WO2023106099A1 - Battery - Google Patents

Battery Download PDF

Info

Publication number
WO2023106099A1
WO2023106099A1 PCT/JP2022/043280 JP2022043280W WO2023106099A1 WO 2023106099 A1 WO2023106099 A1 WO 2023106099A1 JP 2022043280 W JP2022043280 W JP 2022043280W WO 2023106099 A1 WO2023106099 A1 WO 2023106099A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
insulator
exterior body
length
Prior art date
Application number
PCT/JP2022/043280
Other languages
French (fr)
Japanese (ja)
Inventor
真也 渡辺
恒司 西下
幸子 平林
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2023106099A1 publication Critical patent/WO2023106099A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/109Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/153Lids or covers characterised by their shape for button or coin cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to batteries. This application claims priority based on Japanese Patent Application No. 2021-197911 filed in Japan on December 6, 2021, the contents of which are incorporated herein.
  • Batteries are also widely used as power sources for mobile devices such as mobile phones and laptop computers, and hybrid cars.
  • Patent Document 1 Coin-type or button-type batteries (for example, Patent Document 1) are used in various devices such as watches and earphones.
  • Patent Literature 1 describes a coin-type battery in which a roll core is arranged at the center of a wound body.
  • the positive terminal and negative terminal are welded to the outer can to obtain electrical connection with the outside. If there is a gap between the positive electrode terminal or the negative electrode terminal and the outer can, welding defects may occur during welding, resulting in insufficient connection therebetween.
  • the present disclosure has been made in view of the above problems, and aims to provide a battery that can reduce poor contact.
  • a battery includes a power generation element including a positive electrode to which a positive electrode terminal is connected, a negative electrode to which a negative electrode terminal is connected, and a separator sandwiched between the positive electrode and the negative electrode;
  • An insulator that penetrates the power generation element in the first direction, and a first exterior body and a second exterior body that sandwich the power generation element in the first direction are provided.
  • the length of the insulator in the first direction is greater than or equal to the length of the negative electrode in the first direction. The insulator presses the positive electrode terminal against the first exterior body and presses the negative electrode terminal against the second exterior body.
  • the insulator may be a cylinder having an upper surface and a lower surface at both ends in the first direction.
  • the insulator may have therein a space extending in the first direction.
  • the length of the insulator in the first direction may be greater than the length of the negative electrode in the first direction.
  • the wound body may have the insulator at the center of the axis.
  • the insulator may contain a resin having a tensile elastic modulus of 3000 MPa or more.
  • a battery according to a second aspect includes a power generation element including a positive electrode to which a positive electrode terminal is connected, a negative electrode to which a negative electrode terminal is connected, and a separator sandwiched between the positive electrode and the negative electrode;
  • An insulator that penetrates the power generation element in the first direction, and a first exterior body and a second exterior body that sandwich the power generation element in the first direction are provided.
  • the length of the insulator in the first direction is equal to or greater than the length of the power generation element in the first direction. The insulator presses the positive electrode terminal against the first exterior body and presses the negative electrode terminal against the second exterior body.
  • the battery according to the above aspect can reduce poor contact.
  • FIG. 1 is a cross-sectional view of a battery according to a first embodiment
  • FIG. 3 is an exploded view of the power generation element of the battery according to the first embodiment
  • FIG. FIG. 5 is a cross-sectional view of a battery according to a first modified example
  • FIG. 4 is a cross-sectional view of a battery according to a second embodiment
  • FIG. 11 is a cross-sectional view of a battery according to a second modified example
  • the direction in which the insulator 20 or the insulator 21 penetrates any one of the power generation element 10, the power generation element 11, and the power generation element 12 is defined as the z direction.
  • An arbitrary direction of a plane orthogonal to the z-direction is defined as the x-direction, and a direction orthogonal to the x-direction and the z-direction is defined as the y-direction.
  • the z-direction is an example of a first direction.
  • the +z direction is sometimes expressed as “up” and the ⁇ z direction as “down”. Up and down do not necessarily match the direction in which gravity is applied.
  • FIG. 1 is a cross-sectional view of the battery according to the first embodiment.
  • FIG. 1 is a cross section cut along a line segment passing through the center of the top and bottom surfaces of the coin cell.
  • a battery 100 includes a power generating element 10 , an insulator 20 and an exterior body 30 .
  • the shape of the battery 100 is, for example, coin-shaped or button-shaped.
  • the type of the battery 100 does not matter, but the battery 100 is, for example, a lithium ion secondary battery, a magnesium ion secondary battery, a nickel hydrogen battery, a nickel cadmium battery, or an all-solid battery.
  • a power generation element 10 includes a positive electrode 1 , a negative electrode 2 and a separator 3 .
  • a positive electrode terminal 4 is connected to the positive electrode 1 and a negative electrode terminal 5 is connected to the negative electrode 2 .
  • At least a part of the positive electrode 1, the negative electrode 2 and the separator 3 may be covered with an insulating tape 6 or the like.
  • the insulating tape 6 is, for example, a polyimide tape.
  • FIG. 2 is an exploded view of the power generation element 10.
  • the power generation element 10 is, for example, a wound body.
  • the wound body is obtained by winding a positive electrode 1, a separator 3, a negative electrode 2, and a separator 3 as one unit.
  • the power generating element 10 is obtained by stacking the positive electrode 1, the separator 3, the negative electrode 2, and the separator 3 in this order and winding them around the left end.
  • the length L1 of the positive electrode 1, the length L2 of the negative electrode 2, and the length L3 of the separator 3 may be different.
  • the lengths L1, L2, and L3 are the widths of the deployable body and the height of the power generating element 10 in the z direction.
  • the length L3 of the separator 3 is often longer than the length L1 of the positive electrode 1 and the length L2 of the negative electrode 2 to prevent short circuits.
  • the length L2 of the negative electrode 2 is often longer than the length L1 of the positive electrode 1 .
  • the height of the power generation element 10 in the z direction substantially matches the length L2 of the negative electrode 2 .
  • the separator 3 often wrinkles or shrinks, and even if the length L3 of the separator 3 is greater than the length L2 of the negative electrode 2, it is difficult to define the length L3 of the separator 3 in the wound state. .
  • the positive electrode 1 has, for example, a positive electrode current collector 1A and a positive electrode active material layer 1B.
  • the positive electrode active material layer 1B is present on at least one surface of the positive electrode current collector 1A.
  • the positive electrode active material layer 1B is formed, for example, on both sides of the positive electrode current collector 1A.
  • the positive electrode current collector 1A is, for example, a conductive plate.
  • the positive electrode current collector 1A is, for example, a metal thin plate of aluminum, copper, nickel, titanium, stainless steel, or the like. Aluminum, which is light in weight, is suitably used for the positive electrode current collector 1A.
  • the average thickness of the positive electrode current collector 1A is, for example, 10 ⁇ m or more and 30 ⁇ m or less.
  • a positive electrode terminal 4 is connected to the positive electrode current collector 1A.
  • the positive electrode terminal 4 is connected to one end of the positive electrode current collector 1A, for example.
  • the positive electrode terminal 4 contains conductive materials, such as aluminum, nickel, and copper, for example.
  • the positive electrode terminal 4 is connected to the positive electrode current collector 1A by welding, screwing, or the like, for example. In order to prevent a short circuit, the surface of the positive electrode terminal 4 may be protected with an insulating tape.
  • the positive electrode terminal 4 extends, for example, on the first surface of the power generation element 10 in the z direction. A portion of the positive electrode terminal 4 is sandwiched between the insulator 20 and the first exterior body 31 .
  • the positive electrode active material layer 1B contains, for example, a positive electrode active material.
  • the positive electrode active material layer 1B may contain a conductive aid and a binder as needed.
  • the positive electrode active material includes an electrode active material capable of reversibly occluding and releasing cations, desorbing and inserting cations (intercalation), or doping and dedoping cations and counteranions.
  • Cations are, for example, lithium ions and magnesium ions.
  • the positive electrode active material is, for example, a composite metal oxide.
  • the positive electrode active material may be a cation-free material.
  • Cation-free materials are, for example, FeF 3 , conjugated polymers containing organic conductive materials, Chevrell phase compounds, transition metal chalcogenides, vanadium oxides, niobium oxides, and the like.
  • the cation-free material may be used alone or in combination.
  • discharge is first performed. Cations are inserted into the positive electrode active material by discharging.
  • cations may be chemically or electrochemically pre-doped into a cation-free material for the positive electrode active material.
  • the conductive aid enhances the electronic conductivity between the positive electrode active materials.
  • conductive aids include carbon powder, carbon nanotubes, carbon materials, metal fine powders, mixtures of carbon materials and metal fine powders, and conductive oxides.
  • carbon powder include carbon black, acetylene black, and ketjen black.
  • Metal fine powder is, for example, powder of copper, nickel, stainless steel, iron, or the like.
  • the binder in the positive electrode active material layer 1B binds the positive electrode active materials together.
  • a known binder can be used.
  • the binder is preferably insoluble in the electrolytic solution, has oxidation resistance, and has adhesiveness.
  • the binder is, for example, fluororesin.
  • Binders include, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyamideimide (PAI), polybenzimidazole (PBI), polyethersulfone (PES), Polyacrylic acid and its copolymers, metal ion crosslinked polyacrylic acid and its copolymers, maleic anhydride-grafted polypropylene (PP) or polyethylene (PE), and mixtures thereof. PVDF is particularly preferable as the binder used for the positive electrode active material layer 1B.
  • the negative electrode 2 has, for example, a negative electrode current collector 2A and a negative electrode active material layer 2B.
  • the negative electrode active material layer 2B is present on at least one surface of the negative electrode current collector 2A.
  • the negative electrode active material layer 2B is formed, for example, on both sides of the negative electrode current collector 2A.
  • the negative electrode current collector 2A is, for example, a conductive plate.
  • the negative electrode current collector 2A can be the same as the positive electrode current collector 1A.
  • a negative electrode terminal 5 is connected to the negative electrode current collector 2A.
  • the negative electrode terminal 5 is connected to one end of the negative electrode current collector 2A, for example.
  • the negative electrode terminal 5 contains, for example, a conductive material such as aluminum, nickel, or copper.
  • the negative electrode terminal 5 is connected to the negative electrode current collector 2A by welding, screwing, or the like, for example.
  • the surface of the negative terminal 5 may be protected with an insulating tape.
  • the negative terminal 5 extends, for example, on the second surface of the power generating element 10 in the z direction. The second surface is the surface opposite to the surface where the positive electrode terminal 4 is exposed. A portion of the negative electrode terminal 5 is sandwiched between the insulator 20 and the second exterior body 32 .
  • the negative electrode active material layer 2B contains, for example, a negative electrode active material.
  • the negative electrode active material layer 2B may contain a conductive aid and a binder as needed.
  • the negative electrode active material may be any compound that can occlude and release ions, and known negative electrode active materials can be used.
  • the negative electrode active material is, for example, metallic lithium, metallic magnesium, lithium alloys, magnesium alloys, carbon materials, and substances that can be alloyed with cations.
  • Carbon materials include, for example, graphite that can occlude and release ions (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, easily graphitizable carbon, low-temperature fired carbon, and the like.
  • Materials that can be alloyed with cations include, for example, silicon, tin, zinc, lead, and antimony. Substances that can be alloyed with cations may be, for example, these elemental metals, or alloys or oxides containing these elements.
  • the same conductive aid and binder as those of the positive electrode 1 can be used.
  • the binder in the negative electrode 2 may be, for example, cellulose, styrene/butadiene rubber, ethylene/propylene rubber, polyimide resin, polyamideimide resin, acrylic resin, etc., in addition to those listed for the positive electrode 1 .
  • the cellulose may be, for example, carboxymethylcellulose (CMC).
  • a separator 3 is sandwiched between the positive electrode 1 and the negative electrode 2 .
  • the separator 3 separates the positive electrode 1 and the negative electrode 2 and prevents a short circuit between the positive electrode 1 and the negative electrode 2 .
  • the separator 3 extends in-plane along the positive electrode 1 and the negative electrode 2 . Cations can pass through the separator 3 .
  • the separator 3 is, for example, a porous film having an electrically insulating porous structure.
  • the separator 3 is, for example, a monolayer or laminate of polyolefin films.
  • the separator 3 may be a stretched film of a mixture of polyethylene, polypropylene, or the like.
  • the separator 3 may be a fibrous nonwoven fabric made of at least one constituent material selected from the group consisting of cellulose, polyester, polyacrylonitrile, polyamide, polyethylene and polypropylene.
  • Separator 3 may be, for example, a solid electrolyte.
  • Solid electrolytes are polymer solid electrolytes, oxide-based solid electrolytes, and sulfide-based solid electrolytes, for example.
  • the separator 3 may be an inorganic coated separator.
  • the inorganic coated separator is obtained by coating the surface of the above film with a mixture of a resin such as PVDF or CMC and an inorganic material such as alumina or silica.
  • the inorganic coated separator has excellent heat resistance and suppresses deposition of transition metals eluted from the positive electrode onto the surface of the negative electrode.
  • the power generating element 10 is impregnated with the electrolytic solution.
  • the electrolyte is impregnated in the cathode active material layer 1B and the anode active material layer 2B.
  • the electrolyte varies depending on the type of battery, a known electrolyte can be used. If the battery 100 is an all-solid battery, no electrolytic solution is required.
  • the electrolyte contains a non-aqueous solvent and an electrolyte salt.
  • the electrolyte salt is, for example, a lithium salt.
  • the electrolyte salt is, for example, LiPF 6 , lithium borofluoride (LiBF 4 ), LiClO 4 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC(CF 3 SO 2 ) 3 , LiN(SO 2 F) 2 , LiN ( CF3SO2 ) 2 , LiN( CF3CF2SO2 ) 2 , LiN( CF3SO2 ) ( C4F9SO2 ) , LiN ( CF3CF2CO ) 2 , LiBOB , LiN(FSO 2 ) 2nd prize.
  • the non-aqueous solvent contains, for example, a cyclic carbonate and a chain carbonate.
  • Cyclic carbonates solvate electrolytes. Cyclic carbonates are, for example, ethylene carbonate, propylene carbonate and butylene carbonate.
  • the cyclic carbonate preferably contains at least propylene carbonate.
  • Chain carbonates reduce the viscosity of cyclic carbonates. Chain carbonates are, for example, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate.
  • Non-aqueous solvents may also include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like.
  • the insulator 20 penetrates the power generating element 10 in the z direction.
  • the insulator 20 is a columnar body.
  • the insulator 20 is, for example, a cylinder having an upper surface and a lower surface at both ends in the z direction.
  • the insulator 20 is at the center of the axis of the power generating element 10 to be wound.
