JP2004327190A - Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2004327190A
JP2004327190A JP2003119210A JP2003119210A JP2004327190A JP 2004327190 A JP2004327190 A JP 2004327190A JP 2003119210 A JP2003119210 A JP 2003119210A JP 2003119210 A JP2003119210 A JP 2003119210A JP 2004327190 A JP2004327190 A JP 2004327190A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrode material
silicon
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119210A
Other languages
Japanese (ja)
Other versions
JP4171897B2 (en
Inventor
Hirofumi Fukuoka
宏文 福岡
Mikio Aramata
幹夫 荒又
Satoru Miyawaki
悟 宮脇
Susumu Ueno
進 上野
Kazuma Momii
一磨 籾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33498488&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2004327190(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003119210A priority Critical patent/JP4171897B2/en
Publication of JP2004327190A publication Critical patent/JP2004327190A/en
Application granted granted Critical
Publication of JP4171897B2 publication Critical patent/JP4171897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a nonaqueous electrolyte secondary enabling manufacture of a negative electrode for a lithium ion secondary battery with excellent recyclability and to provide its manufacturing method. <P>SOLUTION: This negative electrode material for the nonaqueous electrolyte secondary batteries is conductive powder wherein a surface of a material occluding and emitting lithium ions is covered with a graphite film. The amount of the graphite film is 3-40 wt.%, and a BET specific surface area is 2-30m<SP>2</SP>/g. The graphite film has a spectrum peculiar to a graphite structure with a Raman shift of 1330 cm<SP>-1</SP>and 1580 cm<SP>-1</SP>by a Raman spectroscopy spectrum. Using the negative electrode material for the nonaqueous electrolyte secondary battery obtained by this invention as the negative electrode material for the lithium ion secondary battery, the lithium ion secondary battery with high capacity and excellent recyclability can be obtained. The manufacturing method is simple and sufficiently meets industrial scale production. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池用負極活物質として用いた際に高い充放電容量及び良好なサイクル特性を有する非水電解質二次電池用負極材及びその製造方法に関する。
【0002】
【従来の技術】
近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Snなどの酸化物及びそれらの複合酸化物を用いる方法(例えば、特許文献1:特開平5−174818号公報、特許文献2:特開平6−60867号公報参照)、溶融急冷した金属酸化物を負極材として適用する方法(例えば、特許文献3:特開平10−294112号公報参照)、負極材料に酸化珪素を用いる方法(例えば、特許文献4:特許第2997741号公報参照)、負極材料にSiO及びGeOを用いる方法(例えば、特許文献5:特開平11−102705号公報参照)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(例えば、特許文献6:特開2000−243396号公報参照)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献7:特開2000−215887号公報参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献8:特開2002−42806号公報参照)がある。
【0003】
しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。
【0004】
特に、特許第2997741号公報(特許文献4)では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らがみる限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったりし、改良する余地がある。また、負極材に導電性を付与した技術についても、特開2000−243396号公報(特許文献6)では、固体と固体の融着であるため、均一な炭素皮膜が形成されず、導電性が不十分であるといった問題があるし、特開2000−215887号公報(特許文献7)の方法においては、均一な炭素皮膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならず、特開2002−42806号公報(特許文献8)の方法においては、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、サイクル性の向上は確認されるも、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。
【0005】
【特許文献1】
特開平5−174818号公報
【特許文献2】
特開平6−60867号公報
【特許文献3】
特開平10−294112号公報
【特許文献4】
特許第2997741号公報
【特許文献5】
特開平11−102705号公報
【特許文献6】
特開2000−243396号公報
【特許文献7】
特開2000−215887号公報
【特許文献8】
特開2002−42806号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みなされたもので、よりサイクル性の高いリチウムイオン二次電池の負極の製造を可能とする非水電解質二次負極材及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するため種々検討を行った結果、リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆することで著しい電池特性の向上が見られることを確認すると同時に、単なる黒鉛被覆では市場の要求特性に応えられないことがわかった。そこで、本発明者らは更なる特性向上を目指し、詳細検討を行った結果、リチウムイオンを吸蔵、放出し得る材料の表面に被覆する黒鉛皮膜の物性を特定範囲に制御することで、市場の要求する特性レベルに到達し得ることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明者らは検討過程において、種々の条件にて得られたリチウムイオンを吸蔵、放出し得る材料表面を黒鉛皮膜で覆った材料の電池特性評価を行った結果、各材料によって特性の相違があることを確認した。そこで、得られた各種材料の分析を行った結果、電池特性とラマン分光スペクトル、黒鉛被覆量、BET比表面積とは明らかなる相関が見られ、これら物性をある特定範囲にすることで、非常に特性の良好な非水電解質二次電池用負極材料が得られることを見出したものである。
【0009】
従って、本発明は、下記の非水電解質二次電池用負極材及びその製造方法を提供する。
(1)リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆した導電性粉末であり、黒鉛被覆量が3〜40重量%、BET比表面積が2〜30m/gであって、該黒鉛皮膜が、ラマン分光スペクトルより、ラマンシフトが1330cm−1と1580cm−1付近にグラファイト構造特有のスペクトルを有することを特徴とする非水電解質二次電池用負極材。
(2)リチウムイオンを吸蔵、放出し得る材料が、珪素、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(1.0≦x<1.6)で表される酸化珪素又はこれらの混合物であることを特徴とする(1)記載の非水電解質二次電池用負極材。
(3)複合構造粒子における珪素の微粒子の大きさが1〜500nmであり、かつその表面が黒鉛と融合していることを特徴とする(2)記載の非水電解質二次電池用負極材。
(4)複合構造粒子における珪素系化合物が二酸化珪素であることを特徴とする(2)又は(3)記載の非水電解質二次電池用負極材。
(5)リチウムイオンを吸蔵、放出し得る材料を有機物ガス及び/又は蒸気中、1000〜1400℃で化学蒸着処理を行うことを特徴とする(1)記載の非水電解質二次電池用負極材の製造方法。
(6)リチウムイオンを吸蔵、放出し得る材料を有機物ガス及び/又は蒸気中、500〜1200℃で化学蒸着処理した後、不活性ガス雰囲気下1000〜1400℃で熱処理することを特徴とする(1)記載の非水電解質二次電池用負極材の製造方法。
(7)リチウムイオンを吸蔵、放出し得る材料が、珪素粉末又は一般式SiO(1.0≦x<1.3)で表される酸化珪素粉末であることを特徴とする(5)又は(6)記載の非水電解質二次電池用負極材の製造方法。
(8)リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆した導電性粉末のうち、黒鉛被覆量が3〜40重量%、BET比表面積が2〜30m/gであって、該黒鉛皮膜がラマン分光スペクトルより、ラマンシフトが1330cm−1と1580cm−1付近にグラファイト構造特有のスペクトルを有する導電性粉末を高充放電容量及びサイクル特性を与えるリチウムイオン二次電池用負極活物質として選定することを特徴とする非水電解質二次電池用負極材の選定方法。
【0010】
以下、本発明につき更に詳しく説明する。
本発明においてリチウムイオンを吸蔵、放出し得る材料としては、Si、珪素(Si)と二酸化珪素(SiO)との複合分散体、SiO(1.0≦x<1.6、特に1.0≦x<1.3)といった金属珪素、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子、珪素低級酸化物(いわゆる酸化珪素)等の珪素系物質の他に、下記式
MO
(式中、MはGe,Sn,Pb,Bi,Sb,Zn,In,Mgから選ばれる少なくとも1種であり、a=0.1〜4の正数である。)
で表される珪素を含まない金属酸化物、もしくは、下記式
LiM
(式中、MはGe,Sn,Pb,Bi,Sb,Zn,In,Mg,Siから選ばれる少なくとも1種であり、b=0.1〜4の正数、c=0.1〜8の正数である。)
で表される(珪素を含んだものであってもよい)リチウム複合酸化物であり、具体的には、GeO,GeO,SnO,SnO,Sn,Bi,Bi,Sb,Sb,Sb,ZnO,InO,InO,In,MgO,LiSiO,LiSiO,LiSi,LiSi,LiSiO,LiSi,LiGe,LiGe,LiGe19,LiGe12,LiGe,LiGeO,LiGe15,LiGeO,LiGe,LiSnO,LiSnO,LiPbO,LiSbO,LiSbO,LiSbO,LiBiO,LiBiO,LiBiO,LiBi11,LiZnO,LiZnO,LiZnO,LiInO,LiInO、又はこれらの非量論的化合物等が挙げられるが、特に理論充放電容量の大きなSi(金属珪素)、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子及び酸化珪素を用いた場合に本発明がより効果的である。
