JP4171897B2 - Anode material for non-aqueous electrolyte secondary battery and method for producing the same - Google Patents

Anode material for non-aqueous electrolyte secondary battery and method for producing the same Download PDF

Info

Publication number
JP4171897B2
JP4171897B2 JP2003119210A JP2003119210A JP4171897B2 JP 4171897 B2 JP4171897 B2 JP 4171897B2 JP 2003119210 A JP2003119210 A JP 2003119210A JP 2003119210 A JP2003119210 A JP 2003119210A JP 4171897 B2 JP4171897 B2 JP 4171897B2
Authority
JP
Japan
Prior art keywords
silicon
secondary battery
negative electrode
graphite
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003119210A
Other languages
Japanese (ja)
Other versions
JP2004327190A (en
Inventor
宏文 福岡
幹夫 荒又
悟 宮脇
進 上野
一磨 籾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33498488&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4171897(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003119210A priority Critical patent/JP4171897B2/en
Publication of JP2004327190A publication Critical patent/JP2004327190A/en
Application granted granted Critical
Publication of JP4171897B2 publication Critical patent/JP4171897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池用負極活物質として用いた際に高い充放電容量及び良好なサイクル特性を有する非水電解質二次電池用負極材及びその製造方法に関する。
【0002】
【従来の技術】
近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Snなどの酸化物及びそれらの複合酸化物を用いる方法(例えば、特許文献1:特開平5−174818号公報、特許文献2:特開平6−60867号公報参照)、溶融急冷した金属酸化物を負極材として適用する方法(例えば、特許文献3:特開平10−294112号公報参照)、負極材料に酸化珪素を用いる方法(例えば、特許文献4:特許第2997741号公報参照)、負極材料にSi22O及びGe22Oを用いる方法(例えば、特許文献5:特開平11−102705号公報参照)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(例えば、特許文献6:特開2000−243396号公報参照)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献7:特開2000−215887号公報参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献8:特開2002−42806号公報参照)がある。
【0003】
しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。
【0004】
特に、特許第2997741号公報(特許文献4)では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らがみる限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったりし、改良する余地がある。また、負極材に導電性を付与した技術についても、特開2000−243396号公報(特許文献6)では、固体と固体の融着であるため、均一な炭素皮膜が形成されず、導電性が不十分であるといった問題があるし、特開2000−215887号公報(特許文献7)の方法においては、均一な炭素皮膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならず、特開2002−42806号公報(特許文献8)の方法においては、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、サイクル性の向上は確認されるも、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。
【0005】
【特許文献1】
特開平5−174818号公報
【特許文献2】
特開平6−60867号公報
【特許文献3】
特開平10−294112号公報
【特許文献4】
特許第2997741号公報
【特許文献5】
特開平11−102705号公報
【特許文献6】
特開2000−243396号公報
【特許文献7】
特開2000−215887号公報
【特許文献8】
特開2002−42806号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みなされたもので、よりサイクル性の高いリチウムイオン二次電池の負極の製造を可能とする非水電解質二次負極材及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するため種々検討を行った結果、リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆することで著しい電池特性の向上が見られることを確認すると同時に、単なる黒鉛被覆では市場の要求特性に応えられないことがわかった。そこで、本発明者らは更なる特性向上を目指し、詳細検討を行った結果、リチウムイオンを吸蔵、放出し得る材料の表面に被覆する黒鉛皮膜の物性を特定範囲に制御することで、市場の要求する特性レベルに到達し得ることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明者らは検討過程において、種々の条件にて得られたリチウムイオンを吸蔵、放出し得る材料表面を黒鉛皮膜で覆った材料の電池特性評価を行った結果、各材料によって特性の相違があることを確認した。そこで、得られた各種材料の分析を行った結果、電池特性とラマン分光スペクトル、黒鉛被覆量、BET比表面積とは明らかなる相関が見られ、これら物性をある特定範囲にすることで、非常に特性の良好な非水電解質二次電池用負極材料が得られることを見出したものである。
【0009】
従って、本発明は、下記の非水電解質二次電池用負極材及びその製造方法を提供する。
(1)リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆した導電性粉末であり、リチウムイオンを吸蔵、放出し得る材料が、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiOx(1.0≦x<1.6)で表される酸化珪素又はこれらの混合物であり、かつ黒鉛被覆量が3〜40重量%、BET比表面積が2〜30m2/gであって、該黒鉛皮膜が、ラマン分光スペクトルより、ラマンシフトが1330cm-1と1580cm-1付近にグラファイト構造特有のスペクトルを有することを特徴とする非水電解質二次電池用負極材。
(2)複合構造粒子における珪素の微粒子の大きさが1〜500nmであり、かつその表面が黒鉛と融合していることを特徴とする(1)記載の非水電解質二次電池用負極材。
(3)複合構造粒子における珪素系化合物が二酸化珪素であることを特徴とする(1)又は(2)記載の非水電解質二次電池用負極材。
(4)リチウムイオンを吸蔵、放出し得る材料として、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiOx(1.0≦x<1.6)で表される酸化珪素又はこれらの混合物を用い、該材料をメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン及びその混合物、1環乃至3環の芳香族炭化水素及びその混合物、ガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油及びその混合物から選ばれる有機物ガス及び/又は蒸気中、1000〜1400℃で化学蒸着処理を行うことを特徴とする(1)記載の非水電解質二次電池用負極材の製造方法。
(5)リチウムイオンを吸蔵、放出し得る材料として、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiOx(1.0≦x<1.6)で表される酸化珪素又はこれらの混合物を用い、該材料をメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン及びその混合物、1環乃至3環の芳香族炭化水素及びその混合物、ガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油及びその混合物から選ばれる有機物ガス及び/又は蒸気中、500〜1200℃で化学蒸着処理した後、不活性ガス雰囲気下1000〜1400℃で熱処理することを特徴とする(1)記載の非水電解質二次電池用負極材の製造方法。
(6)リチウムイオンを吸蔵、放出し得る材料が、一般式SiOx(1.0≦x<1.3)で表される酸化珪素粉末であることを特徴とする(4)又は(5)記載の非水電解質二次電池用負極材の製造方法。
(7)リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆した導電性粉末のうち、リチウムイオンを吸蔵、放出し得る材料が、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiOx(1.0≦x<1.6)で表される酸化珪素又はこれらの混合物であり、かつ黒鉛被覆量が3〜40重量%、BET比表面積が2〜30m2/gであって、該黒鉛皮膜がラマン分光スペクトルより、ラマンシフトが1330cm-1と1580cm-1付近にグラファイト構造特有のスペクトルを有する導電性粉末を高充放電容量及びサイクル特性を与えるリチウムイオン二次電池用負極活物質として選定することを特徴とする非水電解質二次電池用負極材の選定方法。
【0010】
以下、本発明につき更に詳しく説明する。
本発明においてリチウムイオンを吸蔵、放出し得る材料としては、Si、珪素(Si)と二酸化珪素(SiO2)との複合分散体、SiOx(1.0≦x<1.6、特に1.0≦x<1.3)といった金属珪素、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子、珪素低級酸化物(いわゆる酸化珪素)等の珪素系物質の他に、下記式
MOa
(式中、MはGe,Sn,Pb,Bi,Sb,Zn,In,Mgから選ばれる少なくとも1種であり、a=0.1〜4の正数である。)
で表される珪素を含まない金属酸化物、もしくは、下記式
LiMbc
(式中、MはGe,Sn,Pb,Bi,Sb,Zn,In,Mg,Siから選ばれる少なくとも1種であり、b=0.1〜4の正数、c=0.1〜8の正数である。)