  • the length L20 of the insulator 20 in the z direction is, for example, equal to or greater than the length L2 of the negative electrode 2 in the z direction.
  • the length L20 of the insulator 20 in the z direction is preferably longer than the length L2 of the negative electrode 2 in the z direction, more preferably 1.04 times or more the length L2 of the negative electrode 2 in the z direction.
  • the length L20 of the insulator 20 in the z direction is preferably 1.08 times or less the length L2 of the negative electrode 2 in the z direction.
  • the length L20 of the insulator 20 in the z direction is, for example, preferably longer than the length L2 of the negative electrode 2 in the z direction by 2 mm or more, and preferably 4 mm or less than the length L2 of the negative electrode 2 in the z direction.
  • the insulator 20 protrudes from each of the upper and lower surfaces of the power generation element 10 in the z direction.
  • the upper end of the insulator 20 protrudes from the upper surface of the power generation element 10 .
  • a lower end of the insulator 20 protrudes from the lower surface of the power generation element 10 .
  • the upper end of the insulator 20 presses the positive electrode terminal 4 against the first exterior body 31 .
  • the lower end of the insulator 20 presses the negative terminal 5 against the second exterior body 32 .
  • the insulator 20 is made of resin, for example.
  • the insulator 20 is, for example, polyethylene terephthalate (PET), polyacetal (POM), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE). is.
  • the tensile modulus of elasticity of the insulator 20 is preferably, for example, 3000 MPa or more.
  • the insulator 20 is preferably made of polyethylene terephthalate (PET), polyacetal (POM), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), for example.
  • PET polyethylene terephthalate
  • POM polyacetal
  • PPS polyphenylene sulfide
  • PEEK polyetheretherketone
  • the exterior body 30 accommodates the power generating element 10 inside.
  • the exterior body 30 prevents leakage of the electrolytic solution to the outside and entry of moisture into the inside of the battery 100 from the outside.
  • the exterior body 30 has a first exterior body 31 , a second exterior body 32 and a gasket 33 .
  • the first exterior body 31 and the second exterior body 32 sandwich the power generating element 10 in the z direction.
  • the gasket 33 seals between the first exterior body 31 and the second exterior body 32 .
  • the first armor 31 and the second armor 32 are conductors.
  • the first exterior body 31 and the second exterior body 32 are made of metal, for example.
  • the first exterior body 31 is connected to the positive electrode terminal 4 .
  • the second exterior body 32 is connected to the negative terminal 5 .
  • the first exterior body 31 and the positive terminal 4 and the second exterior body 32 and the negative terminal 5 are welded together, for example.
  • the battery 100 includes a manufacturing process of the power generating element 10 and a housing process of the power generating element 10 .
  • the manufacturing process of the power generation element 10 includes, for example, a preparation process and a winding process.
  • a preparation process and a winding process In the preparation step, each of the positive electrode 1, the negative electrode 2, and the separator 3 shown in FIG. 2 is prepared.
  • the positive electrode 1 is manufactured by, for example, sequentially performing a slurry preparation process, an electrode application process, a drying process, a rolling process, and a terminal connection process.
  • the slurry preparation process is a process of mixing a positive electrode active material, a binder, a conductive aid and a solvent to prepare a slurry.
  • Solvents are, for example, water, N-methyl-2-pyrrolidone, and the like.
  • the composition ratio of the positive electrode active material, the conductive aid, and the binder is preferably 70 wt % to 100 wt %:0 wt % to 10 wt %:0 wt % to 20 wt % in mass ratio. These mass ratios are adjusted so that the total is 100 wt %.
  • the electrode application step is a step of applying slurry to the surface of the positive electrode current collector 1A.
  • the slurry application method is not particularly limited.
  • a slit die coating method and a doctor blade method can be used as a slurry coating method.
  • the drying process is the process of removing the solvent from the slurry.
  • the positive electrode current collector 1A coated with the slurry is dried in an atmosphere of 80.degree. C. to 150.degree.
  • the cathode active material layer 1B is formed on the cathode current collector 1A.
  • the rolling process is performed as needed.
  • the rolling step is a step of applying pressure to the positive electrode active material layer 1B to adjust the density of the positive electrode active material layer 1B.
  • the rolling process is performed by, for example, a roll press device.
  • the terminal connection step is a step of connecting the positive electrode terminal 4 to the positive electrode current collector 1A.
  • the positive electrode terminal 4 is connected to the uncoated portion or the removed portion of the positive electrode active material layer 1B.
  • the positive terminal 4 is connected to the positive current collector 1A by, for example, welding or screwing.
  • the negative electrode 2 can be produced in the same procedure as the positive electrode 1.
  • the negative electrode 2 is manufactured by forming the negative electrode active material layer 2B on the surface of the negative electrode current collector 2A and connecting the negative electrode terminal 5 to the negative electrode current collector 2A.
  • a commercially available separator 3 can be used.
  • An insulator 20 is adhered to one end of the separator 3 located on the innermost circumference.
  • the separator 3, the positive electrode 1, the separator 3, and the negative electrode 2 are laminated in order, and these are wound using the insulator 20 as the winding core.
  • the power generation element 10 is immersed in the electrolytic solution.
  • An insulating tape 6 may be attached to the upper and lower surfaces of the power generation element 10 .
  • the housing process of the power generating element 10 includes a welding process and a sealing process.
  • the power generation element 10 and the gasket 33 are inserted into the first exterior body 31 .
  • the first exterior body 31 and the positive electrode terminal 4 are welded together. Welding is performed, for example, by resistance welding or laser welding.
  • the second armor 32 is inserted into the first armor 31 .
  • the insulator 20 protruding from the power generation element 10 presses the positive terminal 4 against the first exterior body 31 and presses the negative terminal 5 against the second exterior body 32 .
  • the second exterior body 32 and the negative electrode terminal 5 are welded together.
  • the side surface of the first exterior body 31 is tightened, and the gasket 33 seals the first exterior body 31 and the second exterior body 32 .
  • the insulator 20 presses the positive electrode terminal 4 against the first package 31 and presses the negative electrode terminal 5 against the second package 32 . Therefore, it is possible to suppress the generation of a space between the positive electrode terminal 4 and the first exterior body 31 and between the negative electrode terminal 5 and the second exterior body 32 during welding. Spaces between them cause poor welding. Poor welding causes an increase in the internal resistance of battery 100 .
  • FIG. 3 is a cross-sectional view of a battery 101 according to a first modified example.
  • Battery 101 differs from insulator 20 in insulator 21 .
  • the insulator 21 has a space 22 inside. Space 22 extends, for example, in the z-direction.
  • the space 22 is a through hole penetrating the insulator 21 in the z direction.
  • Space 22 may be a groove extending in the z-direction along the side surface of insulator 21 .
  • the insulator 21 is made of the same material as the insulator 20 .
  • the length L21 of the insulator 21 in the z direction is equal to or greater than the length L2 of the negative electrode 2, and preferably longer than the length L2 of the negative electrode 2.
  • the battery 101 according to the first modification exhibits the same effects as the battery 100.
  • the production of the wound body is facilitated.
  • FIG. 4 is a cross-sectional view of the battery 102 according to the second embodiment.
  • the battery 102 differs from the battery 100 in that the power generation element 11 is a laminate.
  • the same components as in the battery 100 are denoted by the same reference numerals, and the description thereof is omitted.
  • the positive electrode 1 and the negative electrode 2 are alternately laminated with the separator 3 interposed therebetween.
  • the power generation element 11 has a positive electrode 1, a negative electrode 2, and a separator 3 stacked in the z direction.
  • the positive terminal 4 is connected to each of the positive electrodes 1, for example.
  • the negative terminal 5 is connected to each of the negative electrodes 2, for example.
  • the insulator 20 penetrates the power generation element 11 in the z direction.
  • the length L20 of the insulator 20 in the z direction is, for example, equal to or greater than the length L11 of the power generation element 11 in the z direction.
  • the length of the power generation element 11 in the z direction is the thickness of the laminate in the lamination direction.
  • the length L20 of the insulator 20 in the z direction is preferably longer than the length L11 of the power generating element 11 in the z direction, more preferably 1.04 times or more the length L11 of the power generating element 11 in the z direction.
  • the z-direction length L20 of the insulator 20 is preferably 1.08 times or less the z-direction length L11 of the power generation element 11 .
  • the z-direction length L20 of the insulator 20 is, for example, preferably longer than the z-direction length L11 of the power generation element 11 by 2 mm or more, and preferably 4 mm or less of the z-direction length L11 of the power generation element 11. .
  • the insulator 20 protrudes from each of the upper and lower surfaces of the power generation element 11 in the z direction.
  • the upper end of the insulator 20 protrudes from the upper surface of the power generation element 11 .
  • a lower end of the insulator 20 protrudes from the lower surface of the power generation element 11 .
  • the insulator 20 presses the positive electrode terminal 4 against the first package 31 and presses the negative electrode terminal 5 against the second package 32 . Therefore, the battery 102 according to the second embodiment has the same effects as the battery 100 according to the first embodiment.
  • the insulator 20 may be the insulator 21 having the space 22 as in FIG.
  • FIG. 5 is a cross-sectional view of a battery 103 according to a second modified example.
  • the battery 103 differs from the battery 102 in that the power generating element 12 is a laminate and the stacking direction is the x direction.
  • the same components as in the battery 102 are denoted by the same reference numerals, and the description thereof is omitted.
  • the positive electrode 1 and the negative electrode 2 are alternately laminated with the separator 3 interposed therebetween.
  • the power generation element 12 has a positive electrode 1, a negative electrode 2, and a separator 3 stacked in the x direction.
  • the positive terminal 4 is connected to each of the positive electrodes 1, for example.
  • the negative terminal 5 is connected to each of the negative electrodes 2, for example.
  • the insulator 20 penetrates the power generation element 12 in the z direction. In the second modification, the length L20 of the insulator 20 in the z direction is, for example, equal to or greater than the length L2 of the negative electrode 2 in the z direction.
  • the insulator 20 protrudes from each of the upper and lower surfaces of the power generation element 12 in the z direction.
  • the upper end of the insulator 20 protrudes from the upper surface of the power generation element 12 .
  • a lower end of the insulator 20 protrudes from the lower surface of the power generation element 12 .
  • the insulator 20 presses the positive electrode terminal 4 against the first package 31 and presses the negative electrode terminal 5 against the second package 32 . Therefore, the battery 103 according to the second modification has the same effects as the battery 100 according to the first embodiment.
  • Example 1 A positive electrode slurry was applied to one surface of an aluminum foil having a thickness of 15 ⁇ m.
  • a positive electrode slurry was prepared by mixing a positive electrode active material, a conductive aid, a binder, and a solvent.
  • a ternary compound of nickel, manganese and cobalt (NCM811) was used as the positive electrode active material. Carbon black was used as the conductive aid. Polyvinylidene fluoride (PVDF) was used as the binder. N-methyl-2-pyrrolidone was used as the solvent.
  • a positive electrode slurry was prepared by mixing 90 parts by mass of a positive electrode active material, 5 parts by mass of a conductive aid, 5 parts by mass of a binder, and 70 parts by mass of a solvent. The amount of the positive electrode active material supported in the dried positive electrode active material layer was 15 mg/cm 2 .
  • a positive electrode active material layer was formed by removing the solvent from the positive electrode slurry in a drying oven. The positive electrode active material layer was pressed with a roll press. Then, a positive electrode terminal made of aluminum was attached to the positive electrode current collector.
  • a negative electrode slurry was applied to one surface of a copper foil having a thickness of 10 ⁇ m.
  • a negative electrode slurry was prepared by mixing a negative electrode active material, a conductive aid, a binder, and a solvent.
  • Graphite was used as the negative electrode active material. Carbon black was used as the conductive aid. Two types of binders, styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC), were used. N-methyl-2-pyrrolidone was used as the solvent. 94 parts by mass of a negative electrode active material, 2 parts by mass of a conductive aid, 2.5 parts by mass of SBR, and 1.5 parts by mass of CMC are mixed with N-methyl-2-pyrrolidone to form a negative electrode. A slurry was prepared. The amount of the negative electrode active material supported on the dried negative electrode active material layer was 10.5 mg/cm 2 . A negative electrode active material layer was produced by removing the solvent from the negative electrode slurry in a drying oven. The negative electrode active material layer was formed by pressing with a roll press. A negative electrode terminal made of nickel was attached to the negative electrode current collector.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • the separator, the positive electrode, the separator, and the negative electrode were laminated in this order, and wound using the pin as the winding shaft.
  • the length of the pin was 52 mm.
  • the width (length) of the negative electrode was 49 mm.
  • the pin length was 1.06 times the width of the negative electrode.
  • the wound body was housed in the first exterior body, and the positive terminal exposed from the first surface of the wound body was welded to the first exterior body.
  • the second armor was inserted into the first armor, and the negative electrode terminal exposed from the second surface of the wound body was welded to the second armor.
  • Welding between the positive terminal and the first armor was performed by resistance welding, and welding between the negative terminal and the second armor was performed by laser welding.
  • the completed battery is charged under the conditions of 25° C., CC-CV (Constant Current-Constant Voltage) charging, upper limit voltage of 4.2 V, 20 mA, and charging time of 3.5 hours.
  • CC-CV Constant Current-Constant Voltage
  • a battery with a voltage of 4.1 V or more after 28 hours from the start of charging was regarded as a good product, and a battery with a voltage of less than 4.1 V was regarded as a defective product.
  • the internal resistance of the battery was also measured. The internal resistance was obtained as an average value of the produced samples.
  • the internal resistance was obtained by using BT3563 (manufactured by Hioki Electric Co., Ltd.) and bringing the measuring terminal into contact with the tab (terminal) of the battery.
  • Example 2 Comparative Example 1, Comparative Example 2
  • Example 2 Comparative Example 1
  • Comparative Example 1 differ from Example 1 in that the pin lengths are changed.
  • Other conditions were the same as in Example 1, and the defect rate and internal resistance of tab welding were measured.
  • Example 2 the length of the pin was 51 mm.
  • the pin length was 1.04 times the width of the negative electrode.
  • Comparative Example 1 has a pin length of 48 mm. The pin length was 0.98 times the width of the negative electrode.
  • Comparative Example 2 has a pin length of 45 mm.
  • the pin length was 0.92 times the width of the negative electrode.
  • Example 1 The evaluation results of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 are summarized in Table 1.
  • SYMBOLS 1... Positive electrode, 1A... Positive electrode collector, 1B... Positive electrode active material layer, 2... Negative electrode, 2A... Negative electrode collector, 2B... Negative electrode active material layer, 3... Separator, 4... Positive electrode terminal, 5... Negative electrode terminal, DESCRIPTION OF SYMBOLS 10, 11, 12... Power generation element, 20, 21... Insulator, 22... Space, 30... Exterior body, 31... First exterior body, 32... Second exterior body, 33... Gasket, 100, 101, 102, 103 ...battery

