, Fe, Ni, Cu, Metal powder and metal fiber such as Zn, Ag, Sn, Si, natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, pitch carbon fiber, PAN carbon fiber, various resin firing Graphite such as a body can be used.
[0021]
Here, the addition amount of the conductive agent is preferably 1 to 60% by weight, particularly 10 to 50% by weight, and particularly preferably 20 to 50% by weight in the mixture of the conductive silicon composite and the conductive agent. If it is less than 1% by weight, it may not be able to withstand expansion / contraction associated with charge / discharge, and if it exceeds 60% by weight, the charge / discharge capacity may be reduced.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example. In the following examples, “%” indicates wt%, and “gr” indicates gram.
[0023]
[Example]
After 200 g of silicon oxide powder (SiO x : x = 1.02) having an average particle diameter of 3 μm and a BET specific surface area of 12 m 2 / g was placed in a silicon nitride tray, it was left in a processing furnace capable of maintaining an atmosphere. Next, argon gas was introduced, and the inside of the processing furnace was replaced with argon, and then the temperature was increased to 1200 ° C. at a temperature increase rate of 300 ° C./hr while flowing argon at 2 NL / min, and held for 3 hours. After completion of the holding, the temperature was lowered, and after reaching room temperature, the powder was collected. The obtained powder was a powder having an average particle diameter of 3.5 μm and a BET specific surface area of 11 m 2 / g. From the X-ray diffraction pattern of Cu—Kα ray of this powder, Si (111) around 2θ = 28.4 ° was obtained. ) And a silicon composite powder having a silicon crystal size of 40 nm dispersed in silicon dioxide determined by the Scherrer method from the half-value width of this diffraction line. It was.
[0024]
[Battery evaluation]
Next, battery evaluation was performed by the following method using the obtained silicon composite powder.
First, artificial graphite (average particle diameter D 50 = 5 μm) was added to the obtained silicon composite to prepare artificial graphite: silicon composite = 50: 50 (weight ratio) to obtain a mixture. Next, 10% polyvinylidene fluoride is added to this mixture, and further N-methylpyrrolidone is added to form a slurry. This slurry is applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 1 hour, and then the electrode is attached by a roller press. It was press-molded and finally punched out to 2 cm 2 to form a negative electrode.
Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluorophosphate was used as a non-aqueous electrolyte with 1/1 (volume) of ethylene carbonate and 1,2-dimethoxyethane. Ratio) A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L in a mixed solution and a polyethylene microporous film having a thickness of 30 μm as a separator was prepared.
[0025]
The prepared lithium ion secondary battery is left at room temperature overnight and then charged with a constant current of 3 mA until the voltage of the test cell reaches 0 V using a secondary battery charge / discharge test device (manufactured by Nagano Co., Ltd.). After reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. Then, the charging was terminated when the current value fell below 100 μA. The discharge was performed at a constant current of 3 mA, and when the cell voltage exceeded 2.0 V, the discharge was terminated and the discharge capacity was determined.
The above charging / discharging test was repeated, and the charging / discharging test of the lithium ion secondary battery for evaluation was performed 20 cycles.
As a result, it was confirmed that the lithium ion secondary battery was excellent in cycle performance with initial discharge amount = 670 mAh / g, discharge capacity after 20 cycles = 480 mAh / g, capacity retention after 20 cycles = 71.6%. It was.
[0026]
[Comparative example]
The battery was evaluated in the same manner as in the example except that the silicon oxide powder used in the example was not heat-treated.
From the X-ray diffraction pattern of the silicon oxide powder by Cu-Kα ray, the silicon oxide was an amorphous powder in which no diffraction line attributed to Si (111) near 2θ = 28.4 ° was observed.
As a result of battery evaluation, the initial discharge amount = 700 mAh / g, the discharge capacity after 20 cycles = 220 mAh / g, and the capacity retention rate after 20 cycles = 31.4%. It was the next battery.
[0027]
【The invention's effect】
The silicon composite of the present invention is used as a negative electrode material for a non-aqueous electrolyte secondary battery, gives good cycleability, is simple in its manufacturing method, and can sufficiently withstand production on an industrial scale. .

