JP6394498B2 - Graphite-coated particles and method for producing the same - Google Patents

Graphite-coated particles and method for producing the same Download PDF

Info

Publication number
JP6394498B2
JP6394498B2 JP2015108348A JP2015108348A JP6394498B2 JP 6394498 B2 JP6394498 B2 JP 6394498B2 JP 2015108348 A JP2015108348 A JP 2015108348A JP 2015108348 A JP2015108348 A JP 2015108348A JP 6394498 B2 JP6394498 B2 JP 6394498B2
Authority
JP
Japan
Prior art keywords
graphite
coated particles
silicon
rotary kiln
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015108348A
Other languages
Japanese (ja)
Other versions
JP2016222475A (en
Inventor
福岡 宏文
宏文 福岡
田村 行雄
行雄 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2015108348A priority Critical patent/JP6394498B2/en
Publication of JP2016222475A publication Critical patent/JP2016222475A/en
Application granted granted Critical
Publication of JP6394498B2 publication Critical patent/JP6394498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池等の非水電解質二次電池活物質として、負極材に用いた際に、高い充放電容量及び良好なサイクル特性を有する黒鉛被覆粒子及びその製造方法に関する。   The present invention relates to graphite-coated particles having a high charge / discharge capacity and good cycle characteristics when used as a negative electrode material as a non-aqueous electrolyte secondary battery active material such as a lithium ion secondary battery, and a method for producing the same.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Sn等の酸化物及びそれらの複合酸化物を用いる方法(特許文献1:特開平5−174818号公報、特許文献2:特開平6−60867号公報他)、溶融急冷した金属酸化物を負極材として適用する方法(特許文献3:特開平10−294112号公報)、負極材料に酸化珪素を用いる方法(特許文献4:特許第2997741号公報)、負極材料にSi22O及びGe22Oを用いる方法(特許文献5:特開平11−102705号公報)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(特許文献6:特開2000−243396号公報)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献7:特開2000−215887号公報)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献8:特開2002−42806号公報)、リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛被膜で被覆する方法としてローラーハースキルン、ロータリーキルン等の連続炉で行う方法(特許文献9:特開2013−8654号公報)がある。 In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices. Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, Sn, or a composite oxide thereof as a negative electrode material (Patent Document 1: Japanese Patent Laid-Open No. Hei 5 -174818, Patent Document 2: JP-A-6-60867, etc., a method of applying a molten and quenched metal oxide as a negative electrode material (Patent Document 3: JP-A-10-294112), oxidation to a negative electrode material A method using silicon (Patent Document 4: Japanese Patent No. 2999741), a method using Si 2 N 2 O and Ge 2 N 2 O as negative electrode materials (Patent Document 5: Japanese Patent Laid-Open No. 11-102705), and the like are known. ing. Further, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO with graphite and then carbonizing (Patent Document 6: Japanese Patent Laid-Open No. 2000-243396), a carbon layer is formed on the surface of silicon particles by chemical vapor deposition. (Patent Document 7: Japanese Patent Laid-Open No. 2000-215887), a method of coating a silicon oxide particle surface with a carbon layer by chemical vapor deposition (Patent Document 8: Japanese Patent Laid-Open No. 2002-42806), and lithium ions. As a method for coating the surface of a material that can be occluded and released with a graphite coating, there is a method (Patent Document 9: JP 2013-8654 A) performed in a continuous furnace such as a roller hearth kiln or a rotary kiln.

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特開平11−102705号公報JP-A-11-102705 特開2000−243396号公報JP 2000-243396 A 特開2000−215887号公報JP 2000-215887 A 特開2002−42806号公報JP 2002-42806 A 特開2013−8654号公報JP 2013-8654 A

しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなかった。このことから、さらなる向上が望まれていた。   However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycleability is insufficient, or the required characteristics of the market are still insufficient, and are not always satisfactory. There wasn't. From this, further improvement has been desired.

特に、特許第2997741号公報では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らがみる限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったりし、改良する余地がある。また、負極材に導電性を付与した技術についても、特開2000−243396号公報では、固体と固体の融着であるため、均一な炭素被膜が形成されず、導電性が不十分であるといった問題があり、特開2000−215887号公報の方法においては、均一な炭素被膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならない。特開2002−42806号公報の方法においては、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、サイクル性の向上は確認されるも、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。また、特開2013−8654号公報の方法においては、生産性は上がるものの、長時間運転を行った場合、炉心管内壁へ材料の付着が生ずることで伝熱性が低下し、運転初期と後期の品質バラツキが生じたり、運転安定性が低下する問題があった。   In particular, in Japanese Patent No. 2999741, silicon oxide is used as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. However, as far as the present inventors see, the irreversible capacity at the time of initial charge / discharge is still present. There is room for improvement because the cycleability has not reached the practical level. Also, regarding the technique for imparting conductivity to the negative electrode material, in Japanese Patent Application Laid-Open No. 2000-243396, since it is a solid-solid fusion, a uniform carbon film is not formed and the conductivity is insufficient. There is a problem, and in the method of Japanese Patent Laid-Open No. 2000-215887, although a uniform carbon film can be formed, since Si is used as a negative electrode material, expansion / contraction at the time of lithium ion adsorption / desorption is too much. Is too large to be practically used as a result, and the cycle performance is lowered. Therefore, the charge amount must be limited to prevent this. In the method of Japanese Patent Application Laid-Open No. 2002-42806, although the improvement of cycle performance is confirmed due to insufficient deposition of fine silicon crystals, the structure of the carbon coating and the base material, When the number of cycles is repeated, there is a phenomenon that the capacity gradually decreases and then rapidly decreases after a certain number of times, which is still insufficient for a secondary battery. Moreover, in the method of JP2013-8654A, although productivity is increased, when the operation is performed for a long time, the heat transfer is reduced due to the adhesion of the material to the inner wall of the core tube, and the initial operation and the late operation are performed. There was a problem that quality variation occurred and operation stability was lowered.

リチウムイオン二次電池等の非水電解質二次電池負極材として、充放電容量が現在主流であるグラファイト系のものと比較して、その数倍の容量であることから期待されている半面、繰り返しの充放電による性能低下が大きなネックとなっている珪素系物質の電池特性を改善する方法が求められていた。   As a negative electrode material for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, the charge / discharge capacity is expected to be several times that of graphite-based materials, which are currently mainstream. There has been a need for a method for improving the battery characteristics of silicon-based materials, which has been a major bottleneck in performance degradation due to charging and discharging.

本発明者らは、上記目的を達成するため鋭意検討した結果、比較的高容量な珪素含有物の表面を黒鉛被膜で被覆することで、著しい電池特性の向上が見られることを確認すると共に、同時に単なる黒鉛被覆では市場の要求特性に応えられないことを認識した。そこで、本発明者らはさらなる特性向上を目指し詳細検討を行った結果、黒鉛被覆処理を適切な条件にてロータリーキルンで行うことで、均一な黒鉛被膜が形成され、得られた黒鉛被覆粒子を、

リチウムイオン二次電池等の非水電解質二次電池負極材として用いることで、市場の要求する特性レベルに到達し得ることを見出し、本発明を完成するに至ったものである。
As a result of intensive studies to achieve the above-mentioned object, the present inventors confirmed that a significant improvement in battery characteristics can be seen by coating the surface of a relatively high-capacity silicon-containing material with a graphite coating, At the same time, it was recognized that mere graphite coating could not meet the required characteristics of the market. Therefore, as a result of detailed studies aiming at further improvement in properties, the present inventors performed a graphite coating treatment with a rotary kiln under appropriate conditions, whereby a uniform graphite film was formed, and the obtained graphite-coated particles were

The present inventors have found that by using it as a negative electrode material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, the characteristic level required by the market can be reached, and the present invention has been completed.

