WO2022138243A1 - Battery - Google Patents

Battery Download PDF

Info

Publication number
WO2022138243A1
WO2022138243A1 PCT/JP2021/045590 JP2021045590W WO2022138243A1 WO 2022138243 A1 WO2022138243 A1 WO 2022138243A1 JP 2021045590 W JP2021045590 W JP 2021045590W WO 2022138243 A1 WO2022138243 A1 WO 2022138243A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
battery
active material
positive electrode
material layer
Prior art date
Application number
PCT/JP2021/045590
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 平野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022138243A1 publication Critical patent/WO2022138243A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery.
  • Patent Document 1 in a lithium ion secondary battery in which a laminated battery element is housed in an aluminum laminated film, the positive electrode sheet and the negative electrode sheet have at least one bent portion in a cross section in the stacking direction of the battery element. Therefore, it is disclosed that the leakage of the electrolytic solution from the aluminum laminated film can be suppressed even when affected by the vibration.
  • An object of the present invention is to provide a battery capable of improving safety against impact.
  • the present invention With a winding type battery element It is equipped with a film-like exterior material that houses the battery element.
  • the battery element includes a long positive electrode, a long negative electrode, and a long separator.
  • the positive electrode, the negative electrode, and the separator are wound in the longitudinal direction, and both long sides of the positive electrode are formed.
  • the negative electrode includes a negative electrode current collector, a first negative electrode active material layer provided on the inner surface of the negative electrode current collector, and a second negative electrode active material layer provided on the outer surface of the negative electrode current collector.
  • B 1 ) is 1.1 or more and 2.0 or less
  • the exterior material is a battery having an accommodating portion for accommodating a battery element, and the difference between the width of the negative electrode and the width of the accommodating portion in the width direction of the negative electrode is 1.3 mm or less.
  • the safety of the battery against impact can be improved.
  • FIG. 1 It is an exploded perspective view which shows an example of the structure of the film exterior battery which concerns on 1st Embodiment of this invention. It is sectional drawing along the line II-II of FIG. It is a figure which shows an example of the cross section in the width direction of a positive electrode, a negative electrode, and a separator. It is a block diagram which shows an example of the structure of the electronic device which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is an exploded perspective view showing an example of the configuration of a film exterior battery (hereinafter, simply referred to as “battery”) according to the first embodiment of the present invention.
  • the battery includes a winding type battery element 20 having a flat shape, and a film-shaped exterior material 10 accommodating the battery element 20.
  • the flat battery element 20 also includes a square battery element 20.
  • a positive electrode lead 11 and a negative electrode lead 12 are attached to the battery element 20.
  • the battery When the battery is viewed in a plan view from a direction perpendicular to its main surface, the battery has a rectangular shape.
  • the positive electrode lead 11 and the negative electrode lead 12 are led out in the same direction from one short side of the battery.
  • the short side of the battery element 20 from which the positive electrode lead 11 and the negative electrode lead 12 are derived is referred to as a top side
  • the short side opposite to the short side is referred to as a bottom side.
  • the positive electrode lead 11 and the negative electrode lead 12 have, for example, a thin plate shape or a mesh shape.
  • the positive electrode lead 11 and the negative electrode lead 12 are made of a metal material such as aluminum (Al), copper (Cu), nickel (Ni), or stainless steel (SUS).
  • An adhesion film 13 for suppressing the intrusion of outside air is inserted between the exterior material 10 and the positive electrode lead 11 and between the exterior material 10 and the negative electrode lead 12, respectively.
  • the adhesion film 13 is made of a material having adhesion to the positive electrode lead 11 and the negative electrode lead 12, for example, a polyolefin resin such as polyethylene (PE), polypropylene (PP), modified polyethylene or modified polypropylene.
  • the exterior material 10 has a rectangular shape, and is folded back so that its sides overlap each other from the central portion in the longitudinal direction thereof. A notch or the like may be provided in advance in the central portion to be the folded portion.
  • the battery element 20 is sandwiched between the folded exterior materials 10. Seal portions are formed on the top side and the two long side sides (both sides) of the circumference of the folded exterior material 10.
  • the exterior material 10 has an accommodating portion 10A for accommodating the battery element 20 on one of the surfaces to be overlapped.
  • the accommodating portion 10A is a recess provided on one of the surfaces to be overlapped, and is formed by, for example, deep drawing.
  • the exterior material 10 is made of, for example, a flexible rectangular laminated film.
  • the exterior material 10 has a metal layer, a first resin layer provided on one surface (first surface) of the metal layer, and a second surface provided on the other surface (second surface) of the metal layer. It is provided with a resin layer of. If necessary, the exterior material 10 may further include an adhesive layer between the metal layer and the first resin layer, and at least one of the metal layer and the second resin layer. Of both sides of the exterior material 10, the surface on the first resin layer side is the outer surface, and the surface on the second resin layer side is the inner surface for accommodating the battery element 20.
  • the metal layer is a barrier layer that suppresses the ingress of moisture and plays a role of protecting the battery element 20 that is a stored object.
  • the metal layer may be a metal leaf and may include, for example, aluminum or an aluminum alloy.
  • the first resin layer is a surface protective layer having a function of protecting the surface of the exterior material 10.
  • the first resin layer contains, for example, at least one of nylon (Ny), polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • the second resin layer is a heat-sealing resin layer for sealing the peripheral edges of the inner side surfaces of the folded exterior material 10 by heat-sealing.
  • the second resin layer contains, for example, at least one of polypropylene and polyethylene.
  • the exterior material 10 may be made of a laminated film having another structure, for example, a polymer film such as polypropylene or a metal film, instead of the above-mentioned laminated film.
  • a polymer film such as polypropylene or a metal film
  • it may be composed of a laminated film in which an aluminum film is used as a core material and a polymer film is laminated on one side or both sides thereof.
  • the exterior material 10 may further include a colored layer from the viewpoint of the beauty of appearance, and at least one of the first resin layer and the second resin layer contains a coloring material. You may.
  • the exterior material 10 further includes an adhesive layer between the metal layer and the first resin layer, and at least one of the metal layer and the second resin layer, the adhesive layer provides a coloring material. It may be included.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the battery element 20 shown in FIG.
  • the battery element 20 includes a long positive electrode 21, a long negative electrode 22, and a long separator 23, and the separator 23 is sandwiched between the positive electrode 21 and the negative electrode 22.
  • the positive electrode 21, the negative electrode 22, and the separator 23 are wound in the longitudinal direction so as to be flat and spiral.
  • a space is provided on the innermost circumference of the battery element 20.
  • a folded portion of the exterior material 10 is provided on one long side of the negative electrode 22 (that is, the bottom side of the negative electrode 22), and the exterior material 10 is provided on the other long side of the negative electrode 22 (that is, the top side of the negative electrode 22).