Abstract

This battery comprises: a power generation element that comprises a positive electrode to which a positive electrode terminal is connected, a negative electrode to which a negative electrode terminal is connected, and a separator which is interposed between the positive electrode and the negative electrode; an insulator that penetrates through the power generation element in a first direction; and a first exterior body and a second exterior body that interpose the power generation element therebetween in the first direction. The length of the insulator in the first direction is at least the length of the negative electrode in the first direction, and the insulator pushes the positive electrode terminal against the first exterior body and pushes the negative electrode terminal against the second exterior body.

Description

電池battery
 本発明は、電池に関する。本願は、2021年12月6日に、日本に出願された特願2021-197911に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to batteries. This application claims priority based on Japanese Patent Application No. 2021-197911 filed in Japan on December 6, 2021, the contents of which are incorporated herein.
 電池は、携帯電話、ノートパソコン等のモバイル機器やハイブリットカー等の動力源としても広く用いられている。 Batteries are also widely used as power sources for mobile devices such as mobile phones and laptop computers, and hybrid cars.
 コイン型又はボタン型の電池(例えば、特許文献1)は、時計、イヤホン等の様々なデバイスに用いられている。特許文献1には、ロール芯が巻回体の中心に配置されたコイン型電池が記載されている。 Coin-type or button-type batteries (for example, Patent Document 1) are used in various devices such as watches and earphones. Patent Literature 1 describes a coin-type battery in which a roll core is arranged at the center of a wound body.
特許第5767115号公報Japanese Patent No. 5767115
 コイン型又はボタン型の電池は、正極端子及び負極端子を外装缶と溶接し、外部との電気的な接続を得ている。正極端子又は負極端子と外装缶との間に隙間があると、溶接時に溶接不良が生じ、これらの間の接続が不十分な場合がある。 For coin-type or button-type batteries, the positive terminal and negative terminal are welded to the outer can to obtain electrical connection with the outside. If there is a gap between the positive electrode terminal or the negative electrode terminal and the outer can, welding defects may occur during welding, resulting in insufficient connection therebetween.
 本開示は上記問題に鑑みてなされたものであり、接触不良を低減できる電池を提供することを目的とする。 The present disclosure has been made in view of the above problems, and aims to provide a battery that can reduce poor contact.
 上記課題を解決するため、以下の手段を提供する。 In order to solve the above issues, we provide the following means.
(1)第1の態様にかかる電池は、正極端子が接続された正極と、負極端子が接続された負極と、前記正極と前記負極とに挟まれたセパレータと、を備える発電素子と、前記発電素子を第1方向に貫通する絶縁体と、前記発電素子を前記第1方向に挟む第1外装体と第2外装体と、を備える。前記絶縁体の前記第1方向の長さは、前記負極の前記第1方向の長さ以上である。前記絶縁体は、前記正極端子を前記第1外装体に押し当て、前記負極端子を前記第2外装体に押し当てる。 (1) A battery according to a first aspect includes a power generation element including a positive electrode to which a positive electrode terminal is connected, a negative electrode to which a negative electrode terminal is connected, and a separator sandwiched between the positive electrode and the negative electrode; An insulator that penetrates the power generation element in the first direction, and a first exterior body and a second exterior body that sandwich the power generation element in the first direction are provided. The length of the insulator in the first direction is greater than or equal to the length of the negative electrode in the first direction. The insulator presses the positive electrode terminal against the first exterior body and presses the negative electrode terminal against the second exterior body.
(2)上記態様にかかる電池において、前記絶縁体は、前記第1方向の両端に上面と下面とを有する円柱でもよい。 (2) In the battery according to the aspect described above, the insulator may be a cylinder having an upper surface and a lower surface at both ends in the first direction.
(3)上記態様にかかる電池において、前記絶縁体は、前記第1方向に延びる空間を内部に有してもよい。 (3) In the battery according to the aspect described above, the insulator may have therein a space extending in the first direction.
(4)上記態様にかかる電池において、前記絶縁体の前記第1方向の長さは、前記負極の前記第1方向の長さより大きくてもよい。 (4) In the battery according to the aspect described above, the length of the insulator in the first direction may be greater than the length of the negative electrode in the first direction.
(5)上記態様にかかる電池において、前記絶縁体が軸中心にある巻回体でもよい。 (5) In the battery according to the above aspect, the wound body may have the insulator at the center of the axis.
(6)上記態様にかかる電池において、前記絶縁体は、引張弾性係数が3000MPa以上の樹脂を含んでもよい。 (6) In the battery according to the aspect described above, the insulator may contain a resin having a tensile elastic modulus of 3000 MPa or more.
(7)第2の態様にかかる電池は、正極端子が接続された正極と、負極端子が接続された負極と、前記正極と前記負極とに挟まれたセパレータと、を備える発電素子と、前記発電素子を第1方向に貫通する絶縁体と、前記発電素子を前記第1方向に挟む第1外装体と第2外装体と、を備える。前記絶縁体の前記第1方向の長さは、前記発電素子の前記第1方向の長さ以上である。前記絶縁体は、前記正極端子を前記第1外装体に押し当て、前記負極端子を前記第2外装体に押し当てる。 (7) A battery according to a second aspect includes a power generation element including a positive electrode to which a positive electrode terminal is connected, a negative electrode to which a negative electrode terminal is connected, and a separator sandwiched between the positive electrode and the negative electrode; An insulator that penetrates the power generation element in the first direction, and a first exterior body and a second exterior body that sandwich the power generation element in the first direction are provided. The length of the insulator in the first direction is equal to or greater than the length of the power generation element in the first direction. The insulator presses the positive electrode terminal against the first exterior body and presses the negative electrode terminal against the second exterior body.
 上記態様に係る電池は、接触不良を低減できる。 The battery according to the above aspect can reduce poor contact.
第1実施形態に係る電池の断面図である。1 is a cross-sectional view of a battery according to a first embodiment; FIG. 第1実施形態に係る電池の発電素子の展開図である。3 is an exploded view of the power generation element of the battery according to the first embodiment; FIG. 第1変形例に係る電池の断面図である。FIG. 5 is a cross-sectional view of a battery according to a first modified example; 第2実施形態に係る電池の断面図である。FIG. 4 is a cross-sectional view of a battery according to a second embodiment; 第2変形例に係る電池の断面図である。FIG. 11 is a cross-sectional view of a battery according to a second modified example;
 以下、実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. In the drawings used in the following description, characteristic portions may be enlarged for convenience in order to make the characteristics easier to understand, and the dimensional ratios and the like of each component may differ from the actual. The materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be implemented with appropriate modifications without changing the gist of the invention.
 まず方向について定義する。絶縁体20又は絶縁体21が発電素子10、発電素子11、発電素子12のいずれかを貫通する方向をz方向とする。z方向と直交する面の任意の一方向をx方向とし、x方向及びz方向と直交する方向をy方向とする。z方向は、第1方向の一例である。+z方向を「上」、-z方向を「下」と表現する場合がある。上下は、必ずしも重力が加わる方向とは一致しない。 First, define the direction. The direction in which the insulator 20 or the insulator 21 penetrates any one of the power generation element 10, the power generation element 11, and the power generation element 12 is defined as the z direction. An arbitrary direction of a plane orthogonal to the z-direction is defined as the x-direction, and a direction orthogonal to the x-direction and the z-direction is defined as the y-direction. The z-direction is an example of a first direction. The +z direction is sometimes expressed as “up” and the −z direction as “down”. Up and down do not necessarily match the direction in which gravity is applied.
「第1実施形態」
 図1は、第1実施形態にかかる電池の断面図である。図1は、コイン型電池の上面及び下面の中心を通る線分に沿って切断した切断面である。電池100は、発電素子10と絶縁体20と外装体30とを備える。電池100の形状は、例えば、コイン型、ボタン型である。電池100の種類は問わないが、例えば、電池100は、リチウムイオン二次電池、マグネシウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池、全固体電池のいずれかである。
"First Embodiment"
FIG. 1 is a cross-sectional view of the battery according to the first embodiment. FIG. 1 is a cross section cut along a line segment passing through the center of the top and bottom surfaces of the coin cell. A battery 100 includes a power generating element 10 , an insulator 20 and an exterior body 30 . The shape of the battery 100 is, for example, coin-shaped or button-shaped. The type of the battery 100 does not matter, but the battery 100 is, for example, a lithium ion secondary battery, a magnesium ion secondary battery, a nickel hydrogen battery, a nickel cadmium battery, or an all-solid battery.
(発電素子)
 発電素子10は、正極1と負極2とセパレータ3とを備える。正極1には正極端子4が接続されており、負極2には負極端子5が接続されている。正極1、負極2及びセパレータ3は、絶縁テープ6等で少なくとも一部が被覆されていてもよい。絶縁テープ6は、例えば、ポリイミドテープである。
(power generation element)
A power generation element 10 includes a positive electrode 1 , a negative electrode 2 and a separator 3 . A positive electrode terminal 4 is connected to the positive electrode 1 and a negative electrode terminal 5 is connected to the negative electrode 2 . At least a part of the positive electrode 1, the negative electrode 2 and the separator 3 may be covered with an insulating tape 6 or the like. The insulating tape 6 is, for example, a polyimide tape.
 図2は、発電素子10の展開図である。発電素子10は、例えば、巻回体である。巻回体は、正極1、セパレータ3、負極2、セパレータ3を1つのユニットとして、このユニットが巻回されたものである。例えば、図2では、正極1、セパレータ3、負極2、セパレータ3をこの順に積層し、左端を巻き中心としてこれらを巻回することで、発電素子10が得られる。 FIG. 2 is an exploded view of the power generation element 10. FIG. The power generation element 10 is, for example, a wound body. The wound body is obtained by winding a positive electrode 1, a separator 3, a negative electrode 2, and a separator 3 as one unit. For example, in FIG. 2, the power generating element 10 is obtained by stacking the positive electrode 1, the separator 3, the negative electrode 2, and the separator 3 in this order and winding them around the left end.
 正極1の長さL1、負極2の長さL2、セパレータ3の長さL3は、それぞれ異なってもよい。長さL1,L2,L3は、展開体の幅であり、発電素子10におけるz方向の高さである。セパレータ3の長さL3は、短絡を防ぐために、正極1の長さL1及び負極2の長さL2より長い場合が多い。負極2の長さL2は、正極1の長さL1より長い場合が多い。発電素子10が巻回体の場合、発電素子10のz方向の高さは、負極2の長さL2と略一致する。セパレータ3は、皺が寄ったり、シュリンクする場合が多く、セパレータ3の長さL3が負極2の長さL2より大きい場合でも、巻回した状態でセパレータ3の長さL3を規定することは難しい。 The length L1 of the positive electrode 1, the length L2 of the negative electrode 2, and the length L3 of the separator 3 may be different. The lengths L1, L2, and L3 are the widths of the deployable body and the height of the power generating element 10 in the z direction. The length L3 of the separator 3 is often longer than the length L1 of the positive electrode 1 and the length L2 of the negative electrode 2 to prevent short circuits. The length L2 of the negative electrode 2 is often longer than the length L1 of the positive electrode 1 . When the power generation element 10 is a wound body, the height of the power generation element 10 in the z direction substantially matches the length L2 of the negative electrode 2 . The separator 3 often wrinkles or shrinks, and even if the length L3 of the separator 3 is greater than the length L2 of the negative electrode 2, it is difficult to define the length L3 of the separator 3 in the wound state. .