従って、本発明は下記発明を提供する。
[1].珪素含有物の表面が黒鉛で被覆処理された黒鉛被覆粒子の製造方法であって、黒鉛被覆処理がロータリーキルン装置を用いたCVD処理であり、珪素又は一般式SiOx(0.5≦x<1.5)で表される酸化珪素を、有機物ガス及び/又は蒸気中、500〜1,300℃で、ロータリーキルン内面積当たりの黒鉛被覆速度0.02〜0.10kg/hr・m 2 でCVD処理することを特徴とし、上記黒鉛被覆粒子が、ラマンスペクトルにおいて500cm-1に現れる珪素のピークIsiと、1,580cm-1に現れるグラファイトのピークIGの強度比Isi/IGが0〜1.0である上記黒鉛被覆粒子の製造方法。
[2].黒鉛被覆粒子の平均粒子径が0.1〜30μm、BET比表面積が0.3〜30m2/g、被覆炭素量が0.5〜40質量%である[1]記載の黒鉛被覆粒子の製造方法。
[3].ロータリーキルン装置が、バッチ式ロータリーキルン装置である[1]又は[2]記載の黒鉛被覆粒子の製造方法。
Accordingly, the present invention provides the following inventions.
[1]. A method for producing graphite-coated particles in which the surface of a silicon-containing material is coated with graphite, wherein the graphite-coating treatment is a CVD treatment using a rotary kiln apparatus, and silicon or a general formula SiOx (0.5 ≦ x <1. The silicon oxide represented by 5) is subjected to CVD treatment in an organic gas and / or steam at 500 to 1,300 ° C. at a graphite coating rate of 0.02 to 0.10 kg / hr · m 2 per area inside the rotary kiln. it features a, the graphite coated particles, and the peak I si of silicon appears at 500 cm -1 in the Raman spectrum, the intensity ratio I si / I G peak I G of graphite appearing at 1,580cm -1 0~ 1 The method for producing the graphite-coated particles is 0.0 .
[2]. Production of graphite-coated particles according to [1], wherein the graphite-coated particles have an average particle diameter of 0.1 to 30 μm, a BET specific surface area of 0.3 to 30 m 2 / g, and a coating carbon amount of 0.5 to 40% by mass. Method.
[3]. The method for producing graphite-coated particles according to [1] or [2] , wherein the rotary kiln apparatus is a batch-type rotary kiln apparatus.

本発明のロータリーキルンを用いたCVD処理を含む製造方法によれば、リチウムイオン二次電池等の非水電解質二次電池負極材として用いた際に、高い充放電容量及び良好なサイクル特性を有する黒鉛被覆粒子を得ることができる。   According to the production method including the CVD treatment using the rotary kiln of the present invention, when used as a negative electrode material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, graphite having a high charge / discharge capacity and good cycle characteristics. Coated particles can be obtained.

以下、本発明について詳細に説明する。
本発明の製造方法は、黒鉛被覆処理がロータリーキルンを用いたCVD処理である、ラマンスペクトルにおいて500cm-1に現れる珪素のピークIsiと、1,580cm-1に現れるグラファイトのピークIGの強度比Isi/IGが0〜2.0である黒鉛被覆粒子の製造方法である。
Hereinafter, the present invention will be described in detail.
Production method of the present invention, the graphite coating process is a CVD process using a rotary kiln, a peak I si of silicon appears at 500 cm -1 in the Raman spectrum, the intensity ratio of the peak I G of graphite appearing on 1,580Cm -1 This is a method for producing graphite-coated particles having I si / I G of 0 to 2.0.

まず、得られた黒鉛被覆粒子について説明する。
[珪素含有物の表面が、黒鉛で被覆処理された黒鉛被覆粒子]
黒鉛で被覆されたものは、容量の大きい珪素を含む珪素含有物であり、例えば、珪素、酸化珪素、炭化珪素、窒化珪素、酸窒化珪素及びこれらの混合物が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。中でも、珪素、一般式SiOx(0.5≦x<1.5)で表される酸化珪素、珪素の微粒子が珪素系化合物に分散した構造を有する粒子又はこれらの混合物が好ましい。珪素の微粒子が珪素系化合物に分散した構造を有する粒子については、一般式SiOx(0.5≦x<1.5)を出発原料とし、熱処理を行い不均化反応することによって得られるが、珪素の微粒子の大きさは1〜500nmであることが好ましい。なお、珪素の微粒子の大きさはX線回折・分析による結晶子のサイズを測定することにより得られる。珪素系化合物としては、二酸化珪素、窒化珪素、炭化珪素、酸窒化珪素等が挙げられる。不活性なものが好ましく、二酸化珪素が好ましい。
First, the obtained graphite-coated particles will be described.
[Graphite-coated particles whose surface of silicon-containing material is coated with graphite]
What is coated with graphite is a silicon-containing material containing large-capacity silicon, and examples thereof include silicon, silicon oxide, silicon carbide, silicon nitride, silicon oxynitride, and mixtures thereof. Two or more species can be used in appropriate combination. Among these, silicon, silicon oxide represented by the general formula SiOx (0.5 ≦ x <1.5), particles having a structure in which fine particles of silicon are dispersed in a silicon-based compound, or a mixture thereof are preferable. The particles having a structure in which silicon fine particles are dispersed in a silicon-based compound can be obtained by using a general formula SiOx (0.5 ≦ x <1.5) as a starting material and performing a disproportionation reaction by heat treatment. The size of the silicon fine particles is preferably 1 to 500 nm. The size of the silicon fine particles can be obtained by measuring the crystallite size by X-ray diffraction / analysis. Examples of the silicon compound include silicon dioxide, silicon nitride, silicon carbide, and silicon oxynitride. Inert ones are preferred and silicon dioxide is preferred.

本発明の黒鉛被覆粒子は、ラマンスペクトルにおいて500cm-1に現れる珪素のピークIsiと、1,580cm-1に現れるグラファイトのピークIGの強度比Isi/IGが0〜2.0である。この比は黒鉛被覆膜の均一性の指標であり、1.8以下が好ましく、1.0以下がより好ましい。上記強度比は、母材である珪素化合物中の珪素が表面に晒されている割合を示す指標となり、完全に黒鉛被覆された場合が0となる。強度比が2.0より大きいと、リチウムイオン二次電池負極材に用いた場合に導電性にバラツキが生じ、電池特性が低下する。 Graphite coated particles of the present invention, the peak I si of silicon appears at 500 cm -1 in the Raman spectrum, the intensity ratio I si / I G peak I G of graphite appearing on 1,580Cm -1 is in 0 to 2.0 is there. This ratio is an index of the uniformity of the graphite coating film, preferably 1.8 or less, and more preferably 1.0 or less. The strength ratio is an index indicating the ratio of the silicon in the silicon compound as the base material exposed to the surface, and is 0 when completely covered with graphite. When the strength ratio is larger than 2.0, the conductivity varies when used for the negative electrode material of a lithium ion secondary battery, and the battery characteristics are deteriorated.

