JP2014167909A - Negative electrode active material for electricity storage device and method for producing the same - Google Patents

Negative electrode active material for electricity storage device and method for producing the same Download PDF

Info

Publication number
JP2014167909A
JP2014167909A JP2014015002A JP2014015002A JP2014167909A JP 2014167909 A JP2014167909 A JP 2014167909A JP 2014015002 A JP2014015002 A JP 2014015002A JP 2014015002 A JP2014015002 A JP 2014015002A JP 2014167909 A JP2014167909 A JP 2014167909A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode active
active material
oxide
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014015002A
Other languages
Japanese (ja)
Other versions
JP6273868B2 (en
Inventor
Hideo Yamauchi
英郎 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2014015002A priority Critical patent/JP6273868B2/en
Publication of JP2014167909A publication Critical patent/JP2014167909A/en
Application granted granted Critical
Publication of JP6273868B2 publication Critical patent/JP6273868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material for an electricity storage device with improved cycle characteristic without reducing discharge capacity and initial charge and discharge efficiency.SOLUTION: A negative electrode active material for electricity storage device contains metal Si and an oxide component. The oxide component contains oxide of at least one element selected from P, Si, and B, and oxide of Li.

Description

本発明は、携帯型電子機器、電気自動車、電気工具、バックアップ用非常電源等に用いられる蓄電デバイス用負極活物質およびその製造方法に関する。   The present invention relates to a negative electrode active material for an electricity storage device used for portable electronic devices, electric vehicles, electric tools, backup emergency power supplies, and the like, and a method for producing the same.

近年、携帯型電子機器や電気自動車等の普及に伴い、リチウムイオン二次電池等の蓄電デバイスの高容量化と小サイズ化に対する要望が高まっている。蓄電デバイスの高容量化が進めば、電池の小サイズ化も容易となるため、蓄電デバイスの高容量化へ向けての開発が急務となっている。   In recent years, with the widespread use of portable electronic devices, electric vehicles, and the like, there is an increasing demand for higher capacity and smaller size of power storage devices such as lithium ion secondary batteries. If the capacity of the electricity storage device is increased, it will be easy to reduce the size of the battery. Therefore, there is an urgent need to develop the capacity of the electricity storage device.

例えば、リチウムイオン二次電池用の正極活物質には、高電位型のLiCoO、LiCo1−xNi、LiNiO、LiMn等が広く用いられている。一方、負極活物質には、一般に炭素材料が用いられている。これらの材料は、充放電によってリチウムイオンを可逆的に吸蔵および放出する電極活物質として機能し、非水電解液または固体電解質によって電気化学的に連結された、いわゆるロッキングチェア型の二次電池を構成する。これらの電極活物質には、例えば結着剤や導電助剤が添加され、集電体としての役割を果たす金属箔等の表面に塗布することで電極として使用される。 For example, high potential type LiCoO 2 , LiCo 1-x Ni x O 2 , LiNiO 2 , LiMn 2 O 4 and the like are widely used as the positive electrode active material for lithium ion secondary batteries. On the other hand, a carbon material is generally used for the negative electrode active material. These materials function as an electrode active material that reversibly occludes and releases lithium ions by charging and discharging, and a so-called rocking chair type secondary battery that is electrochemically connected by a non-aqueous electrolyte or a solid electrolyte. Configure. For example, a binder or a conductive auxiliary agent is added to these electrode active materials, and the electrode active material is used as an electrode by applying it to the surface of a metal foil or the like that serves as a current collector.

負極活物質に用いられる炭素材料には、黒鉛質炭素材料、ピッチコークス、繊維状カーボン、ソフトカーボンなどがある。しかしながら、炭素材料は、理論容量が約372mAh/gであるため、電池の高容量化が困難であるという問題がある。   Examples of the carbon material used for the negative electrode active material include graphitic carbon material, pitch coke, fibrous carbon, and soft carbon. However, since the theoretical capacity of the carbon material is about 372 mAh / g, there is a problem that it is difficult to increase the capacity of the battery.

リチウムイオンを吸蔵および放出することが可能であり、炭素材料からなる負極活物質を上回る高容量密度を有する負極活物質として、SiやSnを含有する負極活物質が存在する。しかしながら、SiやSnを含有する負極活物質は、充放電時におけるリチウムイオンの吸蔵および放出反応に起因する体積変化が著しく大きいため、繰り返し充放電した際に負極活物質が構造劣化して亀裂が生じやすくなる。亀裂が進行すると、場合によっては負極活物質中に空洞が形成され、微粉化してしまうこともある。その結果、電子伝導網が分断されるため、繰り返し充放電した後の放電容量(サイクル特性)の低下が問題となっていた。   As a negative electrode active material capable of inserting and extracting lithium ions and having a higher capacity density than a negative electrode active material made of a carbon material, a negative electrode active material containing Si or Sn exists. However, the negative electrode active material containing Si and Sn has a remarkably large volume change due to the insertion and release reaction of lithium ions during charge and discharge, and therefore the structure of the negative electrode active material deteriorates and cracks when repeatedly charged and discharged. It tends to occur. As cracks progress, in some cases, cavities are formed in the negative electrode active material and may be pulverized. As a result, since the electron conduction network is divided, there has been a problem of a decrease in discharge capacity (cycle characteristics) after repeated charge and discharge.

そこで、特許文献1では、リチウムイオンを吸蔵および放出することが可能であり、SiやSnを含有する負極活物質と比較してサイクル特性に優れた負極活物質として、SiOを含有する負極活物質が提案されている。   Thus, in Patent Document 1, a negative electrode active material containing SiO as a negative electrode active material capable of inserting and extracting lithium ions and having excellent cycle characteristics as compared with a negative electrode active material containing Si or Sn. Has been proposed.