  • a seal portion is provided.
  • FIG. 3 is a diagram showing an example of a cross section of the positive electrode 21, the negative electrode 22, and the separator 23 in the width direction.
  • the width direction 22D of the positive electrode 21 and the negative electrode 22 both long sides of the positive electrode 21 are provided inside both long sides of the negative electrode 22.
  • both long sides of the negative electrode 22 are provided inside both long sides of the separator 23.
  • the separator 23 is interposed between the negative electrode 22 and the end on the long side of the positive electrode 21, it is possible to prevent the negative electrode 22 from coming into contact with the end on the long side of the positive electrode 21. Therefore, the risk of a short circuit between the positive electrode 21 and the negative electrode 22 can be reduced, and the safety of the battery can be improved.
  • the outermost peripheral portion of the battery element 20 is protected by a protective tape 24.
  • An electrolytic solution as an electrolyte is injected into the exterior material 10 and impregnated into the positive electrode 21, the negative electrode 22, and the separator 23.
  • the positive electrode 21 is, for example, a positive electrode current collector 21A, a first positive electrode active material layer 21B 1 provided on the inner surface of the positive electrode current collector 21A, and a second positive electrode current collector 21A provided on the outer surface of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B 2 of the above is provided.
  • the "inner surface” means a surface located on the winding center side of the battery element 20
  • the “outer surface” means a surface located on the opposite side of the winding center of the battery element 20. Means.
  • first positive electrode active material layer 21B 1 and the second positive electrode active material layer 21B 2 are collectively referred to, they are referred to as a positive electrode active material layer 21B.
  • the positive electrode active material layer 21B is provided up to both ends in the width direction of the positive electrode current collector 21A.
  • the positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
  • the positive electrode current collector 21A may have a plate shape or a mesh shape.
  • the positive electrode lead 11 may be configured by extending a part of the peripheral edge of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B contains one or more positive electrode active materials capable of occluding and releasing lithium.
  • the positive electrode active material layer 21B may further contain at least one selected from the group consisting of a binder and a conductive auxiliary agent, if necessary.
  • a lithium-containing compound such as a lithium oxide, a lithium phosphorus oxide, a lithium sulfide or an interlayer compound containing lithium is suitable, and these two types are suitable. The above may be mixed and used.
  • a lithium-containing compound containing lithium, a transition metal element and oxygen is preferable.
  • Examples of such a lithium-containing compound include a lithium composite oxide having a layered rock salt type structure represented by the formula (A), a lithium composite phosphate having an olivine type structure represented by the formula (B), and the like. Can be mentioned.
  • the transition metal element contains at least one selected from the group consisting of Co, Ni, Mn and Fe.
  • a lithium-containing compound include a lithium composite oxide having a layered rock salt type structure represented by the formula (C), the formula (D) or the formula (E), and a spinel type represented by the formula (F).
  • examples thereof include a lithium composite oxide having a structure, a lithium composite phosphate having an olivine-type structure represented by the formula (G), and specifically, LiNi 0.50 Co 0.20 Mn 0.30 O. 2 , LiCoO 2 , LiNiO 2 , LiNi a Co 1-a O 2 (0 ⁇ a ⁇ 1), LiMn 2 O 4 or LiFePO 4 and the like.
  • M1 represents at least one of the elements selected from Group 2 to Group 15 excluding Ni and Mn.
  • X is from the group consisting of Group 16 elements and Group 17 elements other than oxygen. Indicates at least one selected.
  • P, q, y, z are 0 ⁇ p ⁇ 1.5, 0 ⁇ q ⁇ 1.0, 0 ⁇ r ⁇ 1.0, ⁇ 0.10 ⁇ y ⁇ 0. .20, a value within the range of 0 ⁇ z ⁇ 0.2.
  • M2 represents at least one of the elements selected from groups 2 to 15.
  • a and b are 0 ⁇ a ⁇ 2.0 and 0.5 ⁇ b ⁇ 2.0. It is a value within the range of.
  • M3 was selected from the group consisting of Co, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Zr, Mo, Sn, Ca, Sr and W.
  • F, g, h, j and k are 0.8 ⁇ f ⁇ 1.2, 0 ⁇ g ⁇ 0.5, 0 ⁇ h ⁇ 0.5, g + h ⁇ 1, ⁇ 0.
  • the value is in the range of 1 ⁇ j ⁇ 0.2 and 0 ⁇ k ⁇ 0.1.
  • the composition of lithium differs depending on the state of charge and discharge, and the value of f represents the value in the state of complete discharge.
  • M4 was selected from the group consisting of Co, Mn, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr and W. Represents at least one species.
  • M, n, p and q are 0.8 ⁇ m ⁇ 1.2, 0.005 ⁇ n ⁇ 0.5, ⁇ 0.1 ⁇ p ⁇ 0.2, 0 ⁇ q ⁇ The value is in the range of 0.1.
  • the composition of lithium differs depending on the state of charge and discharge, and the value of m represents the value in the state of complete discharge.
  • Li r Co (1-s) M5 s O (2-t) Fu ... (E) M5 was selected from the group consisting of Ni, Mn, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr and W. Represents at least one species.
  • r, s, t and u are 0.8 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, ⁇ 0.1 ⁇ t ⁇ 0.2, 0 ⁇ u ⁇ 0. It is a value within the range of 1.
  • the composition of lithium differs depending on the state of charge and discharge, and the value of r represents the value in the state of complete discharge.
  • Li v Mn 2-w M6 w O x F y ... (F) M6 was selected from the group consisting of Co, Ni, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr and W. Represents at least one type.
  • V, w, x and y are 0.9 ⁇ v ⁇ 1.1, 0 ⁇ w ⁇ 0.6, 3.7 ⁇ x ⁇ 4.1, 0 ⁇ y ⁇ 0.1.
  • the composition of lithium differs depending on the state of charge and discharge, and the value of v represents the value in the state of complete discharge.
  • Li z M7PO 4 ... (G) (However, in the formula (G), M7 is selected from the group consisting of Co, Mg, Fe, Ni, Mg, Al, B, Ti, V, Nb, Cu, Zn, Mo, Ca, Sr, W and Zr. Z represents a value within the range of 0.9 ⁇ z ⁇ 1.1.
  • the composition of lithium differs depending on the state of charge and discharge, and the value of z is a value in the state of complete discharge. Represents.
  • lithium-free inorganic compounds such as MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS can be used as the positive electrode active material capable of occluding and releasing lithium. can.
  • the positive electrode active material capable of occluding and releasing lithium may be other than the above. Further, two or more kinds of the positive electrode active materials exemplified above may be mixed in any combination.