で表される(珪素を含んだものであってもよい)リチウム複合酸化物であり、具体的には、GeO,GeO2,SnO,SnO2,Sn23,Bi23,Bi25,Sb23,Sb24,Sb25,ZnO,In2O,InO,In23,MgO,Li2SiO3,Li4SiO4,Li2Si37,Li2Si25,Li8SiO6,Li6Si27,Li4Ge97,Li4Ge92,Li5Ge819,Li4Ge512,Li5Ge27,Li4GeO4,Li2Ge715,Li2GeO3,Li2Ge49,Li2SnO3,Li8SnO6,Li2PbO3,Li7SbO5,LiSbO3,Li3SbO4,Li3BiO5,Li6BiO6,LiBiO2,Li4Bi611,Li6ZnO4,Li4ZnO3,Li2ZnO2,LiInO2,Li3InO3、又はこれらの非量論的化合物等が挙げられるが、特に理論充放電容量の大きなSi(金属珪素)、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子及び酸化珪素を用いた場合に本発明がより効果的である。
【0011】
この場合、Si及び珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子の物性については特に限定されるものではないが、平均粒子径は0.01〜50μm、特に0.1〜10μmが好ましい。平均粒子径が0.01μmより小さいと表面酸化の影響で純度が低下し、リチウムイオン二次電池負極材として用いた場合、充放電容量が低下したり、嵩密度が低下し、単位体積あたりの充放電容量が低下する場合がある。逆に50μmより大きいと化学蒸着処理における黒鉛析出量が減少し、結果としてリチウムイオン二次電池負極材として用いた場合にサイクル性能が低下するおそれがある。
なお、平均粒子径は、レーザー光回折法による粒度分布測定における重量平均粒子径で表すことができる。
【0012】
また、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子において、珪素系化合物については、不活性なものが好ましく、製造しやすさの点において二酸化珪素が好ましい。またこの粒子は、下記性状を有していることが好ましい。
i.銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた珪素の結晶の粒子径が好ましくは1〜500nm、より好ましくは2〜200nm、更に好ましくは2〜20nmである。珪素の微粒子の大きさが1nmより小さいと、充放電容量が小さくなる場合があるし、逆に500nmより大きいと充放電時の膨張収縮が大きくなり、サイクル性が低下するおそれがある。なお、珪素の微粒子の大きさは透過電子顕微鏡写真により測定することができる。
ii.固体NMR(29Si−DDMAS)測定において、そのスペクトルが−110ppm付近を中心とするブロードな二酸化珪素のピークとともに−84ppm付近にSiのダイヤモンド結晶の特徴であるピークが存在する。なお、このスペクトルは、通常の酸化珪素(SiOx:x=1.0+α)とは全く異なるもので、構造そのものが明らかに異なっているものである。また、透過電子顕微鏡によって、シリコンの結晶が無定形の二酸化珪素に分散していることが確認される。
【0013】
この珪素/二酸化珪素分散体(Si/SiO2)中における珪素微粒子(Si)の分散量は、2〜36重量%、特に10〜30重量%程度であることが好ましい。この分散珪素量が2重量%未満では、充放電容量が小さくなる場合があり、逆に36重量%を超えるとサイクル性が低下する場合がある。
【0014】
なお、上記珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子(珪素複合体粉末)は、珪素の微結晶が珪素系化合物に分散した構造を有する粒子であり、好ましくは0.01〜50μm程度の平均粒子径を有するものであれば、その製造方法は特に限定されるものではないが、例えば下記の方法を好適に採用することができる。
一般式SiOx(1.0≦x<1.6)で表される酸化珪素粉末を不活性ガス雰囲気下900〜1400℃の温度域で熱処理を施して不均化する方法。
【0015】
なお、本発明において酸化珪素とは、通常、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称であり、本発明で用いられる酸化珪素粉末は一般式SiOxで表され、平均粒子径は0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上で、上限として30μm以下、より好ましくは20μm以下が好ましい。BET比表面積は0.1m2/g以上、より好ましくは0.2m2/g以上で、上限として30m2/g以下、より好ましくは20m2/g以下が好ましい。xの範囲は1.0≦x<1.6、より好ましくは1.0≦x<1.3、更に好ましくは1.0≦x≦1.2であることが望ましい。酸化珪素粉末の平均粒子径及びBET比表面積が上記範囲外では所望の平均粒子径及びBET比表面積を有する珪素複合体粉末が得られないし、xの値が1.0より小さいSiOx粉末の製造は困難であるし、xの値が1.6以上のものは、熱処理を行い、不均化反応を行なった際に、不活性なSiO2の割合が大きく、リチウムイオン二次電池として使用した場合、充放電容量が低下するおそれがある。
【0016】
一方、酸化珪素の不均化において、熱処理温度が900℃より低いと、不均化が全く進行しないかシリコンの微細なセル(珪素の微結晶)の形成に極めて長時間を要し、効率的でなく、逆に1400℃より高いと、二酸化珪素部の構造化が進み、リチウムイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。より好ましくは熱処理温度は1000〜1300℃、特に1100〜1250℃である。なお、処理時間(不均化時間)は不均化処理温度に応じて10分〜20時間、特に30分〜12時間程度の範囲で適宜選定することができるが、例えば1100℃の処理温度においては5時間程度で所望の物性を有する珪素複合体(不均化物)が得られる。
【0017】
上記不均化処理は、不活性ガス雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。この場合、(処理)ガスとしては、Ar、He、H2、N2等の上記処理温度にて不活性なガス単独もしくはそれらの混合ガスを用いることができる。
【0018】
本発明における非水電解質二次電池用負極材は、上記リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆したものであり、被覆方法としてはメカニカルアロイング法、化学蒸着法(CVD法)等が挙げられるが、黒鉛皮膜の均一形成の点で化学蒸着法が優れており、より好適に用いられる。
【0019】
次に本発明の特徴をなす黒鉛皮膜及び黒鉛被覆を施した導電性粉末の物性について説明する。
本発明におけるリチウムイオンを吸蔵、放出し得る材料表面を被覆する黒鉛被覆量は3〜40重量%であり、特に5〜30重量%が好ましい。黒鉛被覆量が3重量%未満では、導電性膜形成といった点で不十分であり、十分な導電性を維持できなく、結果として非水電解質二次電池用負極材とした場合にサイクル性が低下する。逆に黒鉛被覆量が40重量%を超えても、効果の向上が見られないばかりか、負極材料に占める黒鉛の割合が多くなり、非水電解質二次電池用負極材として用いた場合、充放電容量が低下する。
【0020】
本発明におけるリチウムイオンを吸蔵、放出し得る材料を黒鉛皮膜で被覆した導電性材料のBET比表面積は、2〜30m2/gであり、特に3〜25m2/gが好ましい。BET比表面積が2m2/g未満では、表面活性が小さくなり、結果として非水電解質二次電池用負極材とした場合に充放電容量が低下する。逆に、BET比表面積が30m2/gを超えると、電極作製時の結着剤量が多くなり、電極としての容量が低下するし、経済的にも不利となる。
【0021】
本発明におけるリチウムイオンを吸蔵、放出し得る材料表面を被覆する黒鉛被覆膜は、ラマン分光スペクトルより、ラマンシフトが1330cm-1と1580cm-1付近にグラファイト特有のスペクトルを有することが必須である。この黒鉛皮膜を有する導電性材料を非水電解質二次電池用負極材として用いることで電池特性が飛躍的に向上する。この原因については、不明であるが、結果として、上記構造を有することにより、充放電時に伴う電極材料の膨張・収縮による電極破壊を防止できることで、黒鉛皮膜が、強度を維持する外殻の役割を果たしていることが推測できる。
【0022】
次に、本発明におけるリチウムイオン二次電池負極材の製造方法について説明する。
本発明のリチウムイオン二次電池負極材は、以下に示す2つの方法により製造することができる。第1の方法は、上記リチウムイオンを吸蔵、放出し得る材料の表面を少なくとも有機物ガス又は蒸気(例えばCH4等)を含む雰囲気下、1000〜1400℃、より好ましくは1020〜1200℃の温度域で熱処理(CVD)する方法である。ここで、熱処理温度が1000℃より低いと、目的とするグラファイト構造を有する膜ができない場合があるし、逆に1400℃より高いと、化学蒸着処理により粒子同士が融着、凝集を起こす可能性があり、凝集面で導電性皮膜が形成されず、リチウムイオン二次電池負極材として用いた場合、サイクル性能が低下するおそれがあるためである。特に珪素を母材として用いた場合には珪素の融点に近い温度となるため、珪素が溶融し、粒子表面への導電性皮膜の被覆処理が困難となる。この第1の方法では、CVD処理条件によって、あるいは製造バッチによって所望とする結晶性の高い(即ち、特定のラマン分光スペクトルを有する)黒鉛皮膜で被覆された導電性粉末を定量的に確実に得ることが必ずしもできない場合がある。
【0023】
第2の方法は、上記リチウムイオンを吸蔵、放出し得る材料の表面を少なくとも有機物ガス又は蒸気を含む雰囲気下、500〜1200℃、より好ましくは700〜1100℃の温度域で熱処理した処理物を再度不活性ガス雰囲気中1000〜1400℃、より好ましくは1020〜1200℃の温度域で熱処理する方法である。ここで、処理温度を限定した理由は上記1と同様である。なお、この第2の方法による導電性粉末製造は工程が増えるといった課題があるものの、第1の方法に比べ、より確実に、結晶性の高い(即ち、ラマン分光スペクトルを有する)黒鉛皮膜で被覆された導電性粉末を得ることができ、品質が安定するといった利点を有する。
【0024】
なお、処理時間は処理温度、CH4等の有機物ガスの濃度(流速)や導入量等によって適宜選定されるが、通常、第1の方法では、1〜10時間、特に2〜7時間程度が経済的にも効率的である。第2の方法では、炭素被覆処理(CVD処理)については、第1の方法と同様であり、不活性ガス中での再度の熱処理については再処理温度によって適宜選定されるが、通常1〜10時間、特に2〜5時間程度が経済的にも効率的である。
【0025】
本発明における有機物ガスを発生する原料として用いられる有機物としては、特に非酸性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが選択され、例えばメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物として用いることができる。
【0026】
これらリチウムイオンを吸蔵、放出し得る材料と有機ガスとの熱処理は、非酸化性雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉等をその目的に応じ適宜選択することができる。
【0027】
また、化学蒸着処理を行う原料については、リチウムイオンを吸蔵、放出し得る材料単独、若しくはリチウムイオンを吸蔵、放出し得る材料を有機珪素系表面処理剤で処理した処理物に黒鉛を添加した混合物が挙げられる。ここで、黒鉛を添加する理由はより導電性を向上させるためである。いずれにしても、本発明においては、表面の黒鉛皮膜がラマン分光スペクトルによりラマンシフトが1330cm-1と1580cm-1付近にグラファイト構造特有のスペクトルを有する結晶性の高い黒鉛皮膜で被覆されていることが必須であり、上記第1の方法あるいは第2の方法で製造されたもののうち、上記特性を満足するもののみを選定して負極材料に適用することが重要である。
【0028】
なお、有機珪素系表面処理剤としては、種類は特に限定されるものではないが、一般的にシランカップリング剤、その(部分)加水分解縮合物、シリル化剤、シリコーンレジンから選ばれる1種又は2種以上が用いられる。なお、(部分)加水分解縮合物とは、シランカップリング剤の部分加水分解縮合物でも全部を加水分解縮合したシランカップリング剤の加水分解縮合物でもよいことを意味する。
【0029】
この場合、シランカップリング剤としては、下記一般式(1)、シリル化剤としては下記一般式(2)で示されるものが挙げられる。
(4-n)Si(Y)n …(1)