WO2006/011290号公報WO2006 / 011290

このSiOからなる負極活物質では、サイクル特性は向上したものの、放電容量や初回充放電効率(初回の充電容量に対する放電容量の比率)が低下するという問題があった。   Although the negative electrode active material made of SiO has improved cycle characteristics, there is a problem that the discharge capacity and the initial charge / discharge efficiency (ratio of the discharge capacity to the initial charge capacity) are lowered.

本発明は以上のような状況に鑑みてなされたものであり、放電容量と初回充放電効率を低下させることなく、サイクル特性を向上させた蓄電デバイス用負極活物質およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a negative electrode active material for an electricity storage device having improved cycle characteristics and a method for producing the same without reducing discharge capacity and initial charge / discharge efficiency. With the goal.

本発明の蓄電デバイス用負極活物質は、金属Siと酸化物成分を含み、前記酸化物成分が、P、SiおよびBから選ばれる少なくとも一種の元素の酸化物、およびLiの酸化物を含むことを特徴とする。   The negative electrode active material for an electricity storage device of the present invention contains metal Si and an oxide component, and the oxide component contains an oxide of at least one element selected from P, Si and B, and an oxide of Li. It is characterized by.

本発明の蓄電デバイス用負極活物質は、前記金属Siの表面が前記酸化物成分で被覆された構造を有することが好ましい。   The negative electrode active material for an electricity storage device of the present invention preferably has a structure in which the surface of the metal Si is coated with the oxide component.

本発明の蓄電デバイス用負極活物質は、炭素成分を含むことが好ましい。   The negative electrode active material for an electricity storage device of the present invention preferably contains a carbon component.

本発明の蓄電デバイス用負極活物質は、質量%で金属Si 10〜80%、酸化物成分 20〜90%、炭素成分 0〜20%を含有することが好ましい。   It is preferable that the negative electrode active material for electrical storage devices of this invention contains 10-80% of metal Si, 20-90% of oxide components, and 0-20% of carbon components by mass%.

本発明の蓄電デバイス用負極活物質の製造方法は、金属Siと酸化物原料を含む混合原料をメカニカルミリング処理する工程を含み、前記酸化物原料が、P、SiおよびBから選ばれる少なくとも一種の元素の酸化物原料、およびLiの酸化物原料を含むことを特徴とする。   The method for producing a negative electrode active material for an electricity storage device of the present invention includes a step of mechanically milling a mixed raw material containing metal Si and an oxide raw material, wherein the oxide raw material is at least one selected from P, Si and B It contains an oxide raw material of an element and an oxide raw material of Li.

前記メカニカルミリング処理が、非酸化性雰囲気で行われることが好ましい。   The mechanical milling process is preferably performed in a non-oxidizing atmosphere.

本発明によれば、放電容量と初回充放電効率を低下させることなく、サイクル特性を向上させた蓄電デバイス用負極活物質が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode active material for electrical storage devices which improved the cycling characteristics is obtained, without reducing discharge capacity and first time charge / discharge efficiency.

本発明の蓄電デバイス用負極活物質は、金属Siと酸化物成分を含み、前記酸化物成分が、P、SiおよびBから選ばれる少なくとも一種の元素の酸化物、およびLiの酸化物を含むことを特徴とする。上記構成にすることにより、リチウムイオンの吸蔵・放出サイトとなる金属Siの表面が酸化物成分で被覆されたり、金属Si間に前記酸化物成分が分散したりするため、リチウムイオンの吸蔵・放出に伴う金属Siの体積変化を緩和・抑制することが可能となる。結果的に、高い放電容量を低下させることなく、良好なサイクル特性と高い放電容量を維持することができる。   The negative electrode active material for an electricity storage device of the present invention contains metal Si and an oxide component, and the oxide component contains an oxide of at least one element selected from P, Si and B, and an oxide of Li. It is characterized by. By adopting the above configuration, the surface of the metal Si serving as the lithium ion storage / release site is coated with an oxide component, or the oxide component is dispersed between the metal Si. It becomes possible to relieve / suppress the volume change of the metal Si accompanying this. As a result, good cycle characteristics and high discharge capacity can be maintained without reducing the high discharge capacity.

さらに、前記酸化物成分が上記構成であるため、初回の充電において、金属Siに吸蔵されるリチウムイオンの一部が酸化物成分に吸収されにくい。酸化物成分にリチウムイオンが吸収されると、リチウムイオンは、その後の放電において放出されずに酸化物成分中に留まる。その結果、初回の放電容量は、初回の充電容量に対し、酸化物成分に吸収されたリチウムイオンに相当する電気量の分だけ低下するため、初回充放電効率が低下する。特に、前記酸化物成分がPを含むと、前記酸化物成分のリチウムイオン伝導性に優れ、放電容量と急速充放電特性に優れるため好ましい。前記酸化物成分を含まないと、充放電時のリチウムイオンの吸蔵および放出に伴う金属Siの体積変化を緩和できず、サイクル特性が低下しやすくなる。また、前記酸化物成分がP、SiおよびBから選ばれる少なくとも一種の元素の酸化物を含まないと、充放電時のリチウムイオンの吸蔵および放出に伴う金属Siの体積変化を緩和できず、サイクル特性が低下しやすくなる。一方、前記酸化物成分がLiを含まないと、前記酸化物成分へのリチウムイオン吸蔵量が多くなり、初回充放電効率が低下する傾向がある。   Furthermore, since the oxide component has the above-described configuration, part of lithium ions occluded in the metal Si is difficult to be absorbed by the oxide component in the first charge. When lithium ions are absorbed by the oxide component, the lithium ions remain in the oxide component without being released in the subsequent discharge. As a result, the initial discharge capacity is reduced by the amount of electricity corresponding to the lithium ions absorbed by the oxide component with respect to the initial charge capacity, and the initial charge / discharge efficiency is reduced. In particular, it is preferable that the oxide component contains P since the lithium ion conductivity of the oxide component is excellent and the discharge capacity and rapid charge / discharge characteristics are excellent. If the oxide component is not included, the volume change of the metal Si accompanying the insertion and extraction of lithium ions during charge / discharge cannot be relaxed, and the cycle characteristics are likely to deteriorate. Further, if the oxide component does not contain an oxide of at least one element selected from P, Si and B, the volume change of metal Si associated with insertion and extraction of lithium ions during charge and discharge cannot be reduced, and the cycle The characteristic tends to deteriorate. On the other hand, if the oxide component does not contain Li, the amount of lithium ions stored in the oxide component increases, and the initial charge / discharge efficiency tends to decrease.