<正極>
 正極1は、例えば、正極集電体1Aと正極活物質層1Bとを有する。正極活物質層1Bは、正極集電体1Aの少なくとも一面にある。正極活物質層1Bは、例えば、正極集電体1Aの両面に形成されている。
<Positive electrode>
The positive electrode 1 has, for example, a positive electrode current collector 1A and a positive electrode active material layer 1B. The positive electrode active material layer 1B is present on at least one surface of the positive electrode current collector 1A. The positive electrode active material layer 1B is formed, for example, on both sides of the positive electrode current collector 1A.
[正極集電体]
 正極集電体1Aは、例えば、導電性の板材である。正極集電体1Aは、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス等の金属薄板である。重量が軽いアルミニウムは、正極集電体1Aに好適に用いられる。正極集電体1Aの平均厚みは、例えば、10μm以上30μm以下である。
[Positive collector]
The positive electrode current collector 1A is, for example, a conductive plate. The positive electrode current collector 1A is, for example, a metal thin plate of aluminum, copper, nickel, titanium, stainless steel, or the like. Aluminum, which is light in weight, is suitably used for the positive electrode current collector 1A. The average thickness of the positive electrode current collector 1A is, for example, 10 μm or more and 30 μm or less.
 正極集電体1Aには、正極端子4が接続されている。正極端子4は、例えば、正極集電体1Aの一端に接続されている。正極端子4は、例えば、アルミニウム、ニッケル、銅等の導電材料を含む。正極端子4は、例えば、正極集電体1Aに、溶接、ねじ止め等で接続されている。短絡を防ぐために、正極端子4の表面を絶縁テープで保護してもよい。正極端子4は、例えば、発電素子10のz方向の第1面上に延びている。正極端子4の一部は、絶縁体20と第1外装体31とに挟まれる。 A positive electrode terminal 4 is connected to the positive electrode current collector 1A. The positive electrode terminal 4 is connected to one end of the positive electrode current collector 1A, for example. The positive electrode terminal 4 contains conductive materials, such as aluminum, nickel, and copper, for example. The positive electrode terminal 4 is connected to the positive electrode current collector 1A by welding, screwing, or the like, for example. In order to prevent a short circuit, the surface of the positive electrode terminal 4 may be protected with an insulating tape. The positive electrode terminal 4 extends, for example, on the first surface of the power generation element 10 in the z direction. A portion of the positive electrode terminal 4 is sandwiched between the insulator 20 and the first exterior body 31 .
[正極活物質層]
 正極活物質層1Bは、例えば、正極活物質を含む。正極活物質層1Bは、必要に応じて、導電助剤、バインダーを含んでもよい。
[Positive electrode active material layer]
The positive electrode active material layer 1B contains, for example, a positive electrode active material. The positive electrode active material layer 1B may contain a conductive aid and a binder as needed.
 正極活物質は、カチオンの吸蔵及び放出、カチオンの脱離及び挿入(インターカレーション)、又は、カチオンとカウンターアニオンのドープ及び脱ドープを可逆的に進行させることが可能な電極活物質を含む。カチオンは、例えば、リチウムイオン、マグネシウムイオンである。 The positive electrode active material includes an electrode active material capable of reversibly occluding and releasing cations, desorbing and inserting cations (intercalation), or doping and dedoping cations and counteranions. Cations are, for example, lithium ions and magnesium ions.
 正極活物質は、公知の物を用いることができる。正極活物質は、例えば、複合金属酸化物である。複合金属酸化物は、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMnの化合物(一般式中においてx+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)である。正極活物質は、有機物でもよい。例えば、正極活物質は、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセンでもよい。 A well-known thing can be used for a positive electrode active material. The positive electrode active material is, for example, a composite metal oxide. Composite metal oxides include, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and general formula: LiNi x Co yMn z M a O 2 compound (in the general formula, x + y + z + a = 1, 0 ≤ x < 1, 0 ≤ y < 1, 0 ≤ z < 1, 0 ≤ a < 1, M is Al, Mg, Nb, one or more elements selected from Ti, Cu, Zn, and Cr), lithium vanadium compound (LiV 2 O 5 ), olivine-type LiMPO 4 (where M is Co, Ni, Mn, Fe, Mg, Nb, Ti , Al, and one or more elements selected from Zr or VO), lithium titanate (Li 4 Ti 5 O 12 ), LiNi x Co y Al z O 2 (0.9<x+y+z<1.1) be. The positive electrode active material may be organic. For example, the positive electrode active material may be polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene.
 正極活物質は、カチオン非含有の材料でもよい。カチオン非含有の材料は、例えば、FeF、有機導電性物質を含む共役系ポリマー、シェブレル相化合物、遷移金属カルコゲン化物、バナジウム酸化物、ニオブ酸化物等である。カチオン非含有の材料は、いずれか一つの材料のみを用いてもよいし、複数組み合わせて用いてもよい。正極活物質がカチオン非含有の材料の場合は、例えば、最初に放電を行う。放電により正極活物質にカチオンが挿入される。このほか、正極活物質がカチオン非含有の材料に対して、化学的又は電気化学的にカチオンをプレドープしてもよい。 The positive electrode active material may be a cation-free material. Cation-free materials are, for example, FeF 3 , conjugated polymers containing organic conductive materials, Chevrell phase compounds, transition metal chalcogenides, vanadium oxides, niobium oxides, and the like. The cation-free material may be used alone or in combination. When the positive electrode active material is a cation-free material, for example, discharge is first performed. Cations are inserted into the positive electrode active material by discharging. In addition, cations may be chemically or electrochemically pre-doped into a cation-free material for the positive electrode active material.
 導電助剤は、正極活物質の間の電子伝導性を高める。導電助剤は、例えば、カーボン粉末、カーボンナノチューブ、炭素材料、金属微粉、炭素材料及び金属微粉の混合物、導電性酸化物である。カーボン粉末は、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック等である。金属微粉は、例えば、銅、ニッケル、ステンレス、鉄等の粉である。 The conductive aid enhances the electronic conductivity between the positive electrode active materials. Examples of conductive aids include carbon powder, carbon nanotubes, carbon materials, metal fine powders, mixtures of carbon materials and metal fine powders, and conductive oxides. Examples of carbon powder include carbon black, acetylene black, and ketjen black. Metal fine powder is, for example, powder of copper, nickel, stainless steel, iron, or the like.
 正極活物質層1Bにおけるバインダーは、正極活物質同士を結合する。バインダーは、公知のものを用いることができる。バインダーは、電解液に溶解せず、耐酸化性を有し、接着性を有するものが好ましい。バインダーは、例えば、フッ素樹脂である。バインダーは、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)、ポリエーテルスルホン(PES)、ポリアクリル酸及びその共重合体、ポリアクリル酸及びその共重合体の金属イオン架橋体、無水マレイン酸をグラフト化したポリプロピレン(PP)又はポリエチレン(PE)、これらの混合物である。正極活物質層1Bに用いるバインダーは、PVDFが特に好ましい。 The binder in the positive electrode active material layer 1B binds the positive electrode active materials together. A known binder can be used. The binder is preferably insoluble in the electrolytic solution, has oxidation resistance, and has adhesiveness. The binder is, for example, fluororesin. Binders include, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyamideimide (PAI), polybenzimidazole (PBI), polyethersulfone (PES), Polyacrylic acid and its copolymers, metal ion crosslinked polyacrylic acid and its copolymers, maleic anhydride-grafted polypropylene (PP) or polyethylene (PE), and mixtures thereof. PVDF is particularly preferable as the binder used for the positive electrode active material layer 1B.
<負極>
 負極2は、例えば、負極集電体2Aと負極活物質層2Bとを有する。負極活物質層2Bは、負極集電体2Aの少なくとも一面にある。負極活物質層2Bは、例えば、負極集電体2Aの両面に形成されている。
<Negative Electrode>
The negative electrode 2 has, for example, a negative electrode current collector 2A and a negative electrode active material layer 2B. The negative electrode active material layer 2B is present on at least one surface of the negative electrode current collector 2A. The negative electrode active material layer 2B is formed, for example, on both sides of the negative electrode current collector 2A.
[負極集電体]
 負極集電体2Aは、例えば、導電性の板材である。負極集電体2Aは、正極集電体1Aと同様のものを用いることができる。
[Negative electrode current collector]
The negative electrode current collector 2A is, for example, a conductive plate. The negative electrode current collector 2A can be the same as the positive electrode current collector 1A.
 負極集電体2Aには、負極端子5が接続されている。負極端子5は、例えば、負極集電体2Aの一端に接続されている。負極端子5は、例えば、アルミニウム、ニッケル、銅等の導電材料を含む。負極端子5は、例えば、負極集電体2Aに、溶接、ねじ止め等で接続されている。短絡を防ぐために、負極端子5の表面を絶縁テープで保護してもよい。負極端子5は、例えば、発電素子10のz方向の第2面上に延びている。第2面は、正極端子4が露出する面と反対側の面である。負極端子5の一部は、絶縁体20と第2外装体32とに挟まれる。 A negative electrode terminal 5 is connected to the negative electrode current collector 2A. The negative electrode terminal 5 is connected to one end of the negative electrode current collector 2A, for example. The negative electrode terminal 5 contains, for example, a conductive material such as aluminum, nickel, or copper. The negative electrode terminal 5 is connected to the negative electrode current collector 2A by welding, screwing, or the like, for example. In order to prevent a short circuit, the surface of the negative terminal 5 may be protected with an insulating tape. The negative terminal 5 extends, for example, on the second surface of the power generating element 10 in the z direction. The second surface is the surface opposite to the surface where the positive electrode terminal 4 is exposed. A portion of the negative electrode terminal 5 is sandwiched between the insulator 20 and the second exterior body 32 .
[負極活物質層]
 負極活物質層2Bは、例えば、負極活物質を含む。負極活物質層2Bは、必要に応じて、導電助剤、バインダーを含んでもよい。
[Negative electrode active material layer]
The negative electrode active material layer 2B contains, for example, a negative electrode active material. The negative electrode active material layer 2B may contain a conductive aid and a binder as needed.
 負極活物質は、イオンを吸蔵・放出可能な化合物であればよく、公知の負極活物質を使用できる。負極活物質は、例えば、金属リチウム、金属マグネシウム、リチウム合金、マグネシウム合金、炭素材料、カチオンと合金化できる物質である。炭素材料は、例えば、イオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等である。カチオンと合金化できる物質は、例えば、シリコン、スズ、亜鉛、鉛、アンチモンを含む。カチオンと合金化できる物質は、例えば、これらの単体金属でも、これらの元素を含む合金又は酸化物でもよい。 The negative electrode active material may be any compound that can occlude and release ions, and known negative electrode active materials can be used. The negative electrode active material is, for example, metallic lithium, metallic magnesium, lithium alloys, magnesium alloys, carbon materials, and substances that can be alloyed with cations. Carbon materials include, for example, graphite that can occlude and release ions (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, easily graphitizable carbon, low-temperature fired carbon, and the like. Materials that can be alloyed with cations include, for example, silicon, tin, zinc, lead, and antimony. Substances that can be alloyed with cations may be, for example, these elemental metals, or alloys or oxides containing these elements.