(RmSi)L(Y)p …(2)
(但し、Rは一価の有機基、Yは加水分解性基又は水酸基、nは1〜4の整数、pは1〜3の整数、Lは2〜4の整数、mは1〜3の整数である。)
【0030】
ここで、Rとしては、炭素数1〜12、特に1〜10のアルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基などの非置換一価炭化水素基や、これらの基の水素原子の一部又は全部をハロゲン原子(塩素、フッ素、臭素原子等)、シアノ基、オキシエチレン基等のオキシアルキレン基、ポリオキシエチレン基等のポリオキシアルキレン基、(メタ)アクリル基、(メタ)アクリロキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、アミド基、ウレイド基、エポキシ基などの官能基で置換した置換一価炭化水素基、これら非置換又は置換一価炭化水素基において、酸素原子、NH基、NCH3基、NC65基、C65NH−基、H2NCH2CH2NH−基などが介在した基を挙げることができる。
【0031】
Rの具体例としては、CH3−、CH3CH2−、CH3CH2CH2−などのアルキル基、CH2=CH−、CH2=CHCH2−、CH2=C(CH3)−などのアルケニル基、C65−などのアリール基、ClCH2−、ClCH2CH2CH2−、CF3CH2CH2−、CNCH2CH2−、CH3−(CH2CH2O)s−CH2CH2CH2−、CH2(O)CHCH2OCH2CH2CH2−(但し、CH2(O)CHCH2はグリシジル基を示す)、CH2=CHCOOCH2−、
【化1】

Figure 0004171897
HSCH2CH2CH2−、NH2CH2CH2CH2−、NH2CH2CH2NHCH2CH2CH2−、NH2CONHCH2CH2CH2−などが挙げられる。好ましいRとしては、γ−グリシジルオキシプロピル基、β−(3,4−エポキシシクロヘキシル)エチル基、γ−アミノプロピル基、γ−シアノプロピル基、γ−アクリルオキシプロピル基、γ−メタクリルオキシプロピル基、γ−ウレイドプロピル基などである。
【0032】
Yの加水分解性基としては、−OCH3、−OCH2CH3などのアルコキシ基、−NH2、−NH−、−N=、−N(CH32などのアミノ基、−Cl、−ON=C(CH3)CH2CH3などのオキシミノ基、−ON(CH32などのアミノオキシ基、−OCOCH3などのカルボキシル基、−OC(CH3)=CH2などのアルケニルオキシ基、−CH(CH3)−COOCH3、−C(CH32−COOCH3などが挙げられる。これらはすべて同一の基であっても異なる基であってもよい。好ましいYとしては、メトキシ基、エトキシ基等のアルコキシ基、イソプロペニルオキシ基等のアルケニルオキシ基、イミド残基(−NH−)、非置換又は置換のアセトアミド残基、ウレア残基、カーバメート残基、サルファメート残基、水酸基などである。
【0033】
sは1〜3の整数であり、好ましくは2又は3であり、より好ましくは3である。また、nは1〜4の整数、好ましくは3又は4である。
【0034】
シランカップリング剤の具体例としては、メチルトリメトキシシラン、テトラエトキシシラン、ビニルトリメトキシシラン、メチルビニルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−シアノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシランなどが挙げられる。シランカップリング剤は単独でもよいし、2種類以上を混合してもよい。又はその加水分解縮合物及び/又はその部分加水分解縮合物であってもよい。
【0035】
また、一般式(2)のシリル化剤の具体例としては、ヘキサメチルジシラザン、ジビニルテトラメチルジシラザン、テトラビニルジメチルジシラザン、オクタメチルトリシラザン等のオルガノシラザン、N,O−ビス(トリメチルシリル)アセトアミド、N,O−ビス(トリメチルシリル)カーバメート、N,O−ビス(トリメチルシリル)サルファメート、N,O−ビス(トリメチルシリル)トリフロロアセトアミド、N,N’−ビス(トリメチルシリル)ウレア等が挙げられる。
【0036】
また、有機珪素系表面処理剤として、シリコーンレジン(即ち、直鎖状、環状、分岐状又は三次元網状構造の1分子中に少なくとも1個、好ましくは2個以上の(OR2)基(R2は後述するR2と同じ)を含有するオルガノポリシロキサン)を用いることもでき、この場合、下記一般式(3)のものが挙げられる。
1 q(R2O)rSiO(4-q-r)/2 …(3)
(但し、R1は水素原子又は炭素数が1〜10の置換もしくは非置換の一価炭化水素基、R2は水素原子又は炭素数が1〜6の置換もしくは非置換の一価炭化水素基であり、q,rはそれぞれ0≦q≦2.5、0.01≦r≦3、0.5≦q+r≦3を満足する0又は正数である。)
【0037】
ここで、R1,R2の一価炭化水素基としては、アルキル基、アリール基、アルケニル基等、Rで例示したもののうち、炭素数が1〜10又は1〜6のものを挙げることができるが、R1はメチル基、エチル基、ビニル基、フェニル基、R2は水素原子、メチル基、エチル基、イソプロピル基が好ましく用いられ、qは0≦q≦2、特に0.3≦q<1.5が好ましく、rは0.1≦r≦2、特に0.3≦r<1.2が好ましい。また、q+rは0.5≦q+r≦2.1、特に0.8≦q+r≦1.8が好ましい。
【0038】
本発明で得られた非水電解質二次電池負極材を用いて、リチウムイオン二次電池を製造することができる。
この場合、得られたリチウムイオン二次電池は、上記負極材を用いる点に特徴を有し、その他の正極、負極、電解質、セパレータなどの材料及び電池形状などは限定されない。例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn24、V25、MnO2、TiS2、MoS2などの遷移金属の酸化物及びカルコゲン化合物などが用いられる。電解質としては、例えば、過塩素酸リチウムなどのリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフランなどの単体又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
【0039】
なお、上記二次電池負極材を用いて負極を作製する場合、二次電池負極材に黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
【0040】
【実施例】
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
【0041】
[実施例1]
平均粒子径4μmの一般式SiOx(x=1.02)で表される酸化珪素粉末200gを流動層型処理装置内に仕込んだ。その後、Arガスを2NL/min流入しながら、300℃/hrの昇温速度で1150℃まで昇温、保持した。次に、CH4ガスを1NL/min追加流入し、5時間の黒鉛被覆処理を行った。処理後は降温し、約240gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=4.2μm、BET比表面積=15.2m2/g、黒鉛被覆量22重量%の導電性粉末であった。なお、ラマン分光スペクトル(図1参照)により、ラマンシフトが1330cm-1と1580cm-1付近にグラファイト特有のスペクトルを有していた。
【0042】
○電池評価
次に、以下の方法で、得られた導電性粉末を負極活物質として用いた電池評価を行った。
まず、得られた導電性粉末に人造黒鉛(平均粒子径5μm)を炭素の割合が40重量%となるように加え、混合物を製造した。この混合物にポリフッ化ビニリデンを10重量%加え、更にN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、120℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、最終的には20mmに打ち抜き、負極とした。
ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートと1,2−ジメトキシシエタンの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
【0043】
作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで1mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が20μAを下回った時点で充電を終了した。放電は1mAの定電流で行い、セル電圧が1.8Vを上回った時点で放電を終了し、放電容量を求めた。
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回充電容量1380mAh/g、初回放電容量1180mAh/g、初回充放電効率85%、50サイクル目の放電容量1090mAh/g、50サイクル後のサイクル保持率92%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。
【0044】
[比較例1、実施例2]
実施例1で用いた一般式SiOx(x=1.02)で示される酸化珪素粉末を処理温度950℃で7時間の黒鉛被覆処理した他は、実施例1と同様な方法で約240gの導電性粉末を製造した。得られた導電性粉末は、平均粒子径=4.5μm、BET比表面積=25.3m2/g、黒鉛被覆量=22重量%の導電性粉末であった。なお、ラマン分光スペクトル(図1参照)により、ラマンシフトが1330cm-1と1580cm-1付近にグラファイト特有のスペクトルは有していなかった。
この導電性粉末を用いて実施例1と同じ方法で試験用電池を作製し、同様な電池評価を行った結果、初回充放電容量1360mAh/g、初回放電容量1100mAh/g、初回充放電効率81%、50サイクル目の放電容量720mAh/g、50サイクル後のサイクル保持率65%の実施例1に比べサイクル性の劣るリチウムイオン二次電池であった。
【0045】
次に、この上記導電性粉末を窒化珪素製トレイに100g仕込み、バッチ炉内に静置後、Ar雰囲気中1200℃にて3時間熱処理を行い、平均粒子径=4.3μm、BET比表面積=20.5m2/g、黒鉛被覆量=22重量%の熱処理品を製造し、この熱処理品についても実施例1と同様な電池評価を行った。
なお、この導電性粉末はラマン分光スペクトルにより、ラマンシフトが1330cm-1と1580cm-1付近にグラファイト特有のスペクトルを有していた。その結果、初回充放電容量1320mAh/g、初回放電容量1190mAh/g、初回充放電効率90%、50サイクル目の放電容量1120mAh/g、50サイクル後のサイクル保持率94%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であった。
【0046】
[比較例2〜4]
黒鉛被覆処理温度、熱処理温度を変えた他は実施例1及び2と同様な方法で導電性粉末を製造した。導電性膜被覆条件及び導電性粉末物性を表1に示す。次に実施例1と同様な方法にて電池評価を行った。評価結果を表2に記す。
【0047】
【表1】
Figure 0004171897
【0048】
【表2】
Figure 0004171897
【0049】
【発明の効果】
本発明で得られた非水電解質二次電池用負極材をリチウムイオン二次電池負極材として用いることで、高容量でかつサイクル性に優れたリチウムイオン二次電池を得ることができる。また、製造方法についても簡便であり、工業的規模の生産にも十分耐え得るものである。
【図面の簡単な説明】
【図1】実施例1及び比較例1で得られた導電性粉末のラマン分光スペクトルである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode material for a nonaqueous electrolyte secondary battery having high charge / discharge capacity and good cycle characteristics when used as a negative electrode active material for a lithium ion secondary battery, and a method for producing the same.