Claims (7)

珪素の微結晶が珪素系化合物に分散した構造を有する粒子である(但し、粒子の表面を炭素でコーティングしてなるものを除く)珪素複合体を用いた非水電解質二次電池用負極材Microcrystals of silicon particles having a dispersed structure in silicon-based compounds (excluding those obtained by coating the surface of particles with carbon) negative for a non-aqueous electrolyte secondary battery using the silicofluoride-containing complex electrode material . 珪素の微結晶が珪素系化合物に分散した構造を有する粒子である(但し、粒子の表面を炭素でコーティングしてなるものを除く)珪素複合体と導電剤との混合物であって、混合物中の導電剤の含有量が1〜60重量%である混合物を用いた非水電解質二次電池用負極材。  Particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound (excluding those in which the surface of the particles is coated with carbon), and a mixture of a silicon composite and a conductive agent, A negative electrode material for a non-aqueous electrolyte secondary battery using a mixture having a conductive agent content of 1 to 60% by weight. 平均粒子径0.01〜30μm、BET比表面積0.5〜20m2/gである請求項1又は2記載の非水電解質二次電池用負極材The average particle diameter of 0.01 to 30, BET specific surface area of 0.5 to 20 m 2 / g and is claim 1 or 2 non-aqueous electrolyte secondary battery negative electrode material according. 珪素微結晶の大きさが1〜500nmであり、珪素系化合物が二酸化珪素であることを特徴とする請求項1〜3のいずれか1項記載の非水電解質二次電池用負極材The negative electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the silicon microcrystals have a size of 1 to 500 nm and the silicon compound is silicon dioxide. 珪素複合体が、X線回折において、Si(111)に帰属される回折ピークが観察され、その回折線の半価幅をもとにシェーラー法により求めた珪素の結晶の大きさが1〜500nmのものであることを特徴とする請求項1〜4のいずれか1項記載の非水電解質二次電池用負極材 In the X-ray diffraction of the silicon composite, a diffraction peak attributed to Si (111) is observed, and the silicon crystal size determined by the Scherrer method based on the half width of the diffraction line is 1 to 500 nm. The negative electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the negative electrode material is a non-aqueous electrolyte secondary battery . 珪素複合体が、酸化珪素を900〜1400℃の温度域において不活性ガス雰囲気下で不均化することにより得られたものである請求項1〜5のいずれか1項記載の非水電解質二次電池用負極材The non-aqueous electrolyte 2 according to any one of claims 1 to 5 , wherein the silicon composite is obtained by disproportionating silicon oxide in an inert gas atmosphere in a temperature range of 900 to 1400 ° C. Negative electrode material for secondary batteries . 酸化珪素が平均粒子径0.01〜30μm、BET比表面積0.1〜30m2/gの一般式SiOx(1.0≦x<1.6)で表される酸化珪素粉末である請求項記載の非水電解質二次電池用負極材Silicon oxide average particle diameter of 0.01 to 30, Ru silicon oxide powder der represented by the general formula SiO x having a BET specific surface area 0.1~30m 2 / g (1.0 ≦ x <1.6) The negative electrode material for a nonaqueous electrolyte secondary battery according to claim 6 .
JP2003119192A 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery Expired - Fee Related JP4081676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119192A JP4081676B2 (en) 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119192A JP4081676B2 (en) 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004323284A JP2004323284A (en) 2004-11-18
JP4081676B2 true JP4081676B2 (en) 2008-04-30