  • Binder for example, at least one selected from the group consisting of resin materials such as polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber and carboxymethyl cellulose, and copolymers mainly composed of these resin materials. Seeds are used.
  • resin materials such as polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber and carboxymethyl cellulose, and copolymers mainly composed of these resin materials. Seeds are used.
  • the conductive auxiliary agent for example, at least one carbon material selected from the group consisting of graphite, carbon fiber, carbon black, acetylene black, ketjen black, carbon nanotubes, graphene and the like can be used.
  • the conductive auxiliary agent may be any material having conductivity, and is not limited to the carbon material.
  • a metal material, a conductive polymer material, or the like may be used as the conductive auxiliary agent.
  • the shape of the conductive auxiliary agent includes, for example, granules, scales, hollows, needles, cylinders, and the like, but is not particularly limited to these shapes.
  • the negative electrode 22 is, for example, a negative electrode current collector 22A, a first negative electrode active material layer 22B 1 provided on the inner surface of the negative electrode current collector 22A, and a second negative electrode current collector 22A provided on the inner surface of the negative electrode current collector 22A.
  • the negative electrode active material layer 22B 2 of the above is provided.
  • the first negative electrode active material layer 22B 1 and the second negative electrode active material layer 22B 2 are collectively referred to, they are referred to as a negative electrode active material layer 22B.
  • the negative electrode active material layer 22B is provided up to both ends of the negative electrode current collector 22A in the width direction 22D.
  • the negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
  • the negative electrode current collector 22A may have a plate shape or a mesh shape.
  • the negative electrode lead 12 may be configured by extending a part of the peripheral edge of the negative electrode current collector 22A.
  • the negative electrode active material layer 22B contains one or more negative electrode active materials capable of occluding and releasing lithium, and a binder.
  • the negative electrode active material layer 22B may further contain at least one selected from the group consisting of a thickener and a conductive auxiliary agent, if necessary.
  • the electrochemical equivalent of the negative electrode 22 or the negative electrode active material is larger than the electrochemical equivalent of the positive electrode 21, and theoretically, lithium metal does not precipitate on the negative electrode 22 during charging. It is preferable to have.
  • Negative electrode active material examples include non-graphitizable carbon, easily graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, calcined organic polymer compounds, carbon fibers, and carbon materials such as activated carbon.
  • cokes include pitch coke, needle coke, petroleum coke and the like.
  • An organic polymer compound calcined body is a carbonized product obtained by calcining a polymer material such as a phenol resin or a furan resin at an appropriate temperature, and a part of it is graphitizable carbon or graphitizable carbon. Some are classified as.
  • These carbon materials are preferable because the change in the crystal structure that occurs during charging / discharging is very small, a high charging / discharging capacity can be obtained, and good cycle characteristics can be obtained.
  • graphite is preferable because it has a large electrochemical equivalent and can obtain a high energy density.
  • graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
  • those having a low charge / discharge potential, specifically those having a charge / discharge potential close to that of lithium metal are preferable because high energy density of the battery can be easily realized.
  • a material containing at least one selected from the group consisting of a metal element and a metalloid element as a constituent element for example, an alloy, a compound or a mixture
  • a material containing at least one selected from the group consisting of a metal element and a metalloid element as a constituent element for example, an alloy, a compound or a mixture
  • the alloy includes not only an alloy composed of two or more kinds of metal elements but also an alloy containing one or more kinds of metal elements and one or more kinds of metalloid elements. It may also contain non-metal elements.
  • Examples of such a negative electrode active material include a metal element or a metalloid element capable of forming an alloy with lithium. Specific examples thereof include Mg, B, Al, Ti, Ga, In, Si, Ge, Sn, Pb, Bi, Cd, Ag, Zn, Hf, Zr, Y, Pd or Pt. These may be crystalline or amorphous.
  • the negative electrode active material preferably contains a metal element or a metalloid element of Group 4B in the short periodic table as a constituent element, and more preferably contains at least one of Si and Sn as a constituent element. This is because Si and Sn have a large ability to occlude and release lithium, and a high energy density can be obtained.
  • Examples of such a negative electrode active material include a simple substance of Si, an alloy or a compound, a simple substance of Sn, an alloy or a compound, and a material having at least one or more of them.
  • alloy of Si for example, as the second constituent element other than Si, Sn, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al
  • examples include those containing at least one selected from the group consisting of P, Ga and Cr.
  • alloy of Sn for example, as the second constituent element other than Sn, Si, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al, Examples include those containing at least one selected from the group consisting of P, Ga and Cr.
  • Sn compound or Si compound examples include those containing O or C as a constituent element. These compounds may contain the second constituent element described above.
  • the Sn-based negative electrode active material preferably contains Co, Sn, and C as constituent elements and has a low crystallinity or an amorphous structure.
  • negative electrode active materials include, for example, metal oxides or polymer compounds capable of occluding and releasing lithium.
  • metal oxides include lithium titanium oxide containing Li and Ti such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, molybdenum oxide and the like.
  • the polymer compound include polyacetylene, polyaniline, polypyrrole and the like.
  • Binder As the binder, the same as that of the positive electrode active material layer 21B can be exemplified.
  • the bottom side end portion of the negative electrode 22 (that is, the one long side end portion of the negative electrode 22) is bent toward the inner side surface side of the negative electrode 22. Since the bottom side end is bent in this way, the direction in which the bottom side end of the negative electrode 22 bends when an impact is applied to the battery is defined as the space provided on the innermost circumference of the battery element 20. Can be constrained in direction. As a result, when an impact is applied to the battery, it is possible to prevent the bottom end of the negative electrode 22 from being deformed so that the positive electrode 21 and the bottom end of the negative electrode 22 come into contact with each other. The risk of short circuit between 21 and the negative electrode 22 can be reduced. Therefore, it is possible to improve the safety of the battery against impact due to dropping or the like.
  • the bending of the bottom side end portion of the negative electrode 22 may be bending or bending.
  • Thickness ratio of the end face thickness A1 of the second negative electrode active material layer 22B 2 on the bottom side of the negative electrode 22 to the end face thickness B 1 of the first negative electrode active material layer 22B 1 on the bottom side of the negative electrode 22 (A 1 / B 1 ) is 1.1 or more and 2.0 or less.
  • the thickness ratio (A 1 / B 1 ) is less than 1.1, the strengths of the first negative electrode active material layer 22B 1 and the second negative electrode active material layer 22B 2 approach each other, so that a shock is applied to the battery. At that time, the negative electrode 22 is less likely to be deformed in a predetermined direction, and the safety of the battery against impact is lowered.