[0002]
[Prior art]
In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices. Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, Sn, or a composite oxide thereof as a negative electrode material (for example, Patent Document 1: Kaihei 5-174818, Patent Document 2: Japanese Patent Laid-Open No. 6-60867, and a method of applying a melt-quenched metal oxide as a negative electrode material (for example, see Patent Document 3: Japanese Patent Laid-Open No. 10-294112) , A method using silicon oxide as a negative electrode material (see, for example, Patent Document 4: Japanese Patent No. 2999741), Si as a negative electrode material2N2O and Ge2N2A method using O (for example, see Patent Document 5: Japanese Patent Laid-Open No. 11-102705) is known. In addition, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO with graphite and then carbonizing (see, for example, Patent Document 6: JP 2000-243396 A), a chemical vapor deposition method on the surface of silicon particles (For example, see Patent Document 7: Japanese Patent Laid-Open No. 2000-215887), and a method for coating a carbon layer on the surface of silicon oxide particles by chemical vapor deposition (for example, Patent Document 8: Japanese Patent Laid-Open No. 2002-2002). 42806).
[0003]
However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycleability is insufficient, or the required characteristics of the market are still insufficient, and are not always satisfactory. However, further improvement in energy density has been desired.
[0004]
In particular, in Japanese Patent No. 2997741 (Patent Document 4), silicon oxide is used as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. There is room for improvement because the irreversible capacity at the time of discharge is large and the cycle performance has not reached the practical level. In addition, regarding the technique for imparting conductivity to the negative electrode material, in Japanese Patent Application Laid-Open No. 2000-243396 (Patent Document 6), since it is a solid-solid fusion, a uniform carbon film is not formed, and conductivity is improved. There is a problem that it is insufficient, and in the method of Japanese Patent Application Laid-Open No. 2000-215887 (Patent Document 7), although a uniform carbon film can be formed, since Si is used as a negative electrode material, lithium The expansion / contraction at the time of adsorption / desorption of ions is too large, and as a result, it cannot withstand practical use. In the method of 2002-42806 (patent document 8), the precipitation of fine silicon crystals, the structure of the carbon coating, and the fusion with the base material are insufficient, and thus the improvement in cycleability is confirmed. , Gradually decreased capacity Hover the number of cycles of charge and discharge, there is a phenomenon that decreases rapidly after a certain number of times, there is a problem as the secondary battery is still insufficient.
[0005]
[Patent Document 1]
JP-A-5-174818
[Patent Document 2]
JP-A-6-60867
[Patent Document 3]
JP 10-294112 A
[Patent Document 4]
Japanese Patent No. 2999741
[Patent Document 5]
JP-A-11-102705
[Patent Document 6]
JP 2000-243396 A
[Patent Document 7]
JP 2000-215887 A
[Patent Document 8]
JP 2002-42806 A
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte secondary negative electrode material and a method for manufacturing the same that enable the production of a negative electrode of a lithium ion secondary battery with higher cycleability. .
[0007]
Means for Solving the Problem and Embodiment of the Invention
As a result of various studies to achieve the above object, the present inventors have confirmed that remarkable improvement in battery characteristics can be seen by coating the surface of a material capable of occluding and releasing lithium ions with a graphite film. At the same time, it was found that a mere graphite coating cannot meet the required characteristics of the market. Therefore, as a result of detailed studies aiming at further improvement of characteristics, the present inventors have controlled the physical properties of the graphite film covering the surface of the material capable of occluding and releasing lithium ions to a specific range, thereby enabling It has been found that the required characteristic level can be reached, and the present invention has been completed.
[0008]
That is, the present inventors conducted a battery characteristic evaluation of a material in which the surface of a material capable of occluding and releasing lithium ions obtained under various conditions was covered with a graphite film in the examination process. Confirmed that there was a difference. Therefore, as a result of analyzing the obtained various materials, a clear correlation was found between battery characteristics, Raman spectroscopy spectrum, graphite coverage, and BET specific surface area. By making these physical properties within a certain range, The present inventors have found that a negative electrode material for a nonaqueous electrolyte secondary battery having good characteristics can be obtained.
[0009]
  Accordingly, the present invention provides the following negative electrode material for a non-aqueous electrolyte secondary battery and a method for producing the same.
(1) A conductive powder in which the surface of a material capable of occluding and releasing lithium ions is coated with a graphite film, and the material capable of occluding and releasing lithium ions has a composite structure in which silicon fine particles are dispersed in a silicon-based compound. Particles with general formula SiOx(1.0 ≦ x <1.6) silicon oxide or a mixture thereof, the graphite coating amount is 3 to 40% by weight, and the BET specific surface area is 2 to 30 m.2/ G, and the graphite film has a Raman shift of 1330 cm from the Raman spectrum.-1And 1580cm-1A negative electrode material for a non-aqueous electrolyte secondary battery, characterized by having a spectrum peculiar to a graphite structure in the vicinity.
(2) The negative electrode material for a non-aqueous electrolyte secondary battery according to (1), wherein the size of silicon fine particles in the composite structure particles is 1 to 500 nm, and the surface thereof is fused with graphite.
(3) The negative electrode material for a nonaqueous electrolyte secondary battery according to (1) or (2), wherein the silicon-based compound in the composite structure particles is silicon dioxide.
(4) As a material capable of inserting and extracting lithium ions, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, a general formula SiOxUsing silicon oxide represented by (1.0 ≦ x <1.6) or a mixture thereof,Methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane and mixtures thereof, monocyclic to tricyclic aromatic hydrocarbons and mixtures thereof, gas light oil, creosote oil, anthracene oil, naphtha cracked tar Selected from oils and mixtures thereofThe method for producing a negative electrode material for a nonaqueous electrolyte secondary battery according to (1), wherein chemical vapor deposition is performed at 1000 to 1400 ° C. in an organic gas and / or steam.
(5) As a material capable of inserting and extracting lithium ions, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, a general formula SiOxUsing silicon oxide represented by (1.0 ≦ x <1.6) or a mixture thereof,Methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane and mixtures thereof, monocyclic to tricyclic aromatic hydrocarbons and mixtures thereof, gas light oil, creosote oil, anthracene oil, naphtha cracked tar Selected from oils and mixtures thereofThe negative electrode material for a non-aqueous electrolyte secondary battery according to (1), which is subjected to a chemical vapor deposition treatment at 500 to 1200 ° C. in an organic gas and / or vapor and then a heat treatment at 1000 to 1400 ° C. in an inert gas atmosphere. Manufacturing method.
(6) A material that can occlude and release lithium ions is represented by the general formula SiO.xThe method for producing a negative electrode material for a nonaqueous electrolyte secondary battery according to (4) or (5), wherein the silicon oxide powder is represented by (1.0 ≦ x <1.3).
(7) Of the conductive powder in which the surface of a material capable of occluding and releasing lithium ions is coated with a graphite film, the material capable of occluding and releasing lithium ions has a composite structure in which silicon fine particles are dispersed in a silicon-based compound. Particles with general formula SiOx(1.0 ≦ x <1.6) silicon oxide or a mixture thereof, the graphite coating amount is 3 to 40% by weight, and the BET specific surface area is 2 to 30 m.2/ G, and the graphite film has a Raman shift of 1330 cm from the Raman spectrum.-1And 1580cm-1Selection of a negative electrode material for a non-aqueous electrolyte secondary battery, characterized by selecting a conductive powder having a spectrum peculiar to the graphite structure as a negative electrode active material for a lithium ion secondary battery giving high charge / discharge capacity and cycle characteristics Method.
[0010]
Hereinafter, the present invention will be described in more detail.
In the present invention, materials capable of inserting and extracting lithium ions include Si, silicon (Si) and silicon dioxide (SiO 2).2) And composite dispersion,xMetallic silicon (1.0 ≦ x <1.6, especially 1.0 ≦ x <1.3), particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound, silicon lower oxide (so-called oxidation) In addition to silicon-based materials such as silicon)
MOa
(In the formula, M is at least one selected from Ge, Sn, Pb, Bi, Sb, Zn, In, and Mg, and a is a positive number of 0.1 to 4.)
Or a metal oxide not containing silicon represented by the following formula:
LiMbOc
(In the formula, M is at least one selected from Ge, Sn, Pb, Bi, Sb, Zn, In, Mg, Si, b = 0.1-4 positive number, c = 0.1-8) Is a positive number.)