黒鉛被覆粒子の物性については特に限定されるものではないが、平均粒子径は0.1〜30μmが好ましく、0.3〜25μmがより好ましく、0.5〜20μmがさらに好ましい。平均粒子径が0.1μmより小さいと表面酸化の影響で純度が低下し、リチウムイオン二次電池負極材に用いた場合、充放電容量が低下したり、嵩密度が低下し、単位体積あたりの充放電容量が低下する場合がある。一方、30μmより大きいと化学蒸着処理における黒鉛析出量が減少し、結果としてリチウムイオン二次電池負極材に用いた場合にサイクル性能が低下するおそれがある。なお、平均粒子径は、レーザー光回折法による粒度分布測定における重量平均粒子径で表すことができる。   The physical properties of the graphite-coated particles are not particularly limited, but the average particle size is preferably from 0.1 to 30 μm, more preferably from 0.3 to 25 μm, still more preferably from 0.5 to 20 μm. If the average particle size is smaller than 0.1 μm, the purity decreases due to the effect of surface oxidation, and when used for a negative electrode material for a lithium ion secondary battery, the charge / discharge capacity decreases, the bulk density decreases, The charge / discharge capacity may be reduced. On the other hand, when it is larger than 30 μm, the amount of graphite deposited in the chemical vapor deposition treatment is reduced, and as a result, the cycle performance may be lowered when used for a negative electrode material for a lithium ion secondary battery. In addition, an average particle diameter can be represented by the weight average particle diameter in the particle size distribution measurement by a laser beam diffraction method.

黒鉛被覆粒子のBET比表面積は、0.3〜30m2/gが好ましく、0.5〜25m2/gがより好ましく、1.0〜20m2/gがさらに好ましい。BET比表面積が0.3m2/g未満では、表面活性が小さくなり、結果として非水電解質二次電池負極材に用いた場合に充放電容量が低下するおそれがある。逆に、BET比表面積が30m2/gを超えると、電極作製時の結着剤量が多くなり、電極としての容量が低下し、経済的にも不利となる。 BET specific surface area of the graphite coated particles, preferably 0.3~30m 2 / g, more preferably 0.5~25m 2 / g, more preferably 1.0~20m 2 / g. When the BET specific surface area is less than 0.3 m 2 / g, the surface activity becomes small, and as a result, when used as a negative electrode material for a non-aqueous electrolyte secondary battery, the charge / discharge capacity may be reduced. On the other hand, when the BET specific surface area exceeds 30 m 2 / g, the amount of the binder at the time of electrode production increases, the capacity as an electrode decreases, and this is economically disadvantageous.

黒鉛被覆量は、黒鉛被覆粒子中0.5〜40質量%が好ましく、2〜30質量%が好ましく、2.5〜20質量%がさらに好ましい。黒鉛被覆量が0.5質量%未満では、導電性膜形成といった点で不十分であり、十分な導電性を維持できなく、結果として非水電解質二次電池負極材に用いた場合に、サイクル性が低下するおそれがある。逆に黒鉛被覆量が40質量%を超えても、効果の向上が見られないばかりか、負極材料に占める黒鉛の割合が多くなり、非水電解質二次電池負極材に用いた場合、充放電容量が低下する。   The graphite coating amount is preferably 0.5 to 40% by mass, more preferably 2 to 30% by mass, and further preferably 2.5 to 20% by mass in the graphite-coated particles. When the graphite coating amount is less than 0.5% by mass, it is insufficient in terms of formation of a conductive film, and sufficient conductivity cannot be maintained. As a result, when used as a negative electrode material for a non-aqueous electrolyte secondary battery, May decrease. Conversely, even if the graphite coating amount exceeds 40% by mass, not only is the effect improved, but the proportion of graphite in the negative electrode material increases, and when used for the negative electrode material of a non-aqueous electrolyte secondary battery, charge / discharge Capacity decreases.

[黒鉛被覆粒子の製造方法]
次に、本発明における黒鉛被覆粒子の製造方法について説明する。本発明の製造方法は、ロータリーキルンを用い、粒子を転動しながら黒鉛被覆処理を行うことを特徴としている。
[Method for producing graphite-coated particles]
Next, the manufacturing method of the graphite covering particle in this invention is demonstrated. The production method of the present invention is characterized in that a graphite kiln is applied while rolling particles using a rotary kiln.

具体的には、珪素又は一般式SiOx(0.5≦x<1.5)で表される酸化珪素を、有機物ガス及び/又は蒸気中、500〜1,300℃で、ロータリーキルン内面積当たりの黒鉛被覆速度0.02〜0.30kg/hr・m2でCVD処理する方法が挙げられる。 Specifically, silicon or silicon oxide represented by the general formula SiOx (0.5 ≦ x <1.5) is used in an organic gas and / or steam at 500 to 1,300 ° C. per area inside the rotary kiln. A method of performing CVD treatment at a graphite coating rate of 0.02 to 0.30 kg / hr · m 2 can be mentioned.

本発明において酸化珪素とは、通常、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称であり、本発明においては、一般式SiOx(0.5≦x<1.5)を用いる。xは1.0≦x<1.3が好ましく、1.0≦x≦1.2がより好ましい。   In the present invention, silicon oxide is a general term for amorphous silicon oxide obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon. In the invention, the general formula SiOx (0.5 ≦ x <1.5) is used. x is preferably 1.0 ≦ x <1.3, and more preferably 1.0 ≦ x ≦ 1.2.

炭素被覆前の、珪素又は一般式SiOx(0.5≦x<1.5)で表される酸化珪素の平均粒子径は0.1〜30μmが好ましく、0.3〜25μmがより好ましい。また、BET比表面積は0.1〜30m2/gが好ましく、0.2〜25m2/gがより好ましく、0.3〜20m2/gがさらに好ましい。珪素、一般式SiOx(0.5≦x<1.5)で表される酸化珪素の平均粒子径及びBET比表面積が上記範囲外では、所望の平均粒子径及びBET比表面積を有する黒鉛被覆粒子が得られない場合がある。 The average particle diameter of silicon or silicon oxide represented by the general formula SiOx (0.5 ≦ x <1.5) before carbon coating is preferably 0.1 to 30 μm, and more preferably 0.3 to 25 μm. Further, BET specific surface area is preferably 0.1~30m 2 / g, more preferably 0.2~25m 2 / g, more preferably 0.3 to 20 m 2 / g. Graphite-coated particles having a desired average particle diameter and BET specific surface area when the average particle diameter and BET specific surface area of silicon and silicon oxide represented by the general formula SiOx (0.5 ≦ x <1.5) are outside the above ranges. May not be obtained.

具体的には、0.1〜20rpm、好適には0.3〜10rpmで、珪素又は一般式SiOx(0.5≦x<1.5)で表される酸化珪素を回転させながら、有機物ガス及び/又は蒸気中、500〜1,300℃でCVD処理する。   Specifically, the organic gas is rotated while rotating silicon or silicon oxide represented by the general formula SiOx (0.5 ≦ x <1.5) at 0.1 to 20 rpm, preferably 0.3 to 10 rpm. And / or CVD treatment at 500-1300 ° C. in steam.