前記酸化物成分は、酸化物換算のモル%で、LiO 5〜85%、P+SiO+B 15〜95%であることが好ましい。各成分をこのように限定した理由を以下に説明する。 The oxide component is a mole percent oxide equivalent, Li 2 O 5 to 85%, preferably a P 2 O 5 + SiO 2 + B 2 O 3 15~95%. The reason why each component is limited in this way will be described below.

LiOは前記酸化物成分のリチウムイオン吸蔵を抑制させる作用がある。LiOの含有量は5〜85%であることが好ましく、15〜80%であることがより好ましく、25〜77%であることがさらに好ましい。LiOの含有量が少なすぎると、前記酸化物成分へのリチウムイオン吸蔵量が多くなり、初回充放電効率が低下する傾向がある。一方、LiOの含有量が多すぎると、前記酸化物成分の耐水性が低下しやすくなり、サイクル特性が低下する傾向がある。 Li 2 O is an effect to suppress the lithium ion occlusion of the oxide components. The content of Li 2 O is preferably 5 to 85%, more preferably 15 to 80%, and still more preferably 25 to 77%. When the Li 2 O content is too small, the increases lithium ion storage amount of the oxide components, initial charge and discharge efficiency tends to be lowered. On the other hand, when the content of Li 2 O is too large, the oxide becomes water resistance is likely to decrease in the component, the cycle characteristics tend to be lowered.

、SiO、Bはいずれも網目形成酸化物であり、充放電時のリチウムイオンの吸蔵および放出に伴う金属Siの体積変化を緩和することが可能になるため、サイクル特性を向上させる作用がある。それらの含有量の合量は15〜95%であることが好ましく、20〜85%であることがより好ましく、23〜75%であることがさらに好ましい。それらの含有量の合量が少なすぎると、充放電時のリチウムイオンの吸蔵および放出に伴う金属Siの体積変化を緩和できず、サイクル特性が低下しやすくなる。一方、それらの含有量の合量が多すぎると、前記酸化物成分へリチウムイオンが吸収される量が多くなり、初回充放電効率が低下する傾向がある。 Since P 2 O 5 , SiO 2 , and B 2 O 3 are all network-forming oxides, it becomes possible to relax the volume change of the metal Si that accompanies occlusion and release of lithium ions during charge and discharge. It has the effect of improving the characteristics. The total amount of these contents is preferably 15 to 95%, more preferably 20 to 85%, and still more preferably 23 to 75%. If the total amount of these contents is too small, the volume change of the metal Si accompanying the occlusion and release of lithium ions during charge / discharge cannot be alleviated, and the cycle characteristics tend to deteriorate. On the other hand, when the total amount of these contents is too large, the amount of lithium ions absorbed into the oxide component increases, and the initial charge / discharge efficiency tends to decrease.

は酸化物成分のリチウムイオン伝導性を向上させる成分である。Pの含有量は0〜70%であることが好ましく、15〜60%であることがより好ましく、20〜55%であることがさらに好ましい。Pの含有量が多すぎると、前記酸化物成分の耐水性が低下しやすくなり、サイクル特性が低下する傾向がある。 P 2 O 5 is a component that improves the lithium ion conductivity of the oxide component. The content of P 2 O 5 is preferably 0 to 70%, more preferably 15 to 60%, and still more preferably 20 to 55%. When the content of P 2 O 5 is too large, the oxide becomes water resistance is likely to decrease in the component, the cycle characteristics tend to be lowered.

なお、SiOの含有量は0〜75%であることが好ましく、0〜70%であることがより好ましく、0〜67%であることがさらに好ましい。Bの含有量は0〜75%であることが好ましく、0〜70%であることがより好ましく、0〜67%であることがさらに好ましい。 Incidentally, the content of SiO 2 is 0 to 75%, more preferably from 0% to 70%, more preferably from 0 to 67%. The content of B 2 O 3 is preferably 0 to 75%, more preferably 0 to 70%, and still more preferably 0 to 67%.

前記酸化物成分は、結晶、非晶質のいずれでもよく、両者が共存していてもかまわない。   The oxide component may be either crystalline or amorphous, and both may coexist.

前記結晶は、LiPO、Li、LiPO、LiSiO、LiSiO、LiSi、Li、Li、Li、Liから選ばれる少なくとも一種が好ましい。なかでも、リチウムイオン伝導性に優れるLiPO、LiSiO、Liがより好ましく、LiPO、LiSiOがさらに好ましく、LiPOが特に好ましい。 The crystals are Li 3 PO 4 , Li 4 P 2 O 7 , LiPO 3 , Li 4 SiO 4 , Li 2 SiO 3 , Li 2 Si 2 O 5 , Li 6 B 2 O 6 , Li 6 B 4 O 9 , At least one selected from Li 2 B 4 O 7 and Li 2 B 2 O 4 is preferable. Among these, Li 3 PO 4 , Li 4 SiO 4 and Li 6 B 2 O 6 having excellent lithium ion conductivity are more preferable, Li 3 PO 4 and Li 4 SiO 4 are more preferable, and Li 3 PO 4 is particularly preferable.