A lithium composite oxide (which may contain silicon), specifically, GeO, GeO2, SnO, SnO2, Sn2OThree, Bi2OThree, Bi2OFive, Sb2OThree, Sb2OFour, Sb2OFive, ZnO, In2O, InO, In2OThree, MgO, Li2SiOThree, LiFourSiOFour, Li2SiThreeO7, Li2Si2OFive, Li8SiO6, Li6Si2O7, LiFourGe9O7, LiFourGe9O2, LiFiveGe8O19, LiFourGeFiveO12, LiFiveGe2O7, LiFourGeOFour, Li2Ge7O15, Li2GeOThree, Li2GeFourO9, Li2SnOThree, Li8SnO6, Li2PbOThree, Li7SbOFive, LiSbOThree, LiThreeSbOFour, LiThreeBiOFive, Li6BiO6, LiBiO2, LiFourBi6O11, Li6ZnOFour, LiFourZnOThree, Li2ZnO2, LiInO2, LiThreeInOThreeOr non-stoichiometric compounds such as Si (metal silicon) having a large theoretical charge / discharge capacity, particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound, and silicon oxide were used. In some cases, the present invention is more effective.
[0011]
In this case, the physical properties of particles having a fine structure in which Si and silicon fine particles are dispersed in a silicon-based compound are not particularly limited, but the average particle diameter is 0.01 to 50 μm, particularly 0.1 to 10 μm. Is preferred. If the average particle size is smaller than 0.01 μm, the purity decreases due to the effect of surface oxidation, and when used as a lithium ion secondary battery negative electrode material, the charge / discharge capacity decreases, the bulk density decreases, The charge / discharge capacity may be reduced. On the other hand, if it is larger than 50 μm, the amount of graphite deposited in the chemical vapor deposition process decreases, and as a result, the cycle performance may be lowered when used as a negative electrode material for a lithium ion secondary battery.
In addition, an average particle diameter can be represented by the weight average particle diameter in the particle size distribution measurement by a laser beam diffraction method.
[0012]
In addition, in the particles having a fine structure in which silicon fine particles are dispersed in the silicon-based compound, the silicon-based compound is preferably inactive, and silicon dioxide is preferable in terms of ease of manufacture. Moreover, it is preferable that this particle | grain has the following property.
i. In X-ray diffraction (Cu-Kα) using copper as the counter-cathode, a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° is observed, and based on the broadening of the diffraction line The particle diameter of the silicon crystal determined by the Scherrer equation is preferably 1 to 500 nm, more preferably 2 to 200 nm, and still more preferably 2 to 20 nm. If the size of the silicon fine particles is smaller than 1 nm, the charge / discharge capacity may be reduced. Conversely, if the silicon fine particle is larger than 500 nm, the expansion / contraction during charge / discharge increases, and the cycle performance may decrease. The size of the silicon fine particles can be measured by a transmission electron micrograph.
ii. Solid state NMR (29In the Si-DDMAS) measurement, there is a peak characteristic of Si diamond crystals in the vicinity of -84 ppm together with a broad silicon dioxide peak centered around -110 ppm in the spectrum. This spectrum shows normal silicon oxide (SiOx: X = 1.0 + α), and the structure itself is clearly different. Further, it is confirmed by transmission electron microscope that silicon crystals are dispersed in amorphous silicon dioxide.
[0013]
This silicon / silicon dioxide dispersion (Si / SiO2) In the amount of silicon fine particles (Si) in the range of 2 to 36% by weight, particularly about 10 to 30% by weight. If the amount of dispersed silicon is less than 2% by weight, the charge / discharge capacity may be reduced. Conversely, if the amount of dispersed silicon exceeds 36% by weight, the cycle performance may be reduced.
[0014]
The particles having a fine structure in which the silicon fine particles are dispersed in the silicon compound (silicon composite powder) are particles having a structure in which silicon microcrystals are dispersed in the silicon compound, and preferably 0.01. The production method is not particularly limited as long as it has an average particle diameter of about ˜50 μm. For example, the following method can be suitably employed.
General formula SiOxA method in which silicon oxide powder represented by (1.0 ≦ x <1.6) is heat-treated in an inert gas atmosphere at a temperature range of 900 to 1400 ° C. to disproportionate.
[0015]
In the present invention, silicon oxide is a general term for amorphous silicon oxide obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon. The silicon oxide powder used in the present invention has the general formula SiOxThe average particle size is 0.01 μm or more, more preferably 0.1 μm or more, still more preferably 0.5 μm or more, and the upper limit is preferably 30 μm or less, more preferably 20 μm or less. BET specific surface area is 0.1m2/ G or more, more preferably 0.2 m2/ G or more, upper limit 30m2/ G or less, more preferably 20 m2/ G or less is preferable. The range of x is 1.0 ≦ x <1.6, more preferably 1.0 ≦ x <1.3, and still more preferably 1.0 ≦ x ≦ 1.2. When the average particle diameter and BET specific surface area of the silicon oxide powder are outside the above ranges, a silicon composite powder having a desired average particle diameter and BET specific surface area cannot be obtained, and the value of x is less than 1.0.xIt is difficult to produce a powder, and those having an x value of 1.6 or more are treated with heat treatment and a disproportionation reaction.2When this is used as a lithium ion secondary battery, the charge / discharge capacity may be reduced.
[0016]
On the other hand, in disproportionation of silicon oxide, if the heat treatment temperature is lower than 900 ° C., disproportionation does not proceed at all or it takes an extremely long time to form fine silicon cells (silicon microcrystals), which is efficient. On the other hand, if the temperature is higher than 1400 ° C., the structure of the silicon dioxide portion is advanced and the lithium ion traffic is hindered, so that the function as the lithium ion secondary battery may be deteriorated. More preferably, the heat treatment temperature is 1000 to 1300 ° C, particularly 1100 to 1250 ° C. The treatment time (disproportionation time) can be appropriately selected in the range of 10 minutes to 20 hours, particularly 30 minutes to 12 hours, depending on the disproportionation treatment temperature. For example, at a treatment temperature of 1100 ° C. Provides a silicon composite (disproportionate) having desired physical properties in about 5 hours.
[0017]
The disproportionation treatment may be performed using a reaction apparatus having a heating mechanism in an inert gas atmosphere, and is not particularly limited, and can be performed by a continuous process or a batch process. Specifically, a fluidized bed reactor, A rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a rotary kiln, or the like can be appropriately selected according to the purpose. In this case, as (treatment) gas, Ar, He, H2, N2A gas that is inert at the above-described treatment temperature or a mixed gas thereof can be used.
[0018]
The negative electrode material for a non-aqueous electrolyte secondary battery in the present invention is obtained by coating the surface of a material capable of occluding and releasing lithium ions with a graphite film, and as a coating method, mechanical alloying method, chemical vapor deposition method (CVD) The chemical vapor deposition method is superior in terms of uniform formation of the graphite film, and is more preferably used.
[0019]
Next, the physical properties of the graphite film and the conductive powder coated with graphite that characterize the present invention will be described.
In the present invention, the graphite coating amount covering the surface of the material capable of occluding and releasing lithium ions is 3 to 40% by weight, and particularly preferably 5 to 30% by weight. If the graphite coating amount is less than 3% by weight, it is insufficient in terms of formation of a conductive film, and sufficient conductivity cannot be maintained. As a result, when a negative electrode material for a non-aqueous electrolyte secondary battery is used, cycle performance is lowered. To do. Conversely, even if the graphite coating amount exceeds 40% by weight, not only the improvement of the effect is observed, but also the proportion of graphite in the negative electrode material increases, and when used as a negative electrode material for a non-aqueous electrolyte secondary battery, Discharge capacity decreases.
[0020]
The BET specific surface area of the conductive material in which the material capable of inserting and extracting lithium ions in the present invention is coated with a graphite film is 2 to 30 m.2/ G, especially 3-25m2/ G is preferred. BET specific surface area is 2m2If it is less than / g, surface activity will become small, and when it is set as the negative electrode material for nonaqueous electrolyte secondary batteries as a result, charging / discharging capacity falls. Conversely, the BET specific surface area is 30 m.2If it exceeds / g, the amount of the binder at the time of electrode preparation increases, the capacity as an electrode decreases, and this is economically disadvantageous.
[0021]
In the present invention, the graphite coating film covering the surface of the material capable of occluding and releasing lithium ions has a Raman shift of 1330 cm from the Raman spectrum.-1And 1580cm-1It is essential to have a spectrum peculiar to graphite in the vicinity. By using the conductive material having the graphite film as a negative electrode material for a non-aqueous electrolyte secondary battery, battery characteristics are dramatically improved. Although the cause of this is unclear, as a result, having the above structure can prevent electrode destruction due to expansion / contraction of the electrode material that accompanies charging / discharging, so that the graphite film plays a role in maintaining the strength. Can be guessed.
[0022]
Next, the manufacturing method of the lithium ion secondary battery negative electrode material in this invention is demonstrated.
The lithium ion secondary battery negative electrode material of the present invention can be produced by the following two methods. In the first method, the surface of the material capable of occluding and releasing lithium ions is at least organic gas or vapor (for example, CHFourEtc.) in an atmosphere including 1000 to 1400 ° C., more preferably 1020 to 1200 ° C. Here, if the heat treatment temperature is lower than 1000 ° C., a film having the target graphite structure may not be formed. Conversely, if the heat treatment temperature is higher than 1400 ° C., particles may be fused and aggregated by chemical vapor deposition. This is because the conductive film is not formed on the agglomerated surface and the cycle performance may be lowered when used as a negative electrode material for a lithium ion secondary battery. In particular, when silicon is used as the base material, the temperature is close to the melting point of silicon, so that the silicon melts and it is difficult to coat the surface of the particles with the conductive film. In this first method, conductive powder coated with a graphite film having a desired high crystallinity (that is, having a specific Raman spectroscopic spectrum) is reliably obtained quantitatively depending on CVD processing conditions or by a production batch. It may not always be possible.