【0011】
この場合、Si及び珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子の物性については特に限定されるものではないが、平均粒子径は0.01〜50μm、特に0.1〜10μmが好ましい。平均粒子径が0.01μmより小さいと表面酸化の影響で純度が低下し、リチウムイオン二次電池負極材として用いた場合、充放電容量が低下したり、嵩密度が低下し、単位体積あたりの充放電容量が低下する場合がある。逆に50μmより大きいと化学蒸着処理における黒鉛析出量が減少し、結果としてリチウムイオン二次電池負極材として用いた場合にサイクル性能が低下するおそれがある。
なお、平均粒子径は、レーザー光回折法による粒度分布測定における重量平均粒子径で表すことができる。
【0012】
また、珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子において、珪素系化合物については、不活性なものが好ましく、製造しやすさの点において二酸化珪素が好ましい。またこの粒子は、下記性状を有していることが好ましい。
i.銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた珪素の結晶の粒子径が好ましくは1〜500nm、より好ましくは2〜200nm、更に好ましくは2〜20nmである。珪素の微粒子の大きさが1nmより小さいと、充放電容量が小さくなる場合があるし、逆に500nmより大きいと充放電時の膨張収縮が大きくなり、サイクル性が低下するおそれがある。なお、珪素の微粒子の大きさは透過電子顕微鏡写真により測定することができる。
ii.固体NMR(29Si−DDMAS)測定において、そのスペクトルが−110ppm付近を中心とするブロードな二酸化珪素のピークとともに−84ppm付近にSiのダイヤモンド結晶の特徴であるピークが存在する。なお、このスペクトルは、通常の酸化珪素(SiO:x=1.0+α)とは全く異なるもので、構造そのものが明らかに異なっているものである。また、透過電子顕微鏡によって、シリコンの結晶が無定形の二酸化珪素に分散していることが確認される。
【0013】
この珪素/二酸化珪素分散体(Si/SiO)中における珪素微粒子(Si)の分散量は、2〜36重量%、特に10〜30重量%程度であることが好ましい。この分散珪素量が2重量%未満では、充放電容量が小さくなる場合があり、逆に36重量%を超えるとサイクル性が低下する場合がある。
【0014】
なお、上記珪素の微粒子が珪素系化合物に分散した微細な構造を有する粒子(珪素複合体粉末)は、珪素の微結晶が珪素系化合物に分散した構造を有する粒子であり、好ましくは0.01〜50μm程度の平均粒子径を有するものであれば、その製造方法は特に限定されるものではないが、例えば下記の方法を好適に採用することができる。
一般式SiO(1.0≦x<1.6)で表される酸化珪素粉末を不活性ガス雰囲気下900〜1400℃の温度域で熱処理を施して不均化する方法。
【0015】
なお、本発明において酸化珪素とは、通常、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称であり、本発明で用いられる酸化珪素粉末は一般式SiOで表され、平均粒子径は0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上で、上限として30μm以下、より好ましくは20μm以下が好ましい。BET比表面積は0.1m/g以上、より好ましくは0.2m/g以上で、上限として30m/g以下、より好ましくは20m/g以下が好ましい。xの範囲は1.0≦x<1.6、より好ましくは1.0≦x<1.3、更に好ましくは1.0≦x≦1.2であることが望ましい。酸化珪素粉末の平均粒子径及びBET比表面積が上記範囲外では所望の平均粒子径及びBET比表面積を有する珪素複合体粉末が得られないし、xの値が1.0より小さいSiO粉末の製造は困難であるし、xの値が1.6以上のものは、熱処理を行い、不均化反応を行なった際に、不活性なSiOの割合が大きく、リチウムイオン二次電池として使用した場合、充放電容量が低下するおそれがある。
【0016】
一方、酸化珪素の不均化において、熱処理温度が900℃より低いと、不均化が全く進行しないかシリコンの微細なセル(珪素の微結晶)の形成に極めて長時間を要し、効率的でなく、逆に1400℃より高いと、二酸化珪素部の構造化が進み、リチウムイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。より好ましくは熱処理温度は1000〜1300℃、特に1100〜1250℃である。なお、処理時間(不均化時間)は不均化処理温度に応じて10分〜20時間、特に30分〜12時間程度の範囲で適宜選定することができるが、例えば1100℃の処理温度においては5時間程度で所望の物性を有する珪素複合体(不均化物)が得られる。
【0017】
上記不均化処理は、不活性ガス雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。この場合、(処理)ガスとしては、Ar、He、H、N等の上記処理温度にて不活性なガス単独もしくはそれらの混合ガスを用いることができる。
【0018】
本発明における非水電解質二次電池用負極材は、上記リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆したものであり、被覆方法としてはメカニカルアロイング法、化学蒸着法(CVD法)等が挙げられるが、黒鉛皮膜の均一形成の点で化学蒸着法が優れており、より好適に用いられる。
【0019】
次に本発明の特徴をなす黒鉛皮膜及び黒鉛被覆を施した導電性粉末の物性について説明する。
本発明におけるリチウムイオンを吸蔵、放出し得る材料表面を被覆する黒鉛被覆量は3〜40重量%であり、特に5〜30重量%が好ましい。黒鉛被覆量が3重量%未満では、導電性膜形成といった点で不十分であり、十分な導電性を維持できなく、結果として非水電解質二次電池用負極材とした場合にサイクル性が低下する。逆に黒鉛被覆量が40重量%を超えても、効果の向上が見られないばかりか、負極材料に占める黒鉛の割合が多くなり、非水電解質二次電池用負極材として用いた場合、充放電容量が低下する。
【0020】
本発明におけるリチウムイオンを吸蔵、放出し得る材料を黒鉛皮膜で被覆した導電性材料のBET比表面積は、2〜30m/gであり、特に3〜25m/gが好ましい。BET比表面積が2m/g未満では、表面活性が小さくなり、結果として非水電解質二次電池用負極材とした場合に充放電容量が低下する。逆に、BET比表面積が30m/gを超えると、電極作製時の結着剤量が多くなり、電極としての容量が低下するし、経済的にも不利となる。
【0021】
本発明におけるリチウムイオンを吸蔵、放出し得る材料表面を被覆する黒鉛被覆膜は、ラマン分光スペクトルより、ラマンシフトが1330cm−1と1580cm−1付近にグラファイト特有のスペクトルを有することが必須である。この黒鉛皮膜を有する導電性材料を非水電解質二次電池用負極材として用いることで電池特性が飛躍的に向上する。この原因については、不明であるが、結果として、上記構造を有することにより、充放電時に伴う電極材料の膨張・収縮による電極破壊を防止できることで、黒鉛皮膜が、強度を維持する外殻の役割を果たしていることが推測できる。
【0022】
次に、本発明におけるリチウムイオン二次電池負極材の製造方法について説明する。
本発明のリチウムイオン二次電池負極材は、以下に示す2つの方法により製造することができる。第1の方法は、上記リチウムイオンを吸蔵、放出し得る材料の表面を少なくとも有機物ガス又は蒸気(例えばCH等)を含む雰囲気下、1000〜1400℃、より好ましくは1020〜1200℃の温度域で熱処理(CVD)する方法である。ここで、熱処理温度が1000℃より低いと、目的とするグラファイト構造を有する膜ができない場合があるし、逆に1400℃より高いと、化学蒸着処理により粒子同士が融着、凝集を起こす可能性があり、凝集面で導電性皮膜が形成されず、リチウムイオン二次電池負極材として用いた場合、サイクル性能が低下するおそれがあるためである。特に珪素を母材として用いた場合には珪素の融点に近い温度となるため、珪素が溶融し、粒子表面への導電性皮膜の被覆処理が困難となる。この第1の方法では、CVD処理条件によって、あるいは製造バッチによって所望とする結晶性の高い(即ち、特定のラマン分光スペクトルを有する)黒鉛皮膜で被覆された導電性粉末を定量的に確実に得ることが必ずしもできない場合がある。
【0023】
第2の方法は、上記リチウムイオンを吸蔵、放出し得る材料の表面を少なくとも有機物ガス又は蒸気を含む雰囲気下、500〜1200℃、より好ましくは700〜1100℃の温度域で熱処理した処理物を再度不活性ガス雰囲気中1000〜1400℃、より好ましくは1020〜1200℃の温度域で熱処理する方法である。ここで、処理温度を限定した理由は上記1と同様である。なお、この第2の方法による導電性粉末製造は工程が増えるといった課題があるものの、第1の方法に比べ、より確実に、結晶性の高い(即ち、ラマン分光スペクトルを有する)黒鉛皮膜で被覆された導電性粉末を得ることができ、品質が安定するといった利点を有する。
【0024】
なお、処理時間は処理温度、CH等の有機物ガスの濃度(流速)や導入量等によって適宜選定されるが、通常、第1の方法では、1〜10時間、特に2〜7時間程度が経済的にも効率的である。第2の方法では、炭素被覆処理(CVD処理)については、第1の方法と同様であり、不活性ガス中での再度の熱処理については再処理温度によって適宜選定されるが、通常1〜10時間、特に2〜5時間程度が経済的にも効率的である。
【0025】
本発明における有機物ガスを発生する原料として用いられる有機物としては、特に非酸性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが選択され、例えばメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物として用いることができる。
【0026】
これらリチウムイオンを吸蔵、放出し得る材料と有機ガスとの熱処理は、非酸化性雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉等をその目的に応じ適宜選択することができる。
【0027】
また、化学蒸着処理を行う原料については、リチウムイオンを吸蔵、放出し得る材料単独、若しくはリチウムイオンを吸蔵、放出し得る材料を有機珪素系表面処理剤で処理した処理物に黒鉛を添加した混合物が挙げられる。ここで、黒鉛を添加する理由はより導電性を向上させるためである。いずれにしても、本発明においては、表面の黒鉛皮膜がラマン分光スペクトルによりラマンシフトが1330cm−1と1580cm−1付近にグラファイト構造特有のスペクトルを有する結晶性の高い黒鉛皮膜で被覆されていることが必須であり、上記第1の方法あるいは第2の方法で製造されたもののうち、上記特性を満足するもののみを選定して負極材料に適用することが重要である。
【0028】
なお、有機珪素系表面処理剤としては、種類は特に限定されるものではないが、一般的にシランカップリング剤、その(部分)加水分解縮合物、シリル化剤、シリコーンレジンから選ばれる1種又は2種以上が用いられる。なお、(部分)加水分解縮合物とは、シランカップリング剤の部分加水分解縮合物でも全部を加水分解縮合したシランカップリング剤の加水分解縮合物でもよいことを意味する。
【0029】
この場合、シランカップリング剤としては、下記一般式(1)、シリル化剤としては下記一般式(2)で示されるものが挙げられる。
(4−n)Si(Y) …(1)
(RSi)(Y) …(2)
(但し、Rは一価の有機基、Yは加水分解性基又は水酸基、nは1〜4の整数、pは1〜3の整数、Lは2〜4の整数、mは1〜3の整数である。)
【0030】
ここで、Rとしては、炭素数1〜12、特に1〜10のアルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基などの非置換一価炭化水素基や、これらの基の水素原子の一部又は全部をハロゲン原子(塩素、フッ素、臭素原子等)、シアノ基、オキシエチレン基等のオキシアルキレン基、ポリオキシエチレン基等のポリオキシアルキレン基、(メタ)アクリル基、(メタ)アクリロキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、アミド基、ウレイド基、エポキシ基などの官能基で置換した置換一価炭化水素基、これら非置換又は置換一価炭化水素基において、酸素原子、NH基、NCH基、NC基、CNH−基、HNCHCHNH−基などが介在した基を挙げることができる。
【0031】
Rの具体例としては、CH−、CHCH−、CHCHCH−などのアルキル基、CH=CH−、CH=CHCH−、CH=C(CH)−などのアルケニル基、C−などのアリール基、ClCH−、ClCHCHCH−、CFCHCH−、CNCHCH−、CH−(CHCHO)−CHCHCH−、CH(O)CHCHOCHCHCH−(但し、CH(O)CHCHはグリシジル基を示す)、CH=CHCOOCH−、
【化1】

Figure 2004327190
HSCHCHCH−、NHCHCHCH−、NHCHCHNHCHCHCH−、NHCONHCHCHCH−などが挙げられる。好ましいRとしては、γ−グリシジルオキシプロピル基、β−(3,4−エポキシシクロヘキシル)エチル基、γ−アミノプロピル基、γ−シアノプロピル基、γ−アクリルオキシプロピル基、γ−メタクリルオキシプロピル基、γ−ウレイドプロピル基などである。
【0032】
Yの加水分解性基としては、−OCH、−OCHCHなどのアルコキシ基、−NH、−NH−、−N=、−N(CHなどのアミノ基、−Cl、−ON=C(CH)CHCHなどのオキシミノ基、−ON(CHなどのアミノオキシ基、−OCOCHなどのカルボキシル基、−OC(CH)=CHなどのアルケニルオキシ基、−CH(CH)−COOCH、−C(CH−COOCHなどが挙げられる。これらはすべて同一の基であっても異なる基であってもよい。好ましいYとしては、メトキシ基、エトキシ基等のアルコキシ基、イソプロペニルオキシ基等のアルケニルオキシ基、イミド残基(−NH−)、非置換又は置換のアセトアミド残基、ウレア残基、カーバメート残基、サルファメート残基、水酸基などである。
【0033】
sは1〜3の整数であり、好ましくは2又は3であり、より好ましくは3である。また、nは1〜4の整数、好ましくは3又は4である。
【0034】
シランカップリング剤の具体例としては、メチルトリメトキシシラン、テトラエトキシシラン、ビニルトリメトキシシラン、メチルビニルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−シアノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシランなどが挙げられる。シランカップリング剤は単独でもよいし、2種類以上を混合してもよい。又はその加水分解縮合物及び/又はその部分加水分解縮合物であってもよい。
【0035】
また、一般式(2)のシリル化剤の具体例としては、ヘキサメチルジシラザン、ジビニルテトラメチルジシラザン、テトラビニルジメチルジシラザン、オクタメチルトリシラザン等のオルガノシラザン、N,O−ビス(トリメチルシリル)アセトアミド、N,O−ビス(トリメチルシリル)カーバメート、N,O−ビス(トリメチルシリル)サルファメート、N,O−ビス(トリメチルシリル)トリフロロアセトアミド、N,N’−ビス(トリメチルシリル)ウレア等が挙げられる。
【0036】
また、有機珪素系表面処理剤として、シリコーンレジン(即ち、直鎖状、環状、分岐状又は三次元網状構造の1分子中に少なくとも1個、好ましくは2個以上の(OR)基(Rは後述するRと同じ)を含有するオルガノポリシロキサン)を用いることもでき、この場合、下記一般式(3)のものが挙げられる。
(RO)SiO(4−q−r)/2 …(3)
(但し、Rは水素原子又は炭素数が1〜10の置換もしくは非置換の一価炭化水素基、Rは水素原子又は炭素数が1〜6の置換もしくは非置換の一価炭化水素基であり、q,rはそれぞれ0≦q≦2.5、0.01≦r≦3、0.5≦q+r≦3を満足する0又は正数である。)
【0037】
ここで、R,Rの一価炭化水素基としては、アルキル基、アリール基、アルケニル基等、Rで例示したもののうち、炭素数が1〜10又は1〜6のものを挙げることができるが、Rはメチル基、エチル基、ビニル基、フェニル基、Rは水素原子、メチル基、エチル基、イソプロピル基が好ましく用いられ、qは0≦q≦2、特に0.3≦q<1.5が好ましく、rは0.1≦r≦2、特に0.3≦r<1.2が好ましい。また、q+rは0.5≦q+r≦2.1、特に0.8≦q+r≦1.8が好ましい。
【0038】
本発明で得られた非水電解質二次電池負極材を用いて、リチウムイオン二次電池を製造することができる。
この場合、得られたリチウムイオン二次電池は、上記負極材を用いる点に特徴を有し、その他の正極、負極、電解質、セパレータなどの材料及び電池形状などは限定されない。例えば、正極活物質としてはLiCoO、LiNiO、LiMn、V、MnO、TiS、MoSなどの遷移金属の酸化物及びカルコゲン化合物などが用いられる。電解質としては、例えば、過塩素酸リチウムなどのリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフランなどの単体又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
【0039】
なお、上記二次電池負極材を用いて負極を作製する場合、二次電池負極材に黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
【0040】
【実施例】
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
【0041】
[実施例1]
平均粒子径4μmの一般式SiO(x=1.02)で表される酸化珪素粉末200gを流動層型処理装置内に仕込んだ。その後、Arガスを2NL/min流入しながら、300℃/hrの昇温速度で1150℃まで昇温、保持した。次に、CHガスを1NL/min追加流入し、5時間の黒鉛被覆処理を行った。処理後は降温し、約240gの黒色粉末を得た。得られた黒色粉末は、平均粒子径=4.2μm、BET比表面積=15.2m/g、黒鉛被覆量22重量%の導電性粉末であった。なお、ラマン分光スペクトル(図1参照)により、ラマンシフトが1330cm−1と1580cm−1付近にグラファイト特有のスペクトルを有していた。
【0042】
○電池評価
次に、以下の方法で、得られた導電性粉末を負極活物質として用いた電池評価を行った。
まず、得られた導電性粉末に人造黒鉛(平均粒子径5μm)を炭素の割合が40重量%となるように加え、混合物を製造した。この混合物にポリフッ化ビニリデンを10重量%加え、更にN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、120℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、最終的には20mmに打ち抜き、負極とした。
ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートと1,2−ジメトキシシエタンの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
【0043】
作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで1mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が20μAを下回った時点で充電を終了した。放電は1mAの定電流で行い、セル電圧が1.8Vを上回った時点で放電を終了し、放電容量を求めた。
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回充電容量1380mAh/g、初回放電容量1180mAh/g、初回充放電効率85%、50サイクル目の放電容量1090mAh/g、50サイクル後のサイクル保持率92%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。
【0044】
[比較例1、実施例2]
実施例1で用いた一般式SiO(x=1.02)で示される酸化珪素粉末を処理温度950℃で7時間の黒鉛被覆処理した他は、実施例1と同様な方法で約240gの導電性粉末を製造した。得られた導電性粉末は、平均粒子径=4.5μm、BET比表面積=25.3m/g、黒鉛被覆量=22重量%の導電性粉末であった。なお、ラマン分光スペクトル(図1参照)により、ラマンシフトが1330cm−1と1580cm−1付近にグラファイト特有のスペクトルは有していなかった。
この導電性粉末を用いて実施例1と同じ方法で試験用電池を作製し、同様な電池評価を行った結果、初回充放電容量1360mAh/g、初回放電容量1100mAh/g、初回充放電効率81%、50サイクル目の放電容量720mAh/g、50サイクル後のサイクル保持率65%の実施例1に比べサイクル性の劣るリチウムイオン二次電池であった。
【0045】
次に、この上記導電性粉末を窒化珪素製トレイに100g仕込み、バッチ炉内に静置後、Ar雰囲気中1200℃にて3時間熱処理を行い、平均粒子径=4.3μm、BET比表面積=20.5m/g、黒鉛被覆量=22重量%の熱処理品を製造し、この熱処理品についても実施例1と同様な電池評価を行った。
なお、この導電性粉末はラマン分光スペクトルにより、ラマンシフトが1330cm−1と1580cm−1付近にグラファイト特有のスペクトルを有していた。その結果、初回充放電容量1320mAh/g、初回放電容量1190mAh/g、初回充放電効率90%、50サイクル目の放電容量1120mAh/g、50サイクル後のサイクル保持率94%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であった。
【0046】
[比較例2〜4]
黒鉛被覆処理温度、熱処理温度を変えた他は実施例1及び2と同様な方法で導電性粉末を製造した。導電性膜被覆条件及び導電性粉末物性を表1に示す。次に実施例1と同様な方法にて電池評価を行った。評価結果を表2に記す。
【0047】
【表1】
Figure 2004327190
【0048】
【表2】
Figure 2004327190
【0049】
【発明の効果】
本発明で得られた非水電解質二次電池用負極材をリチウムイオン二次電池負極材として用いることで、高容量でかつサイクル性に優れたリチウムイオン二次電池を得ることができる。また、製造方法についても簡便であり、工業的規模の生産にも十分耐え得るものである。
【図面の簡単な説明】
【図1】実施例1及び比較例1で得られた導電性粉末のラマン分光スペクトルである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery having high charge / discharge capacity and good cycle characteristics when used as a negative electrode active material for a lithium ion secondary battery, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the remarkable development of portable electronic devices, communication devices, and the like, a secondary battery having a high energy density has been strongly demanded from the viewpoints of economy and reduction in size and weight of the devices. Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method using an oxide such as V, Si, B, Zr, Sn or a composite oxide thereof as a negative electrode material (for example, Patent Document 1: Japanese Unexamined Patent Publication No. Hei 5-174818, Patent Document 2: Japanese Unexamined Patent Application Publication No. 6-60867), a method of applying a molten and quenched metal oxide as a negative electrode material (for example, refer to Patent Document 3: Japanese Unexamined Patent Application Publication No. 10-294112). A method using silicon oxide as a negative electrode material (for example, see Patent Document 4: Japanese Patent No. 2997741),2N2O and Ge2N2A method using O (see, for example, Patent Document 5: Japanese Patent Application Laid-Open No. 11-102705) and the like are known. For the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO after mechanical alloying with graphite (for example, see Patent Document 6: JP-A-2000-243396), and a chemical vapor deposition method on the surface of silicon particles (See, for example, Patent Document 7: JP-A-2000-21587), and a method of coating a carbon layer on the surface of silicon oxide particles by a chemical vapor deposition method (for example, Patent Document 8: JP-A-2002-2002). No. 42806).
[0003]
However, in the above-mentioned conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cyclability is insufficient, or the characteristics required in the market are still insufficient, and cannot always be satisfied. Therefore, further improvement in energy density was desired.
[0004]
In particular, in Japanese Patent No. 2997741 (Patent Document 4), silicon oxide is used as a negative electrode material of a lithium ion secondary battery to obtain a high-capacity electrode, but as far as the present inventors can see, it is still the first charge. The irreversible capacity at the time of discharge is large, and the cyclability has not reached a practical level, and there is room for improvement. Regarding the technique of imparting conductivity to the negative electrode material, Japanese Patent Application Laid-Open No. 2000-243396 (Patent Document 6) discloses that a uniform carbon film is not formed due to fusion between solids, and the conductivity is reduced. There is a problem that it is insufficient, and in the method of Japanese Patent Application Laid-Open No. 2000-21587 (Patent Document 7), although a uniform carbon film can be formed, lithium is used because Si is used as a negative electrode material. The expansion and contraction of ions during adsorption and desorption are too large, and as a result, they cannot be put to practical use.As a result, the cycleability is reduced. In the method disclosed in Japanese Patent Application Laid-Open No. 2002-42806 (Patent Document 8), the improvement of the cycleability is confirmed because the precipitation of fine silicon crystals, the structure of the carbon coating and the fusion with the substrate are insufficient. , Gradually decreased capacity Hover the number of cycles of charge and discharge, there is a phenomenon that decreases rapidly after a certain number of times, there is a problem as the secondary battery is still insufficient.
[0005]
[Patent Document 1]
JP-A-5-174818
[Patent Document 2]
JP-A-6-60867
[Patent Document 3]
JP-A-10-294112
[Patent Document 4]
Japanese Patent No. 2997741
[Patent Document 5]
JP-A-11-102705
[Patent Document 6]
JP 2000-243396 A
[Patent Document 7]
JP 2000-21587 A
[Patent Document 8]
JP-A-2002-42806
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a nonaqueous electrolyte secondary negative electrode material and a method for manufacturing the same, which enable the production of a negative electrode of a lithium ion secondary battery having higher cyclability. .
[0007]
Means for Solving the Problems and Embodiments of the Invention
The present inventors have conducted various studies to achieve the above object.As a result, it was confirmed that remarkable improvement in battery characteristics was observed by coating the surface of a material capable of absorbing and releasing lithium ions with a graphite film. At the same time, it was found that the mere graphite coating could not meet the market requirements. Accordingly, the present inventors have conducted detailed studies with the aim of further improving the characteristics, and as a result, by controlling the physical properties of the graphite coating that covers the surface of the material capable of absorbing and releasing lithium ions to a specific range, the market potential has been improved. The inventors have found that the required characteristic level can be reached, and have completed the present invention.
[0008]
In other words, during the course of the study, the present inventors evaluated the battery characteristics of a material in which the surface of a material capable of occluding and releasing lithium ions obtained under various conditions was covered with a graphite film. Confirmed that there are differences. Then, as a result of analyzing the obtained various materials, a clear correlation was found between the battery characteristics and the Raman spectroscopy spectrum, the graphite coating amount, and the BET specific surface area. It has been found that a negative electrode material for a non-aqueous electrolyte secondary battery having good characteristics can be obtained.
[0009]
Accordingly, the present invention provides the following negative electrode material for a non-aqueous electrolyte secondary battery and a method for producing the same.
(1) A conductive powder in which the surface of a material capable of occluding and releasing lithium ions is coated with a graphite film, the graphite coating amount is 3 to 40% by weight, and the BET specific surface area is 2 to 30 m.2/ G, the graphite film has a Raman shift of 1330 cm from the Raman spectrum.-1And 1580cm-1A negative electrode material for a non-aqueous electrolyte secondary battery, characterized by having a spectrum specific to a graphite structure in the vicinity.
(2) The material capable of occluding and releasing lithium ions is silicon, particles having a composite structure in which fine particles of silicon are dispersed in a silicon-based compound, a general formula SiOxThe negative electrode material for a non-aqueous electrolyte secondary battery according to (1), wherein the negative electrode material is a silicon oxide represented by (1.0 ≦ x <1.6) or a mixture thereof.
(3) The negative electrode material for a non-aqueous electrolyte secondary battery according to (2), wherein the size of the silicon fine particles in the composite structure particles is 1 to 500 nm, and the surface thereof is fused with graphite.
(4) The negative electrode material for a non-aqueous electrolyte secondary battery according to (2) or (3), wherein the silicon compound in the composite structure particles is silicon dioxide.
(5) The negative electrode material for a non-aqueous electrolyte secondary battery according to (1), wherein a material capable of occluding and releasing lithium ions is subjected to a chemical vapor deposition treatment in an organic gas and / or vapor at 1000 to 1400 ° C. Manufacturing method.
(6) A material capable of occluding and releasing lithium ions is subjected to chemical vapor deposition at 500 to 1200 ° C. in an organic gas and / or vapor, and then heat treated at 1000 to 1400 ° C. in an inert gas atmosphere ( 1) The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to 1).
(7) The material capable of occluding and releasing lithium ions is silicon powder or general formula SiOxThe method for producing a negative electrode material for a nonaqueous electrolyte secondary battery according to (5) or (6), wherein the method is a silicon oxide powder represented by (1.0 ≦ x <1.3).
(8) Of the conductive powder in which the surface of a material capable of occluding and releasing lithium ions is coated with a graphite film, the graphite coating amount is 3 to 40% by weight, and the BET specific surface area is 2 to 30 m.2/ G, and the graphite film has a Raman shift of 1330 cm from the Raman spectrum.-1And 1580cm-1Selection of a negative electrode material for a non-aqueous electrolyte secondary battery characterized by selecting a conductive powder having a spectrum specific to the graphite structure in the vicinity as a negative electrode active material for a lithium ion secondary battery providing high charge / discharge capacity and cycle characteristics Method.
[0010]
Hereinafter, the present invention will be described in more detail.
In the present invention, materials capable of occluding and releasing lithium ions include Si, silicon (Si) and silicon dioxide (SiO 2).2), SiO 2x(1.0 ≦ x <1.6, particularly 1.0 ≦ x <1.3), particles having a fine structure in which fine particles of silicon are dispersed in a silicon-based compound, silicon lower oxides (so-called oxidation) In addition to silicon-based substances such as silicon), the following formula
MOa
(In the formula, M is at least one selected from Ge, Sn, Pb, Bi, Sb, Zn, In, and Mg, and a is a positive number of 0.1 to 4.)
A silicon-free metal oxide represented by the formula:
LiMbOc
(Where M is at least one selected from Ge, Sn, Pb, Bi, Sb, Zn, In, Mg and Si, b is a positive number of 0.1 to 4 and c is 0.1 to 8) Is a positive number.)
Is a lithium composite oxide (which may contain silicon), specifically, GeO, GeO2, SnO, SnO2, Sn2O3, Bi2O3, Bi2O5, Sb2O3, Sb2O4, Sb2O5, ZnO, In2O, InO, In2O3, MgO, Li2SiO3, Li4SiO4, Li2Si3O7, Li2Si2O5, Li8SiO6, Li6Si2O7, Li4Ge9O7, Li4Ge9O2, Li5Ge8O19, Li4Ge5O12, Li5Ge2O7, Li4GeO4, Li2Ge7OFifteen, Li2GeO3, Li2Ge4O9, Li2SnO3, Li8SnO6, Li2PbO3, Li7SbO5, LiSbO3, Li3SbO4, Li3BiO5, Li6BiO6, LiBiO2, Li4Bi6O11, Li6ZnO4, Li4ZnO3, Li2ZnO2, LiInO2, Li3InO3Or a non-stoichiometric compound of these, and particularly, Si (metallic silicon) having a large theoretical charge / discharge capacity, particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound, and silicon oxide are used. In this case, the present invention is more effective.
[0011]
In this case, the physical properties of particles having a fine structure in which fine particles of Si and silicon are dispersed in a silicon compound are not particularly limited, but the average particle diameter is 0.01 to 50 μm, particularly 0.1 to 10 μm. Is preferred. If the average particle diameter is smaller than 0.01 μm, the purity is reduced due to the surface oxidation, and when used as a negative electrode material for a lithium ion secondary battery, the charge / discharge capacity is reduced, or the bulk density is reduced, and the volume per unit volume is reduced. The charge / discharge capacity may decrease. Conversely, if it is larger than 50 μm, the amount of graphite deposited in the chemical vapor deposition treatment decreases, and as a result, when used as a negative electrode material of a lithium ion secondary battery, the cycle performance may decrease.
The average particle diameter can be represented by a weight average particle diameter in particle size distribution measurement by a laser light diffraction method.
[0012]
Further, among particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound, the silicon-based compound is preferably inactive, and silicon dioxide is preferable in terms of ease of production. The particles preferably have the following properties.
i. In X-ray diffraction (Cu-Kα) using copper as a cathode, a diffraction peak attributed to Si (111) was observed around 2θ = 28.4 °, and based on the spread of the diffraction line, The particle diameter of the silicon crystal determined by the Scherrer equation is preferably 1 to 500 nm, more preferably 2 to 200 nm, and still more preferably 2 to 20 nm. If the size of the silicon fine particles is smaller than 1 nm, the charge / discharge capacity may be reduced. On the other hand, if the size is larger than 500 nm, the expansion / contraction at the time of charge / discharge may increase, and the cyclability may decrease. The size of the silicon fine particles can be measured by a transmission electron micrograph.
ii. Solid-state NMR (29In the Si-DDMAS measurement, the spectrum has a broad silicon dioxide peak centered around -110 ppm and a peak characteristic of Si diamond crystal at around -84 ppm. Note that this spectrum is similar to that of ordinary silicon oxide (SiO 2)x: X = 1.0 + α), and the structure itself is clearly different. In addition, transmission electron microscopy confirms that silicon crystals are dispersed in amorphous silicon dioxide.
[0013]
This silicon / silicon dioxide dispersion (Si / SiO2)), The dispersion amount of the silicon fine particles (Si) is preferably about 2 to 36% by weight, particularly preferably about 10 to 30% by weight. If the amount of the dispersed silicon is less than 2% by weight, the charge / discharge capacity may be small, and if it exceeds 36% by weight, the cyclability may be reduced.
[0014]
The particles having a fine structure in which silicon fine particles are dispersed in a silicon-based compound (silicon composite powder) are particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound. The production method is not particularly limited as long as it has an average particle diameter of about 50 μm, but, for example, the following method can be suitably adopted.
General formula SiOxA method in which a silicon oxide powder represented by (1.0 ≦ x <1.6) is heat-treated in an inert gas atmosphere at a temperature of 900 to 1400 ° C. to disproportionate.
[0015]
In the present invention, silicon oxide is a general term for an amorphous silicon oxide obtained by cooling and depositing silicon monoxide gas generated by heating a mixture of silicon dioxide and metallic silicon. The silicon oxide powder used in the present invention has the general formula SiOxThe average particle size is 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.5 μm or more, and preferably 30 μm or less, more preferably 20 μm or less as an upper limit. BET specific surface area is 0.1m2/ G or more, more preferably 0.2 m2/ G or more, 30m as the upper limit2/ G or less, more preferably 20 m2/ G or less is preferred. The range of x is preferably 1.0 ≦ x <1.6, more preferably 1.0 ≦ x <1.3, and still more preferably 1.0 ≦ x ≦ 1.2. If the average particle diameter and the BET specific surface area of the silicon oxide powder are out of the above ranges, a silicon composite powder having the desired average particle diameter and the BET specific surface area cannot be obtained, and the value of x is smaller than 1.0.xPowders are difficult to produce, and those with a value of x of 1.6 or more are subjected to heat treatment to cause inactive SiO2Is large, and when used as a lithium ion secondary battery, the charge / discharge capacity may be reduced.
[0016]
On the other hand, in the disproportionation of silicon oxide, if the heat treatment temperature is lower than 900 ° C., the disproportionation does not progress at all, or it takes an extremely long time to form a fine cell of silicon (microcrystals of silicon), which is efficient. On the contrary, if the temperature is higher than 1400 ° C., the structuring of the silicon dioxide part proceeds, and the traffic of lithium ions is hindered, so that the function as a lithium ion secondary battery may be reduced. More preferably, the heat treatment temperature is 1000 to 1300 ° C, particularly 1100 to 1250 ° C. The processing time (disproportionation time) can be appropriately selected within a range of about 10 minutes to 20 hours, particularly about 30 minutes to 12 hours, depending on the disproportionation processing temperature. Can obtain a silicon complex (disproportionate) having desired physical properties in about 5 hours.
[0017]
The disproportionation treatment may be performed in an inert gas atmosphere using a reactor having a heating mechanism, and is not particularly limited, and may be performed by a continuous method or a batch method. A rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a rotary kiln and the like can be appropriately selected according to the purpose. In this case, as the (processing) gas, Ar, He, H2, N2For example, an inert gas alone or a mixed gas thereof at the above processing temperature can be used.
[0018]
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention is obtained by coating the surface of the above-mentioned material capable of occluding and releasing lithium ions with a graphite film, and the coating method is a mechanical alloying method, a chemical vapor deposition method (CVD). Chemical vapor deposition method is excellent in terms of uniform formation of a graphite film, and is more preferably used.
[0019]
Next, the physical properties of the graphite coating and the conductive powder coated with the graphite, which characterize the present invention, will be described.
In the present invention, the amount of graphite covering the material surface capable of occluding and releasing lithium ions is 3 to 40% by weight, and particularly preferably 5 to 30% by weight. If the graphite coating amount is less than 3% by weight, it is insufficient in terms of formation of a conductive film, so that sufficient conductivity cannot be maintained. As a result, when the negative electrode material for a non-aqueous electrolyte secondary battery is used, the cyclability decreases. I do. Conversely, if the graphite coating amount exceeds 40% by weight, not only the effect is not improved, but also the proportion of graphite in the negative electrode material increases, and when used as a negative electrode material for a non-aqueous electrolyte secondary battery, The discharge capacity decreases.
[0020]
The BET specific surface area of the conductive material according to the present invention in which a material capable of absorbing and releasing lithium ions is coated with a graphite film is 2 to 30 m.2/ G, especially 3 to 25 m2/ G is preferred. BET specific surface area is 2m2If it is less than / g, the surface activity decreases, and as a result, the charge / discharge capacity of the negative electrode material for a non-aqueous electrolyte secondary battery decreases. Conversely, the BET specific surface area is 30m2If it exceeds / g, the amount of binder at the time of electrode preparation increases, the capacity as an electrode decreases, and it is economically disadvantageous.
[0021]
The graphite coating film covering the surface of the material capable of occluding and releasing lithium ions according to the present invention has a Raman shift of 1330 cm from the Raman spectrum.-1And 1580cm-1It is essential to have a graphite-specific spectrum in the vicinity. By using the conductive material having the graphite film as a negative electrode material for a non-aqueous electrolyte secondary battery, battery characteristics are dramatically improved. The cause is unknown, but as a result, the above-mentioned structure prevents electrode breakdown due to expansion and contraction of the electrode material during charge and discharge, and the graphite film serves as an outer shell that maintains strength. Can be guessed.
[0022]
Next, a method for producing a negative electrode material for a lithium ion secondary battery according to the present invention will be described.
The negative electrode material for a lithium ion secondary battery of the present invention can be manufactured by the following two methods. In the first method, the surface of the material capable of occluding and releasing the lithium ions is at least organic gas or vapor (for example, CH 2).4Etc.) in a temperature range of 1,000 to 1,400 ° C., more preferably 1,200 to 1,200 ° C. Here, if the heat treatment temperature is lower than 1000 ° C., a film having a desired graphite structure may not be formed, and if it is higher than 1400 ° C., particles may be fused and aggregated by chemical vapor deposition. This is because a conductive film is not formed on the aggregated surface, and when used as a negative electrode material of a lithium ion secondary battery, cycle performance may be reduced. In particular, when silicon is used as a base material, the temperature is close to the melting point of silicon, so that the silicon is melted and it becomes difficult to coat the surface of the particles with a conductive film. In the first method, a conductive powder coated with a graphite film having a desired high crystallinity (that is, having a specific Raman spectrum) is quantitatively and reliably obtained depending on CVD processing conditions or a manufacturing batch. You may not always be able to do that.
[0023]
In a second method, the surface of the material capable of occluding and releasing lithium ions is heat-treated at a temperature of 500 to 1200 ° C., more preferably 700 to 1100 ° C. in an atmosphere containing at least an organic gas or vapor. This is a method of performing heat treatment again in an inert gas atmosphere in a temperature range of 1,000 to 1,400 ° C, more preferably, 1,200 to 1,200 ° C. Here, the reason for limiting the processing temperature is the same as in the above-mentioned 1. Although the production of the conductive powder by the second method has a problem that the number of steps is increased, it is more surely coated with a graphite film having high crystallinity (that is, having a Raman spectrum) than the first method. It is possible to obtain a conductive powder which has been obtained, and has an advantage that the quality is stabilized.
[0024]
The processing time is the processing temperature, CH4Although it is appropriately selected depending on the concentration (flow rate) of the organic substance gas and the amount introduced, etc., usually, in the first method, 1 to 10 hours, particularly about 2 to 7 hours is economically efficient. In the second method, the carbon coating treatment (CVD treatment) is the same as the first method, and the second heat treatment in an inert gas is appropriately selected depending on the reprocessing temperature. Time, especially about 2 to 5 hours, is economically efficient.
[0025]
As an organic substance used as a raw material for generating an organic substance gas in the present invention, a substance capable of being thermally decomposed at the heat treatment temperature to produce carbon (graphite) under a non-acidic atmosphere is selected, and examples thereof include methane, ethane, and ethylene. , Acetylene, propane, butane, butene, pentane, isobutane, hexane and other hydrocarbons alone or in mixtures, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, cumarone, Examples thereof include monocyclic to tricyclic aromatic hydrocarbons such as pyridine, anthracene, and phenanthrene, and mixtures thereof. Gas gas oil, creosote oil, anthracene oil and naphtha cracked tar oil obtained in the tar distillation step can be used alone or as a mixture.
[0026]
Heat treatment of these materials capable of occluding and releasing lithium ions and an organic gas may be performed using a reaction device having a heating mechanism in a non-oxidizing atmosphere, and is not particularly limited, and a continuous method or a batch method can be used. Specifically, a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, and the like can be appropriately selected according to the purpose.
[0027]
As for the raw material for chemical vapor deposition, a material that can occlude and release lithium ions alone, or a mixture of a material obtained by treating a material that can occlude and release lithium ions with an organosilicon surface treatment agent and graphite added thereto is used. Is mentioned. Here, the reason for adding graphite is to further improve the conductivity. In any case, in the present invention, the graphite film on the surface has a Raman shift of 1330 cm-1And 1580cm-1In the vicinity, it is essential to be coated with a highly crystalline graphite film having a spectrum peculiar to the graphite structure, and among those manufactured by the first method or the second method, only those satisfying the above characteristics are used. It is important to select and apply it to the negative electrode material.
[0028]
The type of the organosilicon-based surface treatment agent is not particularly limited, but is generally one selected from a silane coupling agent, a (partially) hydrolyzed condensate, a silylating agent, and a silicone resin. Alternatively, two or more kinds are used. The (partially) hydrolyzed condensate means that either a partially hydrolyzed condensate of a silane coupling agent or a hydrolyzed condensate of a silane coupling agent obtained by hydrolyzing and condensing all of the silane coupling agent may be used.
[0029]
In this case, examples of the silane coupling agent include those represented by the following general formula (1), and examples of the silylating agent include those represented by the following general formula (2).
R(4-n)Si (Y)n                      … (1)
(RmSi)L(Y)p                      … (2)
(However, R is a monovalent organic group, Y is a hydrolyzable group or a hydroxyl group, n is an integer of 1 to 4, p is an integer of 1 to 3, L is an integer of 2 to 4, and m is an integer of 1 to 3. It is an integer.)
[0030]
Here, R represents an unsubstituted monovalent hydrocarbon group such as an alkyl group having 1 to 12 carbon atoms, particularly 1 to 10 carbon atoms, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, and a hydrogen atom of these groups. A part or all of a halogen atom (a chlorine atom, a fluorine atom, a bromine atom, etc.), an oxyalkylene group such as a cyano group and an oxyethylene group, a polyoxyalkylene group such as a polyoxyethylene group, a (meth) acryl group, and (meth) An acryloxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group, an amide group, a ureido group, a substituted monovalent hydrocarbon group substituted with a functional group such as an epoxy group, and in these unsubstituted or substituted monovalent hydrocarbon groups, oxygen Atom, NH group, NCH3Group, NC6H5Group, C6H5NH- group, H2NCH2CH2Examples thereof include a group having an NH- group or the like.
[0031]
Specific examples of R include CH3-, CH3CH2-, CH3CH2CH2An alkyl group such as -CH2= CH-, CH2= CHCH2-, CH2= C (CH3)-And other alkenyl groups;6H5An aryl group such as —ClCH2-, ClCH2CH2CH2-, CF3CH2CH2-, CNCH2CH2-, CH3− (CH2CH2O)s-CH2CH2CH2-, CH2(O) CHCH2OCH2CH2CH2-(However, CH2(O) CHCH2Represents a glycidyl group), CH2= CHCOOCH2−,
Embedded image
Figure 2004327190
HSCH2CH2CH2-, NH2CH2CH2CH2-, NH2CH2CH2NHCH2CH2CH2-, NH2CONHCH2CH2CH2-And the like. Preferred R is a γ-glycidyloxypropyl group, β- (3,4-epoxycyclohexyl) ethyl group, γ-aminopropyl group, γ-cyanopropyl group, γ-acryloxypropyl group, γ-methacryloxypropyl group. , Γ-ureidopropyl group and the like.
[0032]
As the hydrolyzable group for Y, -OCH3, -OCH2CH3Such as an alkoxy group, -NH2, -NH-, -N =, -N (CH3)2Amino groups such as -Cl, -ON = C (CH3) CH2CH3An oximino group such as -ON (CH3)2Such as an aminooxy group, -OCOCH3Carboxyl group such as -OC (CH3) = CH2Alkenyloxy groups such as -CH (CH3) -COOCH3, -C (CH3)2-COOCH3And the like. These may all be the same or different groups. Preferred Y is an alkoxy group such as a methoxy group or an ethoxy group, an alkenyloxy group such as an isopropenyloxy group, an imide residue (—NH—), an unsubstituted or substituted acetamido residue, a urea residue, a carbamate residue. , A sulfamate residue, a hydroxyl group and the like.
[0033]
s is an integer of 1 to 3, preferably 2 or 3, and more preferably 3. Further, n is an integer of 1 to 4, preferably 3 or 4.
[0034]
Specific examples of the silane coupling agent include methyltrimethoxysilane, tetraethoxysilane, vinyltrimethoxysilane, methylvinyldimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-cyanopropyltrisilane. Methoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, γ-ureidopropyltrimethoxysilane and the like. The silane coupling agents may be used alone or in combination of two or more. Alternatively, a hydrolyzed condensate thereof and / or a partially hydrolyzed condensate thereof may be used.
[0035]
Specific examples of the silylating agent represented by the general formula (2) include organosilazanes such as hexamethyldisilazane, divinyltetramethyldisilazane, tetravinyldimethyldisilazane, and octamethyltrisilazane, and N, O-bis (trimethylsilyl). ) Acetamide, N, O-bis (trimethylsilyl) carbamate, N, O-bis (trimethylsilyl) sulfamate, N, O-bis (trimethylsilyl) trifluoroacetamide, N, N′-bis (trimethylsilyl) urea .
[0036]
As the organosilicon-based surface treatment agent, silicone resin (ie, at least one, preferably two or more (OR) in one molecule of a linear, cyclic, branched or three-dimensional network structure)2) Group (R2Is R2Organopolysiloxane) containing the same as described above), and in this case, the following general formula (3) can be used.
R1 q(R2O)rSiO(4-q-r) / 2          … (3)
(However, R1Is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, R2Is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, and q and r are respectively 0 ≦ q ≦ 2.5, 0.01 ≦ r ≦ 3, 0.5 ≦ q + r 0 or a positive number satisfying ≦ 3. )
[0037]
Where R1, R2Examples of the monovalent hydrocarbon group include those having 1 to 10 or 1 to 6 carbon atoms among those exemplified for R, such as an alkyl group, an aryl group, and an alkenyl group.1Is a methyl group, an ethyl group, a vinyl group, a phenyl group, R2Is preferably a hydrogen atom, a methyl group, an ethyl group or an isopropyl group, q is preferably 0 ≦ q ≦ 2, particularly preferably 0.3 ≦ q <1.5, and r is 0.1 ≦ r ≦ 2, particularly 0 3 ≦ r <1.2 is preferred. Further, q + r is preferably 0.5 ≦ q + r ≦ 2.1, particularly preferably 0.8 ≦ q + r ≦ 1.8.
[0038]
Using the negative electrode material for a non-aqueous electrolyte secondary battery obtained in the present invention, a lithium ion secondary battery can be manufactured.
In this case, the obtained lithium ion secondary battery is characterized in that the above-described negative electrode material is used, and other materials such as a positive electrode, a negative electrode, an electrolyte, a separator, and a battery shape are not limited. For example, as the positive electrode active material, LiCoO2, LiNiO2, LiMn2O4, V2O5, MnO2, TiS2, MoS2For example, an oxide of a transition metal such as, and a chalcogen compound are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used. As the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran, or a simple substance such as 2-methyltetrahydrofuran is used. These are used in combination. Further, various other non-aqueous electrolytes and solid electrolytes can also be used.
[0039]
When a negative electrode is manufactured using the above negative electrode material for a secondary battery, a conductive agent such as graphite can be added to the negative electrode material for the secondary battery. Also in this case, the type of the conductive agent is not particularly limited, and may be an electronically conductive material that does not cause decomposition or deterioration in the configured battery. Specifically, Al, Ti, Fe, Ni, Cu, Metal powders and metal fibers such as Zn, Ag, Sn, and Si, natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor-grown carbon fibers, pitch-based carbon fibers, PAN-based carbon fibers, and various types of fired resin bodies Can be used.
[0040]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0041]
[Example 1]
General formula SiO with an average particle diameter of 4 μmx200 g of a silicon oxide powder represented by (x = 1.02) was charged in a fluidized bed treatment apparatus. Thereafter, while flowing Ar gas at 2 NL / min, the temperature was raised to 1150 ° C. at a rate of 300 ° C./hr and maintained. Next, CH4Gas was additionally introduced at 1 NL / min, and graphite coating was performed for 5 hours. After the treatment, the temperature was lowered to obtain about 240 g of a black powder. The obtained black powder had an average particle diameter of 4.2 μm and a BET specific surface area of 15.2 m.2/ G, a conductive powder having a graphite coating amount of 22% by weight. According to the Raman spectrum (see FIG. 1), the Raman shift was 1330 cm.-1And 1580cm-1It had a spectrum specific to graphite in the vicinity.
[0042]
○ Battery evaluation
Next, battery evaluation using the obtained conductive powder as a negative electrode active material was performed by the following method.
First, artificial graphite (average particle size: 5 μm) was added to the obtained conductive powder so that the ratio of carbon became 40% by weight, to produce a mixture. 10% by weight of polyvinylidene fluoride and 10% by weight of N-methylpyrrolidone are added to the mixture to form a slurry. The slurry is applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 1 hour, and then the electrode is applied by a roller press. It was pressed and finally punched out to 20 mm to obtain a negative electrode.
Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluoride as a non-aqueous electrolyte was 1/1 (ethylene carbonate and 1,2-dimethoxy ethane) ( Using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L in the mixed solution, a lithium ion secondary battery for evaluation using a polyethylene microporous film having a thickness of 30 μm as a separator was produced.
[0043]
The fabricated lithium ion secondary battery was left overnight at room temperature, and then charged with a constant current of 1 mA using a secondary battery charge / discharge tester (manufactured by Nagano Corporation) until the test cell voltage reached 0 V. After reaching 0 V, charging was performed by reducing the current so as to keep the cell voltage at 0 V. Then, the charging was terminated when the current value became lower than 20 μA. The discharge was performed at a constant current of 1 mA, and the discharge was terminated when the cell voltage exceeded 1.8 V, and the discharge capacity was determined.
The charge / discharge test described above was repeated, and the charge / discharge test of the lithium ion secondary battery for evaluation after 50 cycles was performed. As a result, the first charge capacity is 1380 mAh / g, the first discharge capacity is 1180 mAh / g, the first charge / discharge efficiency is 85%, the discharge capacity at the 50th cycle is 1090 mAh / g, the cycle retention rate after 50 cycles is a high capacity of 92%, and It was confirmed that the lithium ion secondary battery was excellent in initial charge / discharge efficiency and cycleability.
[0044]
[Comparative Example 1, Example 2]
General formula SiO used in Example 1xAbout 240 g of conductive powder was produced in the same manner as in Example 1 except that the silicon oxide powder represented by (x = 1.02) was subjected to graphite coating treatment at a treatment temperature of 950 ° C. for 7 hours. The obtained conductive powder had an average particle size of 4.5 μm and a BET specific surface area of 25.3 m.2/ G, with a graphite coating amount of 22% by weight. According to the Raman spectrum (see FIG. 1), the Raman shift was 1330 cm.-1And 1580cm-1There was no graphite-specific spectrum in the vicinity.
Using this conductive powder, a test battery was prepared in the same manner as in Example 1, and the same battery evaluation was performed. As a result, the initial charge / discharge capacity was 1360 mAh / g, the initial discharge capacity was 1100 mAh / g, and the initial charge / discharge efficiency was 81. %, The discharge capacity at the 50th cycle was 720 mAh / g, and the cycle retention after the 50th cycle was 65%.
[0045]
Next, 100 g of the above-mentioned conductive powder was charged into a silicon nitride tray, and left still in a batch furnace, and then subjected to a heat treatment at 1200 ° C. for 3 hours in an Ar atmosphere. 20.5m2/ G, with a graphite coating amount of 22% by weight.
This conductive powder had a Raman shift of 1330 cm-1And 1580cm-1It had a spectrum specific to graphite in the vicinity. As a result, the initial charge / discharge capacity was 1320 mAh / g, the initial discharge capacity was 1190 mAh / g, the initial charge / discharge efficiency was 90%, the discharge capacity at the 50th cycle was 1120 mAh / g, and the cycle retention rate after 50 cycles was 94%. And it was a lithium ion secondary battery excellent in initial charge / discharge efficiency and cycleability.
[0046]
[Comparative Examples 2 to 4]
A conductive powder was produced in the same manner as in Examples 1 and 2, except that the graphite coating temperature and the heat treatment temperature were changed. Table 1 shows the conductive film coating conditions and the physical properties of the conductive powder. Next, battery evaluation was performed in the same manner as in Example 1. Table 2 shows the evaluation results.
[0047]
[Table 1]
Figure 2004327190
[0048]
[Table 2]
Figure 2004327190
[0049]
【The invention's effect】
By using the negative electrode material for a non-aqueous electrolyte secondary battery obtained in the present invention as a negative electrode material for a lithium ion secondary battery, a lithium ion secondary battery having a high capacity and excellent cycleability can be obtained. Further, the production method is simple and can withstand industrial scale production sufficiently.
[Brief description of the drawings]
FIG. 1 is a Raman spectrum of the conductive powder obtained in Example 1 and Comparative Example 1.

Claims (8)

リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆した導電性粉末であり、黒鉛被覆量が3〜40重量%、BET比表面積が2〜30m/gであって、該黒鉛皮膜が、ラマン分光スペクトルより、ラマンシフトが1330cm−1と1580cm−1付近にグラファイト構造特有のスペクトルを有することを特徴とする非水電解質二次電池用負極材。A conductive powder in which the surface of a material capable of occluding and releasing lithium ions is coated with a graphite film, the graphite coating amount is 3 to 40% by weight, and the BET specific surface area is 2 to 30 m 2 / g. but from Raman spectrum, negative for a non-aqueous electrolyte secondary battery, wherein a Raman shift has a spectrum of graphite structure unique to around 1330 cm -1 and 1580 cm -1 electrode material. リチウムイオンを吸蔵、放出し得る材料が、珪素、珪素の微粒子が珪素系化合物に分散した複合構造を有する粒子、一般式SiO(1.0≦x<1.6)で表される酸化珪素又はこれらの混合物であることを特徴とする請求項1記載の非水電解質二次電池用負極材。The material capable of occluding and releasing lithium ions is silicon, particles having a composite structure in which silicon fine particles are dispersed in a silicon-based compound, and silicon oxide represented by the general formula SiO x (1.0 ≦ x <1.6). The negative electrode material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode material is a mixture thereof. 複合構造粒子における珪素の微粒子の大きさが1〜500nmであり、かつその表面が黒鉛と融合していることを特徴とする請求項2記載の非水電解質二次電池用負極材。3. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the size of the silicon fine particles in the composite structure particles is 1 to 500 nm, and the surface thereof is fused with graphite. 複合構造粒子における珪素系化合物が二酸化珪素であることを特徴とする請求項2又は3記載の非水電解質二次電池用負極材。4. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the silicon compound in the composite structure particles is silicon dioxide. リチウムイオンを吸蔵、放出し得る材料を有機物ガス及び/又は蒸気中、1000〜1400℃で化学蒸着処理を行うことを特徴とする請求項1記載の非水電解質二次電池用負極材の製造方法。The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein a material capable of occluding and releasing lithium ions is subjected to a chemical vapor deposition treatment in an organic gas and / or steam at 1000 to 1400 ° C. . リチウムイオンを吸蔵、放出し得る材料を有機物ガス及び/又は蒸気中、500〜1200℃で化学蒸着処理した後、不活性ガス雰囲気下1000〜1400℃で熱処理することを特徴とする請求項1記載の非水電解質二次電池用負極材の製造方法。2. A material capable of occluding and releasing lithium ions is subjected to chemical vapor deposition at 500 to 1200 [deg.] C. in an organic gas and / or vapor, and then heat treated at 1000 to 1400 [deg.] C. in an inert gas atmosphere. Method for producing a negative electrode material for a non-aqueous electrolyte secondary battery. リチウムイオンを吸蔵、放出し得る材料が、珪素粉末又は一般式SiO(1.0≦x<1.3)で表される酸化珪素粉末であることを特徴とする請求項5又は6記載の非水電解質二次電池用負極材の製造方法。7. The material according to claim 5, wherein the material capable of occluding and releasing lithium ions is silicon powder or silicon oxide powder represented by a general formula SiO x (1.0 ≦ x <1.3). A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery. リチウムイオンを吸蔵、放出し得る材料の表面を黒鉛皮膜で被覆した導電性粉末のうち、黒鉛被覆量が3〜40重量%、BET比表面積が2〜30m/gであって、該黒鉛皮膜がラマン分光スペクトルより、ラマンシフトが1330cm−1と1580cm−1付近にグラファイト構造特有のスペクトルを有する導電性粉末を高充放電容量及びサイクル特性を与えるリチウムイオン二次電池用負極活物質として選定することを特徴とする非水電解質二次電池用負極材の選定方法。Among the conductive powders whose surfaces capable of occluding and releasing lithium ions are coated with a graphite coating, the graphite coating has a graphite coating amount of 3 to 40% by weight, a BET specific surface area of 2 to 30 m 2 / g, and the graphite coating. selected but from Raman spectrum, a conductive powder Raman shift has a spectrum of graphite structure unique to around 1330 cm -1 and 1580 cm -1 as a negative active material for a lithium ion secondary battery which gives a high charge-discharge capacity and cycle characteristics A method for selecting a negative electrode material for a non-aqueous electrolyte secondary battery, comprising:
JP2003119210A 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery and method for producing the same Expired - Lifetime JP4171897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119210A JP4171897B2 (en) 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119210A JP4171897B2 (en) 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004327190A true JP2004327190A (en) 2004-11-18
JP4171897B2 JP4171897B2 (en) 2008-10-29

Family

ID=33498488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119210A Expired - Lifetime JP4171897B2 (en) 2003-04-24 2003-04-24 Anode material for non-aqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4171897B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216855A (en) * 2004-01-26 2005-08-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary cell and its manufacturing method as well as lithium secondary cell including above
JP2005259697A (en) * 2004-03-08 2005-09-22 Samsung Sdi Co Ltd Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery
JP2007165108A (en) * 2005-12-14 2007-06-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2008004460A (en) * 2006-06-26 2008-01-10 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2009212074A (en) * 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium ion secondary battery, and electrochemical capacitor
JP2009259723A (en) * 2008-04-21 2009-11-05 Shin Etsu Chem Co Ltd Negative electrode material for non-aqueous electrolyte secondary battery, manufacturing method therefor, negative electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
WO2010038609A1 (en) * 2008-09-30 2010-04-08 住友ベークライト株式会社 Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery and method for producing carbon material for negative electrode of lithium secondary battery
JP2010225494A (en) * 2009-03-25 2010-10-07 Shin-Etsu Chemical Co Ltd Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery
US8110305B2 (en) 2007-02-15 2012-02-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
WO2012108113A1 (en) * 2011-02-09 2012-08-16 株式会社大阪チタニウムテクノロジーズ Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor
WO2012144177A1 (en) * 2011-04-21 2012-10-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JP2013008654A (en) * 2011-05-26 2013-01-10 Shin Etsu Chem Co Ltd Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
US8367248B2 (en) 2006-11-22 2013-02-05 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery including the same
WO2013024639A1 (en) * 2011-08-17 2013-02-21 日本電気株式会社 Negative electrode active material and negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
WO2013094404A1 (en) * 2011-12-20 2013-06-27 ソニー株式会社 Active material for secondary batteries, secondary battery, and electronic device
WO2014002356A1 (en) * 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ Lithium-ion secondary battery negative electrode material powder, lithium-ion secondary battery negative electrode and capacitor electrode employing same, and lithium-ion secondary battery and capacitor
KR101378125B1 (en) 2010-04-19 2014-03-25 주식회사 엘지화학 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2014069117A1 (en) * 2012-10-30 2014-05-08 日立マクセル株式会社 Anode active material for non-aqueous secondary battery and non-aqueous secondary battery
WO2014097819A1 (en) * 2012-12-17 2014-06-26 日本電気株式会社 Negative electrode material for lithium ion secondary batteries, and method for evaluating same
US8835049B2 (en) 2006-11-22 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
WO2015049836A1 (en) * 2013-10-03 2015-04-09 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
KR20170069951A (en) 2015-12-11 2017-06-21 주식회사 엘지화학 Negative electrode active material particle and method of preparing for the same
JP2018160460A (en) * 2012-10-26 2018-10-11 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018206615A (en) * 2017-06-05 2018-12-27 株式会社Gsユアサ Negative electrode and nonaqueous electrolyte power storage element
CN111656582A (en) * 2018-01-31 2020-09-11 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2022533857A (en) * 2019-09-26 2022-07-26 貝特瑞新材料集団股▲ふん▼有限公司 Composite negative electrode material, its preparation method and lithium ion battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021735A (en) 2012-10-26 2019-07-16 日立化成株式会社 Anode material for lithium-ion secondary battery, lithium ion secondary battery cathode and lithium ion secondary battery
JP6312212B2 (en) 2014-11-18 2018-04-18 信越化学工業株式会社 Rotating cylindrical furnace and method for producing negative electrode active material for non-aqueous electrolyte secondary battery
WO2018179111A1 (en) 2017-03-28 2018-10-04 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11094931B2 (en) 2018-01-31 2021-08-17 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019150511A1 (en) 2018-01-31 2019-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102633552B1 (en) * 2018-12-11 2024-02-06 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and lithium secondary battery comprising the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216855A (en) * 2004-01-26 2005-08-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary cell and its manufacturing method as well as lithium secondary cell including above
JP2005259697A (en) * 2004-03-08 2005-09-22 Samsung Sdi Co Ltd Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery
JP2007165108A (en) * 2005-12-14 2007-06-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2008004460A (en) * 2006-06-26 2008-01-10 Nec Tokin Corp Nonaqueous electrolyte secondary battery
US8367248B2 (en) 2006-11-22 2013-02-05 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery including the same
US8835049B2 (en) 2006-11-22 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
US8110305B2 (en) 2007-02-15 2012-02-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
KR101568334B1 (en) * 2008-02-07 2015-11-11 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolyte secondary battery negative electrode material making method lithium ion secondary battery and electrochemical capacitor
JP2009212074A (en) * 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium ion secondary battery, and electrochemical capacitor
JP2009259723A (en) * 2008-04-21 2009-11-05 Shin Etsu Chem Co Ltd Negative electrode material for non-aqueous electrolyte secondary battery, manufacturing method therefor, negative electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
JP5482660B2 (en) * 2008-09-30 2014-05-07 住友ベークライト株式会社 Carbon material for lithium secondary battery negative electrode, lithium secondary battery negative electrode, lithium secondary battery, and method for producing carbon material for lithium secondary battery negative electrode
WO2010038609A1 (en) * 2008-09-30 2010-04-08 住友ベークライト株式会社 Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery and method for producing carbon material for negative electrode of lithium secondary battery
JP2010225494A (en) * 2009-03-25 2010-10-07 Shin-Etsu Chemical Co Ltd Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery
US9306209B2 (en) 2010-04-19 2016-04-05 Ulsan National Institute Of Science And Technology Method of preparing negative active material containing a carbon-coated silicon core for a rechargeable lithium battery and a rechargeable lithium battery
KR101378125B1 (en) 2010-04-19 2014-03-25 주식회사 엘지화학 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2012108113A1 (en) * 2011-02-09 2012-08-16 株式会社大阪チタニウムテクノロジーズ Powder for negative-electrode material of lithium-ion secondary battery, negative-electrode of lithium-ion secondary battery and negative-electrode of capacitor using same, lithium-ion secondary battery, and capacitor
JP5662485B2 (en) * 2011-02-09 2015-01-28 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
WO2012144177A1 (en) * 2011-04-21 2012-10-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JP2013008654A (en) * 2011-05-26 2013-01-10 Shin Etsu Chem Co Ltd Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
WO2013024639A1 (en) * 2011-08-17 2013-02-21 日本電気株式会社 Negative electrode active material and negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
WO2013094404A1 (en) * 2011-12-20 2013-06-27 ソニー株式会社 Active material for secondary batteries, secondary battery, and electronic device
WO2014002356A1 (en) * 2012-06-25 2014-01-03 株式会社大阪チタニウムテクノロジーズ Lithium-ion secondary battery negative electrode material powder, lithium-ion secondary battery negative electrode and capacitor electrode employing same, and lithium-ion secondary battery and capacitor
JPWO2014002356A1 (en) * 2012-06-25 2016-05-30 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP5909552B2 (en) * 2012-06-25 2016-04-26 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
US10892482B2 (en) 2012-10-26 2021-01-12 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018160460A (en) * 2012-10-26 2018-10-11 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2014069117A1 (en) * 2012-10-30 2014-05-08 日立マクセル株式会社 Anode active material for non-aqueous secondary battery and non-aqueous secondary battery
WO2014097819A1 (en) * 2012-12-17 2014-06-26 日本電気株式会社 Negative electrode material for lithium ion secondary batteries, and method for evaluating same
CN105612636A (en) * 2013-10-03 2016-05-25 信越化学工业株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP2015072809A (en) * 2013-10-03 2015-04-16 信越化学工業株式会社 Silicon-containing material, and negative electrode for nonaqueous electrolytic secondary batteries and nonaqueous electrolyte secondary battery, and manufacturing method thereof
WO2015049836A1 (en) * 2013-10-03 2015-04-09 信越化学工業株式会社 Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
KR20170069951A (en) 2015-12-11 2017-06-21 주식회사 엘지화학 Negative electrode active material particle and method of preparing for the same
JP2018206615A (en) * 2017-06-05 2018-12-27 株式会社Gsユアサ Negative electrode and nonaqueous electrolyte power storage element
CN111656582A (en) * 2018-01-31 2020-09-11 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2022533857A (en) * 2019-09-26 2022-07-26 貝特瑞新材料集団股▲ふん▼有限公司 Composite negative electrode material, its preparation method and lithium ion battery
JP7317145B2 (en) 2019-09-26 2023-07-28 貝特瑞新材料集団股▲ふん▼有限公司 Composite negative electrode material, its preparation method and lithium ion battery

Also Published As

Publication number Publication date
JP4171897B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP4171897B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JP4025995B2 (en) Nonaqueous electrolyte secondary battery negative electrode material, method for producing the same, and lithium ion secondary battery
JP5196149B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP4171904B2 (en) Lithium ion secondary battery negative electrode material and method for producing the same
JP4623283B2 (en) Silicon composite particles, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP4450192B2 (en) Silicon composite, method for producing the same, and negative electrode material for non-aqueous electrolyte secondary battery
TWI396320B (en) Si-C-O composite material and its manufacturing method and nonaqueous electrolyte battery
KR101461665B1 (en) Silicon-silicon oxide-lithium composit, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP2006100255A (en) Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
KR20060044724A (en) Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2009301935A (en) Negative electrode material for nonaqueous electrolyte secondary battery, method for manufacturing the same, lithium ion secondary battery and electrochemical capacitor
KR20030047037A (en) Electrode, lithium battery adopting the same, and method for manufacturing the same
JP2010272411A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor
KR20150118540A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and process for producing negative electrode material for lithium ion secondary battery
KR101929413B1 (en) Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP2015512130A (en) ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
KR20180072112A (en) Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP4288455B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2004323284A (en) Silicon composite and method of manufacturing the same, and negative electrode material for non-aqueous electrolyte secondary battery
WO2011148569A1 (en) Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2006012576A (en) Electrode for nonaqueous electrolyte secondary battery and its manufacturing method
KR20180097594A (en) Silicon-based materials and methods of making and using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Ref document number: 4171897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140822

Year of fee payment: 6

EXPY Cancellation because of completion of term