黒鉛被覆処理を行う処理温度は、500〜1,300℃が好ましく、700〜1,200℃が好ましい。処理温度が500℃より低いと黒鉛被覆処理に長時間を要し、生産性が低下する。逆に処理温度が1,300℃を超えると、一般式SiOx(0.5≦x<1.5)で表される酸化珪素を黒鉛被覆処理した場合、不均化反応が進行し過ぎ、本黒鉛被覆粒子をリチウムイオン二次電池負極材に用いた場合に、サイクル特性が低下するおそれがある。   500-1300 degreeC is preferable and the process temperature which performs a graphite coating process has preferable 700-1200 degreeC. When the treatment temperature is lower than 500 ° C., a long time is required for the graphite coating treatment, and the productivity is lowered. On the other hand, when the treatment temperature exceeds 1,300 ° C., when the silicon oxide represented by the general formula SiOx (0.5 ≦ x <1.5) is coated with graphite, the disproportionation reaction proceeds excessively, When graphite-coated particles are used for a negative electrode material for a lithium ion secondary battery, the cycle characteristics may be deteriorated.

本発明における有機物ガスを発生する原料として用いられる有機物としては、特に非酸化性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが選択され、例えばメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物として用いることができる。また、雰囲気は、特に限定されず、上記有機物ガスの他にAr、N2、H2、He等の非酸化性ガスを混合することもできる。また、常圧、減圧等圧力も適宜選定することができる。 As an organic substance used as a raw material for generating an organic gas in the present invention, an organic substance that can be thermally decomposed at the above heat treatment temperature to generate carbon (graphite) is selected, particularly in a non-oxidizing atmosphere. For example, methane, ethane, A single or mixture of hydrocarbons such as ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone , Pyridine, anthracene, phenanthrene, and the like, and monocyclic to tricyclic aromatic hydrocarbons or a mixture thereof. Further, gas light oil, creosote oil, anthracene oil, and naphtha cracked tar oil obtained in the tar distillation step can be used alone or as a mixture. The atmosphere can also not particularly limited, mixed Ar, the non-oxidizing gas such as N 2, H 2, H e in addition to the organic gas. Also, the pressure such as normal pressure and reduced pressure can be appropriately selected.

珪素又は一般式SiOx(0.5≦x<1.5)で表される酸化珪素を回転させながら、ロータリーキルン内に非酸化性ガスを流入し、上記処理温度まで温度を上昇させた後、有機物ガスを流入させてもよい。   While rotating non-oxidizing gas into the rotary kiln while rotating silicon or silicon oxide represented by the general formula SiOx (0.5 ≦ x <1.5), the temperature is raised to the above treatment temperature, and then organic matter Gas may be introduced.

本発明の物性の黒鉛被覆粒子を得るために重要なことは、例えば、黒鉛被覆速度を一定の範囲とすることである。本発明者らが種々検討した結果、ロータリーキルン内面積当たりの黒鉛被覆速度を0.02〜0.30kg/hr・m2とすることで、ラマンスペクトルにおいて500cm-1に現れる珪素のピークIsiと、1,580cm-1に現れるグラファイトのピークIGの強度比Isi/IGが0〜2.0である、黒鉛被覆粒子を得ることができる。 What is important for obtaining the graphite-coated particles having the physical properties of the present invention is, for example, to keep the graphite coating speed within a certain range. As a result of various studies by the present inventors, by setting the graphite coating speed per area in the rotary kiln to 0.02 to 0.30 kg / hr · m 2 , the silicon peak I si appearing at 500 cm −1 in the Raman spectrum and , the intensity ratio I si / I G peak I G of graphite appearing on 1,580Cm -1 is 0 to 2.0, it can be obtained graphite coated particles.

ロータリーキルン内面積当たりの黒鉛被覆速度とは、単位時間あたりの黒鉛被覆量をロータリーキルン内面積で除した値であり、ロータリーキルンを用いて黒鉛被覆処理を行う際の黒鉛被覆速度と定義される。本発明者らの知見では、このロータリーキルン内面積当たりの黒鉛被覆速度を0.02〜0.30kg/hr・m2とすることで容易に本発明の物性を得ることができる。この範囲は0.03〜0.28kg/hr・m2が好ましく、0.03〜0.10kg/hr・m2がより好ましい。ロータリーキルン内面積当たりの黒鉛被覆速度が0.02kg/hr・m2より小さいと黒鉛被覆処理に長時間を要し、生産性が低下する。逆に黒鉛被覆速度が0.30kg/hr・m2より大きいと黒鉛被覆膜のバラツキが大きくなるおそれがある。 The graphite coating speed per area inside the rotary kiln is a value obtained by dividing the graphite coating amount per unit time by the area inside the rotary kiln, and is defined as the graphite coating speed when performing the graphite coating treatment using the rotary kiln. According to the knowledge of the present inventors, the physical properties of the present invention can be easily obtained by setting the graphite coating rate per area in the rotary kiln to 0.02 to 0.30 kg / hr · m 2 . This range is preferably 0.03~0.28kg / hr · m 2, 0.03~0.10kg / hr · m 2 is more preferable. If the graphite coating speed per area inside the rotary kiln is less than 0.02 kg / hr · m 2 , it takes a long time for the graphite coating treatment, and the productivity decreases. On the other hand, if the graphite coating rate is higher than 0.30 kg / hr · m 2 , the variation of the graphite coating film may increase.

ロータリーキルン装置は特に限定されず、回転機構を有する加熱装置であればよく、バッチ式、連続式等を目的に応じ適宜選択することができるが、バッチ式ロータリーキルンの方が品質安定性と運転安定性の観点から好ましい。なお、連続式ロータリーキルンの場合、ロータリーキルン内面積とは黒鉛被覆処理ゾーンをいう。   The rotary kiln apparatus is not particularly limited as long as it is a heating apparatus having a rotating mechanism, and a batch type, continuous type, etc. can be appropriately selected according to the purpose, but the batch type rotary kiln is more stable in quality and operation. From the viewpoint of In the case of a continuous rotary kiln, the area inside the rotary kiln means a graphite coating treatment zone.

単位時間の始期は、バッチ式の場合、黒鉛被覆処理が開始する時間であり、通常、黒鉛被覆処理温度下で有機物ガス又は蒸気を導入した時間であり、終期は、黒鉛被覆処理が終了する時間であり、通常、有機物ガス又は蒸気を停止した時間である。一方、連続式の場合の始期は、原料が黒鉛被覆処理温度に到達した時間であり、終期は、黒鉛被覆処理温度から外れた時間をいう。ロータリーキルン内面積当たりの黒鉛被覆速度は、黒鉛被覆処理温度、時間、仕込量、有機物発生ガス量等により制御することが可能である。単位時間は、黒鉛被覆速度を上記特定の範囲となるように選定されるが、通常0.5〜30hrの範囲で適宜選定される。   In the case of a batch type, the start of the unit time is the time when the graphite coating treatment starts, usually the time when the organic gas or vapor is introduced at the graphite coating treatment temperature, and the end is the time when the graphite coating treatment ends. Usually, it is the time when the organic gas or vapor is stopped. On the other hand, the initial stage in the case of the continuous type is the time when the raw material reaches the graphite coating treatment temperature, and the final stage is the time deviated from the graphite coating treatment temperature. The graphite coating rate per area in the rotary kiln can be controlled by the graphite coating processing temperature, time, amount charged, amount of organic substance generated gas, and the like. The unit time is selected so that the graphite coating speed falls within the above specific range, but is usually appropriately selected within the range of 0.5 to 30 hr.