 導電助剤及びバインダーは、正極1と同様のものを用いることができる。負極2におけるバインダーは、正極1に挙げたものの他に、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂等でもよい。セルロースは、例えば、カルボキシメチルセルロース(CMC)でもよい。 The same conductive aid and binder as those of the positive electrode 1 can be used. The binder in the negative electrode 2 may be, for example, cellulose, styrene/butadiene rubber, ethylene/propylene rubber, polyimide resin, polyamideimide resin, acrylic resin, etc., in addition to those listed for the positive electrode 1 . The cellulose may be, for example, carboxymethylcellulose (CMC).
<セパレータ>
 セパレータ3は、正極1と負極2とに挟まれる。セパレータ3は、正極1と負極2とを隔離し、正極1と負極2との短絡を防ぐ。セパレータ3は、正極1及び負極2に沿って面内に広がる。カチオンは、セパレータ3を通過できる。
<Separator>
A separator 3 is sandwiched between the positive electrode 1 and the negative electrode 2 . The separator 3 separates the positive electrode 1 and the negative electrode 2 and prevents a short circuit between the positive electrode 1 and the negative electrode 2 . The separator 3 extends in-plane along the positive electrode 1 and the negative electrode 2 . Cations can pass through the separator 3 .
 セパレータ3は、例えば、電気絶縁性の多孔質構造を有する多孔質フィルムである。セパレータ3は、例えば、ポリオレフィンフィルムの単層体又は積層体である。セパレータ3は、ポリエチレンやポリプロピレン等の混合物の延伸膜でもよい。セパレータ3は、セルロース、ポリエステル、ポリアクリロニトリル、ポリアミド、ポリエチレン及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布でもよい。セパレータ3は、例えば、固体電解質であってもよい。固体電解質は、例えば、高分子固体電解質、酸化物系固体電解質、硫化物系固体電解質である。 The separator 3 is, for example, a porous film having an electrically insulating porous structure. The separator 3 is, for example, a monolayer or laminate of polyolefin films. The separator 3 may be a stretched film of a mixture of polyethylene, polypropylene, or the like. The separator 3 may be a fibrous nonwoven fabric made of at least one constituent material selected from the group consisting of cellulose, polyester, polyacrylonitrile, polyamide, polyethylene and polypropylene. Separator 3 may be, for example, a solid electrolyte. Solid electrolytes are polymer solid electrolytes, oxide-based solid electrolytes, and sulfide-based solid electrolytes, for example.
 セパレータ3は、無機コートセパレータでもよい。無機コートセパレータは、上記のフィルムの表面に、PVDFやCMCなど樹脂とアルミナやシリカなどの無機物の混合物を塗布したものである。無機コートセパレータは、耐熱性に優れ、正極から溶出した遷移金属の負極表面への析出を抑制する。 The separator 3 may be an inorganic coated separator. The inorganic coated separator is obtained by coating the surface of the above film with a mixture of a resin such as PVDF or CMC and an inorganic material such as alumina or silica. The inorganic coated separator has excellent heat resistance and suppresses deposition of transition metals eluted from the positive electrode onto the surface of the negative electrode.
<電解液>
 電解液は、発電素子10に含浸している。電解液は、正極活物質層1B及び負極活物質層2B内に含浸している。
<Electrolyte>
The power generating element 10 is impregnated with the electrolytic solution. The electrolyte is impregnated in the cathode active material layer 1B and the anode active material layer 2B.
 電解液は、電池の種類によって異なるが、公知の電解液を用いることができる。電池100が全固体電池の場合は、電解液は不要である。 Although the electrolyte varies depending on the type of battery, a known electrolyte can be used. If the battery 100 is an all-solid battery, no electrolytic solution is required.
 例えば、リチウムイオン二次電池の場合、電解液は、非水溶媒と電解質塩とを含む。 For example, in the case of a lithium ion secondary battery, the electrolyte contains a non-aqueous solvent and an electrolyte salt.
 リチウムイオン二次電池の場合、電解質塩は、例えば、リチウム塩である。電解質塩は、例えば、LiPF、ホウフッ化リチウム(LiBF)、LiClO、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(SOF)、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB、LiN(FSO等である。 In the case of lithium ion secondary batteries, the electrolyte salt is, for example, a lithium salt. The electrolyte salt is, for example, LiPF 6 , lithium borofluoride (LiBF 4 ), LiClO 4 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC(CF 3 SO 2 ) 3 , LiN(SO 2 F) 2 , LiN ( CF3SO2 ) 2 , LiN( CF3CF2SO2 ) 2 , LiN( CF3SO2 ) ( C4F9SO2 ) , LiN ( CF3CF2CO ) 2 , LiBOB , LiN(FSO 2 ) 2nd prize.
 非水溶媒は、例えば、環状カーボネートと、鎖状カーボネートと、を含有する。環状カーボネートは、電解質を溶媒和する。環状カーボネートは、例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートである。環状カーボネートは、プロピレンカーボネートを少なくとも含むことが好ましい。鎖状カーボネートは、環状カーボネートの粘性を低下させる。鎖状カーボネートは、例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートである。非水溶媒は、その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等を有してもよい。 The non-aqueous solvent contains, for example, a cyclic carbonate and a chain carbonate. Cyclic carbonates solvate electrolytes. Cyclic carbonates are, for example, ethylene carbonate, propylene carbonate and butylene carbonate. The cyclic carbonate preferably contains at least propylene carbonate. Chain carbonates reduce the viscosity of cyclic carbonates. Chain carbonates are, for example, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate. Non-aqueous solvents may also include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like. .
(絶縁体)
 絶縁体20は、発電素子10をz方向に貫通する。絶縁体20は、柱状体である。絶縁体20は、例えば、z方向の両端に上面と下面とを有する円柱である。絶縁体20は、巻回する発電素子10の軸中心にある。
(Insulator)
The insulator 20 penetrates the power generating element 10 in the z direction. The insulator 20 is a columnar body. The insulator 20 is, for example, a cylinder having an upper surface and a lower surface at both ends in the z direction. The insulator 20 is at the center of the axis of the power generating element 10 to be wound.
 絶縁体20のz方向の長さL20は、例えば、負極2のz方向の長さL2以上である。絶縁体20のz方向の長さL20は、好ましくは負極2のz方向の長さL2より長く、より好ましくは負極2のz方向の長さL2の1.04倍以上である。絶縁体20のz方向の長さL20は、好ましくは負極2のz方向の長さL2の1.08倍以下である。絶縁体20のz方向の長さL20は、例えば、負極2のz方向の長さL2より2mm以上長いことが好ましく、負極2のz方向の長さL2の4mm以下であることが好ましい。 The length L20 of the insulator 20 in the z direction is, for example, equal to or greater than the length L2 of the negative electrode 2 in the z direction. The length L20 of the insulator 20 in the z direction is preferably longer than the length L2 of the negative electrode 2 in the z direction, more preferably 1.04 times or more the length L2 of the negative electrode 2 in the z direction. The length L20 of the insulator 20 in the z direction is preferably 1.08 times or less the length L2 of the negative electrode 2 in the z direction. The length L20 of the insulator 20 in the z direction is, for example, preferably longer than the length L2 of the negative electrode 2 in the z direction by 2 mm or more, and preferably 4 mm or less than the length L2 of the negative electrode 2 in the z direction.
 絶縁体20は、発電素子10のz方向の上面及び下面のそれぞれから突出している。絶縁体20の上端は、発電素子10の上面から突出している。絶縁体20の下端は、発電素子10の下面から突出している。絶縁体20の上端は、正極端子4を第1外装体31に押し当てる。絶縁体20の下端は、負極端子5を第2外装体32に押し当てる。 The insulator 20 protrudes from each of the upper and lower surfaces of the power generation element 10 in the z direction. The upper end of the insulator 20 protrudes from the upper surface of the power generation element 10 . A lower end of the insulator 20 protrudes from the lower surface of the power generation element 10 . The upper end of the insulator 20 presses the positive electrode terminal 4 against the first exterior body 31 . The lower end of the insulator 20 presses the negative terminal 5 against the second exterior body 32 .
 絶縁体20は、例えば、樹脂からなる。絶縁体20は、例えば、ポリエチレンテレフタラート(PET)、ポリアセタール(POM)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリテトラフルオロエチレン(PTFE)である。 The insulator 20 is made of resin, for example. The insulator 20 is, for example, polyethylene terephthalate (PET), polyacetal (POM), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE). is.
 絶縁体20の引張弾性係数は、例えば、3000MPa以上であることが好ましい。絶縁体20は、例えば、ポリエチレンテレフタラート(PET)、ポリアセタール(POM)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)が好ましい。絶縁体20の引張弾性係数が当該範囲にあると、絶縁体20にz方向の力が加わっても、絶縁体20が形状変形しにくい。 The tensile modulus of elasticity of the insulator 20 is preferably, for example, 3000 MPa or more. The insulator 20 is preferably made of polyethylene terephthalate (PET), polyacetal (POM), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), for example. When the tensile elastic modulus of the insulator 20 is within the range, the insulator 20 is less likely to be deformed even if a force in the z direction is applied to the insulator 20 .
(外装体)
 外装体30は、内部に発電素子10を収容する。外装体30は、電解液の外部への漏出や、外部からの電池100内部への水分等の侵入等を抑止する。
(Exterior body)
The exterior body 30 accommodates the power generating element 10 inside. The exterior body 30 prevents leakage of the electrolytic solution to the outside and entry of moisture into the inside of the battery 100 from the outside.
 外装体30は、第1外装体31と第2外装体32とガスケット33とを有する。第1外装体31と第2外装体32とは、発電素子10をz方向に挟む。ガスケット33は、第1外装体31と第2外装体32との間をシールする。 The exterior body 30 has a first exterior body 31 , a second exterior body 32 and a gasket 33 . The first exterior body 31 and the second exterior body 32 sandwich the power generating element 10 in the z direction. The gasket 33 seals between the first exterior body 31 and the second exterior body 32 .
 第1外装体31及び第2外装体32は、導体である。第1外装体31及び第2外装体32は、例えば、金属からなる。第1外装体31は、正極端子4と接続されている。第2外装体32は、負極端子5と接続されている。第1外装体31と正極端子4及び第2外装体32と負極端子5とは、例えば、溶接されている。 The first armor 31 and the second armor 32 are conductors. The first exterior body 31 and the second exterior body 32 are made of metal, for example. The first exterior body 31 is connected to the positive electrode terminal 4 . The second exterior body 32 is connected to the negative terminal 5 . The first exterior body 31 and the positive terminal 4 and the second exterior body 32 and the negative terminal 5 are welded together, for example.
「電池の製造方法」
 電池100は、発電素子10の作製工程と、発電素子10の収容工程と、を備える。
"Battery manufacturing method"
The battery 100 includes a manufacturing process of the power generating element 10 and a housing process of the power generating element 10 .
 まず発電素子10の作製工程は、例えば、準備工程と、巻回工程とを有する。準備工程では、図2に示す正極1、負極2、セパレータ3のそれぞれを準備する。 First, the manufacturing process of the power generation element 10 includes, for example, a preparation process and a winding process. In the preparation step, each of the positive electrode 1, the negative electrode 2, and the separator 3 shown in FIG. 2 is prepared.
 正極1は、例えば、スラリー作製工程、電極塗布工程、乾燥工程、圧延工程、端子接続工程を順に行って作製される。 The positive electrode 1 is manufactured by, for example, sequentially performing a slurry preparation process, an electrode application process, a drying process, a rolling process, and a terminal connection process.