金属Siとは、Si単体からなる金属だけでなく、Si金属を含有する合金も含む。   The metal Si includes not only a metal made of Si alone but also an alloy containing Si metal.

本発明の蓄電デバイス用負極活物質は、炭素成分を含むことが好ましい。電子伝導性に優れる炭素成分を含むことにより、負極活物質の放電容量が高くなる傾向がある。   The negative electrode active material for an electricity storage device of the present invention preferably contains a carbon component. By including a carbon component having excellent electron conductivity, the discharge capacity of the negative electrode active material tends to increase.

前記炭素成分は、アセチレンブラックやケッチェンブラック等の導電性カーボンブラック、グラファイト等のカーボン粉末、炭素繊維などから構成される。なかでも、電子伝導性が高いアセチレンブラックが好ましい。   The carbon component is composed of conductive carbon black such as acetylene black and ketjen black, carbon powder such as graphite, carbon fiber, and the like. Of these, acetylene black having a high electron conductivity is preferable.

本発明の蓄電デバイス用負極活物質は、質量%で金属Si 10〜80%、酸化物成分 20〜90%、炭素成分 0〜20%を含有することが好ましく、金属Si 25〜70%、酸化物成分 29〜74%、炭素成分 1〜10%を含有することがより好ましい。上記構成にすることにより、放電容量と初回充放電効率を低下させることなく、サイクル特性が向上することが可能となる。   The negative electrode active material for an electricity storage device of the present invention preferably contains 10 to 80% by mass of metal Si 10 to 80%, oxide component 20 to 90%, carbon component 0 to 20%, metal Si 25 to 70%, oxidized It is more preferable to contain 29-74% of physical components and 1-10% of carbon components. With the above configuration, the cycle characteristics can be improved without reducing the discharge capacity and the initial charge / discharge efficiency.

本発明の蓄電デバイス用負極活物質の形状は特に限定されないが、好ましくは粉末状である。   The shape of the negative electrode active material for an electricity storage device of the present invention is not particularly limited, but is preferably a powder.

本発明の蓄電デバイス用負極活物質の形状が粉末状である場合、平均粒子径は0.1〜20μmであることが好ましく、0.2〜15μmであることがより好ましく、0.3〜10μmであることがさらに好ましく、0.5〜5μmであることが特に好ましい。最大粒子径は150μm以下であることが好ましく、100μm以下であることがより好ましく、75μm以下であることがさらに好ましく、55μm以下であることが特に好ましい。平均粒子径や最大粒子径が大きすぎると、充放電した際にリチウムイオンの吸蔵および放出に伴う負極活物質の体積変化を緩和できず、集電体から剥れやすくなり、サイクル特性が著しく低下する傾向がある。一方、平均粒子径が小さすぎると、ペースト化した際に粉末の分散状態に劣り、均一な電極を製造することが困難になる傾向がある。また、比表面積が大きくなりすぎて、電極形成用のペーストを製造する際に負極活物質粉末が分散しにくくなるため、多量の結着剤や溶剤が必要となる。さらに、電極形成用ペーストの塗布性に劣り、均一な厚みを有する負極を形成しにくくなる。   When the shape of the negative electrode active material for an electricity storage device of the present invention is powder, the average particle size is preferably 0.1 to 20 μm, more preferably 0.2 to 15 μm, and 0.3 to 10 μm. More preferably, it is particularly preferably 0.5 to 5 μm. The maximum particle size is preferably 150 μm or less, more preferably 100 μm or less, further preferably 75 μm or less, and particularly preferably 55 μm or less. If the average particle size or maximum particle size is too large, the volume change of the negative electrode active material associated with insertion and extraction of lithium ions during charge / discharge cannot be mitigated, and it will be easy to peel off from the current collector, resulting in a significant decrease in cycle characteristics. Tend to. On the other hand, if the average particle size is too small, the powder is in a poorly dispersed state when formed into a paste, and it tends to be difficult to produce a uniform electrode. In addition, since the specific surface area becomes too large and the negative electrode active material powder is difficult to disperse when producing a paste for forming an electrode, a large amount of binder and solvent are required. Furthermore, it is inferior to the applicability of the electrode forming paste, and it becomes difficult to form a negative electrode having a uniform thickness.

ここで、平均粒子径と最大粒子径は、それぞれ一次粒子のメイジアン径でD50(50%体積累積径)とD90(90%体積累積径)を示し、レーザー回折式粒度分布測定装置により測定された値をいう。   Here, the average particle size and the maximum particle size are D50 (50% volume cumulative diameter) and D90 (90% volume cumulative diameter), respectively, in terms of the median diameter of primary particles, and were measured by a laser diffraction particle size distribution analyzer. Value.

本発明の蓄電デバイス用負極活物質の製造方法は、金属Siと酸化物原料を含む混合原料をメカニカルミリング処理する工程を含み、前記酸化物原料が、P、SiおよびBから選ばれる少なくとも一種の元素の酸化物原料、およびLiの酸化物原料を含むことを特徴とする。   The method for producing a negative electrode active material for an electricity storage device of the present invention includes a step of mechanically milling a mixed raw material containing metal Si and an oxide raw material, wherein the oxide raw material is at least one selected from P, Si and B It contains an oxide raw material of an element and an oxide raw material of Li.