[非水電解質二次電池用負極材]
本発明は、上記黒鉛被覆粒子を、リチウムイオン二次電池等の非水電解質二次電池用負極活物質として、負極材に用いることができる。これを用いた非水電解質二次電池負極材を用いて、負極を作製し、リチウムイオン二次電池を製造することができる。
[Negative electrode material for non-aqueous electrolyte secondary battery]
In the present invention, the above graphite-coated particles can be used as a negative electrode material as a negative electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. Using the non-aqueous electrolyte secondary battery negative electrode material using this, a negative electrode can be produced and a lithium ion secondary battery can be produced.

なお、上記黒鉛被覆粒子を用いて負極を作製する場合、カーボン等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粒子や金属繊維又は天然カーボン、人造カーボン、各種のコークス粒子、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等のカーボンを用いることができる。   In addition, when producing a negative electrode using the said graphite covering particle | grains, electrically conductive agents, such as carbon, can be added. Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the constituted battery may be used. Specifically, Al, Ti, Fe, Ni, Cu, Metal particles such as Zn, Ag, Sn, Si, metal fibers or natural carbon, artificial carbon, various coke particles, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, various resin fired bodies Carbon such as can be used.

負極(成形体)の調製方法としては下記の方法が挙げられる。上記黒鉛被覆粒子と、必要に応じて導電剤と、結着剤等の他の添加剤とに、N−メチルピロリドン又は水等の溶剤を混練してペースト状の合剤とし、この合剤を集電体のシートに塗布する。この場合、集電体としては、銅箔、ニッケル箔等、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。   The following method is mentioned as a preparation method of a negative electrode (molded object). A paste-like mixture is prepared by kneading the graphite-coated particles, if necessary, a conductive agent and other additives such as a binder with a solvent such as N-methylpyrrolidone or water. Apply to current collector sheet. In this case, as the current collector, any material that is usually used as a negative electrode current collector, such as a copper foil or a nickel foil, can be used without any particular limitation on thickness and surface treatment. In addition, the shaping | molding method which shape | molds a mixture into a sheet form is not specifically limited, A well-known method can be used.

[リチウムイオン二次電池]
リチウムイオン二次電池は、上記黒鉛被覆粒子を、非水電解質二次電池負極活物質として、非水電解質二次電池用負極材に用いる点に特徴を有し、その他の正極、負極、電解質、セパレータ等の材料及び電池形状等は限定されない。例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn24、V26、MnO2、TiS2、MoS2等の遷移金属の酸化物及びカルコゲン化合物等が用いられる。電解質としては、例えば、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の単体又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
[Lithium ion secondary battery]
The lithium ion secondary battery is characterized in that the graphite-coated particles are used as a negative electrode material for a non-aqueous electrolyte secondary battery as a non-aqueous electrolyte secondary battery negative electrode active material. Other positive electrodes, negative electrodes, electrolytes, The material such as the separator and the battery shape are not limited. For example, as the positive electrode active material, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 6 , MnO 2 , TiS 2 , MoS 2 , chalcogen compounds, and the like are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used, and as the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran or the like alone or in two types The above is used in combination. Various other non-aqueous electrolytes and solid electrolytes can also be used.

以下、実施例、参考例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 EXAMPLES Hereinafter, although an Example, a reference example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
平均粒子径5μmの一般式SiOx(x=1.02)で表される酸化珪素粉末1,000gをバッチ式ロータリーキルン内(内径;200mmφ、長さ;300L、内面積;0.188m2)に仕込んだ。次に回転数1rpmにて回転させながら、窒素ガスを3NL/min流入させ、300℃/hrの昇温速度で1,000℃まで昇温・保持した。次に、CH4ガスを3NL/min追加流入し、3時間の黒鉛被覆処理を行った。処理後は降温し、約1,050gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=5.1μm、BET比表面積=5.5m2/g、黒鉛被覆率=5.2質量%の黒鉛被覆粒子であった(黒鉛被覆量=55g)。この条件でのロータリーキルン内面積当たりの黒鉛被覆速度は0.10kg/hr・m2となる。なお、この粉末を顕微ラマン分析(HORIBA製 XploRA PLUSを使用、532nmの緑色レーザーにて測定)を行った結果、ラマンスペクトルは、ラマンシフトが500cm-1(Isi)と1,580cm-1(IG)付近にスペクトルを有しており、Isi強度=47.3counts,IG強度=46.5countsであり、その強度比Isi/IGは1.0であった。
[Example 1]
1,000 g of silicon oxide powder represented by the general formula SiOx (x = 1.02) having an average particle diameter of 5 μm is charged into a batch type rotary kiln (inner diameter: 200 mmφ, length: 300 L, inner area: 0.188 m 2 ). It is. Next, while rotating at a rotation speed of 1 rpm, nitrogen gas was introduced at 3 NL / min, and the temperature was raised and maintained at 1,000 ° C. at a temperature rising rate of 300 ° C./hr. Next, CH 4 gas was added at an additional flow rate of 3 NL / min, and the graphite coating treatment was performed for 3 hours. After the treatment, the temperature was lowered to obtain about 1,050 g of black powder. The obtained black powder was graphite-coated particles having an average particle size = 5.1 μm, a BET specific surface area = 5.5 m 2 / g, and a graphite coverage = 5.2% by mass (graphite coating amount = 55 g). Under this condition, the graphite coating rate per area in the rotary kiln is 0.10 kg / hr · m 2 . This powder was subjected to microscopic Raman analysis (measured with a 532 nm green laser using Xplora PLUS manufactured by HORIBA). As a result, the Raman spectrum had Raman shifts of 500 cm −1 (I si ) and 1,580 cm −1 ( I G ) near the spectrum, I si intensity = 47.3 counts, I G intensity = 46.5 counts, and the intensity ratio I si / I G was 1.0.

[電池評価]
次に、以下の方法で、得られた導電性粉末を負極活物質として用いた電池評価を行った。
まず、得られた導電性粉末にポリイミドを10質量%加え、さらにN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cm2に打ち抜き、負極とした。
[Battery evaluation]
Next, battery evaluation using the obtained conductive powder as a negative electrode active material was performed by the following method.
First, 10% by mass of polyimide is added to the obtained conductive powder, and further N-methylpyrrolidone is added to form a slurry. This slurry is applied to a copper foil having a thickness of 20 μm, dried at 80 ° C. for 1 hour, and then subjected to a roller press. The electrode was pressure-molded by the following, and this electrode was vacuum-dried at 350 ° C. for 1 hour, and then punched out to 2 cm 2 to obtain a negative electrode.

ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。   Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluoride was mixed with 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate as a non-aqueous electrolyte. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and a polyethylene microporous film having a thickness of 30 μm as a separator was prepared.