 スラリー作製工程は、正極活物質、バインダー、導電助剤及び溶媒を混合してスラリーを作る工程である。溶媒は、例えば、水、N-メチル-2-ピロリドン等である。正極活物質、導電助剤、バインダーの構成比率は、質量比で70wt%~100wt%:0wt%~10wt%:0wt%~20wt%であることが好ましい。これらの質量比は、全体で100wt%となるように調整される。 The slurry preparation process is a process of mixing a positive electrode active material, a binder, a conductive aid and a solvent to prepare a slurry. Solvents are, for example, water, N-methyl-2-pyrrolidone, and the like. The composition ratio of the positive electrode active material, the conductive aid, and the binder is preferably 70 wt % to 100 wt %:0 wt % to 10 wt %:0 wt % to 20 wt % in mass ratio. These mass ratios are adjusted so that the total is 100 wt %.
 電極塗布工程は、正極集電体1Aの表面に、スラリーを塗布する工程である。スラリーの塗布方法は、特に制限はない。例えば、スリットダイコート法、ドクターブレード法をスラリーの塗布方法として用いることができる。 The electrode application step is a step of applying slurry to the surface of the positive electrode current collector 1A. The slurry application method is not particularly limited. For example, a slit die coating method and a doctor blade method can be used as a slurry coating method.
 乾燥工程は、スラリーから溶媒を除去する工程である。例えば、スラリーが塗布された正極集電体1Aを、80℃~150℃の雰囲気下で乾燥させる。スラリーが乾燥することで、正極集電体1A上に正極活物質層1Bが形成される。 The drying process is the process of removing the solvent from the slurry. For example, the positive electrode current collector 1A coated with the slurry is dried in an atmosphere of 80.degree. C. to 150.degree. By drying the slurry, the cathode active material layer 1B is formed on the cathode current collector 1A.
 圧延工程は、必要に応じて行われる。圧延工程は、正極活物質層1Bに圧力を加え、正極活物質層1Bの密度を調整する工程である。圧延工程は、例えば、ロールプレス装置等で行われる。 The rolling process is performed as needed. The rolling step is a step of applying pressure to the positive electrode active material layer 1B to adjust the density of the positive electrode active material layer 1B. The rolling process is performed by, for example, a roll press device.
 端子接続工程は、正極端子4を正極集電体1Aに接続する工程である。正極端子4は、正極活物質層1Bの未塗布部又は除去部に接続する。正極端子4は、例えば、溶接、ねじ止めで正極集電体1Aに接続される。 The terminal connection step is a step of connecting the positive electrode terminal 4 to the positive electrode current collector 1A. The positive electrode terminal 4 is connected to the uncoated portion or the removed portion of the positive electrode active material layer 1B. The positive terminal 4 is connected to the positive current collector 1A by, for example, welding or screwing.
 負極2は、正極1と同様の手順で作製できる。負極集電体2Aの表面に負極活物質層2Bを形成し、負極集電体2Aに負極端子5を接続することで、負極2を作製する。 The negative electrode 2 can be produced in the same procedure as the positive electrode 1. The negative electrode 2 is manufactured by forming the negative electrode active material layer 2B on the surface of the negative electrode current collector 2A and connecting the negative electrode terminal 5 to the negative electrode current collector 2A.
 セパレータ3は、市販のものを用いることができる。最内周に位置するセパレータ3の一端に、絶縁体20を接着する。 A commercially available separator 3 can be used. An insulator 20 is adhered to one end of the separator 3 located on the innermost circumference.
 巻回工程では、セパレータ3、正極1、セパレータ3、負極2を順に積層し、絶縁体20を巻芯としてこれらを巻回する。巻回後に、発電素子10を電解液に浸漬する。発電素子10の上下面には、絶縁テープ6を貼ってもよい。 In the winding process, the separator 3, the positive electrode 1, the separator 3, and the negative electrode 2 are laminated in order, and these are wound using the insulator 20 as the winding core. After winding, the power generation element 10 is immersed in the electrolytic solution. An insulating tape 6 may be attached to the upper and lower surfaces of the power generation element 10 .
 発電素子10の収容工程は、溶接工程と、シール工程とを有する。まず、第1外装体31内に、発電素子10及びガスケット33を挿入する。次いで、第1外装体31と正極端子4とを溶接する。溶接は、例えば、抵抗溶接、レーザー溶接で行う。次いで、第2外装体32を第1外装体31に挿入する。発電素子10から突出する絶縁体20は、正極端子4を第1外装体31に押し当て、負極端子5を第2外装体32に押し当てる。そして、第2外装体32と負極端子5とを溶接する。そして、第1外装体31の側面を締め付け、第1外装体31と第2外装体32とをガスケット33でシールする。 The housing process of the power generating element 10 includes a welding process and a sealing process. First, the power generation element 10 and the gasket 33 are inserted into the first exterior body 31 . Next, the first exterior body 31 and the positive electrode terminal 4 are welded together. Welding is performed, for example, by resistance welding or laser welding. Next, the second armor 32 is inserted into the first armor 31 . The insulator 20 protruding from the power generation element 10 presses the positive terminal 4 against the first exterior body 31 and presses the negative terminal 5 against the second exterior body 32 . Then, the second exterior body 32 and the negative electrode terminal 5 are welded together. Then, the side surface of the first exterior body 31 is tightened, and the gasket 33 seals the first exterior body 31 and the second exterior body 32 .
 第1実施形態に係る電池100は、絶縁体20が正極端子4を第1外装体31に押し当て、負極端子5を第2外装体32に押し当てる。そのため、溶接時に、正極端子4と第1外装体31との間、及び、負極端子5と第2外装体32との間に空間が生じることを抑制できる。これらの間の空間は、溶接不良の原因となる。溶接不良は、電池100の内部抵抗増加の原因となる。 In the battery 100 according to the first embodiment, the insulator 20 presses the positive electrode terminal 4 against the first package 31 and presses the negative electrode terminal 5 against the second package 32 . Therefore, it is possible to suppress the generation of a space between the positive electrode terminal 4 and the first exterior body 31 and between the negative electrode terminal 5 and the second exterior body 32 during welding. Spaces between them cause poor welding. Poor welding causes an increase in the internal resistance of battery 100 .
 以上、第1実施形態について図面を参照して詳述したが、第1実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。 As described above, the first embodiment has been described in detail with reference to the drawings. , substitutions, and other modifications are possible.
 例えば、図3は、第1変形例にかかる電池101の断面図である。電池101は、絶縁体21が絶縁体20と異なる。絶縁体21は、内部に空間22を有する。空間22は、例えば、z方向に延びる。空間22は、絶縁体21をz方向に貫通する貫通孔である。空間22は、絶縁体21の側面に沿ってz方向に延びる溝でもよい。絶縁体21は、絶縁体20と同様の材料からなる。絶縁体21のz方向の長さL21は、負極2の長さL2以上であり、好ましくは負極2の長さL2より長い。 For example, FIG. 3 is a cross-sectional view of a battery 101 according to a first modified example. Battery 101 differs from insulator 20 in insulator 21 . The insulator 21 has a space 22 inside. Space 22 extends, for example, in the z-direction. The space 22 is a through hole penetrating the insulator 21 in the z direction. Space 22 may be a groove extending in the z-direction along the side surface of insulator 21 . The insulator 21 is made of the same material as the insulator 20 . The length L21 of the insulator 21 in the z direction is equal to or greater than the length L2 of the negative electrode 2, and preferably longer than the length L2 of the negative electrode 2.
 第1変形例にかかる電池101は、電池100と同様の効果を示す。また巻回体を作製する際に、空間22内に軸を挿入することで、巻回体の作製が容易になる。 The battery 101 according to the first modification exhibits the same effects as the battery 100. In addition, by inserting the shaft into the space 22 when producing the wound body, the production of the wound body is facilitated.
「第2実施形態」
 図4は、第2実施形態に係る電池102の断面図である。電池102は、発電素子11が積層体である点が、電池100と異なる。電池102において、電池100と同様の構成は同様の符号を付し、説明を省く。
"Second Embodiment"
FIG. 4 is a cross-sectional view of the battery 102 according to the second embodiment. The battery 102 differs from the battery 100 in that the power generation element 11 is a laminate. In the battery 102, the same components as in the battery 100 are denoted by the same reference numerals, and the description thereof is omitted.
 発電素子11は、正極1と負極2とがセパレータ3を挟んで交互に積層されている。発電素子11は、正極1、負極2、セパレータ3がz方向に積層されている。正極端子4は、例えば、正極1のそれぞれに接続されている。負極端子5は、例えば、負極2のそれぞれに接続されている。 In the power generation element 11, the positive electrode 1 and the negative electrode 2 are alternately laminated with the separator 3 interposed therebetween. The power generation element 11 has a positive electrode 1, a negative electrode 2, and a separator 3 stacked in the z direction. The positive terminal 4 is connected to each of the positive electrodes 1, for example. The negative terminal 5 is connected to each of the negative electrodes 2, for example.
 絶縁体20は、発電素子11をz方向に貫通する。絶縁体20のz方向の長さL20は、例えば、発電素子11のz方向の長さL11以上である。発電素子11のz方向の長さは、積層体の積層方向の厚みである。絶縁体20のz方向の長さL20は、好ましくは発電素子11のz方向の長さL11より長く、より好ましくは発電素子11のz方向の長さL11の1.04倍以上である。絶縁体20のz方向の長さL20は、好ましくは発電素子11のz方向の長さL11の1.08倍以下である。絶縁体20のz方向の長さL20は、例えば、発電素子11のz方向の長さL11より2mm以上長いことが好ましく、発電素子11のz方向の長さL11の4mm以下であることが好ましい。 The insulator 20 penetrates the power generation element 11 in the z direction. The length L20 of the insulator 20 in the z direction is, for example, equal to or greater than the length L11 of the power generation element 11 in the z direction. The length of the power generation element 11 in the z direction is the thickness of the laminate in the lamination direction. The length L20 of the insulator 20 in the z direction is preferably longer than the length L11 of the power generating element 11 in the z direction, more preferably 1.04 times or more the length L11 of the power generating element 11 in the z direction. The z-direction length L20 of the insulator 20 is preferably 1.08 times or less the z-direction length L11 of the power generation element 11 . The z-direction length L20 of the insulator 20 is, for example, preferably longer than the z-direction length L11 of the power generation element 11 by 2 mm or more, and preferably 4 mm or less of the z-direction length L11 of the power generation element 11. .
 絶縁体20は、発電素子11のz方向の上面及び下面のそれぞれから突出している。絶縁体20の上端は、発電素子11の上面から突出している。絶縁体20の下端は、発電素子11の下面から突出している。 The insulator 20 protrudes from each of the upper and lower surfaces of the power generation element 11 in the z direction. The upper end of the insulator 20 protrudes from the upper surface of the power generation element 11 . A lower end of the insulator 20 protrudes from the lower surface of the power generation element 11 .
 第2実施形態に係る電池102は、絶縁体20が正極端子4を第1外装体31に押し当て、負極端子5を第2外装体32に押し当てる。そのため、第2実施形態に係る電池102は、第1実施形態に係る電池100と同様の効果を奏する。 In the battery 102 according to the second embodiment, the insulator 20 presses the positive electrode terminal 4 against the first package 31 and presses the negative electrode terminal 5 against the second package 32 . Therefore, the battery 102 according to the second embodiment has the same effects as the battery 100 according to the first embodiment.