メカニカルミリング処理することにより、前記混合原料に高い衝撃エネルギーを与えることができる。その高い衝撃エネルギーにより、リチウムイオンの吸蔵・放出サイトとなる金属Siの表面が酸化物成分で被覆されたり、金属Si間に前記酸化物成分が分散したりすることが容易となる。   By carrying out the mechanical milling treatment, high impact energy can be given to the mixed raw material. Due to the high impact energy, it becomes easy for the surface of the metal Si serving as a lithium ion occlusion / release site to be coated with an oxide component or to be dispersed between the metal Si.

前記メカニカルミリング処理には、乳鉢、らいかい機、ボールミル、アトライター、振動ボールミル、衛星ボールミル、遊星ボールミル、ジェットミル、ビーズミルなどの一般的な粉砕機を用いることができる。特に、遊星型ボールミルを使用することが好ましい。遊星型ボールミルは、ポットが自転回転しながら、台盤が公転回転し、非常に高い衝撃エネルギーを効率良く発生させることができる。   For the mechanical milling process, a general pulverizer such as a mortar, a rake machine, a ball mill, an attritor, a vibration ball mill, a satellite ball mill, a planetary ball mill, a jet mill, or a bead mill can be used. In particular, it is preferable to use a planetary ball mill. The planetary ball mill can efficiently generate very high impact energy by rotating the platform while the pot rotates.

さらに、前記混合原料は、炭素原料を含有することが好ましい。炭素原料を含有させることにより、前述のとおり、負極活物質の放電容量が高くなるとともに、金属Siと酸化物原料を含む混合原料をメカニカルミリング処理する際に、凝集物の形成を防止することが可能となり、より短時間で負極活物質を作製することが可能となる。   Furthermore, the mixed raw material preferably contains a carbon raw material. By containing the carbon raw material, as described above, the discharge capacity of the negative electrode active material is increased, and the formation of aggregates can be prevented when mechanically milling the mixed raw material containing the metal Si and the oxide raw material. This makes it possible to produce the negative electrode active material in a shorter time.

前記メカニカルミリング処理は、非酸化性雰囲気中で行うことが好ましい。非酸化性雰囲気とすることにより、金属Siの酸化を抑制することができる。なお、非酸化性雰囲気は、還元性雰囲気と不活性雰囲気を含む。   The mechanical milling treatment is preferably performed in a non-oxidizing atmosphere. By setting it as a non-oxidizing atmosphere, the oxidation of metal Si can be suppressed. The non-oxidizing atmosphere includes a reducing atmosphere and an inert atmosphere.

還元雰囲気とするためには、メカニカルミリング処理中に還元性ガスを供給することが好ましい。還元性ガスの組成は、体積%で、N 90〜99.5%、H 0.5〜10%を含有する混合気体を用いることが好ましく、N 92〜99%、Hが1〜4%を含有する混合気体を用いることがより好ましい。 In order to obtain a reducing atmosphere, it is preferable to supply a reducing gas during the mechanical milling process. The composition of the reducing gas, by volume%, N 2 90 to 99.5%, it is preferable to use a mixed gas containing H 2 0.5~10%, N 2 92~99 %, H 2 1 More preferably, a mixed gas containing ˜4% is used.

不活性雰囲気とするためには、メカニカルミリング処理中に不活性ガスを供給することが好ましい。不活性ガスとしては、窒素、アルゴン、ヘリウムのいずれかを用いることが好ましい。   In order to obtain an inert atmosphere, it is preferable to supply an inert gas during the mechanical milling process. As the inert gas, it is preferable to use any of nitrogen, argon, and helium.

本発明の蓄電デバイス用負極活物質に対し、結着剤や導電助剤を添加することにより蓄電デバイス用負極材料が得られる。   A negative electrode material for an electricity storage device can be obtained by adding a binder or a conductive additive to the negative electrode active material for an electricity storage device of the present invention.

結着剤としては、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ヒドロキシメチルセルロースなどのセルロース誘導体またはポリビニルアルコール等の水溶性高分子;熱硬化性ポリイミド、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン等の熱硬化性樹脂;ポリフッ化ビニリデンなどが挙げられる。   Examples of the binder include cellulose derivatives such as carboxymethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, ethylcellulose, hydroxymethylcellulose, and water-soluble polymers such as polyvinyl alcohol; thermosetting polyimide, phenolic resin, epoxy resin, urea Examples thereof include thermosetting resins such as resins, melamine resins, unsaturated polyester resins, and polyurethanes; polyvinylidene fluoride.

導電助剤としては、アセチレンブラックやケッチェンブラック等の導電性カーボンブラック、グラファイト等のカーボン粉末、炭素繊維などが挙げられる。   Examples of the conductive assistant include conductive carbon black such as acetylene black and ketjen black, carbon powder such as graphite, and carbon fiber.

蓄電デバイス用負極材料を、集電体としての役割を果たす金属箔等の表面に塗布することで蓄電デバイス用負極として用いることができる。   The negative electrode material for an electricity storage device can be used as an anode for an electricity storage device by applying it to the surface of a metal foil or the like that serves as a current collector.

なお、本発明の負極活物質を用いて作製した蓄電デバイスを充放電した後は、負極活物質中に金属リチウムやリチウム酸化物(ケイ酸、リン酸、ホウ酸等の酸化物とリチウム原子が複合化されたリチウム複合酸化物も含む)等の酸化物、Si金属等、Si−Li合金等を含有する場合がある。   In addition, after charging / discharging the electrical storage device produced using the negative electrode active material of this invention, metal lithium, lithium oxide (an oxide, such as a silicic acid, phosphoric acid, boric acid, and a lithium atom are contained in a negative electrode active material. Oxide (including complexed lithium composite oxide), Si metal, Si-Li alloy, and the like may be included.