作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.5mA/cm2の定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cm2を下回った時点で充電を終了した。放電は0.5mA/cm2の定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。 The prepared lithium ion secondary battery was allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the test cell voltage reached 0 V at 0.5 mA / cm 2 . Charging was performed at a constant current, and after reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. Then, charging was terminated when the current value fell below 40 μA / cm 2 . Discharging was performed at a constant current of 0.5 mA / cm 2 , and discharging was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.

以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回充電容量1,880mAh/g、初回放電容量1,520mAh/g、初回充放電効率80.9%、50サイクル目の放電容量1,400mAh/g、50サイクル後のサイクル保持率92.1%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   The above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the lithium ion secondary battery for evaluation was performed. As a result, the initial charge capacity is 1,880 mAh / g, the initial discharge capacity is 1,520 mAh / g, the initial charge / discharge efficiency is 80.9%, the 50th cycle discharge capacity is 1,400 mAh / g, and the cycle retention rate after 50 cycles is 92. It was confirmed that the lithium ion secondary battery had a high capacity of 1% and excellent initial charge / discharge efficiency and cycleability.

[実施例2]
仕込量を500g、黒鉛被覆処理温度を950℃、処理時間を5時間とした他は実施例1と同様の条件で黒鉛被覆処理を行った。
得られた黒色粉末は、平均粒子径=5.1μm、BET比表面積=6.8m2/g、黒鉛被覆率=5.1質量%の黒鉛被覆粒子であった(黒鉛被覆量=27g)。この条件でのロータリーキルン内面積当たりの黒鉛被覆速度は0.03kg/hr・m2となる。なお、この粉末を顕微ラマン分析を行った結果、ラマンスペクトルは、ラマンシフトが500cm-1(Isi)と1,580cm-1(IG)付近にスペクトルを有しており、Isi強度=42.1counts,IG強度=55.8countsであり、その強度比Isi/IGは0.8であった。
[Example 2]
The graphite coating treatment was performed under the same conditions as in Example 1 except that the amount charged was 500 g, the graphite coating treatment temperature was 950 ° C., and the treatment time was 5 hours.
The resulting black powder was graphite-coated particles having an average particle size = 5.1 μm, a BET specific surface area = 6.8 m 2 / g, and a graphite coverage = 5.1% by mass (graphite coating amount = 27 g). Under these conditions, the graphite coating rate per area in the rotary kiln is 0.03 kg / hr · m 2 . As a result of microscopic Raman analysis of this powder, the Raman spectrum has spectra near 500 cm −1 (I si ) and 1,580 cm −1 (I G ), and the I si intensity = 42.1Counts, an I G intensity = 55.8counts, the intensity ratio I si / I G was 0.8.

この黒鉛被覆粒子を実施例1と同様な方法で電池評価を行った結果、初回充電容量1,910mAh/g、初回放電容量1,510mAh/g、初回充放電効率79.1%、50サイクル目の放電容量1,400mAh/g、50サイクル後のサイクル保持率92.7%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result of battery evaluation of the graphite-coated particles in the same manner as in Example 1, the initial charge capacity was 1,910 mAh / g, the initial discharge capacity was 1,510 mAh / g, the initial charge / discharge efficiency was 79.1%, and the 50th cycle. The lithium ion secondary battery was confirmed to have a high discharge capacity of 1,400 mAh / g, a cycle retention of 92.7% after 50 cycles, and excellent initial charge / discharge efficiency and cycleability.

[実施例3]
CH4量を1NL/min、処理時間を10時間とした他は実施例1と同様な条件で黒鉛被覆処理を行った。
得られた黒色粉末は、平均粒子径=5.1μm、BET比表面積=6.3m2/g、黒鉛被覆率=4.9質量%の黒鉛被覆粒子であった(黒鉛被覆量=52g)。この条件でのロータリーキルン内面積当たりの黒鉛被覆速度は0.03kg/hr・m2となる。なお、この粉末について顕微ラマン分析を行った結果、ラマンスペクトルは、ラマンシフトが500cm-1(Isi)と1,580cm-1(IG)付近にスペクトルを有しており、Isi強度=46.3counts,IG強度=54.5countsであり、その強度比Isi/IGは0.8であった。
[Example 3]
The graphite coating treatment was performed under the same conditions as in Example 1 except that the amount of CH 4 was 1 NL / min and the treatment time was 10 hours.
The obtained black powder was graphite-coated particles having an average particle size = 5.1 μm, a BET specific surface area = 6.3 m 2 / g, and a graphite coverage = 4.9% by mass (graphite coating amount = 52 g). Under these conditions, the graphite coating rate per area in the rotary kiln is 0.03 kg / hr · m 2 . As a result of microscopic Raman analysis of this powder, the Raman spectrum has spectra at Raman shifts near 500 cm −1 (I si ) and 1,580 cm −1 (I G ), and I si intensity = 46.3 counts, I G intensity = 54.5 counts, and the intensity ratio I si / I G was 0.8.

この黒鉛被覆粒子を実施例1と同様な方法で電池評価を行った結果、初回充電容量1,890mAh/g、初回放電容量1,510mAh/g、初回充放電効率79.9%、50サイクル目の放電容量1,400mAh/g、50サイクル後のサイクル保持率92.7%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result of battery evaluation of the graphite-coated particles in the same manner as in Example 1, the initial charge capacity was 1,890 mAh / g, the initial discharge capacity was 1,510 mAh / g, the initial charge / discharge efficiency was 79.9%, and the 50th cycle. The lithium ion secondary battery was confirmed to have a high discharge capacity of 1,400 mAh / g, a cycle retention of 92.7% after 50 cycles, and excellent initial charge / discharge efficiency and cycleability.

参考例1
CH4量を10NL/min、処理時間を1時間とした他は実施例1と同様の条件で黒鉛被覆処理を行った。
得られた黒色粉末は、平均粒子径=5.2μm、BET比表面積=4.8m2/g、黒鉛被覆率=4.8質量%の黒鉛被覆粒子であった(黒鉛被覆量=50g)。この条件でのロータリーキルン内面積当たりの黒鉛被覆速度は0.27kg/hr・m2となる。なお、この粉末について顕微ラマン分析を行った結果、ラマンスペクトルは、ラマンシフトが500cm-1(Isi)と1,580cm-1(IG)付近にスペクトルを有しており、Isi強度=75.3counts,IG強度=40.8countsであり、その強度比Isi/IGは1.8であった。
[ Reference Example 1 ]
The graphite coating treatment was performed under the same conditions as in Example 1 except that the amount of CH 4 was 10 NL / min and the treatment time was 1 hour.
The obtained black powder was graphite-coated particles having an average particle size of 5.2 μm, a BET specific surface area of 4.8 m 2 / g, and a graphite coverage of 4.8% by mass (graphite coating amount = 50 g). Under these conditions, the graphite coating rate per area in the rotary kiln is 0.27 kg / hr · m 2 . As a result of microscopic Raman analysis of this powder, the Raman spectrum has spectra at Raman shifts near 500 cm −1 (I si ) and 1,580 cm −1 (I G ), and I si intensity = 75.3counts, I G intensity = 40.8counts, and the intensity ratio Isi / I G was 1.8.