[0023]
In the second method, a treated material obtained by heat-treating the surface of the material capable of occluding and releasing lithium ions in a temperature range of 500 to 1200 ° C., more preferably 700 to 1100 ° C. in an atmosphere containing at least an organic gas or vapor. The heat treatment is again performed in a temperature range of 1000 to 1400 ° C., more preferably 1020 to 1200 ° C. in an inert gas atmosphere. Here, the reason for limiting the processing temperature is the same as in 1 above. Although the production of the conductive powder by the second method has a problem that the number of steps is increased, it is more reliably coated with a graphite film having higher crystallinity (that is, having a Raman spectrum) than the first method. The obtained conductive powder can be obtained, and the quality is stable.
[0024]
The processing time is the processing temperature, CHFourAlthough it is appropriately selected depending on the concentration (flow velocity) of organic gas such as the amount introduced, etc., the first method is usually economically efficient for 1 to 10 hours, particularly about 2 to 7 hours. In the second method, the carbon coating treatment (CVD treatment) is the same as the first method, and the re-heat treatment in the inert gas is appropriately selected depending on the re-treatment temperature, but usually 1 to 10 Time, especially about 2 to 5 hours, is economically efficient.
[0025]
As the organic substance used as a raw material for generating the organic gas in the present invention, those capable of generating carbon (graphite) by pyrolysis at the above heat treatment temperature are selected particularly in a non-acidic atmosphere. For example, methane, ethane, ethylene , Acetylene, propane, butane, butene, pentane, isobutane, hexane and other hydrocarbons alone or as a mixture, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, Examples thereof include monocyclic to tricyclic aromatic hydrocarbons such as pyridine, anthracene and phenanthrene, or a mixture thereof. Further, gas light oil, creosote oil, anthracene oil, and naphtha cracked tar oil obtained in the tar distillation step can be used alone or as a mixture.
[0026]
The heat treatment of the organic gas and the material capable of occluding and releasing lithium ions may be performed using a reactor having a heating mechanism in a non-oxidizing atmosphere, and is not particularly limited, and can be processed by a continuous method or a batch method. Specifically, a fluidized bed reaction furnace, a rotary furnace, a vertical moving bed reaction furnace, a tunnel furnace, a batch furnace, or the like can be appropriately selected according to the purpose.
[0027]
In addition, as a raw material to be subjected to chemical vapor deposition treatment, a material in which lithium ions can be occluded and released alone or a mixture in which graphite is added to a treated product obtained by treating a material capable of inserting and extracting lithium ions with an organosilicon surface treatment agent. Is mentioned. Here, the reason for adding graphite is to further improve the conductivity. In any case, in the present invention, the surface graphite film has a Raman shift of 1330 cm according to the Raman spectrum.-1And 1580cm-1It is essential to be coated with a highly crystalline graphite film having a spectrum peculiar to the graphite structure in the vicinity, and only those satisfying the above characteristics among those manufactured by the first method or the second method described above. It is important to select and apply to the negative electrode material.
[0028]
The type of organosilicon surface treatment agent is not particularly limited, but is generally one selected from silane coupling agents, (partial) hydrolysis condensates, silylating agents, and silicone resins. Or 2 or more types are used. The (partial) hydrolysis condensate means that it may be a partial hydrolysis condensate of a silane coupling agent or a hydrolysis condensate of a silane coupling agent obtained by hydrolyzing and condensing the whole.
[0029]
In this case, examples of the silane coupling agent include those represented by the following general formula (1), and examples of the silylating agent include those represented by the following general formula (2).
R(4-n)Si (Y)n                      ... (1)
(RmSi)L(Y)p                     ... (2)
(However, R is a monovalent organic group, Y is a hydrolyzable group or hydroxyl group, n is an integer of 1-4, p is an integer of 1-3, L is an integer of 2-4, m is 1-3. (It is an integer.)
[0030]
Here, as R, an unsubstituted monovalent hydrocarbon group such as an alkyl group having 1 to 12 carbon atoms, particularly 1 to 10 carbon atoms, a cycloalkyl group, an alkenyl group, an aryl group or an aralkyl group, or a hydrogen atom of these groups A part or all of halogen atoms (chlorine, fluorine, bromine atoms, etc.), cyano groups, oxyalkylene groups such as oxyethylene groups, polyoxyalkylene groups such as polyoxyethylene groups, (meth) acryl groups, (meth) In the substituted monovalent hydrocarbon group substituted by a functional group such as acryloxy group, acryloyl group, methacryloyl group, mercapto group, amino group, amide group, ureido group, epoxy group, etc., in these unsubstituted or substituted monovalent hydrocarbon groups, oxygen Atom, NH group, NCHThreeGroup, NC6HFiveGroup, C6HFiveNH-group, H2NCH2CH2Examples include a group in which an NH-group or the like is interposed.
[0031]
Specific examples of R include CHThree-, CHThreeCH2-, CHThreeCH2CH2An alkyl group such as -CH2= CH-, CH2= CHCH2-, CH2= C (CHThree)-And other alkenyl groups, C6HFiveAryl groups such as —, ClCH2-, ClCH2CH2CH2-, CFThreeCH2CH2-, CNCH2CH2-, CHThree-(CH2CH2O)s-CH2CH2CH2-, CH2(O) CHCH2OCH2CH2CH2-(However, CH2(O) CHCH2Represents a glycidyl group), CH2= CHCOOCH2−,
[Chemical 1]
Figure 0004171897
HSCH2CH2CH2-, NH2CH2CH2CH2-, NH2CH2CH2NHCH2CH2CH2-, NH2CONHCH2CH2CH2-Etc. are mentioned. Preferred R is γ-glycidyloxypropyl group, β- (3,4-epoxycyclohexyl) ethyl group, γ-aminopropyl group, γ-cyanopropyl group, γ-acryloxypropyl group, γ-methacryloxypropyl group. , Γ-ureidopropyl group and the like.
[0032]
As the hydrolyzable group for Y, -OCHThree, -OCH2CHThreeAlkoxy groups such as -NH2, -NH-, -N =, -N (CHThree)2Amino groups such as -Cl, -ON = C (CHThree) CH2CHThreeOximino groups such as -ON (CHThree)2Aminooxy group such as -OCOCHThreeCarboxyl groups such as -OC (CHThree) = CH2An alkenyloxy group such as -CH (CHThree) -COOCHThree, -C (CHThree)2-COOCHThreeEtc. These may all be the same group or different groups. Preferred Y is an alkoxy group such as a methoxy group or an ethoxy group, an alkenyloxy group such as an isopropenyloxy group, an imide residue (—NH—), an unsubstituted or substituted acetamide residue, a urea residue, or a carbamate residue. Sulfamate residues, hydroxyl groups and the like.
[0033]
s is an integer of 1 to 3, preferably 2 or 3, and more preferably 3. N is an integer of 1 to 4, preferably 3 or 4.
[0034]
Specific examples of the silane coupling agent include methyltrimethoxysilane, tetraethoxysilane, vinyltrimethoxysilane, methylvinyldimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-cyanopropyltri Methoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltri Examples include methoxysilane and γ-ureidopropyltrimethoxysilane. A silane coupling agent may be individual and may mix two or more types. Or the hydrolysis condensate and / or the partial hydrolysis condensate thereof may be sufficient.
[0035]
Specific examples of the silylating agent represented by the general formula (2) include organosilazanes such as hexamethyldisilazane, divinyltetramethyldisilazane, tetravinyldimethyldisilazane, and octamethyltrisilazane, N, O-bis (trimethylsilyl). ) Acetamide, N, O-bis (trimethylsilyl) carbamate, N, O-bis (trimethylsilyl) sulfamate, N, O-bis (trimethylsilyl) trifluoroacetamide, N, N′-bis (trimethylsilyl) urea and the like. .
[0036]
In addition, as the organosilicon-based surface treatment agent, a silicone resin (that is, at least one, preferably two or more (ORs) in one molecule of a linear, cyclic, branched or three-dimensional network structure is used.2) Group (R2Is R described later2Can also be used, and in this case, examples include the following general formula (3).
R1 q(R2O)rSiO(4-qr) / 2          ... (3)
(However, R1Is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, R2Is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, and q and r are 0 ≦ q ≦ 2.5, 0.01 ≦ r ≦ 3, and 0.5 ≦ q + r, respectively. 0 or a positive number satisfying ≦ 3. )
[0037]
Where R1, R2Examples of the monovalent hydrocarbon group include alkyl groups, aryl groups, alkenyl groups, and the like, among those exemplified for R, those having 1 to 10 or 1 to 6 carbon atoms can be exemplified.1Is methyl, ethyl, vinyl, phenyl, R2Is preferably a hydrogen atom, a methyl group, an ethyl group or an isopropyl group, q is preferably 0 ≦ q ≦ 2, particularly preferably 0.3 ≦ q <1.5, and r is 0.1 ≦ r ≦ 2, particularly 0. .3 ≦ r <1.2 is preferable. Further, q + r is preferably 0.5 ≦ q + r ≦ 2.1, particularly preferably 0.8 ≦ q + r ≦ 1.8.
[0038]
A lithium ion secondary battery can be produced using the nonaqueous electrolyte secondary battery negative electrode material obtained in the present invention.
In this case, the obtained lithium ion secondary battery is characterized in that the negative electrode material is used, and other materials such as positive electrode, negative electrode, electrolyte, separator, and battery shape are not limited. For example, as the positive electrode active material, LiCoO2, LiNiO2, LiMn2OFour, V2OFive, MnO2TiS2, MoS2Transition metal oxides and chalcogen compounds are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used, and as the non-aqueous solvent, simple substance or two kinds such as propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran, etc. The above is used in combination. Various other non-aqueous electrolytes and solid electrolytes can also be used.