本発明の負極活物質は、リチウムイオン二次電池だけでなく、他の非水系二次電池や、さらには、リチウムイオン二次電池用の負極活物質と非水系電気二重層キャパシタ用の正極活物質とを組み合わせたハイブリットキャパシタ等にも適用できる。   The negative electrode active material of the present invention is not only a lithium ion secondary battery, but also other nonaqueous secondary batteries, and further, a negative electrode active material for lithium ion secondary batteries and a positive electrode active material for nonaqueous electric double layer capacitors. It can also be applied to a hybrid capacitor combined with a substance.

ハイブリットキャパシタであるリチウムイオンキャパシタは、正極と負極の充放電原理が異なる非対称キャパシタの1種である。リチウムイオンキャパシタは、リチウムイオン二次電池用の負極と電気二重層キャパシタ用の正極を組み合わせた構造を有している。ここで、正極は表面に電気二重層を形成し、物理的な作用(静電気作用)を利用して充放電するのに対し、負極は既述のリチウムイオン二次電池と同様にリチウムイオンの化学反応(吸蔵および放出)により充放電する。   A lithium ion capacitor, which is a hybrid capacitor, is one type of asymmetric capacitor that has different charge / discharge principles for a positive electrode and a negative electrode. The lithium ion capacitor has a structure in which a negative electrode for a lithium ion secondary battery and a positive electrode for an electric double layer capacitor are combined. Here, the positive electrode forms an electric double layer on the surface and is charged / discharged by utilizing a physical action (electrostatic action), whereas the negative electrode has a lithium ion chemistry similar to the lithium ion secondary battery described above. Charge and discharge by reaction (occlusion and release).

リチウムイオンキャパシタの正極には、活性炭、ポリアセン、メソフェーズカーボンなどの高比表面積の炭素質粉末などからなる正極活物質が用いられる。一方、負極には、本発明の負極活物質を用いることができる。   For the positive electrode of the lithium ion capacitor, a positive electrode active material made of carbonaceous powder having a high specific surface area such as activated carbon, polyacene, or mesophase carbon is used. On the other hand, the negative electrode active material of the present invention can be used for the negative electrode.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はかかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to this Example.

(1)負極活物質の作製
実施例1〜7、および、比較例1の負極活物質は、金属Si、酸化物原料および炭素原料であるアセチレンブラックからなる混合原料を表1及び表2に記載の質量%になるように秤量し、その混合原料30gとφ5mmのZrO1kgとを500mL ZrOポットに入れ、遊星型ボールミル装置(装置名:Fritch社製P6)を用いて、Ar雰囲気下、370rpmの公転回転数で40時間(実施例1〜4、および、比較例1)または20時間(実施例5〜7)メカノミリング処理することにより作製した。
(1) Production of negative electrode active material The negative electrode active materials of Examples 1 to 7 and Comparative Example 1 are mixed raw materials composed of metal Si, an oxide raw material, and acetylene black which is a carbon raw material, as shown in Tables 1 and 2. the weighed such that the weight%, placed in a ZrO 2 1 kg of the mixed raw material 30g and φ5mm in 500 mL ZrO 2 pots, a planetary ball mill: using (device name Fritch Co. P6), under Ar atmosphere, It produced by carrying out the mechano-milling process for 40 hours (Examples 1-4 and Comparative Example 1) or 20 hours (Examples 5-7) with the revolution speed of 370 rpm.

比較例2の負極活物質は、SiO粉末とした。   The negative electrode active material of Comparative Example 2 was SiO powder.

得られた負極活物質について粉末X線回折測定することにより構造を同定した。その結果を表1に示す。   The structure of the obtained negative electrode active material was identified by powder X-ray diffraction measurement. The results are shown in Table 1.

(2)負極の作製
得られた負極活物質と導電助剤と結着剤を質量比で80:5:15の割合になるように秤量し、脱水したN−メチルピロリドンに分散した後、自転・公転ミキサーで十分に撹拌してスラリー化した。ここで、導電助剤としては導電性カーボンブラック(SuperC65,Timcal社製)、結着剤としては熱硬化性ポリイミド樹脂を用いた。
(2) Production of negative electrode The obtained negative electrode active material, conductive additive and binder were weighed to a mass ratio of 80: 5: 15, dispersed in dehydrated N-methylpyrrolidone, and then rotated. -It stirred sufficiently with the revolution mixer and was made into the slurry. Here, conductive carbon black (SuperC65, manufactured by Timcal) was used as the conductive auxiliary agent, and thermosetting polyimide resin was used as the binder.

次に、隙間75μmのドクターブレードを用いて、得られたスラリーを負極集電体である厚さ20μmの銅箔上にコートし、70℃の乾燥機で真空乾燥後、一対の回転ローラー間に通してプレスすることにより電極シートを得た。この電極シートを電極打ち抜き機で直径11mmに打ち抜き、温度200℃にて8時間、減圧下で乾燥させて円形の作用極(非水二次電池用負極)を得た。   Next, using a doctor blade with a gap of 75 μm, the obtained slurry was coated on a 20 μm thick copper foil as a negative electrode current collector, vacuum-dried with a dryer at 70 ° C., and then between a pair of rotating rollers. An electrode sheet was obtained by pressing through. This electrode sheet was punched to a diameter of 11 mm with an electrode punching machine and dried under reduced pressure at a temperature of 200 ° C. for 8 hours to obtain a circular working electrode (a negative electrode for a non-aqueous secondary battery).