 以上、第2実施形態について図面を参照して詳述したが、第2実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。 As described above, the second embodiment has been described in detail with reference to the drawings. , substitutions, and other modifications are possible.
 例えば、図3と同様に、絶縁体20が空間22を有する絶縁体21でもよい。 For example, the insulator 20 may be the insulator 21 having the space 22 as in FIG.
 また例えば、図5は、第2変形例にかかる電池103の断面図である。電池103は、発電素子12が積層体であり、積層方向がx方向である点が、電池102と異なる。電池103において、電池102と同様の構成は同様の符号を付し、説明を省く。 Also, for example, FIG. 5 is a cross-sectional view of a battery 103 according to a second modified example. The battery 103 differs from the battery 102 in that the power generating element 12 is a laminate and the stacking direction is the x direction. In the battery 103, the same components as in the battery 102 are denoted by the same reference numerals, and the description thereof is omitted.
 発電素子12は、正極1と負極2とがセパレータ3を挟んで交互に積層されている。発電素子12は、正極1、負極2、セパレータ3がx方向に積層されている。正極端子4は、例えば、正極1のそれぞれに接続されている。負極端子5は、例えば、負極2のそれぞれに接続されている。絶縁体20は、発電素子12をz方向に貫通する。第2変形例では、絶縁体20のz方向の長さL20は、例えば、負極2のz方向の長さL2以上である。 In the power generation element 12, the positive electrode 1 and the negative electrode 2 are alternately laminated with the separator 3 interposed therebetween. The power generation element 12 has a positive electrode 1, a negative electrode 2, and a separator 3 stacked in the x direction. The positive terminal 4 is connected to each of the positive electrodes 1, for example. The negative terminal 5 is connected to each of the negative electrodes 2, for example. The insulator 20 penetrates the power generation element 12 in the z direction. In the second modification, the length L20 of the insulator 20 in the z direction is, for example, equal to or greater than the length L2 of the negative electrode 2 in the z direction.
 絶縁体20は、発電素子12のz方向の上面及び下面のそれぞれから突出している。絶縁体20の上端は、発電素子12の上面から突出している。絶縁体20の下端は、発電素子12の下面から突出している。 The insulator 20 protrudes from each of the upper and lower surfaces of the power generation element 12 in the z direction. The upper end of the insulator 20 protrudes from the upper surface of the power generation element 12 . A lower end of the insulator 20 protrudes from the lower surface of the power generation element 12 .
 第2変形例に係る電池103は、絶縁体20が正極端子4を第1外装体31に押し当て、負極端子5を第2外装体32に押し当てる。そのため、第2変形例に係る電池103は、第1実施形態に係る電池100と同様の効果を奏する。 In the battery 103 according to the second modification, the insulator 20 presses the positive electrode terminal 4 against the first package 31 and presses the negative electrode terminal 5 against the second package 32 . Therefore, the battery 103 according to the second modification has the same effects as the battery 100 according to the first embodiment.
「実施例1」
 厚さ15μmのアルミニウム箔の一面に、正極スラリーを塗布した。正極スラリーは、正極活物質と導電助剤とバインダーと溶媒とを混合して作製した。
"Example 1"
A positive electrode slurry was applied to one surface of an aluminum foil having a thickness of 15 μm. A positive electrode slurry was prepared by mixing a positive electrode active material, a conductive aid, a binder, and a solvent.
 正極活物質は、ニッケルとマンガンとコバルトの三元系化合物(NCM811)を用いた。導電助剤は、カーボンブラックを用いた。バインダーは、ポリフッ化ビニリデン(PVDF)を用いた。溶媒は、N-メチル-2-ピロリドンを用いた。90質量部の正極活物質と、5質量部の導電助剤と、5質量部のバインダーと、70質量部の溶媒を混合して、正極スラリーを作製した。乾燥後の正極活物質層における正極活物質の担持量は、15mg/cmとした。正極スラリーから乾燥炉内で溶媒を除去し、正極活物質層を作成した。正極活物質層をロールプレスで加圧した。そして、正極集電体に、アルミニウム製の正極端子を取り付けた。 A ternary compound of nickel, manganese and cobalt (NCM811) was used as the positive electrode active material. Carbon black was used as the conductive aid. Polyvinylidene fluoride (PVDF) was used as the binder. N-methyl-2-pyrrolidone was used as the solvent. A positive electrode slurry was prepared by mixing 90 parts by mass of a positive electrode active material, 5 parts by mass of a conductive aid, 5 parts by mass of a binder, and 70 parts by mass of a solvent. The amount of the positive electrode active material supported in the dried positive electrode active material layer was 15 mg/cm 2 . A positive electrode active material layer was formed by removing the solvent from the positive electrode slurry in a drying oven. The positive electrode active material layer was pressed with a roll press. Then, a positive electrode terminal made of aluminum was attached to the positive electrode current collector.
 次いで、厚さ10μmの銅箔の一面に、負極スラリーを塗布した。負極スラリーは、負極活物質と導電助剤とバインダーと溶媒とを混合して作製した。 Next, the negative electrode slurry was applied to one surface of a copper foil having a thickness of 10 μm. A negative electrode slurry was prepared by mixing a negative electrode active material, a conductive aid, a binder, and a solvent.
 負極活物質は、グラファイトとした。導電助剤は、カーボンブラックを用いた。バインダーはスチレンブタジエンゴム(SBR)とカルボキシメチルセルロース(CMC)の2種類を用いた。溶媒は、N-メチル-2-ピロリドンを用いた。94質量部の負極活物質と、2質量部の導電助剤と、2.5質量部のSBRと、1.5質量部のCMCとを、N-メチル-2-ピロリドンに混合して、負極スラリーを作製した。乾燥後の負極活物質層における負極活物質の担持量は、10.5mg/cmとした。負極スラリーから乾燥炉内で溶媒を除去し、負極活物質層を作製した。負極活物質層は、ロールプレスで加圧して形成した。負極集電体に、ニッケル製の負極端子を取り付けた。 Graphite was used as the negative electrode active material. Carbon black was used as the conductive aid. Two types of binders, styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC), were used. N-methyl-2-pyrrolidone was used as the solvent. 94 parts by mass of a negative electrode active material, 2 parts by mass of a conductive aid, 2.5 parts by mass of SBR, and 1.5 parts by mass of CMC are mixed with N-methyl-2-pyrrolidone to form a negative electrode. A slurry was prepared. The amount of the negative electrode active material supported on the dried negative electrode active material layer was 10.5 mg/cm 2 . A negative electrode active material layer was produced by removing the solvent from the negative electrode slurry in a drying oven. The negative electrode active material layer was formed by pressing with a roll press. A negative electrode terminal made of nickel was attached to the negative electrode current collector.
 電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とが、EC:EMC=20:80の比率で混合された溶媒に、六フッ化リン酸リチウム(LiPF)1.0mol/Lを溶解させた。セパレータは、多孔質ポリエチレンシートを用いた。セパレータの一端には、ピンを接着した。 The electrolytic solution was a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a ratio of EC:EMC = 20:80, and lithium hexafluorophosphate (LiPF 6 ) at 1.0 mol/L. was dissolved. A porous polyethylene sheet was used as the separator. A pin was glued to one end of the separator.
 そして、セパレータ、正極、セパレータ、負極を順に積層し、ピンを巻軸として巻回した。ピンの長さは、52mmとした。負極の幅(長さ)は、49mmであった。ピンの長さは、負極の幅の1.06倍であった。 Then, the separator, the positive electrode, the separator, and the negative electrode were laminated in this order, and wound using the pin as the winding shaft. The length of the pin was 52 mm. The width (length) of the negative electrode was 49 mm. The pin length was 1.06 times the width of the negative electrode.
 巻回体を第1外装体内に収容し、巻回体の第1面から露出する正極端子と第1外装体とを溶接した。次いで、第2外装体を第1外装体に挿入し、巻回体の第2面から露出する負極端子と第2外装体とを溶接した。正極端子と第1外装体との溶接は抵抗溶接で行い、負極端子と第2外装体との溶接は、レーザー溶接で行った。 The wound body was housed in the first exterior body, and the positive terminal exposed from the first surface of the wound body was welded to the first exterior body. Next, the second armor was inserted into the first armor, and the negative electrode terminal exposed from the second surface of the wound body was welded to the second armor. Welding between the positive terminal and the first armor was performed by resistance welding, and welding between the negative terminal and the second armor was performed by laser welding.
 そして、同様のサンプルを400個作製し、タブ溶接の不良率を求めた。タブ溶接が不良であるか否かは、以下で示す充電後の保持電圧で判断した。まず、完成して電池を25℃、CC-CV(Constant Current-Constant Voltage)充電、上限電圧が4.2V、20mA、充電時間3.5時間の条件で充電する。そして、充電開始後28時間経過後の電圧が、4.1V以上のものを良品、4.1V未満のものを不良品とした。また電池の内部抵抗も測定した。内部抵抗は、作製したサンプルの平均値として求めた。内部抵抗は、BT3563(日置電機株式会社製)を用い、測定端子を電池のタブ(端子)と接触させて求めた。 Then, 400 similar samples were produced, and the defective rate of tab welding was obtained. Whether the tab welding was defective or not was judged by the holding voltage after charging shown below. First, the completed battery is charged under the conditions of 25° C., CC-CV (Constant Current-Constant Voltage) charging, upper limit voltage of 4.2 V, 20 mA, and charging time of 3.5 hours. A battery with a voltage of 4.1 V or more after 28 hours from the start of charging was regarded as a good product, and a battery with a voltage of less than 4.1 V was regarded as a defective product. The internal resistance of the battery was also measured. The internal resistance was obtained as an average value of the produced samples. The internal resistance was obtained by using BT3563 (manufactured by Hioki Electric Co., Ltd.) and bringing the measuring terminal into contact with the tab (terminal) of the battery.
「実施例2、比較例1、比較例2」
 実施例2、比較例1、比較例2は、ピンの長さを変えた点が実施例1と異なる。その他の条件は実施例1と同様にして、タブ溶接の不良率及び内部抵抗を測定した。
"Example 2, Comparative Example 1, Comparative Example 2"
Example 2, Comparative Example 1, and Comparative Example 2 differ from Example 1 in that the pin lengths are changed. Other conditions were the same as in Example 1, and the defect rate and internal resistance of tab welding were measured.
 実施例2は、ピンの長さを51mmとした。ピンの長さは、負極の幅の1.04倍であった。 In Example 2, the length of the pin was 51 mm. The pin length was 1.04 times the width of the negative electrode.
 比較例1は、ピンの長さを48mmとした。ピンの長さは、負極の幅の0.98倍であった。 Comparative Example 1 has a pin length of 48 mm. The pin length was 0.98 times the width of the negative electrode.
 比較例2は、ピンの長さを45mmとした。ピンの長さは、負極の幅の0.92倍であった。 Comparative Example 2 has a pin length of 45 mm. The pin length was 0.92 times the width of the negative electrode.
 実施例1、実施例2、比較例1、比較例2の評価結果を、表1にまとめた。 The evaluation results of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ピンの長さが負極の長さより長い実施例1及び2は、比較例1及び2より溶接不良率が低かった。 Examples 1 and 2, in which the length of the pin was longer than the length of the negative electrode, had lower weld defect rates than Comparative Examples 1 and 2.
1…正極、1A…正極集電体、1B…正極活物質層、2…負極、2A…負極集電体、2B…負極活物質層、3…セパレータ、4…正極端子、5…負極端子、10,11,12…発電素子、20,21…絶縁体、22…空間、30…外装体、31…第1外装体、32…第2外装体、33…ガスケット、100,101,102,103…電池 DESCRIPTION OF SYMBOLS 1... Positive electrode, 1A... Positive electrode collector, 1B... Positive electrode active material layer, 2... Negative electrode, 2A... Negative electrode collector, 2B... Negative electrode active material layer, 3... Separator, 4... Positive electrode terminal, 5... Negative electrode terminal, DESCRIPTION OF SYMBOLS 10, 11, 12... Power generation element, 20, 21... Insulator, 22... Space, 30... Exterior body, 31... First exterior body, 32... Second exterior body, 33... Gasket, 100, 101, 102, 103 …battery