Family

ID=33498477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119192A Expired - Fee Related JP4081676B2 (en) 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4081676B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199554A1 (en) 2013-06-14 2014-12-18 信越化学工業株式会社 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
WO2015049836A1 (en) 2013-10-03 2015-04-09 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
KR20160011633A (en) 2013-05-27 2016-02-01 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material and method for manufacturing nonaqueous electrolyte secondary battery
KR20160012152A (en) 2013-05-23 2016-02-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
JP2017152393A (en) * 2013-03-29 2017-08-31 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508882B2 (en) * 2005-01-18 2010-07-21 大日本印刷株式会社 Electroluminescence element
JP4985949B2 (en) * 2006-03-27 2012-07-25 信越化学工業株式会社 Method for producing silicon-silicon oxide-lithium composite, and negative electrode material for non-aqueous electrolyte secondary battery
JP5143700B2 (en) * 2007-10-24 2013-02-13 パナソニック株式会社 Electrode for electrochemical element and electrochemical element using the same
WO2009054149A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Electrode for electrochemical device and electrochemical device using the same
JP4844764B2 (en) * 2008-03-17 2011-12-28 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using the same
DE112012004702T5 (en) 2011-11-11 2014-08-21 Kabushiki Kaisha Toyota Jidoshokki Negative electrode material and negative electrode for use in a lithium-ion secondary battery and a lithium-ion secondary battery
US9780357B2 (en) 2012-04-19 2017-10-03 Lg Chem, Ltd. Silicon-based anode active material and secondary battery comprising the same
US9512523B2 (en) 2012-04-19 2016-12-06 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
KR101578262B1 (en) 2012-07-24 2015-12-28 주식회사 엘지화학 Porous silicon based electrode active material and secondary battery comprising the same
KR101634843B1 (en) 2012-07-26 2016-06-29 주식회사 엘지화학 Electrode active material for secondary battery
JP5967024B2 (en) * 2013-06-20 2016-08-10 信越化学工業株式会社 Non-aqueous electrolyte secondary battery active material, negative electrode molded body, and non-aqueous electrolyte secondary battery
JP6301142B2 (en) * 2014-01-31 2018-03-28 信越化学工業株式会社 Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR102095092B1 (en) * 2014-12-23 2020-03-31 유미코아 Powder, electrode and battery containing the powder
KR102449293B1 (en) 2016-11-22 2022-09-29 미쯔비시 케미컬 주식회사 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
CN114975955B (en) * 2022-06-21 2024-03-19 珠海冠宇电池股份有限公司 Silicon-based material and battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152393A (en) * 2013-03-29 2017-08-31 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US10205165B2 (en) 2013-03-29 2019-02-12 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
KR20160012152A (en) 2013-05-23 2016-02-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
US9893353B2 (en) 2013-05-23 2018-02-13 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
KR20190047138A (en) 2013-05-23 2019-05-07 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
US10700348B2 (en) 2013-05-23 2020-06-30 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
KR20160011633A (en) 2013-05-27 2016-02-01 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material and method for manufacturing nonaqueous electrolyte secondary battery
WO2014199554A1 (en) 2013-06-14 2014-12-18 信越化学工業株式会社 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
KR20160020426A (en) 2013-06-14 2016-02-23 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
WO2015049836A1 (en) 2013-10-03 2015-04-09 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
KR20160065107A (en) 2013-10-03 2016-06-08 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2004323284A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4081676B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP4702510B2 (en) Lithium-containing silicon oxide powder and method for producing the same
JP4752992B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR100629129B1 (en) Positive electrode active material powder for lithium secondary battery
JP5196149B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP4644895B2 (en) Lithium secondary battery
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP4207957B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY USING THE SAME
JP4171897B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JP5835141B2 (en) Negative electrode active material for secondary battery, method for producing the same, negative electrode for secondary battery, secondary battery, and Si-oxide solid electrolyte composite
JP4620926B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR20090020882A (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JPH0785888A (en) Lithium secondary battery
JP2015130324A (en) Nonaqueous electrolyte secondary battery
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR101278832B1 (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
JP4797332B2 (en) Lithium transition metal composite oxide powder for lithium secondary battery positive electrode active material, lithium secondary battery positive electrode and lithium secondary battery
JP2003272630A (en) Manufacturing method of negative electrode active material
JP4081211B2 (en) Lithium secondary battery and negative electrode active material for lithium secondary battery
WO2022045128A1 (en) Negative-electrode active material for secondary batteries, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

R150 Certificate of patent or registration of utility model

Ref document number: 4081676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees