JP2017188344A - Lithium-containing silicon oxide powder and method for manufacturing the same - Google Patents

Lithium-containing silicon oxide powder and method for manufacturing the same Download PDF

Info

Publication number
JP2017188344A
JP2017188344A JP2016077057A JP2016077057A JP2017188344A JP 2017188344 A JP2017188344 A JP 2017188344A JP 2016077057 A JP2016077057 A JP 2016077057A JP 2016077057 A JP2016077057 A JP 2016077057A JP 2017188344 A JP2017188344 A JP 2017188344A
Authority
JP
Japan
Prior art keywords
silicon oxide
oxide powder
powder
containing silicon
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016077057A
Other languages
Japanese (ja)
Other versions
JP6688663B2 (en
Inventor
悠介 柏谷
Yusuke Kashitani
悠介 柏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2016077057A priority Critical patent/JP6688663B2/en
Publication of JP2017188344A publication Critical patent/JP2017188344A/en
Application granted granted Critical
Publication of JP6688663B2 publication Critical patent/JP6688663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the worsening of a battery performance owing to lithium elution in a slurry forming step for electrode coating without impairing a battery performance-improving effect by Li doping in Li-containing silicon oxide powder which is to be used for a negative electrode material of a lithium ion secondary battery.SOLUTION: Li-containing silicon oxide powder is manufactured by reacting Li ion-doped doped silicon oxide powder with a P-containing material, of which the composition is expressed by the following general formula: SiLiOP, where the element ratios satisfy the relation given by 0.01<z/x<0.25 and 0.1<x-3z<y-4z<1.5. With the Li-containing silicon oxide powder thus manufactured, low reactive, water-insoluble LiPOis produced in the powder, and the substance coexists with a lithium silicate resulting from Li doping, which lowers the reactivity of the powder, and increases the stability of the powder to water.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池の負極材に使用されるLi含有酸化珪素粉末及びその製造方法に関する。   The present invention relates to a Li-containing silicon oxide powder used for a negative electrode material of a lithium ion secondary battery and a method for producing the same.

リチウムイオン二次電池用負極材のなかでも酸化珪素系負極材は、電気容量が大きいことで知られている。この負極材として酸化珪素粉末があり、導電助剤及びバインダーを混合してスラリー化したものを、銅箔等からなる集電体上に塗布し乾燥させることで、薄膜状の作用極とされる。ここにおける酸化珪素粉末は、二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させた後、細かく破砕することにより得られる。このような析出法で製造される酸化珪素粉末は、非晶質の部分を多く含み、充放電による膨張収縮を小さくして、サイクル特性を向上させることなどから有利とされている。   Among negative electrode materials for lithium ion secondary batteries, silicon oxide negative electrode materials are known for their large electric capacity. There is silicon oxide powder as the negative electrode material, and a slurry obtained by mixing a conductive additive and a binder is applied onto a current collector made of copper foil or the like and dried to form a thin film-like working electrode. . The silicon oxide powder here is obtained by cooling and precipitating silicon monoxide gas produced by heating a mixture of silicon dioxide and silicon, and then finely crushing. The silicon oxide powder produced by such a precipitation method is advantageous in that it contains a lot of amorphous parts, reduces expansion and contraction due to charge and discharge, and improves cycle characteristics.

このような酸化珪素系負極材の問題点としては、初期効率の低さがあり、これを解消する手法として、リチウムイオンドープ(Liドープ)が知られている。Liドープは、リチウムを含有する物質との電気化学的反応や、酸化珪素粉末と粉末リチウム源とを混合し、焼成することなどにより実施される(特許文献1〜4)。酸化珪素の粉末粒子にLiドープを行うことにより、初回充電時に、充放電に寄与しないリチウム化合物の生成が抑制されて、初期効率の向上が図られる。   As a problem of such a silicon oxide negative electrode material, there is a low initial efficiency, and lithium ion doping (Li doping) is known as a technique for solving this problem. Li doping is carried out by electrochemical reaction with a substance containing lithium, mixing silicon oxide powder and powdered lithium source, and firing (Patent Documents 1 to 4). By performing Li doping on the silicon oxide powder particles, the generation of a lithium compound that does not contribute to charge / discharge is suppressed during the initial charge, and the initial efficiency is improved.

また、Liドープとは別に、酸化珪素を構成する粒子(粉末粒子)の表面にカーボン被覆処理(Cコート)を実施して、サイクル特性の向上を図ることも行われており、特許文献3ではLiドープ後にCコートが実施され、特許文献4ではCコート後にLiドープが実施されている。   In addition to Li doping, the surface of particles (powder particles) constituting silicon oxide is subjected to carbon coating treatment (C coating) to improve cycle characteristics. C coating is performed after Li doping, and in Patent Document 4, Li doping is performed after C coating.

しかしながら、Liドープには一方で次のような珪酸リチウムに関する問題がある。すなわち、酸化珪素粉末に対するLiドープにより、LiSi、LiSiO、LiSiOといった珪酸リチウムが生成する。また、LiSi合金が生成することもある。これらの珪酸リチウムやLiSi合金、更には粉末中の残留リチウムは、反応性が高い上に、水に対する安定性が低いために、電極塗工のためのスラリーを作製した際にバインダーや溶媒と反応して、電池性能の低下、電極塗工時における不具合の原因となる。特に、スラリー化の工程で溶出したリチウムがpHを上昇させることにより、酸化珪素が水と反応して水素を発生させるので、水系バインダーでスラリーを作製する際の問題が特に大きい。 However, the Li doping has the following problems related to lithium silicate. That is, lithium silicate such as Li 2 Si 2 O 5 , Li 2 SiO 3 , and Li 4 SiO 4 is generated by Li doping with respect to the silicon oxide powder. Moreover, a LiSi alloy may be produced. These lithium silicates, LiSi alloys, and residual lithium in the powder are highly reactive and have low stability against water, so they react with binders and solvents when preparing a slurry for electrode coating. As a result, the battery performance deteriorates, and it becomes a cause of problems during electrode coating. In particular, since lithium eluted in the slurrying process raises the pH, silicon oxide reacts with water to generate hydrogen, so that the problem in producing a slurry with an aqueous binder is particularly great.

この問題を解決するために、Liドープを受けたLi含有酸化珪素粉末を酸洗処理することが、特許文献5により提案されている。酸洗処理によりLi含有酸化珪素粉末中の珪酸リチウムが溶解除去されることで、スラリー化の工程でのリチウムの溶出に起因する諸問題は解決されるわけであるが、その一方で粉末中のリチウム量が減少するために、Li添加による性能改善効果が阻害されることが懸念される。   In order to solve this problem, Patent Document 5 proposes pickling treatment of Li-doped silicon oxide powder subjected to Li doping. By dissolving and removing the lithium silicate in the Li-containing silicon oxide powder by the pickling treatment, various problems due to the elution of lithium in the slurrying process are solved, but on the other hand, Since the amount of lithium decreases, there is a concern that the performance improvement effect due to the addition of Li is hindered.

特許第2997741号公報Japanese Patent No. 2999741 特許第4702510号公報Japanese Patent No. 4702510 特許第4985949号公報Japanese Patent No. 4985949 特許第5411781号公報Japanese Patent No. 54117781 特開2015−153520号公報JP2015-153520A

本発明の目的は、Li添加による性能改善効果を損なうことなく、電極塗工のためのスラリー化工程でのリチウム溶出に起因する諸問題を解決できるLi含有酸化珪素粉末及びその製造方法を提供することにある。   An object of the present invention is to provide a Li-containing silicon oxide powder capable of solving various problems caused by lithium elution in a slurrying process for electrode coating without impairing the performance improvement effect by adding Li, and a method for producing the same. There is.

上記目的を達成するために、本発明者はLi含有酸化珪素粉末の反応性を低下させるのが効果的であると考え、その方策を種々検討した。その結果、Li含有酸化珪素粉末中にリン化合物、特にリン酸リチウムを生成するのが有効なことが判明した。すなわち、Li含有酸化珪素粉末をリン化合物と反応させると、Li含有酸化珪素粉末中にリン酸リチウムであるLiPOが生成する。LiPOは珪酸リチウムと異なり反応性が低く、しかも難水溶性であるため、粉末中に少量含有されるだけでも粉末の反応性が低下し、合わせて水に対する安定性が向上する結果として、スラリー化工程でのリチウムの溶出及びこれに起因する諸問題が解決されるのである。 In order to achieve the above object, the present inventor considered that it is effective to reduce the reactivity of the Li-containing silicon oxide powder, and studied various measures. As a result, it has been found that it is effective to produce a phosphorus compound, particularly lithium phosphate, in the Li-containing silicon oxide powder. That is, when Li-containing silicon oxide powder is reacted with a phosphorus compound, Li 3 PO 4 that is lithium phosphate is generated in the Li-containing silicon oxide powder. Li 3 PO 4 has low reactivity unlike lithium silicate and is poorly water-soluble. As a result, even if it is contained in a small amount in the powder, the reactivity of the powder is lowered, and as a result, the stability to water is improved. Thus, elution of lithium in the slurrying process and various problems caused by this are solved.

本発明のLi含有酸化珪素粉末はかかる知見を基礎とするものであり、リチウムイオン二次電池の負極材に使用されるLi含有酸化珪素粉末であって、組成が一般式SiLiで表され、ここにおける元素比が0.01<z/x<0.25で且つ0.1<x−3z<y−4z<1.5を満足することを構成上の特徴点とする。 The Li-containing silicon oxide powder of the present invention is based on such knowledge, and is a Li-containing silicon oxide powder used for a negative electrode material of a lithium ion secondary battery, the composition of which is a general formula SiLi x O y P z. The elemental ratio here is 0.01 <z / x <0.25 and 0.1 <x-3z <y-4z <1.5 is satisfied.

また、本発明のLi含有酸化珪素粉末の製造方法は、第1に、原料酸化珪素粉末にLiイオンをドープするLiドープ工程と、Liイオンがドープされた酸化珪素粉末を、有機溶媒中に分散したP含有材料と混合、反応させるP処理工程とを含む方法である。第2に、原料酸化珪素粉末にLiイオンをドープするLiドープ工程と、Liイオンがドープされた酸化珪素粉末を、液体状態または気体状態のP含有材料と接触、反応させるP処理工程とを含む方法である。   Moreover, the manufacturing method of the Li-containing silicon oxide powder according to the present invention includes, firstly, a Li doping step of doping a raw material silicon oxide powder with Li ions and a silicon oxide powder doped with Li ions dispersed in an organic solvent. And a P treatment step in which the P-containing material is mixed and reacted. Second, it includes a Li doping step of doping the raw silicon oxide powder with Li ions, and a P treatment step of contacting and reacting the silicon oxide powder doped with Li ions with a P-containing material in a liquid state or a gaseous state. Is the method.

本発明のLi含有酸化珪素粉末においては、粉末中に存在するPの少なくとも一部が、低反応性で難水溶性のLiPOとして存在することにより、粉末中の珪酸リチウムを除去せずとも当該粉末の反応性が低下し、且つその粉末の水に対する安定性が向上する。これにより、Li添加による性能改善効果を損なうことなく、電極塗工のためのスラリー化工程でのリチウム溶出、すなわち水系バインダーでスラリーを作製する際のリチウム溶出、更にはpHの上昇、これによる水素の発生が阻止され、これらに起因する電池性能の低下が阻止される。 In the Li-containing silicon oxide powder of the present invention, at least part of P present in the powder is present as low-reactivity and poorly water-soluble Li 3 PO 4 , so that lithium silicate in the powder is not removed. In both cases, the reactivity of the powder is reduced, and the stability of the powder to water is improved. Thus, without impairing the performance improvement effect due to the addition of Li, lithium elution in the slurrying process for electrode coating, that is, lithium elution when preparing a slurry with an aqueous binder, further increasing the pH, resulting in hydrogen Is prevented, and deterioration of battery performance due to these is prevented.

本発明のLi含有酸化珪素粉末の組成を表す指標としては、P量を表す「z/x」、Li量を表す「x−3z」、及びO量を表す「y−4z」が重要である。   As an index representing the composition of the Li-containing silicon oxide powder of the present invention, “z / x” representing the amount of P, “x-3z” representing the amount of Li, and “y-4z” representing the amount of O are important. .

z/x、すなわちSi量に対するP量の比率は、0.01超0.25未満であることが必要である。0.01以下の場合は、Pの存在量が少なく、LiPOが少なくなることにより粉末の反応性が高まり、且つその粉末の水に対する安定性が低下するので、所期の効果が得られない。0.25以上の場合は、Liの大部分がLiPOとして存在し、LiSiO 等の珪酸リチウムが少なくなることにより、Li含有による電池特性向上効果が得られない。 z / x, that is, the ratio of the P amount to the Si amount needs to be more than 0.01 and less than 0.25. In the case of 0.01 or less, the abundance of P is small, and Li 3 PO 4 is reduced, so that the reactivity of the powder is increased and the stability of the powder to water is reduced, so that the desired effect can be obtained. I can't. In the case of 0.25 or more, most of Li is present as Li 3 PO 4 , and lithium silicate such as Li 2 SiO is reduced, so that the effect of improving battery characteristics due to the inclusion of Li cannot be obtained.

これから分かるように、本発明のLi含有酸化珪素粉末においては、含有Liが、リン酸リチウムであるLiPOと、LiSiO等の珪酸リチウムとにバランスよく消費されることにより、Li含有による電池特性向上の効果が維持されつつ、粉末の反応性の低さ及び水に対する安定性の高さが確保されて、電極塗工のためのスラリー化工程でのリチウム溶出に起因する電池性能の低下が阻止される。 As can be seen from this, in the Li-containing silicon oxide powder of the present invention, the contained Li is consumed in a balanced manner between Li 3 PO 4 that is lithium phosphate and lithium silicate such as Li 2 SiO 3. Battery performance due to lithium elution in the slurrying process for electrode coating, while maintaining the effect of improving battery characteristics by inclusion, ensuring low powder reactivity and high stability to water Decline is prevented.

x−3zは、Li量、特にLiPO以外の形で粉末中の含まれるLi量を表し、0.1超y−4z未満であることが必要である。ちなみに、y−4zはO量、特にLiPO以外の形で粉末中の含まれるO量を表す。x−3zが0.1以下の場合は、Li量が不十分なため、Li含有による電池性能の向上が期待できない。x−3zがy−4z以上の場合は、Li量が過剰になることで、Li−Si合金が生成し、粉末の反応性が極端に高まってハンドリングが難しくなる。x−3zが0.1超y−4z未満に管理されることにより、粉末中のLi量の適正化が図られ、そのLiが酸化物系のリチウム化合物の形で粉末中に存在することになる。 x-3z represents the amount of Li contained in the powder in a form other than Li amount, particularly Li 3 PO 4 , and needs to be more than 0.1 and less than y-4z. Incidentally, y-4z represents the amount of O, particularly the amount of O contained in the powder in a form other than Li 3 PO 4 . When x-3z is 0.1 or less, since the amount of Li is insufficient, improvement in battery performance due to the inclusion of Li cannot be expected. When x-3z is equal to or greater than y-4z, the Li amount is excessive, thereby producing a Li-Si alloy, and the reactivity of the powder is extremely increased, making handling difficult. By controlling x-3z to be more than 0.1 and less than y-4z, the amount of Li in the powder is optimized, and the Li is present in the form of an oxide-based lithium compound. Become.

そのy−4zは、1.5未満であることが必要である。y−4zが1.5以上の場合は、粉末中のO含有量が過剰となるために、電池性能、特に充放電効率や導電性が悪化する。反対にO含有量が少ない場合、酸化物による体積膨張抑制効果が低下し、寿命特性が悪化する。この観点から、y−4zは0.4超、すなわち0.4<y−4zであることが望ましい。   The y-4z needs to be less than 1.5. When y-4z is 1.5 or more, since the O content in the powder becomes excessive, battery performance, in particular, charge / discharge efficiency and conductivity are deteriorated. On the other hand, when the O content is small, the effect of suppressing volume expansion by the oxide is lowered, and the life characteristics are deteriorated. From this viewpoint, it is desirable that y-4z exceeds 0.4, that is, 0.4 <y-4z.

本発明のLi含有酸化珪素粉末におけるLiPOの存在は、CuKα線を用いた粉末X線回折にて回折角2θ=23.3°付近に表れるLiPO由来の回折ピークの存在を調べることで確認が可能である。具体的には、2θ=22.8°から2θ=23.3°における最低回折強度と、2θ=23.3°から2θ=23.8°における最低回折強度とを直線で結び、その直線上の2θ=23.3°における強度をバックグラウンド強度B1とする。そして、2θ=23.3±0.2°における最大回折強度からバックグラウンド強度B1を差し引いたものをLiPOのピーク強度P1として、P1/B1>0.03を満たす場合にLiPOが存在すると見做すことができる。 The presence of Li 3 PO 4 in the Li-containing silicon oxide powder of the present invention is the presence of a diffraction peak derived from Li 3 PO 4 that appears in the vicinity of a diffraction angle 2θ = 23.3 ° in powder X-ray diffraction using CuKα rays. Confirmation is possible by examining. Specifically, the minimum diffraction intensity from 2θ = 22.8 ° to 2θ = 23.3 ° and the minimum diffraction intensity from 2θ = 23.3 ° to 2θ = 23.8 ° are connected by a straight line, and the line The intensity at 2θ = 23.3 ° is the background intensity B1. Then, minus the background intensity B1 from the maximum diffraction intensity at 2θ = 23.3 ± 0.2 ° as the peak intensity P1 of Li 3 PO 4, Li 3 when satisfying P1 / B1> 0.03 PO It can be assumed that 4 exists.

粉末X線回折でピーク強度を算出する際は、CuKα線を用いた粉末X線回折にて得られたデータであって、回折角の間隔が0.02°毎のデータを、データ特定数11として移動平均近似曲線に変換したデータを使用することが望ましい。移動平均近似曲線を用いることで、回折強度の揺らぎによる測定値の誤差が低減される。   When calculating the peak intensity by powder X-ray diffraction, data obtained by powder X-ray diffraction using CuKα rays and having a diffraction angle interval of 0.02 ° are specified as a data specific number 11. It is desirable to use data converted to a moving average approximate curve as By using the moving average approximate curve, errors in the measured value due to fluctuations in diffraction intensity are reduced.

本発明のLi含有酸化珪素粉末においては又、Siの結晶質が低いことが望ましい。Siが結晶化すると構造が不均一となり、内部抵抗が高まると共にSi結晶の割れ等によるサイクル特性の悪化を招くおそれがある。   In the Li-containing silicon oxide powder of the present invention, it is also desirable that the Si crystallinity is low. When Si is crystallized, the structure becomes non-uniform, the internal resistance increases, and the cycle characteristics may deteriorate due to cracking of the Si crystal.

Siの結晶質の低さは、CuKα線を用いた粉末X線回折にて回折角2θ=47.4°付近に表れるSi由来の回折ピークの有無を調べることで確認が可能である。具体的には、2θ=46.4°における回折強度と、2θ=48.4°における回折強度とを直線で結び、その直線上の2θ=47.4°における強度をバックグラウンド強度B2とする。そして、2θ=47.4±0.3°における最大回折強度からバックグラウンド強度B2を差し引いたものをSiのピーク強度P2として、P2/B2≦0.3を満たす場合にSiの結晶性が低いと見做すことができる。このような粉末だと、内部抵抗が小さくサイクル特性に優れた負極材となる。   The low crystallinity of Si can be confirmed by examining the presence or absence of a Si-derived diffraction peak appearing at a diffraction angle of 2θ = 47.4 ° by powder X-ray diffraction using CuKα rays. Specifically, the diffraction intensity at 2θ = 46.4 ° and the diffraction intensity at 2θ = 48.4 ° are connected by a straight line, and the intensity at 2θ = 47.4 ° on the straight line is set as the background intensity B2. . Further, when the peak intensity P2 of Si is obtained by subtracting the background intensity B2 from the maximum diffraction intensity at 2θ = 47.4 ± 0.3 °, the crystallinity of Si is low when P2 / B2 ≦ 0.3 is satisfied. Can be considered. With such a powder, the negative electrode material has low internal resistance and excellent cycle characteristics.

本発明のLi含有酸化珪素粉末は、ベース材料としてのLi含有酸化珪素粉末、すなわちP処理前のLi含有酸化珪素粉末と、P含有材料とを反応させることで生成可能である。P含有材料としては、P処理前のLi含有酸化珪素粉末と反応してLiPOを生成する元素、化合物であればよく、具体的にはリン単体や酸化リン、リン酸、リン酸化合物などが適用可能であるが、不純物元素が混入するのを防止する点や取り扱いの点から酸化リン、リン酸のいずれかが望ましい。 The Li-containing silicon oxide powder of the present invention can be produced by reacting a Li-containing silicon oxide powder as a base material, that is, a Li-containing silicon oxide powder before P treatment, with a P-containing material. The P-containing material may be any element or compound that reacts with Li-containing silicon oxide powder before P treatment to produce Li 3 PO 4 , and specifically, phosphorus alone, phosphorus oxide, phosphoric acid, phosphoric acid compound However, either phosphorus oxide or phosphoric acid is desirable from the viewpoint of preventing the impurity elements from being mixed and handling.

反応方法としては、P含有材料を有機溶媒等の非水溶媒中に溶解、分散させてP処理前のLi含有酸化珪素粉末と混合、反応させる方法や、液体状態もしくは気体状態のP含有材料とP処理前のLi含有酸化珪素粉末とを接触、反応させる方法等がある。前者が本発明の第1の製造方法であり、後者が本発明の第2の製造方法である。   As a reaction method, a P-containing material is dissolved and dispersed in a non-aqueous solvent such as an organic solvent, and mixed with Li-containing silicon oxide powder before P treatment and reacted, or a P-containing material in a liquid state or a gaseous state There is a method of contacting and reacting with Li-containing silicon oxide powder before P treatment. The former is the first production method of the present invention, and the latter is the second production method of the present invention.

P含有材料を有機溶媒中に溶解、分解させてP処理前のLi含有酸化珪素粉末と混合、反応させる第1の製造方法では、溶媒に有機溶媒を用いることで均一な表面反応が期待できると共に、ベース材料であるP処理前のLi含有酸化珪素粉末と溶媒の反応が抑制され、より電池性能の高い粉末を得ることができる。有機溶媒としては、P含有材料が溶解、分解するものであれば種類を問わない。反応後は、溶媒をろ過し、乾燥することで溶媒中の残留P含有材料を除去できる。P含有材料の添加量を調整し、残留物が発生しないようにすれば、ろ過プロセスは必ずしも必要でない。   In the first production method in which a P-containing material is dissolved and decomposed in an organic solvent and mixed with Li-containing silicon oxide powder before P treatment and reacted, a uniform surface reaction can be expected by using an organic solvent as the solvent. The reaction between the Li-containing silicon oxide powder before the P treatment, which is the base material, and the solvent is suppressed, and a powder with higher battery performance can be obtained. The organic solvent is not limited as long as the P-containing material dissolves and decomposes. After the reaction, the residual P-containing material in the solvent can be removed by filtering the solvent and drying. If the amount of P-containing material added is adjusted so that no residue is generated, a filtration process is not necessarily required.

液体状態もしくは気体状態のP含有材料とベース材料であるP処理前のLi含有酸化珪素粉末とを接触、反応させる第2の製造方法としては、固体のP含有材料とP処理前のLi含有酸化珪素粉末とを混合し、P含有材料が液化もしくは気化する温度まで加熱する方法や、液体状態もしくは気体状態のP含有材料を、P処理前のLi含有酸化珪素粉末が存在する容器内へ導入する方法などがある。反応温度としては900℃以下が望ましく、600℃以下が更に望ましい。反応温度が900℃を超えるとSiの結晶化が進行する。   As a second production method for contacting and reacting a P-containing material in a liquid state or a gas state with a Li-containing silicon oxide powder before P treatment which is a base material, a solid P-containing material and a Li-containing oxidation before P treatment are used. A method of heating to a temperature at which the P-containing material is liquefied or vaporized by mixing with silicon powder, or a P-containing material in a liquid or gaseous state is introduced into a container in which the Li-containing silicon oxide powder before P treatment exists. There are methods. The reaction temperature is preferably 900 ° C. or lower, and more preferably 600 ° C. or lower. When the reaction temperature exceeds 900 ° C., crystallization of Si proceeds.

ベース材料であるP処理前のLi含有酸化珪素粉末としては、LiSiO(0<A<B≦2)を用いることができ、なかでも0.1<A、0.4<B<1.5であるものが特に望ましい。Aが小さいと十分な初期効率改善効果が得られない。Aが大きいと反応性が高く、取り扱いが困難になる。Bが小さいとサイクル特性の低下を招く。Bが大きいと初期効率・容量の低下を招く。そのP処理前のLi含有酸化珪素粉末の作製方法としては、酸化珪素粉末とリチウム金属もしくはリチウム化合物との機械的混合もしくは熱化学反応、酸化珪素に対する電気化学手法によるリチウム添加、酸化珪素製造プロセス中でのガス等によるリチウム添加などの手法があり、特に限定されない。 Li A SiO B (0 <A <B ≦ 2) can be used as the Li-containing silicon oxide powder before P treatment, which is the base material, and in particular, 0.1 <A, 0.4 <B <1 .5 is particularly desirable. When A is small, a sufficient initial efficiency improvement effect cannot be obtained. When A is large, the reactivity is high and handling becomes difficult. When B is small, the cycle characteristics are deteriorated. When B is large, initial efficiency and capacity are reduced. As a method for producing the Li-containing silicon oxide powder before the P treatment, mechanical mixing or thermochemical reaction between the silicon oxide powder and lithium metal or a lithium compound, lithium addition by an electrochemical method for silicon oxide, during the silicon oxide production process There is a technique such as lithium addition by gas or the like, and there is no particular limitation.

本発明のLi含有酸化珪素粉末においては、その粉末粒子の表面の一部又は全部に導電性炭素皮膜が被覆されていてもよい。粉末粒子の表面の一部又は全部に導電性炭素皮膜が被覆されることで表面抵抗が下がり、電池特性が向上すると共に、粒子表面の反応性を抑制する効果が期待できる。この導電性炭素皮膜は、炭化水素ガスの熱CVD反応により被覆可能である。リチウムとの反応の後に炭化水素ガスにより熱CVD反応を実施する場合は、反応温度を400℃以上900℃以下に管理することが望ましい。反応温度が400℃を下回ると熱CVD反応が十分に進行しない。反応温度が900℃を超えるとSiの結晶化が進行する。   In the Li-containing silicon oxide powder of the present invention, a part or all of the surface of the powder particles may be coated with a conductive carbon film. By covering a part or all of the surface of the powder particle with the conductive carbon film, the surface resistance is lowered, the battery characteristics are improved, and the effect of suppressing the reactivity of the particle surface can be expected. This conductive carbon film can be coated by a thermal CVD reaction of hydrocarbon gas. When the thermal CVD reaction is performed with a hydrocarbon gas after the reaction with lithium, it is desirable to control the reaction temperature between 400 ° C. and 900 ° C. When the reaction temperature is lower than 400 ° C., the thermal CVD reaction does not proceed sufficiently. When the reaction temperature exceeds 900 ° C., crystallization of Si proceeds.

なお、LiドープとP処理の順序については、前述したとおり、Liドープを先に行い、その後にP処理を行うのを基本とする。なぜなら、P処理を先に行い、その後にLiドープを行うと、未反応Li化合物などが残留し、P処理による反応性低減の効果が十分に得られない。   In addition, about the order of Li dope and P process, as above-mentioned, Li dope is performed first and it is based on performing P process after that. This is because if the P treatment is performed first and then Li doping is performed, unreacted Li compounds remain, and the effect of reducing the reactivity by the P treatment cannot be obtained sufficiently.

本発明のLi含有酸化珪素粉末は適正量のPを含み、そのPの少なくとも一部が、低反応性で難水溶性のLiPOとして存在して、Liドープによる珪酸リチウムと共存することにより、Li添加による性能改善効果を損なうことなく、電極塗工のためのスラリー化工程でのリチウム溶出、更にはpHの上昇、これによる水素の発生を阻止して、これらに起因する電池性能の低下を阻止することができる。 The Li-containing silicon oxide powder of the present invention contains an appropriate amount of P, and at least a part of the P is present as low-reactivity and poorly water-soluble Li 3 PO 4 and coexists with Li-doped lithium silicate. Thus, without impairing the performance improvement effect due to the addition of Li, the lithium elution in the slurrying process for electrode coating, further the increase in pH, thereby preventing the generation of hydrogen, the battery performance resulting from these Decline can be prevented.

本発明のLi含有酸化珪素粉末の製造方法は、Liドープされた酸化珪素粉末に対して粉末粒子の表面からP含有材料を反応させることにより、粉末粒子の表面近傍に多くLiPOを生成させるので、粉末の反応性低下、水に対する安定性の向上に、より効果的であり、電池性能の向上に、より大きな効果を発揮する。 The method for producing Li-containing silicon oxide powder according to the present invention generates a large amount of Li 3 PO 4 near the surface of the powder particles by reacting the P-containing material from the surface of the powder particles with respect to the Li-doped silicon oxide powder. Therefore, it is more effective in reducing the reactivity of the powder and improving the stability to water, and exerts a greater effect in improving the battery performance.

本発明のLi含有酸化珪素粉末のX線回折チャートである。3 is an X-ray diffraction chart of Li-containing silicon oxide powder of the present invention. 従来のLi含有酸化珪素粉末のX線回折チャートである。It is an X-ray diffraction chart of conventional Li-containing silicon oxide powder.

以下に本発明の実施形態を説明する。本実施形態のLi含有酸化珪素粉末は、典型的には次の方法により製造される。   Embodiments of the present invention will be described below. The Li-containing silicon oxide powder of this embodiment is typically produced by the following method.

まず、ベース材料であるLi含有酸化珪素粉末、すなわちP処理前のLi含有酸化珪素粉末を作製する。すなわち、組成式SiO(0.5<C<1.5)で表される低級酸化珪素粉末を原料酸化珪素粉末として、これにLiイオンをドープする(Liドープ工程)。 First, a Li-containing silicon oxide powder as a base material, that is, a Li-containing silicon oxide powder before P treatment is prepared. That is, the lower silicon oxide powder represented by a composition formula SiO C (0.5 <C <1.5 ) as a raw material silicon oxide powder, to which is doped with Li-ion (Li doping step).

具体的には、原料酸化珪素粉末であるSiO粉末(0.5<C<1.5)を粉末リチウム源と混合して不活性ガス雰囲気中で焼成する。SiO粉末(0.5<C<1.5)としては、例えば析出法により製造された非晶質のSiO(C=1)を用いる。粉末リチウム源としては、水素化リチウム(LiH)、酸化リチウム(LiO)、水酸化リチウム(LiOH)、炭酸リチウム(LiCO)などが使用可能であり、ここでは水素化リチウム(LiH)を用いる。 Specifically, SiO C powder (0.5 <C <1.5), which is a raw silicon oxide powder, is mixed with a powder lithium source and fired in an inert gas atmosphere. The SiO C powder (0.5 <C <1.5), using the produced amorphous SiO C (C = 1), for example, by deposition. As the powder lithium source, lithium hydride (LiH), lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ) and the like can be used. Here, lithium hydride (LiH) is used. ) Is used.

Liドープにより、充放電に寄与しないLiSiO等のリチウム化合物が予め生成され、初回充電時にそのリチウム化合物の生成が抑制されることにより、初期効率の向上が図られる。 By Li doping, a lithium compound such as Li 2 SiO 3 that does not contribute to charging / discharging is generated in advance, and the generation of the lithium compound during initial charging is suppressed, thereby improving the initial efficiency.

必要に応じて、Liドープの前または後に低級酸化珪素粉末に導電性炭素皮膜形成のためのCコート処理を行う。   If necessary, C coating treatment for forming a conductive carbon film is performed on the lower silicon oxide powder before or after Li doping.

ベース材料であるP処理前のLi含有酸化珪素粉末が作製されると、これをP含有材料であるリン酸、或いは酸化リンと混合して反応させることにより、粉末粒子中に低反応性で難水溶性のLiPOを生成させる(P処理工程)。 When Li-containing silicon oxide powder before P treatment, which is a base material, is prepared, it is mixed with phosphoric acid or phosphorus oxide, which is a P-containing material, and reacted, so that the powder particles have low reactivity and are difficult to react. Water-soluble Li 3 PO 4 is generated (P treatment step).

P含有材料がリン酸の場合は、P処理前のLi含有酸化珪素粉末を有機溶媒中でリン酸溶液と攪拌混合し、反応させた後に乾燥する。P含有材料が酸化リン(P)である場合は、これをP処理前のLi含有酸化珪素粉末と混合し、昇華点以上の温度に加熱する。これにより、P処理前のLi含有酸化珪素粉末が気体状態の酸化リンと反応してLiPOを生成する。 When the P-containing material is phosphoric acid, the Li-containing silicon oxide powder before P treatment is stirred and mixed with a phosphoric acid solution in an organic solvent, reacted, and then dried. When the P-containing material is phosphorus oxide (P 2 O 5 ), it is mixed with the Li-containing silicon oxide powder before P treatment and heated to a temperature above the sublimation point. As a result, the Li-containing silicon oxide powder before P treatment reacts with gaseous phosphorus oxide to produce Li 3 PO 4 .

いずれの場合も、Li含有酸化珪素粉末の粉末粒子表面から反応が進むため、粉末粒子の表面近傍にLiPOが生成する傾向となる。これにより、粉末の反応性が特に効果的に低下し、水に対する安定性も特に効果的に向上する。 In any case, since the reaction proceeds from the surface of the powder particle of the Li-containing silicon oxide powder, Li 3 PO 4 tends to be generated near the surface of the powder particle. Thereby, the reactivity of the powder is particularly effectively reduced, and the stability to water is particularly effectively improved.

製造されたLi含有酸化珪素粉末は、リチウムイオン二次電池の負極材として用いられる。具体的には、Li含有酸化珪素粉末を導電性向上のための導電助材及びバインダー等と混合してスラリー化して、銅箔等からなる集電体上に塗布し、乾燥させて薄膜状の負極とされる。   The produced Li-containing silicon oxide powder is used as a negative electrode material for a lithium ion secondary battery. Specifically, Li-containing silicon oxide powder is mixed with a conductive additive for improving conductivity, a binder, etc., and slurried, applied onto a current collector made of copper foil, etc., and dried to form a thin film. The negative electrode.

Li含有酸化珪素粉末が、リチウム化合物としてLiSiO等の珪酸リチウムだけでなく、リン酸リチウムであるLiPOを含み、LiPOの反応性が低く水に対する安定性が高いので、珪酸リチウムを除去せずとも粉末の反応性が低下し、水に対する安定性も向上する。これにより、電極塗工のためのスラリー化工程でのリチウム溶出に起因する電池性能の低下が阻止される。また、珪酸リチウムの除去処理(酸洗処理)に伴う電池性能の低下も回避される。 Since the Li-containing silicon oxide powder contains not only lithium silicate such as Li 2 SiO 3 as a lithium compound but also Li 3 PO 4 that is lithium phosphate, Li 3 PO 4 has low reactivity and high stability to water. Without removing the lithium silicate, the reactivity of the powder is lowered and the stability to water is improved. Thereby, the fall of the battery performance resulting from the lithium elution in the slurrying process for electrode coating is prevented. In addition, a decrease in battery performance associated with lithium silicate removal treatment (pickling treatment) is also avoided.

しかも、粉末中のSiの結晶化が抑制されていることにより、負極材の内部抵抗が小さく、この点からもサイクル特性に優れる。   Moreover, since the crystallization of Si in the powder is suppressed, the internal resistance of the negative electrode material is small, and the cycle characteristics are also excellent from this point.

(実施例1)
Li含有酸化珪素粉末の製造原料である酸化珪素粉末にLiドープを行った。原料酸化珪素粉末は、析出法で製造された非晶質のSiO粉末(C=1)であり、平均粒径は4.9μmであった。原料酸化珪素粉末に混合する粉末リチウム源としてはLiH粉末を選択した。
Example 1
Li doping was performed on silicon oxide powder, which is a raw material for producing Li-containing silicon oxide powder. The raw material silicon oxide powder was an amorphous SiO 2 C powder (C = 1) produced by a precipitation method, and the average particle size was 4.9 μm. LiH powder was selected as the powder lithium source to be mixed with the raw silicon oxide powder.

そして、原料酸化珪素粉末と粉末リチウム源であるLiH粉末とを1:0.4のモル比で混合して熱処理した。熱処理条件はアルゴン雰囲気、圧力1atm、反応温度600℃、反応時間1440minとした。   The raw material silicon oxide powder and the LiH powder as the powder lithium source were mixed at a molar ratio of 1: 0.4 and heat-treated. The heat treatment conditions were an argon atmosphere, a pressure of 1 atm, a reaction temperature of 600 ° C., and a reaction time of 1440 min.

次いで、Liドープ後のLi含有酸化珪素粉末、すなわちP処理前のLi含有酸化珪素粉末をP含有材料と反応させた。具体的には、製造されたLi含有酸化珪素粉末10gをベース材料としてガラス製ビーカーに入れ、そのビーカー内でP含有材料であるリン酸(85wt%)1g及び溶媒であるエタノール50mlと混合し、マグネチックスターラーで2時間攪拌して反応させた後にろ過し乾燥した。   Next, the Li-containing silicon oxide powder after Li doping, that is, the Li-containing silicon oxide powder before P treatment was reacted with the P-containing material. Specifically, 10 g of the produced Li-containing silicon oxide powder is put in a glass beaker as a base material, and mixed with 1 g of phosphoric acid (85 wt%) as a P-containing material and 50 ml of ethanol as a solvent in the beaker, The mixture was stirred for 2 hours with a magnetic stirrer, reacted, filtered and dried.

P処理後のLi含有酸化珪素粉末の組成(SiLi)をICP発光分光法および赤外線吸収法により調べた。x=0.37、y=1.08、z=0.04であり、z/x=0.11、x−3z=0.25、y−4z=0.92であるので、0.01<z/x<0.25且つ0.1<x−3z<y−4z<1.5を満足した。 The composition (SiLi x O y P z ) of the Li-containing silicon oxide powder after P treatment was examined by ICP emission spectroscopy and infrared absorption. x = 0.37, y = 1.08, z = 0.04, z / x = 0.11, x-3z = 0.25, y-4z = 0.92, so 0.01 <Z / x <0.25 and 0.1 <x-3z <y-4z <1.5 were satisfied.

当該Li含有酸化珪素粉末にCuKα線を用いたX線回折測定を行い、回折角2θ=23.3°付近に表れるLiPO由来の回折ピーク強度P1の、バックグラウンド強度B1に対する比P1/B1を調べた。P1/B1=0.4(>0.03)であり、粉末中にLiPOが存在することが確認された。 The Li-containing silicon oxide powder is subjected to X-ray diffraction measurement using CuKα rays, and the ratio P1 / D1 of the diffraction peak intensity P1 derived from Li 3 PO 4 appearing at a diffraction angle of 2θ = 23.3 ° to the background intensity B1. B1 was examined. P1 / B1 = 0.4 (> 0.03), and it was confirmed that Li 3 PO 4 was present in the powder.

また、回折角2θ=47.4付近に表れるSi由来の回折ピーク強度P2の、バックグラウンド強度B2に対する比P2/B2を調べた。P2/B2=0.07(≦0.3)であり、当該粉末においてはSiの結晶性が低いことも確認された。   Further, the ratio P2 / B2 of the Si-derived diffraction peak intensity P2 appearing near the diffraction angle 2θ = 47.4 to the background intensity B2 was examined. P2 / B2 = 0.07 (≦ 0.3), and it was confirmed that the crystallinity of Si was low in the powder.

このときのX線回折チャートを図1に示す。回折角2θ=18.9°付近等に表れるLiSiO由来のピークも明瞭に認められる。 The X-ray diffraction chart at this time is shown in FIG. A peak derived from Li 2 SiO 3 that appears in the vicinity of the diffraction angle 2θ = 18.9 ° or the like is also clearly recognized.

(実施例2)
実施例1で使用したのと同じP処理前のLi含有酸化珪素粉末を、P含有材料である酸化リン(P)と反応させた。具体的には、P処理前のLi含有酸化珪素粉末10gをP0.5gと混合し、Pの昇華点より高い400℃で120min熱処理した。Pの融点は340℃、昇華点は360℃である。
(Example 2)
The same Li-containing silicon oxide powder before P treatment as that used in Example 1 was reacted with phosphorus oxide (P 2 O 5 ), which is a P-containing material. Specifically, 10 g of Li-containing silicon oxide powder before P treatment was mixed with 0.5 g of P 2 O 5 and heat-treated at 400 ° C. higher than the sublimation point of P 2 O 5 for 120 min. P 2 O 5 has a melting point of 340 ° C. and a sublimation point of 360 ° C.

P処理後のLi含有酸化珪素粉末の組成(SiLi)を同様に調べた。x=0.40、y=1.07、z=0.03であり、z/x=0.08、x−3z=0.31、y−4z=0.95で、0.01<z/x<0.25且つ0.1<x−3z<y−4z<1.5を満足した。 The composition of the Li-containing silicon oxide powder after the P processing (SiLi X O Y P Z) was examined similarly. x = 0.40, y = 1.07, z = 0.03, z / x = 0.08, x-3z = 0.31, y-4z = 0.95, 0.01 <z /X<0.25 and 0.1 <x-3z <y-4z <1.5 were satisfied.

当該Li含有酸化珪素粉末にCuKα線を用いたX線回折測定を行い、回折角2θ=23.3°付近に表れるLiPO由来の回折ピーク強度P1の、バックグラウンド強度B1に対する比P1/B1を調べた。P1/B1=0.3(>0.03)であり、粉末中にLiPOが存在することが確認された。また、回折角2θ=18.9°付近等に表れるLiSiO由来の回折ピークも明瞭に認められた。 The Li-containing silicon oxide powder is subjected to X-ray diffraction measurement using CuKα rays, and the ratio P1 / D1 of the diffraction peak intensity P1 derived from Li 3 PO 4 appearing at a diffraction angle of 2θ = 23.3 ° to the background intensity B1. B1 was examined. P1 / B1 = 0.3 (> 0.03), and it was confirmed that Li 3 PO 4 was present in the powder. Further, a diffraction peak derived from Li 2 SiO 3 appearing in the vicinity of a diffraction angle 2θ = 18.9 ° or the like was also clearly recognized.

また、回折角2θ=47.4付近に表れるSi由来の回折ピーク強度P2の、バックグラウンド強度B2に対する比P2/B2を調べた。P2/B2=0.08(≦0.3)であり、当該粉末においてはSiの結晶性が低いことも確認された。   Further, the ratio P2 / B2 of the Si-derived diffraction peak intensity P2 appearing near the diffraction angle 2θ = 47.4 to the background intensity B2 was examined. P2 / B2 = 0.08 (≦ 0.3), and it was also confirmed that the crystallinity of Si was low in the powder.

(実施例3)
実施例1で使用した原料酸化珪素粉末、すなわち析出法で製造された非晶質のSiO粉末(C=1,平均粒径4.9μm)に予めCコート処理を行った。Cコート処理後の原料酸化珪素粉末を燃焼赤外線吸収法に供したところ、重量比で1.1%の導電性炭素皮膜が形成されていることが確認された。
(Example 3)
The raw material silicon oxide powder used in Example 1, that is, the amorphous SiO 2 C powder (C = 1, average particle size 4.9 μm) produced by the precipitation method, was preliminarily subjected to C coating. When the raw material silicon oxide powder after the C coating treatment was subjected to a combustion infrared absorption method, it was confirmed that a conductive carbon film of 1.1% by weight was formed.

Cコート処理後の原料酸化珪素粉末と粉末リチウム源であるLiH粉末とを1:0.6のモル比で混合して熱処理した。熱処理条件は実施例1と同じアルゴン雰囲気、圧力1atm、反応温度600℃、反応時間1440minとした。   The raw material silicon oxide powder after the C coating treatment and the LiH powder as the powder lithium source were mixed and heat-treated at a molar ratio of 1: 0.6. The heat treatment conditions were the same argon atmosphere as in Example 1, a pressure of 1 atm, a reaction temperature of 600 ° C., and a reaction time of 1440 min.

製造されたP処理前のLi含有酸化珪素粉末を、実施例1と同じ方法及び条件で、P含有材料であるリン酸と反応させた。P処理後のLi含有酸化珪素粉末の組成(SiLi)を同様に調べた。x=0.40、y=1.07、z=0.03であり、z/x=0.08、x−3z=0.31、y−4z=0.95であるので、0.01<z/x<0.25且つ0.1<x−3z<y−4z<1.5を満足した。 The produced Li-containing silicon oxide powder before P treatment was reacted with phosphoric acid as a P-containing material in the same manner and under the same conditions as in Example 1. The composition of the Li-containing silicon oxide powder after the P processing (SiLi X O Y P Z) was examined similarly. x = 0.40, y = 1.07, z = 0.03, z / x = 0.08, x-3z = 0.31, y-4z = 0.95, so 0.01 <Z / x <0.25 and 0.1 <x-3z <y-4z <1.5 were satisfied.

当該Li含有酸化珪素粉末にCuKα線を用いたX線回折測定を行い、回折角2θ=23.3°付近に表れるLiPO由来の回折ピーク強度P1の、バックグラウンド強度B1に対する比P1/B1を調べた。P1/B1=0.3(>0.03)であり、粉末中にLiPOが存在することが確認された。また、回折角2θ=18.9°付近等に表れるLiSiO由来の回折ピークも明瞭に認められた。 The Li-containing silicon oxide powder is subjected to X-ray diffraction measurement using CuKα rays, and the ratio P1 / D1 of the diffraction peak intensity P1 derived from Li 3 PO 4 appearing at a diffraction angle of 2θ = 23.3 ° to the background intensity B1. B1 was examined. P1 / B1 = 0.3 (> 0.03), and it was confirmed that Li 3 PO 4 was present in the powder. Further, a diffraction peak derived from Li 2 SiO 3 appearing in the vicinity of a diffraction angle 2θ = 18.9 ° or the like was also clearly recognized.

また、回折角2θ=47.4付近に表れるSi由来の回折ピーク強度P2の、バックグラウンド強度B2に対する比P2/B2を調べた。P2/B2=0.08(≦0.3)であり、当該粉末においてはSiの結晶性が低いことも確認された。   Further, the ratio P2 / B2 of the Si-derived diffraction peak intensity P2 appearing near the diffraction angle 2θ = 47.4 to the background intensity B2 was examined. P2 / B2 = 0.08 (≦ 0.3), and it was also confirmed that the crystallinity of Si was low in the powder.

(比較例1)
実施例1において得られたP処理前のLi含有酸化珪素粉末の組成(SiLi)を同様に調べた。x=0.39、y=0.98、z=0であり、z/x=0、x−3z=0.39、y−4z=0.98であるので、0.01<z/x<0.25且つ0.1<x−3z<y−4z<1.5を満足しない。すなわち、P量に対応するz/xが0と過少である。
(Comparative Example 1)
The composition (SiLi X O Y P Z ) of the Li-containing silicon oxide powder before P treatment obtained in Example 1 was similarly examined. Since x = 0.39, y = 0.98, z = 0, z / x = 0, x-3z = 0.39, y-4z = 0.98, 0.01 <z / x <0.25 and 0.1 <x-3z <y-4z <1.5 are not satisfied. That is, z / x corresponding to the P amount is too small as 0.

当該Li含有酸化珪素粉末にCuKα線を用いたX線回折測定を行い、回折角2θ=23.3°付近に表れるLiPO由来の回折ピーク強度P1の、バックグラウンド強度B1に対する比P1/B1を調べた。P処理を受けていないために、P1/B1=0(>0.03)であり、粉末中にLiPOは確認されなかった。 The Li-containing silicon oxide powder is subjected to X-ray diffraction measurement using CuKα rays, and the ratio P1 / D1 of the diffraction peak intensity P1 derived from Li 3 PO 4 appearing at a diffraction angle of 2θ = 23.3 ° to the background intensity B1. B1 was examined. Since it did not receive P treatment, P1 / B1 = 0 (> 0.03), and Li 3 PO 4 was not confirmed in the powder.

このときのX線回折チャートを図2に示すが、回折角2θ=18.9°付近等に表れるLiSiO由来の回折ピークは明瞭に認められた。また、LiSi由来の回折ピークも明瞭に認められた。 The X-ray diffraction chart at this time is shown in FIG. 2, and a diffraction peak derived from Li 2 SiO 3 appearing in the vicinity of a diffraction angle 2θ = 18.9 ° or the like was clearly recognized. The diffraction peaks derived from Li 2 Si 2 O 5 was also clearly observed.

なお、回折角2θ=47.4付近に表れるSi由来の回折ピーク強度P2の、バックグラウンド強度B2に対する比P2/B2を調べたところ、P2/B2=0.07(≦0.3)であり、当該粉末においてもSiの結晶性が低いことは確認された。   When the ratio P2 / B2 of the diffraction peak intensity P2 derived from Si appearing in the vicinity of the diffraction angle 2θ = 47.4 to the background intensity B2 was examined, it was P2 / B2 = 0.07 (≦ 0.3). Also, it was confirmed that the Si crystallinity was low in the powder.

(比較例2)
実施例3において得られたP処理前のLi含有酸化珪素粉末の組成(SiLi)を同様に調べた。x=0.58、y=1.02、z=0であり、z/x=0、x−3z=0.58、y−4z=1.02であるので、0.01<z/x<0.25且つ0.1<x−3z<y−4z<1.5を満足しない。すなわち、P量に対応するz/xが0と過少である。
(Comparative Example 2)
The composition (SiLi x O y P z ) of the Li-containing silicon oxide powder before P treatment obtained in Example 3 was similarly examined. Since x = 0.58, y = 1.02, z = 0, z / x = 0, x-3z = 0.58, y-4z = 1.02, 0.01 <z / x <0.25 and 0.1 <x-3z <y-4z <1.5 are not satisfied. That is, z / x corresponding to the P amount is too small as 0.

当該Li含有酸化珪素粉末にCuKα線を用いたX線回折測定を行い、回折角2θ=23.3°付近に表れるLiPO由来の回折ピーク強度P1の、バックグラウンド強度B1に対する比P1/B1を調べた。P処理を受けていないために、P1/B1=0(>0.03)であり、粉末中にLiPOは確認されなかった。一方、回折角2θ=18.9°付近等に表れるLiSiO由来の回折ピークは明瞭に認められた。また、LiSi由来の回折ピークも明瞭に認められた。 The Li-containing silicon oxide powder is subjected to X-ray diffraction measurement using CuKα rays, and the ratio P1 / D1 of the diffraction peak intensity P1 derived from Li 3 PO 4 appearing at a diffraction angle of 2θ = 23.3 ° to the background intensity B1. B1 was examined. Since it did not receive P treatment, P1 / B1 = 0 (> 0.03), and Li 3 PO 4 was not confirmed in the powder. On the other hand, a diffraction peak derived from Li 2 SiO 3 that appears at a diffraction angle of 2θ = 18.9 ° or the like was clearly recognized. The diffraction peaks derived from Li 2 Si 2 O 5 was also clearly observed.

回折角2θ=47.4付近に表れるSi由来の回折ピーク強度P2の、バックグラウンド強度B2に対する比P2/B2については、P2/B2=0.07(≦0.3)であり、当該粉末においてもSiの結晶性が低いことは確認された。   The ratio P2 / B2 of the diffraction peak intensity P2 derived from Si appearing near the diffraction angle 2θ = 47.4 to the background intensity B2 is P2 / B2 = 0.07 (≦ 0.3). It was confirmed that the crystallinity of Si was low.

(比較例3)
実施例1において、P処理に使用したエタノール50mlを水50mlに変更した。すなわち、P処理前のLi含有酸化珪素粉末10gをベース材料としてガラス製ビーカーに入れ、そのビーカー内でリン酸(85wt%)1g及び水50mlと混合し、マグネチックスターラーで2時間攪拌して反応させた後にろ過し乾燥した。P処理は酸洗処理を兼ねる。他の条件は実施例1と同じとした。
(Comparative Example 3)
In Example 1, 50 ml of ethanol used for the P treatment was changed to 50 ml of water. That is, 10 g of Li-containing silicon oxide powder before P treatment was placed in a glass beaker as a base material, mixed with 1 g of phosphoric acid (85 wt%) and 50 ml of water in the beaker, and stirred for 2 hours with a magnetic stirrer to react. And then filtered and dried. P treatment also serves as pickling treatment. Other conditions were the same as in Example 1.

酸洗処理を兼ねるP処理後のLi含有酸化珪素粉末の組成(SiLi)を同様に調べた。x=0.15、y=1.12、z=0.04であり、z/x=0.27、x−3z=0.03、y−4z=0.96であるので、0.01<z/x<0.25且つ0.1<x−3z<y−4z<1.5を満足しない。すなわち、P量に対応するz/xが0.27(≧0.25)と過大であり、かつLi量に対応するx−3zが0.03(≦0.1)と過少である。 The composition (SiLi x O y P z ) of the Li-containing silicon oxide powder after the P treatment that also serves as the pickling treatment was similarly examined. x = 0.15, y = 1.12, z = 0.04, z / x = 0.27, x-3z = 0.03, y-4z = 0.96, so 0.01 <Z / x <0.25 and 0.1 <x-3z <y-4z <1.5 are not satisfied. That is, z / x corresponding to the P amount is excessively large as 0.27 (≧ 0.25), and x−3z corresponding to the Li amount is excessively small as 0.03 (≦ 0.1).

当該Li含有酸化珪素粉末にCuKα線を用いたX線回折測定を行い、回折角2θ=23.3°付近に表れるLiPO由来の回折ピーク強度P1の、バックグラウンド強度B1に対する比P1/B1を調べた。P1/B1=0.7(>0.03)であり、LiPO由来の回折ピークは確認された。しかし、回折角2θ=18.9°付近等に表れるLiSiO由来の回折ピークはほぼ消失していた。 The Li-containing silicon oxide powder is subjected to X-ray diffraction measurement using CuKα rays, and the ratio P1 / D1 of the diffraction peak intensity P1 derived from Li 3 PO 4 appearing at a diffraction angle of 2θ = 23.3 ° to the background intensity B1. B1 was examined. P1 / B1 = 0.7 (> 0.03), and a diffraction peak derived from Li 3 PO 4 was confirmed. However, the diffraction peak derived from Li 2 SiO 3 appearing in the vicinity of the diffraction angle 2θ = 18.9 ° or the like has almost disappeared.

回折角2θ=47.4付近に表れるSi由来の回折ピーク強度P2の、バックグラウンド強度B2に対する比P2/B2については、P2/B2=0.07(≦0.3)であり、当該粉末においてもSiの結晶性が低いことは確認された。   The ratio P2 / B2 of the diffraction peak intensity P2 derived from Si appearing near the diffraction angle 2θ = 47.4 to the background intensity B2 is P2 / B2 = 0.07 (≦ 0.3). It was confirmed that the crystallinity of Si was low.

(比較例4)
実施例1において、P処理を酸洗処理に変更した。すなわち、P処理前のLi含有酸化珪素粉末10gをベース材料としてガラス製ビーカーに入れ、そのビーカー内でクエン酸2g及び水50mlと混合し、マグネチックスターラーで2時間攪拌して反応させた後にろ過し乾燥した。他の条件は実施例1と同じとした。
(Comparative Example 4)
In Example 1, the P treatment was changed to a pickling treatment. That is, 10 g of Li-containing silicon oxide powder before P treatment was placed in a glass beaker as a base material, mixed with 2 g of citric acid and 50 ml of water in the beaker, stirred for 2 hours with a magnetic stirrer, reacted, and then filtered. And dried. Other conditions were the same as in Example 1.

P処理に代わる酸洗処理後のLi含有酸化珪素粉末の組成(SiLi)を同様に調べた。x=0.07、y=1.00、z=0であり、z/x=0、x−3z=0.07、y−4z=1.00であるので、0.01<z/x<0.25且つ0.1<x−3z<y−4z<1.5を満足しない。すなわち、P量に対応するz/xが0と過少であり、かつLi量に対応するx−3zが0.07(≦0.1)と過少である。 The composition (SiLi x O y P z ) of the Li-containing silicon oxide powder after the pickling treatment instead of the P treatment was similarly examined. Since x = 0.07, y = 1.00, z = 0, z / x = 0, x-3z = 0.07, and y-4z = 1.00, 0.01 <z / x <0.25 and 0.1 <x-3z <y-4z <1.5 are not satisfied. That is, z / x corresponding to the P amount is too small as 0, and x-3z corresponding to the Li amount is too small as 0.07 (≦ 0.1).

当該Li含有酸化珪素粉末にCuKα線を用いたX線回折測定を行い、回折角2θ=23.3°付近に表れるLiPO由来の回折ピーク強度P1の、バックグラウンド強度B1に対する比P1/B1を調べた。P1/B1=0(>0.03)であり、LiPO由来の回折ピークは確認されなかった。回折角2θ=18.9°付近等に表れるLiSiO由来の回折ピークもほぼ消失していた。 The Li-containing silicon oxide powder is subjected to X-ray diffraction measurement using CuKα rays, and the ratio P1 / D1 of the diffraction peak intensity P1 derived from Li 3 PO 4 appearing at a diffraction angle of 2θ = 23.3 ° to the background intensity B1. B1 was examined. P1 / B1 = 0 (> 0.03), and no diffraction peak derived from Li 3 PO 4 was confirmed. The diffraction peak derived from Li 2 SiO 3 that appears in the vicinity of the diffraction angle 2θ = 18.9 ° or the like almost disappeared.

回折角2θ=47.4付近に表れるSi由来の回折ピーク強度P2の、バックグラウンド強度B2に対する比P2/B2については、P2/B2=0.07(≦0.3)であり、当該粉末においてもSiの結晶性が低いことは確認された。   The ratio P2 / B2 of the diffraction peak intensity P2 derived from Si appearing near the diffraction angle 2θ = 47.4 to the background intensity B2 is P2 / B2 = 0.07 (≦ 0.3). It was confirmed that the crystallinity of Si was low.

(電池性能試験)
実施例1〜3及び比較例1〜4において製造されたLi含有酸化珪素粉末に対して次の手順で電池性能試験を実施した。
(Battery performance test)
A battery performance test was performed on the Li-containing silicon oxide powders produced in Examples 1 to 3 and Comparative Examples 1 to 4 by the following procedure.

製造されたLi含有酸化珪素粉末と、非水系(有機系)バインダーであるPIバインダーと、導電助材であるKBとを80:15:5の重量比で混合し、有機系のNMPを溶媒として混練してスラリーとした。作製したスラリーを銅箔上に塗工し、350℃で30min真空熱処理することで負極とした。この負極と対極(Li箔)と電解液(EC:DEC=1:1)と電解質(LiPF1mol/L)とセパレータ(ポリエチレン製多孔質フィルム30μm厚)とを用いてコインセル電池を作製した。 The produced Li-containing silicon oxide powder, a PI binder that is a non-aqueous (organic) binder, and KB that is a conductive aid are mixed at a weight ratio of 80: 15: 5, and organic NMP is used as a solvent. A kneaded slurry was obtained. The prepared slurry was coated on a copper foil and vacuum heat-treated at 350 ° C. for 30 minutes to obtain a negative electrode. A coin cell battery was produced using this negative electrode, a counter electrode (Li foil), an electrolytic solution (EC: DEC = 1: 1), an electrolyte (LiPF 6 1 mol / L), and a separator (polyethylene porous film 30 μm thick).

作製されたコインセル電池に充放電試験を実施した。充電は、電池の両極間の電圧が0.05vに達するまでは0.5Cの定電流で行い、電圧が0.05Vに達した後は電流が0.01Cになるまで定電位充電で行った。放電は、電池の両極間の電圧が1.5Vに達するまで0.1Cの定電流で行った。以上の充放電試験は50サイクル行った。   A charge / discharge test was performed on the manufactured coin cell battery. Charging was performed at a constant current of 0.5 C until the voltage between both electrodes of the battery reached 0.05 V, and after a voltage reached 0.05 V, charging was performed at a constant potential until the current reached 0.01 C. . Discharging was performed at a constant current of 0.1 C until the voltage between both electrodes of the battery reached 1.5V. The above charge / discharge test was performed 50 cycles.

この充放電試験により、初期充電容量、及び初期放電容量を測定して、初期効率を求めた。また、サイクル特性として、この充放電試験を50サイクル行い、50サイクル後の放電容量維持率を求めた。試験結果を負極材用酸化珪素粉末の仕様(Li量、Cコートの有無、Liドープ前の処理方法、LiPOの有無、LiSiOの有無、並びにx、y及びzの各値、z/x、x−3z及びy−4zの各値)と共に表1及び表2に示す。 By this charge / discharge test, the initial charge capacity and the initial discharge capacity were measured to determine the initial efficiency. Further, as the cycle characteristics, this charge / discharge test was performed 50 cycles, and the discharge capacity retention rate after 50 cycles was obtained. The test results are the specifications of the silicon oxide powder for the negative electrode material (Li amount, presence / absence of C coating, treatment method before Li doping, presence / absence of Li 3 PO 4 , presence / absence of Li 2 SiO 3 , and each value of x, y and z , Z / x, x-3z, and y-4z) are shown in Table 1 and Table 2.

Figure 2017188344
Figure 2017188344

Figure 2017188344
Figure 2017188344

実施例1〜3のいずれにおいても、負極材用酸化珪素粉末がSiLi(0.01<z/x<0.25且つ0.1<x−3z<y−4z<1.5)を満足することにより、その粉末中にLiPOが存在し、LiSiOと共存する。有機系バインダーを使用していることもあり、電池性能の一つである初期効率が70%を超える。また、サイクル特性も50サイクル後の容量維持率で60%を超える。 In any of Examples 1 to 3, the silicon oxide powder for negative electrode material was SiLi x O y P z (0.01 <z / x <0.25 and 0.1 <x−3z <y−4z <1. By satisfying 5), Li 3 PO 4 is present in the powder and coexists with Li 2 SiO 3 . Since an organic binder is sometimes used, the initial efficiency, which is one of battery performances, exceeds 70%. Also, the cycle characteristics exceed 60% in capacity retention after 50 cycles.

これに対し、比較例1では、粉末がP処理を受けていなために、P量に対応するz/xが0と過少となり、LiPOが存在しない。バインダーが有機系であるにもかかわらず、そのバインダー等と粉末が反応し、初期効率が29.7%と非常に低く、50サイクル後の容量維持率も1.6%と非常に悪い。これは粉末が負極材として機能していないためである。 On the other hand, in Comparative Example 1, since the powder was not subjected to the P treatment, z / x corresponding to the amount of P becomes too small as 0, and Li 3 PO 4 does not exist. Despite the organic binder, the powder reacts with the binder and the like, the initial efficiency is very low at 29.7%, and the capacity retention after 50 cycles is very poor at 1.6%. This is because the powder does not function as a negative electrode material.

比較例2では、粉末がP処理を受けていなために、P量に対応するz/xが0と過少であるが、Cコートにより電池性能が改善され、初期効率は高くなっている。しかし、50サイクル後の容量維持率は11.1%と依然として非常に低い。これは比較例1と同様に粉末がバインダー等と反応しているためと考えられる。   In Comparative Example 2, since the powder was not subjected to the P treatment, z / x corresponding to the amount of P was too low as 0, but the battery performance was improved by the C coating, and the initial efficiency was high. However, the capacity retention rate after 50 cycles is still very low at 11.1%. This is presumably because the powder reacts with the binder and the like as in Comparative Example 1.

比較例3及び4では、Liドープ後の粉末が水により処理されたため、粉末中のLiが水との反応、溶出により大きく減少し、Li量に対応するx−3zがそれぞれ0.03、0.07と過少となった。その結果、初期効率が70%未満と低い。   In Comparative Examples 3 and 4, since the powder after Li doping was treated with water, Li in the powder was greatly reduced by reaction and elution with water, and x-3z corresponding to the amount of Li was 0.03, 0, respectively. .07 was too low. As a result, the initial efficiency is as low as less than 70%.

Liドープ後の水による処理は、比較例3ではP処理を兼ねる酸洗処理(リン酸による酸洗処理)であり、比較例4では純然たる酸洗処理(クエン酸による酸洗処理)である。比較例3では、P処理によりP量に対応するz/xが0.27(≧0.25)と過大になり、LiPOが多く存在するものの、水溶液中ではLiPOが偏析するために、電池性能、特にサイクル特性が3.6%と比較例4より極端に低い。比較例4での純然たる酸洗処理は、初期効率が69.7%、サイクル特性が60.4%をそれぞれ示し、電池性能の改善に比較的効果的である。 The treatment with water after Li doping is a pickling treatment (pickling treatment with phosphoric acid) also serving as a P treatment in Comparative Example 3, and a pure pickling treatment (pickling treatment with citric acid) in Comparative Example 4. . In Comparative Example 3, z / x corresponding to the amount of P is excessively increased to 0.27 (≧ 0.25) due to P treatment, and a large amount of Li 3 PO 4 is present, but Li 3 PO 4 is segregated in an aqueous solution. Therefore, the battery performance, particularly the cycle characteristics, is 3.6%, which is extremely lower than that of Comparative Example 4. The pure pickling treatment in Comparative Example 4 shows an initial efficiency of 69.7% and a cycle characteristic of 60.4%, respectively, and is relatively effective in improving battery performance.