この黒鉛被覆粒子を実施例1と同様の方法で電池評価を行った結果、初回充電容量1,850mAh/g、初回放電容量1,480mAh/g、初回充放電効率80.0%、50サイクル目の放電容量1,360mAh/g、50サイクル後のサイクル保持率91.9%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result of battery evaluation of the graphite-coated particles in the same manner as in Example 1, the initial charge capacity was 1,850 mAh / g, the initial discharge capacity was 1,480 mAh / g, the initial charge / discharge efficiency was 80.0%, and the 50th cycle. It was confirmed that the lithium ion secondary battery had a high discharge capacity of 1,360 mAh / g, a cycle retention of 91.9% after 50 cycles, and excellent initial charge / discharge efficiency and cycleability.

[実施例
CH4量を1NL/min、処理時間を15時間とした他は実施例1と同様な条件で黒鉛被覆処理を行った。
得られた黒色粉末は、平均粒子径=5.1μm、BET比表面積=7.2m2/g、黒鉛被覆率=7.2質量%の黒鉛被覆粒子であった(黒鉛被覆量=78g)。この条件でのロータリーキルン内面積当たりの黒鉛被覆速度は0.03kg/hr・m2となる。なお、この粉末について顕微ラマン分析を行った結果、ラマンスペクトルは、ラマンシフトが500cm-1(Isi)と1,580cm-1(IG)付近にスペクトルを有しており、Isi強度=0counts,IG強度=80.3countsであり、その強度比Isi/IGは0であった。
[Example 4 ]
The graphite coating treatment was performed under the same conditions as in Example 1 except that the amount of CH 4 was 1 NL / min and the treatment time was 15 hours.
The obtained black powder was graphite-coated particles having an average particle size = 5.1 μm, a BET specific surface area = 7.2 m 2 / g, and a graphite coverage = 7.2% by mass (graphite coating amount = 78 g). Under these conditions, the graphite coating rate per area in the rotary kiln is 0.03 kg / hr · m 2 . As a result of microscopic Raman analysis of this powder, the Raman spectrum has spectra at Raman shifts near 500 cm −1 (I si ) and 1,580 cm −1 (I G ), and I si intensity = 0 counts, I G intensity = 80.3 counts, and the intensity ratio I si / I G was 0.

この黒鉛被覆粒子を実施例1と同様な方法で電池評価を行った結果、初回充電容量1,830mAh/g、初回放電容量1,460mAh/g、初回充放電効率79.8%、50サイクル目の放電容量1,360mAh/g、50サイクル後のサイクル保持率93.2%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result of battery evaluation of the graphite-coated particles in the same manner as in Example 1, the initial charge capacity was 1,830 mAh / g, the initial discharge capacity was 1,460 mAh / g, the initial charge / discharge efficiency was 79.8%, and the 50th cycle. The lithium-ion secondary battery was confirmed to have a high capacity with a discharge capacity of 1,360 mAh / g, a cycle retention of 93.2% after 50 cycles, and excellent initial charge / discharge efficiency and cycleability.

参考例2
CH4量を8NL/min、処理時間を1時間とした他は実施例1と同様の条件で黒鉛被覆処理を行った。
得られた黒色粉末は、平均粒子径=5.1μm、BET比表面積=4.5m2/g、黒鉛被覆率=4.3質量%の黒鉛被覆粒子であった(黒鉛被覆量=45g)。この条件でのロータリーキルン内面積当たりの黒鉛被覆速度は0.24kg/hr・m2となる。なお、この粉末について顕微ラマン分析を行った結果、ラマンスペクトルは、ラマンシフトが500cm-1(Isi)と1,580cm-1(IG)付近にスペクトルを有しており、Isi強度=80.3counts,IG強度=40.1countsであり、その強度比Isi/IGは2.0であった。
[ Reference Example 2 ]
The graphite coating treatment was performed under the same conditions as in Example 1 except that the amount of CH 4 was 8 NL / min and the treatment time was 1 hour.
The obtained black powder was graphite-coated particles having an average particle size = 5.1 μm, a BET specific surface area = 4.5 m 2 / g, and a graphite coverage = 4.3% by mass (graphite coating amount = 45 g). Under this condition, the graphite coating rate per area in the rotary kiln is 0.24 kg / hr · m 2 . As a result of microscopic Raman analysis of this powder, the Raman spectrum has spectra at Raman shifts near 500 cm −1 (I si ) and 1,580 cm −1 (I G ), and I si intensity = 80.3 counts, I G intensity = 40.1 counts, and the intensity ratio I si / I G was 2.0.

この黒鉛被覆粒子を実施例1と同様な方法で電池評価を行った結果、初回充電容量1,860mAh/g、初回放電容量1,480mAh/g、初回充放電効率79.6%、50サイクル目の放電容量1,350mAh/g、50サイクル後のサイクル保持率91.2%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   As a result of battery evaluation of the graphite-coated particles in the same manner as in Example 1, the initial charge capacity was 1,860 mAh / g, the initial discharge capacity was 1,480 mAh / g, the initial charge / discharge efficiency was 79.6%, and the 50th cycle. It was confirmed that the lithium ion secondary battery had a discharge capacity of 1,350 mAh / g, a high capacity with a cycle retention of 91.2% after 50 cycles, and excellent initial charge / discharge efficiency and cycleability.

[比較例1]
CH4量を12NL/min、処理時間を0.8時間とした他は実施例1と同様の条件で黒鉛被覆処理を行った。
得られた黒色粉末は、平均粒子径=5.2μm、BET比表面積=4.5m2/g、黒鉛被覆率=4.9質量%の黒鉛被覆粒子であり(黒鉛被覆量=52g)、粗大粒の形成が見られた。この条件でのロータリーキルン内面積当たりの黒鉛被覆速度は0.34kg/hr・m2となる。なお、この粉末の顕微ラマン分析を行った結果、ラマンスペクトルは、ラマンシフトが500cm-1(Isi)と1,580cm-1(IG)付近にスペクトルを有しており、Isi強度=82.5counts,IG強度=36.6countsであり、その強度比Isi/IGは2.3であった。
[Comparative Example 1]
The graphite coating treatment was performed under the same conditions as in Example 1 except that the amount of CH 4 was 12 NL / min and the treatment time was 0.8 hours.
The obtained black powder is a graphite-coated particle having an average particle size = 5.2 μm, a BET specific surface area = 4.5 m 2 / g, and a graphite coverage = 4.9% by mass (graphite coating amount = 52 g), and is coarse. Grain formation was seen. Under this condition, the graphite coating rate per area in the rotary kiln is 0.34 kg / hr · m 2 . As a result of microscopic Raman analysis of this powder, the Raman spectrum has spectra near 500 cm −1 (I si ) and 1,580 cm −1 (I G ), and the I si intensity = 82.5counts, I G intensity = 36.6counts, and the intensity ratio I si / I G was 2.3.