  • the thickness ratio (A 1 / B 1 ) exceeds 2.0, the difference in thickness change due to expansion and contraction of the first negative electrode active material layer 22B 1 and the second negative electrode active material layer 22B 2 during charging and discharging. Will increase. This increases the risk of damage to the negative electrode current collector 22A at the bent portion of the bottom end, and reduces the safety of the battery against impact.
  • the end face thickness A1 of the second negative electrode active material layer 22B 2 on the bottom side of the negative electrode 22 is preferably 50 ⁇ m or more and 90 ⁇ m or less.
  • the end face thickness B 1 of the first negative electrode active material layer 22B 1 on the bottom side of the negative electrode 22 is preferably 30 ⁇ m or more and 80 ⁇ m or less.
  • the end face thickness A 1 , the end face thickness B 1 and the thickness ratio (A 1 / B 1 ) are measured as follows. First, after discharging the battery to 3.0 V, the battery is disassembled and the negative electrode 22 is taken out. Next, after the negative electrode 22 is dried, the innermost peripheral portion of the negative electrode 22 is cut out to prepare a measurement sample. Next, the measurement sample is processed by Ar ion milling processing (CP processing) to form a smooth cross section parallel to both the width direction 22D and the thickness direction of the negative electrode 22. Next, using a scanning electron microscope (SEM), the portion of the above-mentioned forming cross section corresponding to the bottom end portion of the negative electrode 22 is observed, and an SEM image (secondary electron image) is obtained. ..
  • SEM scanning electron microscope
  • the observation conditions of the SEM image are as follows. Equipment: JSM-7401F manufactured by JEOL Ltd. Irradiation voltage: 0.5kV Magnification: 2000 times Next, from the acquired SEM image, the end face thickness B 1 of the first negative electrode active material layer 22B 1 and the end face thickness A 1 of the second negative electrode active material layer 22B 2 are obtained. Next, the thickness ratio (A 1 / B 1 ) is calculated using the obtained end face thickness B 1 and end face thickness A 1 .
  • the top side end portion of the negative electrode 22 (that is, the other long side end portion of the negative electrode 22) may or may not be bent toward the outer side surface side or the inner side surface side of the negative electrode 22. As shown in FIG. 3, it is preferable that the negative electrode 22 is bent toward the outer surface side. Since the top end of the negative electrode 22 is bent toward the outer surface side of the negative electrode 22, the contact between the electrode terminal provided on the innermost peripheral portion and the electrode (contact between the positive electrode lead 11 and the negative electrode 22 and / or Since the contact between the negative electrode lead 12 and the positive electrode 21) can be suppressed, the safety of the battery against impact can be further improved.
  • the bending of the top side end portion of the negative electrode 22 may be bending or bending.
  • the direction of bending the end portion is not limited to the inner side surface side of the negative electrode 22.
  • Thickness ratio of the end face thickness A 2 of the second negative electrode active material layer 22B 2 on the top side of the negative electrode 22 to the end face thickness B 2 of the first negative electrode active material layer 22B 1 on the top side of the negative electrode 22 is preferably 0.5 or more and 0.9 or less.
  • the thickness ratio (A 2 / B 2 ) is 0.5 or more, the difference in thickness change due to expansion and contraction of the first negative electrode active material layer 22B 1 and the second negative electrode active material layer 22B 2 during charging and discharging It is possible to suppress an excessive increase. As a result, the risk of damage to the negative electrode current collector 22A at the bent portion on the top side end can be reduced, so that the safety of the battery against impact can be further improved.
  • the thickness ratio (A 2 / B 2 ) is 0.9 or less, the strength of the first negative electrode active material layer 22B 1 and the second negative electrode active material layer 22B 2 are different, so that the battery is impacted. Is added, the negative electrode 22 is likely to be deformed in a predetermined direction, so that the safety of the battery against impact can be further improved.
  • the end face thickness A 2 of the second negative electrode active material layer 22B 2 on the top side of the negative electrode 22 is preferably 30 ⁇ m or more and 80 ⁇ m or less.
  • the end face thickness B 2 of the first negative electrode active material layer 22B 1 on the top side of the negative electrode 22 is preferably 50 ⁇ m or more and 90 ⁇ m or less.
  • an SEM image is obtained by observing the portion corresponding to the top side end portion of the negative electrode 22 in the formed cross section of the sample. Except for the above, the method for measuring the end face thickness A 1 , the end face thickness B 1 and the thickness ratio (A 1 / B 1 ) is the same.
  • the difference ⁇ WA A between the width W 21 of the negative electrode 22 and the width W 10 of the accommodating portion 10A in the width direction 22D of the negative electrode 22 is 1.3 mm or less.
  • ⁇ WA exceeds 1.3 mm, the surplus space between the bottom side end surface of the battery element 20 and the exterior material 10 and the surplus space between the top side end surface of the battery element 20 and the exterior material 10 become large. Therefore, when an impact such as a drop is applied to the battery, the movement (displacement, slippage, etc.) of the battery element 20 in the accommodating portion 10A cannot be suppressed.
  • the shape of the bottom side end portion of the negative electrode 22 is likely to change with charging and discharging. Therefore, there is a possibility that the bending of the bottom side end portion (the bending toward the inner side surface side of the negative electrode 22), which is advantageous against an impact such as dropping, cannot be maintained. Therefore, the safety of the battery against impact is reduced.
  • ⁇ WA A exceeds 1.3 mm
  • the restraint of the top side end portion of the battery element 20 by the exterior material 10 is weakened. Therefore, when the top side end portion is bent toward the outer surface side of the negative electrode 22, the top side end portion is bent (bending toward the outer surface side of the negative electrode 22), which is advantageous against impacts such as dropping. May not be maintained.
  • the width W 10 of the accommodating portion 10A means the width of the internal space of the accommodating portion 10A measured in the width direction 22D of the negative electrode 22 at the position of the depth 1/2 of the accommodating portion 10A.
  • the difference ⁇ WB between the width W 22 of the negative electrode 22 and the width W 21 of the positive electrode 21 is preferably 1.2 mm or more and 1.8 mm or less.
  • ⁇ WB is 1.2 mm or more
  • the positive electrode in the width direction is positive even if the deviation that occurs between the positive electrode 21 and the negative electrode 22 during winding and the deviation that occurs between the positive electrode 21 and the negative electrode 22 when the battery is dropped are taken into consideration. Since the risk that the positional relationship between the 21 and the negative electrode 22 is reversed can be reduced, the safety of the battery against impact can be further improved.
  • ⁇ WB is 1.8 mm or less, deformation of the negative electrode 22 when an impact is applied can be suppressed, so that the safety of the battery against an impact can be further improved.
  • the difference ⁇ WC between the width W 23 of the separator 23 and the width W 22 of the negative electrode 22 is 3.0 mm or more and 4.0 mm or less.