Claims (6)

リチウムイオン二次電池の負極材に使用されるLi含有酸化珪素粉末であって、組成が一般式SiLiで表され、ここにおける元素比が0.01<z/x<0.25で且つ0.1<x−3z<y−4z<1.5を満足するLi含有酸化珪素粉末。 Li-containing silicon oxide powder used for a negative electrode material of a lithium ion secondary battery, the composition of which is represented by the general formula SiLi x O y P z , where the element ratio is 0.01 <z / x <0. 25, and Li-containing silicon oxide powder satisfying 0.1 <x-3z <y-4z <1.5. 請求項1に記載のLi含有酸化珪素粉末において、当該粉末中に含まれるPの少なくとも一部がLiPOとして存在するLi含有酸化珪素粉末。 The Li-containing silicon oxide powder according to claim 1, wherein at least part of P contained in the powder is present as Li 3 PO 4 . 請求項1又は2に記載のLi含有酸化珪素粉末において、当該粉末はLiがドープされた酸化珪素粉末とP含有材料との反応により生成した反応生成物であるLi含有酸化珪素粉末。   3. The Li-containing silicon oxide powder according to claim 1, wherein the powder is a reaction product generated by a reaction between a Li-doped silicon oxide powder and a P-containing material. 請求項1〜3の何れかに記載のLi含有酸化珪素粉末において、当該粉末を構成する粒子が、更に、表面の少なくとも一部に導電性炭素皮膜を有するLi含有酸化珪素粉末。   The Li-containing silicon oxide powder according to any one of claims 1 to 3, wherein the particles constituting the powder further have a conductive carbon film on at least a part of the surface. リチウムイオン二次電池の負極材に使用されるLi含有酸化珪素粉末の製造方法であって、原料酸化珪素粉末にLiイオンをドープするLiドープ工程と、Liイオンがドープされた酸化珪素粉末を、有機溶媒中に分散したP含有材料と混合、反応させるP処理工程とを含むLi含有酸化珪素粉末の製造方法。   A method for producing a Li-containing silicon oxide powder used for a negative electrode material of a lithium ion secondary battery, wherein a raw silicon oxide powder is doped with Li ions, a Li oxide doped silicon oxide powder, A method for producing Li-containing silicon oxide powder, comprising a P treatment step of mixing and reacting with a P-containing material dispersed in an organic solvent. リチウムイオン二次電池の負極材に使用されるLi含有酸化珪素粉末の製造方法であって、原料酸化珪素粉末にLiイオンをドープするLiドープ工程と、Liイオンがドープされた酸化珪素粉末を、液体状態または気体状態のP含有材料と接触、反応させるP処理工程とを含むLi含有酸化珪素粉末の製造方法。   A method for producing a Li-containing silicon oxide powder used for a negative electrode material of a lithium ion secondary battery, wherein a raw silicon oxide powder is doped with Li ions, a Li oxide doped silicon oxide powder, A method for producing a Li-containing silicon oxide powder, comprising a P treatment step for contacting and reacting with a P-containing material in a liquid state or a gas state.
JP2016077057A 2016-04-07 2016-04-07 Li-containing silicon oxide powder and method for producing the same Active JP6688663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016077057A JP6688663B2 (en) 2016-04-07 2016-04-07 Li-containing silicon oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016077057A JP6688663B2 (en) 2016-04-07 2016-04-07 Li-containing silicon oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017188344A true JP2017188344A (en) 2017-10-12
JP6688663B2 JP6688663B2 (en) 2020-04-28

Family

ID=60045698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016077057A Active JP6688663B2 (en) 2016-04-07 2016-04-07 Li-containing silicon oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6688663B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179970A1 (en) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 Negative electrode material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell
CN113013409A (en) * 2019-12-20 2021-06-22 丰田自动车株式会社 Method for producing composite active material
WO2022002057A1 (en) * 2020-06-30 2022-01-06 贝特瑞新材料集团股份有限公司 Silicon-oxygen composite negative electrode material, negative electrode, lithium-ion battery, and preparation methods therefor
WO2022217835A1 (en) * 2021-04-14 2022-10-20 贝特瑞新材料集团股份有限公司 Composite material and preparation method therefor, cathode material, and lithium ion battery
WO2023096406A1 (en) * 2021-11-26 2023-06-01 주식회사 엘지에너지솔루션 Anode active material, anode comprising same, secondary battery comprising same, and method for manufacturing anode active material
JP7497115B2 (en) 2020-05-21 2024-06-10 株式会社大阪チタニウムテクノロジーズ Lithium disilicate-containing lithium-containing silicon oxide and method for producing same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273675A (en) * 1998-03-20 1999-10-08 Sii Micro Parts:Kk Nonaqueous electrolyte battery and its manufacture
JP2005183264A (en) * 2003-12-22 2005-07-07 Nec Corp Negative electrode material for secondary battery, its manufacturing method, and secondary battery using it
JP2007294423A (en) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd Silicon-silicon oxide-lithium based composite and its manufacturing method as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2010067508A (en) * 2008-09-11 2010-03-25 Nissan Motor Co Ltd Negative electrode protective agent for lithium ion secondary battery, and negative electrode for lithium ion secondary battery including the same
WO2012144177A1 (en) * 2011-04-21 2012-10-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
WO2014049992A1 (en) * 2012-09-27 2014-04-03 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte rechargeable battery, and non-aqueous electrolyte rechargeable battery using negative electrode active material
JP2014167909A (en) * 2013-01-30 2014-09-11 Nippon Electric Glass Co Ltd Negative electrode active material for electricity storage device and method for producing the same
JP2016009550A (en) * 2014-06-23 2016-01-18 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode active material particles
JP2016225199A (en) * 2015-06-02 2016-12-28 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery, and method for producing negative electrode active material particle
JP2017091683A (en) * 2015-11-05 2017-05-25 信越化学工業株式会社 Method for manufacturing negative electrode active substance for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2017152358A (en) * 2016-02-24 2017-08-31 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273675A (en) * 1998-03-20 1999-10-08 Sii Micro Parts:Kk Nonaqueous electrolyte battery and its manufacture
JP2005183264A (en) * 2003-12-22 2005-07-07 Nec Corp Negative electrode material for secondary battery, its manufacturing method, and secondary battery using it
JP2007294423A (en) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd Silicon-silicon oxide-lithium based composite and its manufacturing method as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2010067508A (en) * 2008-09-11 2010-03-25 Nissan Motor Co Ltd Negative electrode protective agent for lithium ion secondary battery, and negative electrode for lithium ion secondary battery including the same
WO2012144177A1 (en) * 2011-04-21 2012-10-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
WO2014049992A1 (en) * 2012-09-27 2014-04-03 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte rechargeable battery, and non-aqueous electrolyte rechargeable battery using negative electrode active material
JP2014167909A (en) * 2013-01-30 2014-09-11 Nippon Electric Glass Co Ltd Negative electrode active material for electricity storage device and method for producing the same
JP2016009550A (en) * 2014-06-23 2016-01-18 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode active material particles
JP2016225199A (en) * 2015-06-02 2016-12-28 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery, and method for producing negative electrode active material particle
JP2017091683A (en) * 2015-11-05 2017-05-25 信越化学工業株式会社 Method for manufacturing negative electrode active substance for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2017152358A (en) * 2016-02-24 2017-08-31 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179970A1 (en) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 Negative electrode material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell
US10950852B2 (en) 2017-03-29 2021-03-16 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN113013409A (en) * 2019-12-20 2021-06-22 丰田自动车株式会社 Method for producing composite active material
JP2021099918A (en) * 2019-12-20 2021-07-01 トヨタ自動車株式会社 Method for producing composite active material
JP7207288B2 (en) 2019-12-20 2023-01-18 トヨタ自動車株式会社 Method for manufacturing composite active material
JP7497115B2 (en) 2020-05-21 2024-06-10 株式会社大阪チタニウムテクノロジーズ Lithium disilicate-containing lithium-containing silicon oxide and method for producing same
WO2022002057A1 (en) * 2020-06-30 2022-01-06 贝特瑞新材料集团股份有限公司 Silicon-oxygen composite negative electrode material, negative electrode, lithium-ion battery, and preparation methods therefor
WO2022217835A1 (en) * 2021-04-14 2022-10-20 贝特瑞新材料集团股份有限公司 Composite material and preparation method therefor, cathode material, and lithium ion battery
WO2023096406A1 (en) * 2021-11-26 2023-06-01 주식회사 엘지에너지솔루션 Anode active material, anode comprising same, secondary battery comprising same, and method for manufacturing anode active material

Also Published As

Publication number Publication date
JP6688663B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
US10622626B2 (en) Negative electrode material for secondary battery with non-aqueous electrolyte, method for manufacturing negative electrode material for secondary battery with non-aqueous electrolyte, and lithium ion secondary battery
JP4207055B2 (en) Method for producing SiOx (x &lt;1)
JP6688663B2 (en) Li-containing silicon oxide powder and method for producing the same
KR102017470B1 (en) Li-containing silicon oxide powder and its manufacturing method
JP4702510B2 (en) Lithium-containing silicon oxide powder and method for producing the same
JP5291179B2 (en) Method for preparing lithium iron phosphate cathode material for lithium secondary battery
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP2021506059A (en) Negative electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method
JP4773724B2 (en) Method for preparing alkali metal insertion compound, alkali metal insertion compound, electrode active material, anode, battery, and electrochromic device
JP2012513097A (en) Method for producing fluorinated lithium vanadium polyanion powder for battery
JP2016143527A (en) Method for producing coated lithium-nickel complex oxide particle
JP4963675B2 (en) Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same
JP6195936B2 (en) Powder for negative electrode of lithium ion secondary battery
CN116259755A (en) Negative electrode active material for secondary battery and method for producing same
JP2021520602A (en) Anode material and its manufacturing method and usage method
KR20130022018A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP4305613B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10217990B2 (en) Silicon material and negative electrode of secondary battery
TWI497808B (en) Silicon oxide for anode active material of secondary battery
JP5608856B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6688663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250