(3)試験電池の作製
次に、得られた負極を、銅箔面を下に向けてコインセルの下蓋に載置し、その上に70℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜(ヘキストセラニーズ社製 セルガード#2400)からなるセパレータ、および、対極である金属リチウムを積層し、試験電池を作製した。電解液としては、1M LiPF溶液/EC:DEC=1:1(EC=エチレンカーボネート、DEC=ジエチルカーボネート)を用いた。なお試験電池の組み立ては露点温度−40℃以下の環境で行った。
(3) Production of test battery Next, the obtained negative electrode was placed on the lower lid of the coin cell with the copper foil surface facing down, and dried on the top at 70 ° C. under reduced pressure for 8 hours. A test battery was manufactured by laminating a separator made of a membrane (Cellguard # 2400 manufactured by Hoechst Celanese) and metallic lithium as a counter electrode. As the electrolytic solution, 1M LiPF 6 solution / EC: DEC = 1: 1 (EC = ethylene carbonate, DEC = diethyl carbonate) was used. The test battery was assembled in an environment with a dew point temperature of −40 ° C. or lower.

(4)充放電試験
上記試験電池に対し、30℃で1Vから0VまでCC(定電流)充電(負極活物質へのリチウムイオン吸蔵)を行い、単位質量の負極活物質へ充電された電気量(充電容量)を求めた。次に、0Vから1VまでCC放電(負極活物質からのリチウムイオン放出)させ、単位質量の負極活物質から放電された電気量(放電容量)を求めた。なお、Cレートは0.5Cとした。表2に、充放電特性の結果を示す。なお、初回充放電効率は、初回充電容量に対する初回放電容量の割合を、放電容量維持率は、初回放電容量に対する100サイクル目の放電容量の割合をいう。
(4) Charge / Discharge Test The amount of electricity charged to the negative electrode active material of unit mass by performing CC (constant current) charge (lithium ion occlusion in the negative electrode active material) from 1 V to 0 V at 30 ° C. (Charge capacity) was determined. Next, CC discharge (lithium ion release from the negative electrode active material) was performed from 0 V to 1 V, and the amount of electricity (discharge capacity) discharged from the negative electrode active material of unit mass was obtained. The C rate was 0.5C. Table 2 shows the results of the charge / discharge characteristics. The initial charge / discharge efficiency is the ratio of the initial discharge capacity to the initial charge capacity, and the discharge capacity maintenance ratio is the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity.

実施例1〜7の初回放電容量は817mAh/g以上、初回充放電効率は61%以上、放電容量維持率は51%以上と、高容量で、初回充放電効率に優れ、かつサイクル性も良好であった。一方、比較例1及び2は、放電容量維持率は79%以上と高かったが、初回放電容量は586mAh/g以下、初回充放電効率は46%以下と低かった。   In Examples 1 to 7, the initial discharge capacity is 817 mAh / g or more, the initial charge / discharge efficiency is 61% or more, the discharge capacity maintenance rate is 51% or more, the capacity is high, the initial charge / discharge efficiency is excellent, and the cycle performance is also good. Met. On the other hand, in Comparative Examples 1 and 2, the discharge capacity retention rate was as high as 79% or more, but the initial discharge capacity was 586 mAh / g or less, and the initial charge / discharge efficiency was as low as 46% or less.

本発明の蓄電デバイス用負極活物質は、携帯型電子機器、電気自動車、電気工具、バックアップ用非常電源等に用いられる蓄電デバイス用負極活物質として好適である。   The negative electrode active material for power storage devices of the present invention is suitable as a negative electrode active material for power storage devices used for portable electronic devices, electric vehicles, electric tools, backup emergency power supplies, and the like.

Claims (6)

金属Siと酸化物成分を含み、前記酸化物成分が、P、SiおよびBから選ばれる少なくとも一種の元素の酸化物、およびLiの酸化物を含むことを特徴とする蓄電デバイス用負極活物質。   A negative electrode active material for an electricity storage device, comprising metal Si and an oxide component, wherein the oxide component includes an oxide of at least one element selected from P, Si and B, and an oxide of Li. 前記金属Siの表面が前記酸化物成分で被覆された構造を有することを特徴とする請求項1に記載の蓄電デバイス用負極活物質。   The negative electrode active material for an electricity storage device according to claim 1, wherein the surface of the metal Si has a structure coated with the oxide component. 炭素成分を含むことを特徴とする請求項1または2に記載の蓄電デバイス用負極活物質。   The negative electrode active material for an electricity storage device according to claim 1, comprising a carbon component. 質量%で金属Si 10〜80%、酸化物成分 20〜90%、炭素成分 0〜20%を含有することを特徴とする請求項1〜3のいずれかに記載の蓄電デバイス用負極活物質。   The negative electrode active material for an electricity storage device according to any one of claims 1 to 3, comprising 10 to 80% of metal Si, 20 to 90% of an oxide component, and 0 to 20% of a carbon component in mass%. 金属Siと酸化物原料を含む混合原料をメカニカルミリング処理する工程を含み、前記酸化物原料が、P、SiおよびBから選ばれる少なくとも一種の元素の酸化物原料、およびLiの酸化物原料を含むことを特徴とする蓄電デバイス用負極活物質の製造方法。   Including a step of mechanical milling a mixed raw material including metal Si and an oxide raw material, wherein the oxide raw material includes an oxide raw material of at least one element selected from P, Si and B, and an oxide raw material of Li The manufacturing method of the negative electrode active material for electrical storage devices characterized by the above-mentioned. 前記メカニカルミリング処理が、非酸化性雰囲気で行われることを特徴とする請求項5に記載の蓄電デバイス用負極活物質の製造方法。
The method for producing a negative electrode active material for an electricity storage device according to claim 5, wherein the mechanical milling treatment is performed in a non-oxidizing atmosphere.
JP2014015002A 2013-01-30 2014-01-30 Negative electrode active material for power storage device and method for producing the same Active JP6273868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015002A JP6273868B2 (en) 2013-01-30 2014-01-30 Negative electrode active material for power storage device and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013015051 2013-01-30
JP2013015051 2013-01-30
JP2014015002A JP6273868B2 (en) 2013-01-30 2014-01-30 Negative electrode active material for power storage device and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014167909A true JP2014167909A (en) 2014-09-11
JP6273868B2 JP6273868B2 (en) 2018-02-07