  • ⁇ WC 3.0 mm or more, even if the deviation generated between the separator 23 and the negative electrode 22 during winding and the deviation generated between the separator 23 and the negative electrode 22 when the battery is dropped are taken into consideration, the separator 23 and the negative electrode 22 are taken into consideration. Since the clearance between 22 can be maintained, the safety of the battery against impact can be further improved.
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 23 is made of, for example, polytetrafluoroethylene, a polyolefin resin (polypropylene (PP) or polyethylene (PE), etc.), an acrylic resin, a styrene resin, a polyester resin or a nylon resin, or a resin blended with these resins. It is composed of a quality film, and may have a structure in which two or more of these porous films are laminated.
  • the porous film made of polyolefin is preferable because it has an excellent short-circuit prevention effect and can improve the safety of the battery by the shutdown effect.
  • polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect in the range of 100 ° C. or higher and 160 ° C. or lower and is also excellent in electrochemical stability.
  • low-density polyethylene, high-density polyethylene or linear polyethylene are preferably used because they have an appropriate melting temperature and are easily available.
  • a material obtained by copolymerizing or blending a resin having chemical stability with polyethylene or polypropylene can be used.
  • the porous membrane may have a structure of three or more layers in which a polypropylene layer, a polyethylene layer, and a polypropylene layer are sequentially laminated.
  • a polypropylene layer a polypropylene layer
  • PE a polypropylene layer
  • it is desirable to have a three-layer structure of PP / PE / PP and have a mass ratio [mass%] of PP to PE of PP: PE 60: 40 to 75:25.
  • a single-layer base material containing 100% by mass of PP or 100% by mass of PE can be used.
  • the method for producing the separator 23 may be wet or dry.
  • a non-woven fabric may be used as the separator 23.
  • the fiber constituting the non-woven fabric at least one selected from the group consisting of aramid fiber, glass fiber, polyolefin fiber, polyethylene terephthalate (PET) fiber, nylon fiber and the like can be used.
  • the separator 23 may have a structure including a base material and a surface layer provided on one side or both sides of the base material.
  • the surface layer contains inorganic particles having an insulating property and a resin material that binds the inorganic particles to the surface of the base material and also binds the inorganic particles to each other.
  • This resin material may have, for example, a three-dimensional network structure in which fibrils are formed and a plurality of fibrils are connected. In this case, the inorganic particles may be supported on the resin material having this three-dimensional network structure. Further, the resin material may bind the surface of the base material or the inorganic particles to each other without forming fibril. In this case, higher binding properties can be obtained.
  • the electrolytic solution is a so-called non-aqueous electrolytic solution, and contains a non-aqueous solvent (organic solvent) and an electrolyte salt dissolved in the non-aqueous solvent.
  • the electrolytic solution may contain known additives in order to improve the battery characteristics.
  • the battery may be provided with an electrolyte layer containing an electrolytic solution and a polymer compound serving as a retainer for holding the electrolytic solution, instead of the electrolytic solution.
  • the electrolyte layer may be in the form of a gel.
  • the non-aqueous solvent further contains at least one cyclic carbonate ester from the viewpoint of improving the cycle characteristics.
  • the cyclic carbonate ester it is preferable to use at least one selected from the group consisting of ethylene carbonate (EC) and propylene carbonate (PC), and it is particularly preferable to contain both ethylene carbonate and propylene carbonate.
  • the non-aqueous solvent further contains at least one chain-like carbonic acid ester from the viewpoint of improving ionic conductivity.
  • the chain carbonic acid ester it is preferable to use at least one selected from the group consisting of diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate and the like.
  • the non-aqueous solvent may contain at least one selected from the group consisting of 2,4-difluoroanisole, vinylene carbonate and the like. This is because 2,4-difluoroanisole can further improve the discharge capacity, and vinylene carbonate can further improve the cycle characteristics.
  • non-aqueous solvents include butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methylnitrile, 1,3-dioxolane, 4-methyl-1,3.
  • the electrolyte salt for example, at least one lithium salt is used.
  • the lithium salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO). 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, difluoro [oxorat-O, O'] lithium borate, lithium bisoxalate borate, LiBr and the like can be mentioned at least one selected from the group.
  • LiPF 6 is preferable because it can obtain high ionic conductivity and further improve the cycle characteristics.
  • the positive electrode 21 is manufactured as follows. First, for example, a positive electrode active material, a binder, and a conductive auxiliary agent are mixed to prepare a positive electrode mixture, and this positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) and pasted. A positive electrode mixture slurry is prepared. Next, this positive electrode mixture slurry is applied to the first surface and the second surface of the positive electrode current collector 21A, respectively, the solvent is dried, and the first positive electrode active material layer is compression-molded by a roll press machine or the like. 21B 1 and a second positive electrode active material layer 21B 2 are formed to obtain a long positive electrode 21. The obtained positive electrode 21 may be slit to a predetermined width.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode 22 is manufactured as follows. First, for example, a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a paste-like negative electrode mixture slurry. do. Next, this negative electrode mixture slurry is applied to the first surface and the second surface of the negative electrode current collector 22A, respectively, the solvent is dried, and the first negative electrode active material layer is compression-molded by a roll press machine or the like. The 22B 1 and the second negative electrode active material layer 22B 2 are formed to obtain a long negative electrode 22. The obtained negative electrode 22 may be slit to a predetermined width.
  • one long side end of the negative electrode 22 is placed on the first surface side of the negative electrode 22. Bend.
  • the other long side end is applied to the second surface side of the negative electrode 22. Bend the part.
  • the end of one long side of the negative electrode 22 is the bottom side of the finished battery, and the end of the other long side of the negative electrode 22 is the top side of the finished battery.
  • the first surface of the negative electrode 22 is the inner surface of the finished battery, and the second surface of the negative electrode 22 is the outer surface of the finished battery.
  • the winding type battery element 20 is manufactured as follows. First, the positive electrode lead 11 is attached to one end of the positive electrode current collector 21A by welding, and the negative electrode lead 12 is attached to one end of the negative electrode current collector 22A by welding. Next, the positive electrode 21 and the negative electrode 22 are wound around the flat winding core via the separator 23, wound many times in the longitudinal direction, and then the protective tape 24 is adhered to the outermost peripheral portion to adhere the battery element 20. To get.
  • the battery element 20 is sealed with the exterior material 10 as follows. First, the battery element 20 is accommodated in the accommodating portion 10A, the battery element 20 is sandwiched between the exterior materials 10, and the outer peripheral edge portion excluding one side is heat-sealed to form a bag shape, and the battery element 20 is accommodated inside the exterior material 10. .. At that time, the adhesion film 13 is inserted between the positive electrode lead 11 and the negative electrode lead 12 and the exterior material 10. The adhesion film 13 may be attached to the positive electrode lead 11 and the negative electrode lead 12 in advance. Next, the electrolytic solution is injected into the exterior material 10 from one side of the unfused, and then one side of the unfused is heat-fused and sealed in a vacuum atmosphere. As a result, the batteries shown in FIGS. 1 and 2 can be obtained.