Claims (7)

  1.  正極端子が接続された正極と、負極端子が接続された負極と、前記正極と前記負極とに挟まれたセパレータと、を備える発電素子と、
     前記発電素子を第1方向に貫通する絶縁体と、
     前記発電素子を前記第1方向に挟む第1外装体と第2外装体と、を備え、
     前記絶縁体の前記第1方向の長さは、前記負極の前記第1方向の長さ以上であり、
     前記絶縁体は、前記正極端子を前記第1外装体に押し当て、前記負極端子を前記第2外装体に押し当てる、電池。
    a power generation element comprising a positive electrode to which a positive electrode terminal is connected, a negative electrode to which a negative electrode terminal is connected, and a separator sandwiched between the positive electrode and the negative electrode;
    an insulator penetrating the power generating element in a first direction;
    A first exterior body and a second exterior body sandwiching the power generation element in the first direction,
    the length of the insulator in the first direction is equal to or greater than the length of the negative electrode in the first direction;
    The battery, wherein the insulator presses the positive electrode terminal against the first exterior body and presses the negative electrode terminal against the second exterior body.
  2.  前記絶縁体は、前記第1方向の両端に上面と下面とを有する円柱である、請求項1に記載の電池。 The battery according to claim 1, wherein the insulator is a cylinder having an upper surface and a lower surface at both ends in the first direction.
  3.  前記絶縁体は、前記第1方向に延びる空間を内部に有する、請求項1に記載の電池。 The battery according to claim 1, wherein the insulator has therein a space extending in the first direction.
  4.  前記絶縁体の前記第1方向の長さは、前記負極の前記第1方向の長さより大きい、請求項1に記載の電池。 The battery according to claim 1, wherein the length of the insulator in the first direction is greater than the length of the negative electrode in the first direction.
  5.  前記発電素子は、前記絶縁体が軸中心にある巻回体である、請求項1に記載の電池。 The battery according to claim 1, wherein the power generation element is a wound body in which the insulator is axially centered.
  6.  前記絶縁体は、引張弾性係数が3000MPa以上の樹脂を含む、請求項1に記載の電池。 The battery according to claim 1, wherein the insulator contains a resin having a tensile elastic modulus of 3000 MPa or more.
  7.  正極端子が接続された正極と、負極端子が接続された負極と、前記正極と前記負極とに挟まれたセパレータと、を備える発電素子と、
     前記発電素子を第1方向に貫通する絶縁体と、
     前記発電素子を前記第1方向に挟む第1外装体と第2外装体と、を備え、
     前記絶縁体の前記第1方向の長さは、前記発電素子の前記第1方向の長さ以上であり、
     前記絶縁体は、前記正極端子を前記第1外装体に押し当て、前記負極端子を前記第2外装体に押し当てる、電池。
    a power generation element comprising a positive electrode to which a positive electrode terminal is connected, a negative electrode to which a negative electrode terminal is connected, and a separator sandwiched between the positive electrode and the negative electrode;
    an insulator penetrating the power generating element in a first direction;
    A first exterior body and a second exterior body sandwiching the power generation element in the first direction,
    the length of the insulator in the first direction is equal to or greater than the length of the power generation element in the first direction;
    The battery, wherein the insulator presses the positive electrode terminal against the first exterior body and presses the negative electrode terminal against the second exterior body.
PCT/JP2022/043280 2021-12-06 2022-11-24 Battery WO2023106099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021197911A JP2023083913A (en) 2021-12-06 2021-12-06 battery
JP2021-197911 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023106099A1 true WO2023106099A1 (en) 2023-06-15

Family

ID=86730363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043280 WO2023106099A1 (en) 2021-12-06 2022-11-24 Battery

Country Status (2)

Country Link
JP (1) JP2023083913A (en)
WO (1) WO2023106099A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159491A (en) * 2010-02-01 2011-08-18 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2012530337A (en) * 2009-06-18 2012-11-29 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Button battery with wound electrode and method for manufacturing the same
CN110364676A (en) * 2019-07-12 2019-10-22 昆山兴能能源科技有限公司 A kind of button lithium secondary battery
US20210057681A1 (en) * 2019-08-19 2021-02-25 Samsung Sdi Co., Ltd. Rechargeable battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530337A (en) * 2009-06-18 2012-11-29 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Button battery with wound electrode and method for manufacturing the same
JP2011159491A (en) * 2010-02-01 2011-08-18 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
CN110364676A (en) * 2019-07-12 2019-10-22 昆山兴能能源科技有限公司 A kind of button lithium secondary battery
US20210057681A1 (en) * 2019-08-19 2021-02-25 Samsung Sdi Co., Ltd. Rechargeable battery

Also Published As

Publication number Publication date
JP2023083913A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US20090166192A1 (en) Electrode for electrochemical device and electrochemical device
JP4109184B2 (en) Lithium ion secondary battery
JP2012209195A (en) Method for producing active material, electrode and lithium ion secondary battery
US20080113260A1 (en) Prismatic nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2019164965A (en) Lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP7069938B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery using it
JP7020167B2 (en) Non-aqueous electrolyte secondary battery
WO2015046395A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
WO2023106099A1 (en) Battery
JP2004296305A (en) Lithium ion secondary battery
JP4560851B2 (en) Method for producing solid electrolyte battery
JP2000082495A (en) Solid electrolyte battery
WO2023243013A1 (en) Negative electrode active material layer, negative electrode, and lithium-ion secondary battery
WO2023238325A1 (en) Negative electrode active material layer, negative electrode, and lithium-ion rechargeable battery
JP2023096745A (en) battery
US20220384794A1 (en) Lithium ion secondary battery
US20230102390A1 (en) Non-aqueous electrolyte and lithium-ion secondary battery
US20230290938A1 (en) Negative electrode active material, negative electrode and lithium-ion secondary battery
WO2022138243A1 (en) Battery
WO2023140192A1 (en) Negative electrode active material for lithium ion secondary batteries, negative electrode active material layer for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
US20220393167A1 (en) Lithium ion secondary battery
JP4501180B2 (en) Non-aqueous polymer secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904030

Country of ref document: EP

Kind code of ref document: A1