[0039]
In addition, when producing a negative electrode using the said secondary battery negative electrode material, electrically conductive agents, such as graphite, can be added to a secondary battery negative electrode material. Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the constituted battery may be used. Specifically, Al, Ti, Fe, Ni, Cu, Metal powder such as Zn, Ag, Sn, Si, metal fiber or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, pitch carbon fiber, PAN carbon fiber, various resin fired bodies Such graphite can be used.
[0040]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example.
[0041]
[Example 1]
General formula SiO with average particle size of 4μx200 g of silicon oxide powder represented by (x = 1.02) was charged into a fluidized bed processing apparatus. Thereafter, while Ar gas was introduced at 2 NL / min, the temperature was raised to 1150 ° C. and held at a temperature raising rate of 300 ° C./hr. Next, CHFourGas was further added at 1 NL / min, and the graphite coating treatment was performed for 5 hours. After the treatment, the temperature was lowered to obtain about 240 g of black powder. The resulting black powder has an average particle size of 4.2 μm and a BET specific surface area of 15.2 m.2/ G, conductive powder having a graphite coating amount of 22% by weight. The Raman shift is 1330 cm according to the Raman spectrum (see FIG. 1).-1And 1580cm-1It had a spectrum peculiar to graphite in the vicinity.
[0042]
○ Battery evaluation
Next, battery evaluation using the obtained conductive powder as a negative electrode active material was performed by the following method.
First, artificial graphite (average particle diameter 5 μm) was added to the obtained conductive powder so that the proportion of carbon was 40% by weight to produce a mixture. To this mixture, 10% by weight of polyvinylidene fluoride is added, and further N-methylpyrrolidone is added to form a slurry. This slurry is applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 1 hour, and then an electrode is added by a roller press. It was pressure-molded and finally punched out to 20 mm to obtain a negative electrode.
Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluorophosphate was used as a non-aqueous electrolyte with 1/1 of ethylene carbonate and 1,2-dimethoxysilane ( (Volume ratio) A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L in a mixed solution and a microporous polyethylene film having a thickness of 30 μm as a separator was prepared.
[0043]
The prepared lithium ion secondary battery is allowed to stand at room temperature overnight and then charged with a constant current of 1 mA until the voltage of the test cell reaches 0 V using a secondary battery charge / discharge test device (manufactured by Nagano Co., Ltd.). After reaching 0V, charging was performed by reducing the current so as to keep the cell voltage at 0V. Then, the charging was terminated when the current value fell below 20 μA. Discharging was performed at a constant current of 1 mA. When the cell voltage exceeded 1.8 V, the discharging was terminated and the discharge capacity was determined.
The above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the lithium ion secondary battery for evaluation was performed. As a result, the initial charge capacity is 1380 mAh / g, the initial discharge capacity is 1180 mAh / g, the initial charge / discharge efficiency is 85%, the discharge capacity at the 50th cycle is 1090 mAh / g, and the cycle retention is 50% after 50 cycles, and It was confirmed that the lithium ion secondary battery was excellent in initial charge / discharge efficiency and cycleability.
[0044]
[Comparative Example 1, Example 2]
The general formula SiO used in Example 1xAbout 240 g of conductive powder was produced in the same manner as in Example 1 except that the silicon oxide powder represented by (x = 1.02) was coated with graphite at a treatment temperature of 950 ° C. for 7 hours. The obtained conductive powder has an average particle size = 4.5 μm and a BET specific surface area = 25.3 m.2/ G, graphite coating amount = 22% by weight of conductive powder. The Raman shift is 1330 cm according to the Raman spectrum (see FIG. 1).-1And 1580cm-1There was no spectrum peculiar to graphite in the vicinity.
Using this conductive powder, a test battery was produced in the same manner as in Example 1, and the same battery evaluation was performed. As a result, the initial charge / discharge capacity was 1360 mAh / g, the initial discharge capacity was 1100 mAh / g, and the initial charge / discharge efficiency was 81. %, A lithium ion secondary battery having inferior cycle performance as compared with Example 1 having a discharge capacity of 720 mAh / g at the 50th cycle and a cycle retention of 65% after 50 cycles.
[0045]
Next, 100 g of this conductive powder was placed in a silicon nitride tray, left in a batch furnace, and then heat treated at 1200 ° C. for 3 hours in an Ar atmosphere. Average particle diameter = 4.3 μm, BET specific surface area = 20.5m2/ G, a heat-treated product with a graphite coating amount of 22% by weight, and the same battery evaluation as in Example 1 was performed on this heat-treated product.
This conductive powder has a Raman shift of 1330 cm according to the Raman spectrum.-1And 1580cm-1It had a spectrum peculiar to graphite in the vicinity. As a result, the initial charge / discharge capacity is 1320 mAh / g, the initial discharge capacity is 1190 mAh / g, the initial charge / discharge efficiency is 90%, the 50th cycle discharge capacity is 1120 mAh / g, and the cycle retention after 50 cycles is a high capacity of 94%. And it was the lithium ion secondary battery excellent in first time charge-and-discharge efficiency and cycling characteristics.
[0046]
[Comparative Examples 2 to 4]
A conductive powder was produced in the same manner as in Examples 1 and 2 except that the graphite coating treatment temperature and the heat treatment temperature were changed. The conductive film coating conditions and the properties of the conductive powder are shown in Table 1. Next, battery evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Table 2.
[0047]
[Table 1]
Figure 0004171897
[0048]
[Table 2]
Figure 0004171897
[0049]
【The invention's effect】
By using the negative electrode material for a non-aqueous electrolyte secondary battery obtained in the present invention as a negative electrode material for a lithium ion secondary battery, a lithium ion secondary battery having a high capacity and excellent cycleability can be obtained. Moreover, the manufacturing method is also simple and can sufficiently withstand industrial scale production.
[Brief description of the drawings]
1 is a Raman spectrum of the conductive powder obtained in Example 1 and Comparative Example 1. FIG.

Claims (7)

リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆した導電性粉末であり、リチウムイオンを吸蔵、放出し得る材料が、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiOx(1.0≦x<1.6)で表される酸化珪素又はこれらの混合物であり、かつ黒鉛被覆量が3〜40重量%、BET比表面積が2〜30m2/gであって、該黒鉛皮膜が、ラマン分光スペクトルより、ラマンシフトが1330cm-1と1580cm-1付近にグラファイト構造特有のスペクトルを有することを特徴とする非水電解質二次電池用負極材。A conductive powder in which the surface of a material capable of occluding and releasing lithium ions is coated with a graphite film, and the material capable of occluding and releasing lithium ions has a composite structure in which silicon fine particles are dispersed in a silicon-based compound; It is silicon oxide represented by the general formula SiO x (1.0 ≦ x <1.6) or a mixture thereof, and the graphite coverage is 3 to 40% by weight, and the BET specific surface area is 2 to 30 m 2 / g. there are, graphite coating, according to the Raman spectroscopy spectrum, negative for a non-aqueous electrolyte secondary battery, wherein a Raman shift has a spectrum of graphite structure unique to around 1330 cm -1 and 1580 cm -1 electrode material. 複合構造粒子における珪素の微粒子の大きさが1〜500nmであり、かつその表面が黒鉛と融合していることを特徴とする請求項1記載の非水電解質二次電池用負極材。  The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the size of silicon fine particles in the composite structure particles is 1 to 500 nm, and the surface thereof is fused with graphite. 複合構造粒子における珪素系化合物が二酸化珪素であることを特徴とする請求項1又は2記載の非水電解質二次電池用負極材。  The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the silicon-based compound in the composite structure particles is silicon dioxide. リチウムイオンを吸蔵、放出し得る材料として、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiOx(1.0≦x<1.6)で表される酸化珪素又はこれらの混合物を用い、該材料をメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン及びその混合物、1環乃至3環の芳香族炭化水素及びその混合物、ガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油及びその混合物から選ばれる有機物ガス及び/又は蒸気中、1000〜1400℃で化学蒸着処理を行うことを特徴とする請求項1記載の非水電解質二次電池用負極材の製造方法。As a material capable of inserting and extracting lithium ions, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, silicon oxide represented by the general formula SiO x (1.0 ≦ x <1.6), or these A mixture of methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane and mixtures thereof, 1- to 3-ring aromatic hydrocarbons and mixtures thereof, gas gas oil, creosote The chemical vapor deposition treatment is performed at 1000 to 1400 ° C in an organic gas and / or steam selected from oil, anthracene oil, naphtha cracked tar oil, and a mixture thereof, for a non-aqueous electrolyte secondary battery according to claim 1 Manufacturing method of negative electrode material. リチウムイオンを吸蔵、放出し得る材料として、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiOx(1.0≦x<1.6)で表される酸化珪素又はこれらの混合物を用い、該材料をメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン及びその混合物、1環乃至3環の芳香族炭化水素及びその混合物、ガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油及びその混合物から選ばれる有機物ガス及び/又は蒸気中、500〜1200℃で化学蒸着処理した後、不活性ガス雰囲気下1000〜1400℃で熱処理することを特徴とする請求項1記載の非水電解質二次電池用負極材の製造方法。As a material capable of inserting and extracting lithium ions, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, silicon oxide represented by the general formula SiO x (1.0 ≦ x <1.6), or these A mixture of methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane and mixtures thereof, 1- to 3-ring aromatic hydrocarbons and mixtures thereof, gas gas oil, creosote It is characterized by performing a chemical vapor deposition treatment at 500 to 1200 ° C. in an organic gas and / or steam selected from oil, anthracene oil, naphtha cracked tar oil and mixtures thereof, and then heat-treating at 1000 to 1400 ° C. in an inert gas atmosphere. The manufacturing method of the negative electrode material for nonaqueous electrolyte secondary batteries of Claim 1. リチウムイオンを吸蔵、放出し得る材料が、一般式SiOx(1.0≦x<1.3)で表される酸化珪素粉末であることを特徴とする請求項4又は5記載の非水電解質二次電池用負極材の製造方法。6. The nonaqueous electrolyte according to claim 4, wherein the material capable of inserting and extracting lithium ions is a silicon oxide powder represented by a general formula SiO x (1.0 ≦ x <1.3). A method for producing a negative electrode material for a secondary battery. リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆した導電性粉末のうち、リチウムイオンを吸蔵、放出し得る材料が、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiOx(1.0≦x<1.6)で表される酸化珪素又はこれらの混合物であり、かつ黒鉛被覆量が3〜40重量%、BET比表面積が2〜30m2/gであって、該黒鉛皮膜がラマン分光スペクトルより、ラマンシフトが1330cm-1と1580cm-1付近にグラファイト構造特有のスペクトルを有する導電性粉末を高充放電容量及びサイクル特性を与えるリチウムイオン二次電池用負極活物質として選定することを特徴とする非水電解質二次電池用負極材の選定方法。Of the conductive powder in which the surface of a material capable of occluding and releasing lithium ions is coated with a graphite film, the material capable of occluding and releasing lithium ions has a composite structure in which silicon fine particles are dispersed in a silicon compound, It is silicon oxide represented by the general formula SiO x (1.0 ≦ x <1.6) or a mixture thereof, and the graphite coverage is 3 to 40% by weight, and the BET specific surface area is 2 to 30 m 2 / g. there are, from the Raman spectrum graphite film, a lithium ion secondary battery Raman shift provides a high charge-discharge capacity and cycle characteristics conductive powder having a graphite structure characteristic spectrum in the vicinity of 1330 cm -1 and 1580 cm -1 A method for selecting a negative electrode material for a non-aqueous electrolyte secondary battery, wherein the negative electrode material is selected as a negative electrode active material.