  • the bottom side end portion of the negative electrode 22 is bent toward the inner side surface side of the negative electrode 22 (that is, the innermost peripheral side of the battery element 30). Since the bottom side end is bent in this way, the direction in which the bottom side end of the negative electrode 22 bends when an impact is applied to the battery is defined as the space provided on the innermost circumference of the battery element 20. Can be constrained in direction. As a result, when an impact is applied to the battery, the bottom side end portion of the negative electrode 22 is prevented from being deformed so that the positive electrode 21 and the bottom side end portion of the negative electrode 22 come into contact with each other, and the positive electrode 21 and the negative electrode 22 are prevented from being deformed. The risk of short circuit can be reduced. Therefore, it is possible to improve the safety of the battery against impact due to dropping or the like.
  • the difference ⁇ WA between the width W 21 of the negative electrode 22 and the width W 10 of the accommodating portion 10A in the width direction 22D of the negative electrode 22 is 1.3 mm or less.
  • the surplus space between the bottom side end surface of the battery element 20 and the exterior material 10 becomes smaller, the restraint of the bottom side end portion of the battery element 20 by the exterior material 10 is strengthened, so that the negative electrode 22 is charged and discharged. It is possible to suppress the change in the shape of the bottom side end portion. Therefore, it is possible to maintain the bending of the bottom side end portion (the bending toward the inner side surface side of the negative electrode 22), which is advantageous for impacts such as dropping.
  • FIG. 4 shows an example of the configuration of the electronic device 400 according to the second embodiment of the present invention.
  • the electronic device 400 includes an electronic circuit 401 of the main body of the electronic device and a battery pack 300.
  • the battery pack 300 is electrically connected to the electronic circuit 401 via the positive electrode terminal 331a and the negative electrode terminal 331b.
  • the electronic device 400 may have a structure in which the battery pack 300 can be attached and detached.
  • Examples of the electronic device 400 include a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a personal digital assistant (PDA), a display device (LCD (Liquid Crystal Display), and an EL (Electro Luminescence). ) Display, electronic paper, etc.), image pickup device (for example, digital still camera, digital video camera, etc.), audio equipment (for example, portable audio player), game equipment, cordless phone handset, electronic book, electronic dictionary, radio, headphones, navigation Systems, memory cards, pacemakers, hearing aids, power tools, electric shavers, refrigerators, air conditioners, TVs, stereos, water heaters, microwave ovens, dishwashers, washing machines, dryers, lighting equipment, toys, medical equipment or robots, etc. However, it is not limited to this.
  • the electronic circuit 401 includes, for example, a CPU (Central Processing Unit), a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
  • a CPU Central Processing Unit
  • the battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302.
  • the battery pack 300 may further include an exterior material (not shown) that houses the assembled battery 301 and the charge / discharge circuit 302, if necessary.
  • the assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • the plurality of secondary batteries 301a are connected, for example, in n parallel m series (n and m are positive integers).
  • FIG. 4 shows an example in which six secondary batteries 301a are connected in two parallels and three series (2P3S).
  • the secondary battery 301a the battery according to the first embodiment described above is used.
  • the battery pack 300 includes an assembled battery 301 composed of a plurality of secondary batteries 301a
  • the battery pack 300 includes one secondary battery 301a instead of the assembled battery 301. It may be adopted.
  • the charge / discharge circuit 302 is a control unit that controls the charge / discharge of the assembled battery 301. Specifically, at the time of charging, the charging / discharging circuit 302 controls the charging of the assembled battery 301. On the other hand, at the time of discharging (that is, when the electronic device 400 is used), the charge / discharge circuit 302 controls the discharge to the electronic device 400.
  • the exterior material for example, a case made of a metal, a polymer resin, a composite material thereof, or the like can be used.
  • the composite material include a laminate in which a metal layer and a polymer resin layer are laminated.
  • the end face thicknesses A 1 , B 1 , A 2 , B 2 of the finished battery and the thickness ratios A 1 / B 1 and A 2 / B 2 of the finished battery are included in the first embodiment. It was obtained by the measurement method described above.
  • the positive electrode was prepared as follows. First, 97 parts by mass of lithium cobalt composite oxide as a positive electrode active material, 1 part by mass of carbon black as a conductive agent, and 2 parts by mass of polyvinylidene fluoride (PVdF) as a binder are mixed to prepare a positive electrode mixture. By dispersing it in N-methyl-2-pyrrolidone, a paste-like positive electrode mixture slurry was obtained. Next, the positive electrode mixture slurry is applied to the first surface and the second surface of the strip-shaped aluminum foil (positive electrode current collector) having a thickness of 10 ⁇ m, dried, and then compression-molded by a roll press machine.
  • PVdF polyvinylidene fluoride
  • a first positive electrode active material layer and a second positive electrode active material layer were formed on the first surface and the second surface of the aluminum foil, respectively.
  • a strip-shaped positive electrode was obtained by slitting (cutting) the obtained laminate to a predetermined width.
  • the negative electrode was prepared as follows. First, 96% by mass of artificial graphite powder as a negative electrode active material and 4% by mass of polyvinylidene fluoride (PVdF) as a binder are mixed to prepare a negative electrode mixture, and then this negative electrode mixture is used as an organic solvent (N-methyl-). 2-Pyrrolidone: NMP) was dispersed to prepare a paste-like negative electrode mixture slurry. Next, the negative electrode mixture slurry is applied to the first surface and the second surface of the strip-shaped copper foil (negative electrode current collector) having a thickness of 10 ⁇ m, dried, and then compression-molded by a roll press machine.
  • PVdF polyvinylidene fluoride
  • a first negative electrode active material layer and a second negative electrode active material layer were formed on the first surface and the second surface of the copper foil, respectively.
  • the first surface of the copper foil is the surface that becomes the inner surface after the negative electrode is wound
  • the second surface of the copper foil is the surface that becomes the outer surface after the negative electrode is wound.
  • a strip-shaped negative electrode was obtained by slitting (cutting) the obtained laminate to a predetermined width.
  • the ends on both long sides of the negative electrode using a metal plate were bent.
  • the bottom end of the negative electrode is bent toward the inner side surface of the negative electrode in the finished battery, and the top end of the negative electrode is bent toward the outer side of the negative electrode in the finished battery.
  • the bending direction of the end was set.