Family

ID=51617499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015002A Active JP6273868B2 (en) 2013-01-30 2014-01-30 Negative electrode active material for power storage device and method for producing the same

Country Status (1)

Country Link
JP (1) JP6273868B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393642A (en) * 2014-11-24 2015-03-04 余姚市明环灯具有限公司 Vehicle emergency power supply
JP2017188344A (en) * 2016-04-07 2017-10-12 株式会社大阪チタニウムテクノロジーズ Lithium-containing silicon oxide powder and method for manufacturing the same
JP2018160453A (en) * 2017-03-23 2018-10-11 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140150A (en) * 1997-07-17 1999-02-12 Sanyo Electric Co Ltd Lithium secondary battery
WO2003100888A1 (en) * 2002-05-24 2003-12-04 Nec Corporation Negative electrode for secondary cell and secondary cell using the same
JP2005183264A (en) * 2003-12-22 2005-07-07 Nec Corp Negative electrode material for secondary battery, its manufacturing method, and secondary battery using it
JP2005259697A (en) * 2004-03-08 2005-09-22 Samsung Sdi Co Ltd Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery
JP2007500421A (en) * 2003-07-29 2007-01-11 エルジー・ケム・リミテッド Negative active material for lithium secondary battery and method for producing the same
JP2009277485A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp METHOD OF MANUFACTURING Si/C COMPLEX TYPE NEGATIVE ELECTRODE ACTIVE MATERIAL
JP2010140901A (en) * 2008-12-09 2010-06-24 Samsung Sdi Co Ltd Anode active material for lithium secondary cell, method for manufacturing the same, and lithium secondary cell equipped with anode active material
JP2011119263A (en) * 2009-12-04 2011-06-16 Schott Ag Material for battery electrode, battery electrode containing the same, battery equipped with the electrodes, preparation method of the material for battery electrode
JP2011150817A (en) * 2010-01-19 2011-08-04 Ohara Inc All solid battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140150A (en) * 1997-07-17 1999-02-12 Sanyo Electric Co Ltd Lithium secondary battery
WO2003100888A1 (en) * 2002-05-24 2003-12-04 Nec Corporation Negative electrode for secondary cell and secondary cell using the same
JP2007500421A (en) * 2003-07-29 2007-01-11 エルジー・ケム・リミテッド Negative active material for lithium secondary battery and method for producing the same
JP2005183264A (en) * 2003-12-22 2005-07-07 Nec Corp Negative electrode material for secondary battery, its manufacturing method, and secondary battery using it
JP2005259697A (en) * 2004-03-08 2005-09-22 Samsung Sdi Co Ltd Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery
JP2009277485A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp METHOD OF MANUFACTURING Si/C COMPLEX TYPE NEGATIVE ELECTRODE ACTIVE MATERIAL
JP2010140901A (en) * 2008-12-09 2010-06-24 Samsung Sdi Co Ltd Anode active material for lithium secondary cell, method for manufacturing the same, and lithium secondary cell equipped with anode active material
JP2011119263A (en) * 2009-12-04 2011-06-16 Schott Ag Material for battery electrode, battery electrode containing the same, battery equipped with the electrodes, preparation method of the material for battery electrode
JP2011150817A (en) * 2010-01-19 2011-08-04 Ohara Inc All solid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393642A (en) * 2014-11-24 2015-03-04 余姚市明环灯具有限公司 Vehicle emergency power supply
JP2017188344A (en) * 2016-04-07 2017-10-12 株式会社大阪チタニウムテクノロジーズ Lithium-containing silicon oxide powder and method for manufacturing the same
JP2018160453A (en) * 2017-03-23 2018-10-11 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP6273868B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP5206758B2 (en) Negative electrode material, metal secondary battery, and negative electrode material manufacturing method
US20190181440A1 (en) Prelithiated and methods for prelithiating an energy storage device
JP2020064864A (en) Manufacturing method for all-solid battery and electrode active material
JP5716093B2 (en) Positive electrode active material for lithium ion capacitor and method for producing the same
JP5551880B2 (en) All solid state secondary battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
Zhang et al. A new lithium-ion battery: CuO nanorod array anode versus spinel LiNi0. 5Mn1. 5O4 cathode
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP6300176B2 (en) Negative electrode active material for sodium secondary battery
JP2012182115A (en) Method for manufacturing negative electrode active material for electricity storage device
JP2009514166A (en) Secondary battery electrode active material
WO2011142216A1 (en) Negative-pole active substance for electricity storage device, and negative-pole material for electricity storage device and negative pole for electricity storage device which use the same
JP5601388B2 (en) Negative electrode and lithium ion secondary battery
JP2016004708A (en) Cathode active material for lithium ion secondary battery and manufacturing method for the same, and lithium ion secondary battery using the same
JP6273868B2 (en) Negative electrode active material for power storage device and method for producing the same
JP2014130826A (en) Negative electrode active material for electricity storage device, and manufacturing method for the same
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
KR101497824B1 (en) Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery
JP5521976B2 (en) Manufacturing method of negative electrode material, negative electrode material manufactured by the manufacturing method, and metal secondary battery including the negative electrode material
JP2012114027A (en) Negative electrode material for metal secondary battery, negative electrode for metal secondary battery, and metal secondary battery
JP2012204266A (en) Negative electrode active material for electricity storage device, negative electrode material for electricity storage device containing the same, and negative electrode for electricity storage device
JP2010218855A (en) Negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP6331395B2 (en) Negative electrode active material for power storage device and method for producing the same
JP6175906B2 (en) Negative electrode active material for power storage device and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R150 Certificate of patent or registration of utility model

Ref document number: 6273868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150