JP2003119210A 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery and method for producing the same Expired - Lifetime JP4171897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119210A JP4171897B2 (en) 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119210A JP4171897B2 (en) 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004327190A JP2004327190A (en) 2004-11-18
JP4171897B2 true JP4171897B2 (en) 2008-10-29

Family

ID=33498488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119210A Expired - Lifetime JP4171897B2 (en) 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4171897B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065418A1 (en) 2012-10-26 2014-05-01 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014065417A1 (en) 2012-10-26 2014-05-01 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20160059428A (en) 2014-11-18 2016-05-26 신에쓰 가가꾸 고교 가부시끼가이샤 Rotary cylindrical furnace, producing method of negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018179813A1 (en) 2017-03-28 2018-10-04 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019150511A1 (en) 2018-01-31 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019150512A1 (en) 2018-01-31 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20200110756A (en) 2018-01-31 2020-09-25 히타치가세이가부시끼가이샤 Anode active material for lithium ion secondary batteries, anodes for lithium ion secondary batteries, and lithium ion secondary batteries
US20220029150A1 (en) * 2018-12-11 2022-01-27 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery including the same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570648B1 (en) * 2004-01-26 2006-04-12 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
US8709653B2 (en) * 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
JP4854289B2 (en) * 2005-12-14 2012-01-18 日立マクセルエナジー株式会社 Non-aqueous electrolyte secondary battery
JP5210503B2 (en) * 2006-06-26 2013-06-12 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery
KR100814880B1 (en) 2006-11-22 2008-03-18 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery comprising the same
KR100778450B1 (en) 2006-11-22 2007-11-28 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery comprising same
KR100805123B1 (en) 2007-02-15 2008-02-21 삼성에스디아이 주식회사 Lithium secondary battery
JP5196149B2 (en) * 2008-02-07 2013-05-15 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP5272492B2 (en) * 2008-04-21 2013-08-28 信越化学工業株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same, and negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5482660B2 (en) * 2008-09-30 2014-05-07 住友ベークライト株式会社 Carbon material for lithium secondary battery negative electrode, lithium secondary battery negative electrode, lithium secondary battery, and method for producing carbon material for lithium secondary battery negative electrode
JP2010225494A (en) * 2009-03-25 2010-10-07 Shin-Etsu Chemical Co Ltd Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery
KR101378125B1 (en) 2010-04-19 2014-03-25 주식회사 엘지화학 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101567181B1 (en) * 2011-02-09 2015-11-06 오사카 티타늄 테크놀로지스 캄파니 리미티드 Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor
WO2012144177A1 (en) * 2011-04-21 2012-10-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JP5698102B2 (en) * 2011-05-26 2015-04-08 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JPWO2013024639A1 (en) * 2011-08-17 2015-03-05 日本電気株式会社 Negative electrode active material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5982811B2 (en) * 2011-12-20 2016-08-31 ソニー株式会社 Secondary battery active material, secondary battery and electronic equipment
WO2014002356A1 (en) * 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ Lithium-ion secondary battery negative electrode material powder, lithium-ion secondary battery negative electrode and capacitor electrode employing same, and lithium-ion secondary battery and capacitor
JP2014089855A (en) * 2012-10-30 2014-05-15 Hitachi Maxell Ltd Negative electrode active material for nonaqueous secondary battery use, and nonaqueous secondary battery
JP6264299B2 (en) * 2012-12-17 2018-01-24 日本電気株式会社 Negative electrode material for lithium ion secondary battery and evaluation method thereof
JP2015072809A (en) * 2013-10-03 2015-04-16 信越化学工業株式会社 Silicon-containing material, and negative electrode for nonaqueous electrolytic secondary batteries and nonaqueous electrolyte secondary battery, and manufacturing method thereof
KR102237949B1 (en) 2015-12-11 2021-04-08 주식회사 엘지화학 Negative electrode active material particle and method of preparing for the same
JP6911545B2 (en) * 2017-06-05 2021-07-28 株式会社Gsユアサ Negative electrode and non-aqueous electrolyte power storage element
CN111162268B (en) * 2019-09-26 2021-06-18 贝特瑞新材料集团股份有限公司 Composite negative electrode material, preparation method thereof and lithium ion battery
CN114788049A (en) 2019-11-06 2022-07-22 纳诺格拉夫公司 Thermal disproportionation anode active material containing turbostratic carbon coating

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892482B2 (en) 2012-10-26 2021-01-12 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US10693130B2 (en) 2012-10-26 2020-06-23 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014065418A1 (en) 2012-10-26 2014-05-01 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014065417A1 (en) 2012-10-26 2014-05-01 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11251421B2 (en) 2012-10-26 2022-02-15 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20160059428A (en) 2014-11-18 2016-05-26 신에쓰 가가꾸 고교 가부시끼가이샤 Rotary cylindrical furnace, producing method of negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10069142B2 (en) 2014-11-18 2018-09-04 Shin-Etsu Chemical Co., Ltd. Rotary tubular furnace, method of producing negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018179813A1 (en) 2017-03-28 2018-10-04 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20190125389A (en) 2017-03-28 2019-11-06 히타치가세이가부시끼가이샤 Anode active material for lithium ion secondary battery, anode for lithium ion secondary battery and lithium ion secondary battery
WO2019150511A1 (en) 2018-01-31 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019150512A1 (en) 2018-01-31 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20200110755A (en) 2018-01-31 2020-09-25 히타치가세이가부시끼가이샤 Anode active material for lithium ion secondary batteries, anodes for lithium ion secondary batteries, and lithium ion secondary batteries
KR20200110754A (en) 2018-01-31 2020-09-25 히타치가세이가부시끼가이샤 Anode active material for lithium ion secondary batteries, anodes for lithium ion secondary batteries, and lithium ion secondary batteries
US10998546B2 (en) 2018-01-31 2021-05-04 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11063255B2 (en) 2018-01-31 2021-07-13 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11094931B2 (en) 2018-01-31 2021-08-17 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20200110756A (en) 2018-01-31 2020-09-25 히타치가세이가부시끼가이샤 Anode active material for lithium ion secondary batteries, anodes for lithium ion secondary batteries, and lithium ion secondary batteries
US20220029150A1 (en) * 2018-12-11 2022-01-27 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP2004327190A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4171897B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JP4025995B2 (en) Nonaqueous electrolyte secondary battery negative electrode material, method for producing the same, and lithium ion secondary battery
JP5196149B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP4171904B2 (en) Lithium ion secondary battery negative electrode material and method for producing the same
JP4985949B2 (en) Method for producing silicon-silicon oxide-lithium composite, and negative electrode material for non-aqueous electrolyte secondary battery
JP4450192B2 (en) Silicon composite, method for producing the same, and negative electrode material for non-aqueous electrolyte secondary battery
KR101461665B1 (en) Silicon-silicon oxide-lithium composit, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5184567B2 (en) Anode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP2019114559A (en) Negative electrode material for nonaqueous electrolyte secondary batteries and secondary battery
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6193798B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2010272411A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor
JP4081676B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP2013008696A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
JP4288455B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
WO2011148569A1 (en) Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same
JP2006012576A (en) Electrode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
CN107925074B (en) Negative electrode material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
JP2003308837A (en) Negative electrode material for lithium ion secondary battery and its manufacturing method
JP6394498B2 (en) Graphite-coated particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Ref document number: 4171897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140822

Year of fee payment: 6

EXPY Cancellation because of completion of term