  • the thickness of the negative electrode active material layer was adjusted by changing the coating machine gap at the time of applying the negative electrode mixture slurry.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • the battery was made as follows. First, an aluminum positive electrode lead was welded to the positive electrode current collector, and a copper negative electrode lead was welded to the negative electrode current collector. Subsequently, the positive electrode and the negative electrode are brought into close contact with each other via a microporous polyethylene film, then wound in the longitudinal direction, and a protective tape is attached to the outermost peripheral portion to form a flat wound battery. The element was manufactured.
  • the battery element is accommodated in the accommodating portion, the battery element is loaded between the exterior materials, and the three sides of the exterior material are heat-sealed. , One side has an opening without heat fusion.
  • a moisture-proof aluminum laminated film in which a nylon film having a thickness of 25 ⁇ m, an aluminum foil having a thickness of 40 ⁇ m, and a polypropylene film having a thickness of 30 ⁇ m were laminated in order from the outermost layer was used.
  • the electrolytic solution was injected through the opening of the exterior material, and the remaining one side of the exterior material was heat-sealed under reduced pressure to seal the battery element. As a result, the target battery was obtained.
  • both long sides of the positive electrode become both long sides of the negative electrode. It is provided on the inside so that both long sides of the negative electrode are provided inside both long sides of the separator.
  • ⁇ W A 0.9 mm
  • ⁇ W B 1.5 mm
  • ⁇ WC 3.5 mm.
  • ⁇ WA A Difference between the width W 21 of the negative electrode and the width W 10 of the accommodating portion in the width direction of the negative electrode (see FIGS. 1 and 3).
  • ⁇ WB Difference between the negative electrode width W 22 and the positive electrode width W 21 (see FIG. 3).
  • ⁇ WC Difference between the width W 23 of the separator and the width W 22 of the negative electrode (see FIG. 3).
  • both lengths are such that the bottom end of the negative electrode is bent toward the outer side of the negative electrode in the finished battery, and the top end of the negative electrode is bent toward the outer side of the negative electrode in the finished battery.
  • a battery was obtained in the same manner as in Example 2 except that the bending direction of the end portion on the side side was set.
  • Examples 4 and 5 Comparative Examples 5 and 6
  • the slit width of the laminate was adjusted in the positive electrode manufacturing step and the negative electrode manufacturing step so that ⁇ WA A , ⁇ WB B , and ⁇ WC were the values shown in Table 3, and the width of the separator prepared in the battery manufacturing step was adjusted.
  • a battery was obtained in the same manner as in Example 2 except that the adjustment was made.
  • Example 6 to 10 The thickness of the negative electrode active material layer is adjusted by changing the coating machine gap at the time of applying the negative electrode mixture slurry so that the thickness ratio A 2 / B 2 of the completed battery becomes the value shown in Table 4, and the other A battery was obtained in the same manner as in Example 2 except that the external force applied to the end portion on the long side of the above was adjusted.
  • the other long side of the negative electrode is the top side of the completed battery.
  • Example 11 In the process of manufacturing the negative electrode, a battery was obtained in the same manner as in Example 2 except that no external force was applied to the other end on the long side of the negative electrode and the other end on the long side was flattened.
  • Example 12 to 16 The slit width of the laminate was adjusted in the positive electrode manufacturing step and the negative electrode manufacturing step so that ⁇ WA A , ⁇ WB B , and ⁇ WC were the values shown in Table 5, and the width of the separator prepared in the battery manufacturing step was adjusted.
  • a battery was obtained in the same manner as in Example 2 except that the adjustment was made.
  • Example 17 to 21 The slit width of the laminate was adjusted in the positive electrode manufacturing step and the negative electrode manufacturing step so that ⁇ WA A , ⁇ WB B , and ⁇ WC were the values shown in Table 6, and the width of the separator prepared in the battery manufacturing step was adjusted.
  • a battery was obtained in the same manner as in Example 2 except that the adjustment was made.
  • the drop safety of the battery obtained as described above was evaluated as follows.
  • the drop test was conducted with the device mounted on a jig simulating the state of being incorporated in a consumer electronic device.
  • the battery weight was about 30 g and the jig was about 150 g.
  • the battery attached to the jig was dropped onto a flat plate from a height of 1.5 m.
  • the OCV Open Circuit Voltage
  • the above test was performed on 100 batteries, and the pass ratio of the batteries that passed the above test ([(the number of batteries that passed the above test) / (the number of batteries that passed the above test)] ⁇ 100 [%]) was calculated. I asked.
  • Table 1 shows the configurations and evaluation results of the batteries of Examples 1 to 3 and Comparative Examples 1 and 2.
  • Table 2 shows the configurations and evaluation results of the batteries of Example 2, Comparative Examples 3 and 4.
  • Table 3 shows the configurations and evaluation results of the batteries of Examples 2, 4, 5, and Comparative Examples 5, 6.
  • Table 4 shows the configurations and evaluation results of the batteries of Examples 2 and 6 to 11.
  • Table 5 shows the configurations and evaluation results of the batteries of Examples 12 to 16.
  • Table 6 shows the configurations and evaluation results of the batteries of Examples 17 to 21.
  • the thickness ratio A 2 / B 2 is preferably 0.5 or more and 0.9 or less from the viewpoint of improving drop safety (from the viewpoint of improving drop safety). See Examples 2 and 6-9).
  • ⁇ WB is 1.2 mm or more and 1.8 mm or less.
  • ⁇ WC is 3.0 mm or more and 4.0 mm or less.
  • the upper limit value or the lower limit value of the numerical range of one stage may be replaced with the upper limit value or the lower limit value of the numerical range of another stage.

Abstract

Provided is a battery which enables improvement of safety against impact. This battery comprises a wound-type battery element, and a film-shaped exterior material for accommodating the battery element. The battery element comprises a long positive electrode, a long negative electrode, and a long separator. The positive electrode, the negative electrode, and the separator are wound in the longitudinal direction, and both long sides of the positive electrode are provided on the inner side of both long sides of the negative electrode. The negative electrode comprises: a negative electrode current collector; a first negative electrode active material layer provided on the inner surface of the negative electrode current collector; and a second negative electrode active material layer provided on the outer surface of the negative electrode current collector. An end portion on the side of one of the long sides of the negative electrode is bent toward the inner surface side of the negative electrode. The thickness ratio (A1/B1) between the end surface thickness A1 of the second negative electrode active material layer on the side of the one of the long sides of the negative electrode and the end surface thickness B1 of the first negative electrode active material layer on the one side of the the one of the long sides of the negative electrode is 1.1-2.0. The exterior material has an accommodation part for accommodating the battery element, and has a difference between the width of the negative electrode and the width of the accommodation part in the negative-electrode width direction of 1.3 mm or less.