この黒鉛被覆粒子を実施例1と同様な方法で電池評価を行った結果、初回充電容量1,840mAh/g、初回放電容量1,450mAh/g、初回充放電効率78.8%、50サイクル目の放電容量1,300mAh/g、50サイクル後のサイクル保持率89.7%であり、明らかに実施例に比べ、初回充放電容量、サイクル性に劣るリチウムイオン二次電池であった。   As a result of battery evaluation of the graphite-coated particles in the same manner as in Example 1, the initial charge capacity was 1,840 mAh / g, the initial discharge capacity was 1,450 mAh / g, the initial charge / discharge efficiency was 78.8%, and the 50th cycle. The discharge capacity was 1,300 mAh / g, the cycle retention after 50 cycles was 89.7%, and it was clearly a lithium ion secondary battery inferior in initial charge / discharge capacity and cycleability compared to the Examples.

[比較例2]
黒鉛被覆処理温度を1,100℃、処理時間を0.5時間とした他は実施例1と同様の条件で黒鉛被覆処理を行った。
得られた黒色粉末は、平均粒子径=5.3μm、BET比表面積=4.3m2/g、黒鉛被覆率=5.5質量%の黒鉛被覆粒子であり(黒鉛被覆量=58g)、粗大粒の形成が見られた。この条件でのロータリーキルン内面積当たりの黒鉛被覆速度は0.62kg/hr・m2となる。なお、この粉末を顕微ラマン分析を行った結果、ラマンスペクトルは、ラマンシフトが500cm-1(Isi)と1,580cm-1(IG)付近にスペクトルを有しており、Isi強度=86.5counts,IG強度=32.6countsであり、その強度比Isi/IGは2.7であった。
[Comparative Example 2]
The graphite coating treatment was performed under the same conditions as in Example 1 except that the graphite coating treatment temperature was 1,100 ° C. and the treatment time was 0.5 hours.
The obtained black powder is a graphite-coated particle having an average particle size = 5.3 μm, a BET specific surface area = 4.3 m 2 / g, and a graphite coverage = 5.5% by mass (graphite coating amount = 58 g), and is coarse. Grain formation was seen. Under this condition, the graphite coating rate per area in the rotary kiln is 0.62 kg / hr · m 2 . As a result of microscopic Raman analysis of this powder, the Raman spectrum has spectra near 500 cm −1 (I si ) and 1,580 cm −1 (I G ), and the I si intensity = 86.5 counts, I G intensity = 32.6 counts, and the intensity ratio I si / I G was 2.7.

この黒鉛被覆粒子を実施例1と同様な方法で電池評価を行った結果、初回充電容量1,780mAh/g、初回放電容量1,400mAh/g、初回充放電効率78.7%、50サイクル目の放電容量1,220mAh/g、50サイクル後のサイクル保持率87.1%であり、明らかに実施例に比べ、初回充放電容量、サイクル性に劣るリチウムイオン二次電池であった。   As a result of battery evaluation of the graphite-coated particles in the same manner as in Example 1, the initial charge capacity was 1,780 mAh / g, the initial discharge capacity was 1,400 mAh / g, the initial charge / discharge efficiency was 78.7%, and the 50th cycle. The discharge capacity was 1,220 mAh / g, the cycle retention after 50 cycles was 87.1%, and clearly a lithium ion secondary battery inferior in initial charge / discharge capacity and cycleability compared to the Examples.

実施例1〜4、参考例1,2、比較例1,2の結果を表1〜4に示す。 The results of Examples 1 to 4, Reference Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Tables 1 to 4.

Figure 0006394498
Figure 0006394498

Figure 0006394498
Figure 0006394498

Figure 0006394498
Figure 0006394498

Figure 0006394498
Figure 0006394498

Claims (3)

珪素含有物の表面が黒鉛で被覆処理された黒鉛被覆粒子の製造方法であって、黒鉛被覆処理がロータリーキルン装置を用いたCVD処理であり、珪素又は一般式SiOx(0.5≦x<1.5)で表される酸化珪素を、有機物ガス及び/又は蒸気中、500〜1,300℃で、ロータリーキルン内面積当たりの黒鉛被覆速度0.02〜0.10kg/hr・m 2 でCVD処理することを特徴とし、上記黒鉛被覆粒子が、ラマンスペクトルにおいて500cm-1に現れる珪素のピークIsiと、1,580cm-1に現れるグラファイトのピークIGの強度比Isi/IGが0〜1.0である上記黒鉛被覆粒子の製造方法。 A method for producing graphite-coated particles in which the surface of a silicon-containing material is coated with graphite, wherein the graphite-coating treatment is a CVD treatment using a rotary kiln apparatus, and silicon or a general formula SiOx (0.5 ≦ x <1. The silicon oxide represented by 5) is subjected to CVD treatment in an organic gas and / or steam at 500 to 1,300 ° C. at a graphite coating rate of 0.02 to 0.10 kg / hr · m 2 per area inside the rotary kiln. it features a, the graphite coated particles, and the peak I si of silicon appears at 500 cm -1 in the Raman spectrum, the intensity ratio I si / I G peak I G of graphite appearing at 1,580cm -1 0~ 1 The method for producing the graphite-coated particles is 0.0 . 黒鉛被覆粒子の平均粒子径が0.1〜30μm、BET比表面積が0.3〜30m2/g、被覆炭素量が0.5〜40質量%である請求項1記載の黒鉛被覆粒子の製造方法。 2. The graphite-coated particles according to claim 1, wherein the graphite-coated particles have an average particle diameter of 0.1 to 30 [mu] m, a BET specific surface area of 0.3 to 30 m < 2 > / g, and a coating carbon content of 0.5 to 40 mass%. Method. ロータリーキルン装置が、バッチ式ロータリーキルン装置である請求項1又は2記載の黒鉛被覆粒子の製造方法。 The method for producing graphite-coated particles according to claim 1 or 2 , wherein the rotary kiln device is a batch-type rotary kiln device.
JP2015108348A 2015-05-28 2015-05-28 Graphite-coated particles and method for producing the same Active JP6394498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015108348A JP6394498B2 (en) 2015-05-28 2015-05-28 Graphite-coated particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015108348A JP6394498B2 (en) 2015-05-28 2015-05-28 Graphite-coated particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016222475A JP2016222475A (en) 2016-12-28
JP6394498B2 true JP6394498B2 (en) 2018-09-26

Family

ID=57747178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108348A Active JP6394498B2 (en) 2015-05-28 2015-05-28 Graphite-coated particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP6394498B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206594A (en) * 2017-06-02 2018-12-27 信越化学工業株式会社 Method of manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
WO2023240381A1 (en) * 2022-06-13 2023-12-21 宁德时代新能源科技股份有限公司 Negative electrode active material and preparation method therefor, secondary battery, and electric apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP6046594B2 (en) * 2013-11-12 2016-12-21 信越化学工業株式会社 Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP5798209B2 (en) * 2014-03-28 2015-10-21 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2016222475A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5196149B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP5184567B2 (en) Anode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP5965040B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6301142B2 (en) Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6193798B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP5675546B2 (en) Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2005056705A (en) Lithium-ion secondary battery negative electrode material and its manufacturing method
JP2010272411A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor
JP2013008696A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5910479B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor
JP5320890B2 (en) Method for producing negative electrode material
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP6299248B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery
JP6394498B2 (en) Graphite-coated particles and method for producing the same
JP6046594B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP6413007B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP5798209B2 (en) Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery
JP6408639B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5558312B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2018206594A (en) Method of manufacturing negative electrode active material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R150 Certificate of patent or registration of utility model

Ref document number: 6394498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150