Description

電池battery
 本発明は、電池に関する。 The present invention relates to a battery.
 従来、電池素子がフィルム状の外装材に収容されたフィルム外装電池が広く利用されている。フィルム外装電池では、電池特性の向上のために、電池素子の構成について様々な検討がなされている。 Conventionally, a film exterior battery in which a battery element is housed in a film-shaped exterior material has been widely used. In the film exterior battery, various studies have been made on the configuration of the battery element in order to improve the battery characteristics.
 例えば、特許文献1には、積層型の電池素子がアルミラミネートフィルムに収容されたリチウムイオン二次電池において、正極シートと負極シートが、電池素子の積層方向断面に屈曲部を少なくとも一つ以上有することで、振動の影響を受けた場合にも、アルミラミネートフィルムからの電解液の液漏れを抑制できることが開示されている。 For example, in Patent Document 1, in a lithium ion secondary battery in which a laminated battery element is housed in an aluminum laminated film, the positive electrode sheet and the negative electrode sheet have at least one bent portion in a cross section in the stacking direction of the battery element. Therefore, it is disclosed that the leakage of the electrolytic solution from the aluminum laminated film can be suppressed even when affected by the vibration.
特開2009-129722号公報Japanese Unexamined Patent Publication No. 2009-129722
 近年、フィルム外装電池は、携帯電話をはじめとする様々な電子機器に使用されているため、落下等の衝撃に対する安全性を向上させることが望まれているが、上記特許文献1では、このような安全性に関する技術について開示されていない。 In recent years, film exterior batteries have been used in various electronic devices such as mobile phones, and therefore it is desired to improve the safety against impacts such as dropping. In the above Patent Document 1, this is the case. No safety technology is disclosed.
 本発明の目的は、衝撃に対する安全性を向上させることができる電池を提供することにある。 An object of the present invention is to provide a battery capable of improving safety against impact.
 上述の課題を解決するために、本発明は、
 巻回型の電池素子と、
 電池素子を収容するフィルム状の外装材と
 を備え、
 電池素子は、長尺状の正極と、長尺状の負極と、長尺状のセパレータとを備え、正極、負極およびセパレータは、長手方向に巻回されると共に、正極の両長辺は、負極の両長辺の内側に設けられ、
 負極は、負極集電体と、負極集電体の内側面に設けられた第1の負極活物質層と、負極集電体の外側面に設けられた第2の負極活物質層とを備え、
 負極の一方の長辺側の端部が、負極の内側面側に曲げられ、
 負極の一方の長辺側における第2の負極活物質層の端面厚みAと、負極の一方の長辺側における第1の負極活物質層の端面厚みBとの厚み比(A/B)が、1.1以上2.0以下であり、
 外装材は、電池素子を収容する収容部を有し、負極の幅と、負極の幅方向における収容部の幅との差が、1.3mm以下である電池である。
In order to solve the above-mentioned problems, the present invention
With a winding type battery element
It is equipped with a film-like exterior material that houses the battery element.
The battery element includes a long positive electrode, a long negative electrode, and a long separator. The positive electrode, the negative electrode, and the separator are wound in the longitudinal direction, and both long sides of the positive electrode are formed. Provided inside both long sides of the negative electrode,
The negative electrode includes a negative electrode current collector, a first negative electrode active material layer provided on the inner surface of the negative electrode current collector, and a second negative electrode active material layer provided on the outer surface of the negative electrode current collector. ,
One end on the long side of the negative electrode is bent toward the inner side surface of the negative electrode,
Thickness ratio (A 1 /) of the end face thickness A 1 of the second negative electrode active material layer on one long side of the negative electrode and the end face thickness B 1 of the first negative electrode active material layer on one long side of the negative electrode. B 1 ) is 1.1 or more and 2.0 or less,
The exterior material is a battery having an accommodating portion for accommodating a battery element, and the difference between the width of the negative electrode and the width of the accommodating portion in the width direction of the negative electrode is 1.3 mm or less.
 本発明によれば、衝撃に対する電池の安全性を向上させることができる。 According to the present invention, the safety of the battery against impact can be improved.
本発明の第1の実施形態に係るフィルム外装電池の構成の一例を示す分解斜視図である。It is an exploded perspective view which shows an example of the structure of the film exterior battery which concerns on 1st Embodiment of this invention. 図1のII-II線に沿った断面図である。It is sectional drawing along the line II-II of FIG. 正極、負極およびセパレータの幅方向の断面の一例を示す図である。It is a figure which shows an example of the cross section in the width direction of a positive electrode, a negative electrode, and a separator. 本発明の第2の実施形態に係る電子機器の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the electronic device which concerns on 2nd Embodiment of this invention.
 本発明の実施形態について以下の順序で説明する。
1 第1の実施形態(フィルム外装電池の例)
2 第2の実施形態(電子機器の例)
Embodiments of the present invention will be described in the following order.
1 First embodiment (example of film exterior battery)
2 Second embodiment (example of electronic device)
<1 第1の実施形態>
[電池の構成]
 図1は、本発明の第1の実施形態に係るフィルム外装電池(以下単に「電池」という。)の構成の一例を示す分解斜視図である。電池は、扁平状を有する巻回型の電池素子20と、電池素子20を収容するフィルム状の外装材10とを備える。ここで、扁平状の電池素子20には、角型の電池素子20も含まれるものとする。電池素子20には、正極リード11および負極リード12が取り付けられている。電池をその主面に垂直な方向から平面視すると、電池は長方形状を有している。
<1 First Embodiment>
[Battery configuration]
FIG. 1 is an exploded perspective view showing an example of the configuration of a film exterior battery (hereinafter, simply referred to as “battery”) according to the first embodiment of the present invention. The battery includes a winding type battery element 20 having a flat shape, and a film-shaped exterior material 10 accommodating the battery element 20. Here, it is assumed that the flat battery element 20 also includes a square battery element 20. A positive electrode lead 11 and a negative electrode lead 12 are attached to the battery element 20. When the battery is viewed in a plan view from a direction perpendicular to its main surface, the battery has a rectangular shape.
(正極、負極リード)
 正極リード11および負極リード12は、電池の一方の短辺側から同一方向に導出されている。以下では、正極リード11および負極リード12が導出された電池素子20の短辺側をトップ側、それとは反対の短辺側をボトム側という。正極リード11および負極リード12は、例えば、薄板状または網目状を有している。正極リード11および負極リード12は、例えば、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)またはステンレス(SUS)等の金属材料により構成されている。
(Positive and negative electrode leads)
The positive electrode lead 11 and the negative electrode lead 12 are led out in the same direction from one short side of the battery. Hereinafter, the short side of the battery element 20 from which the positive electrode lead 11 and the negative electrode lead 12 are derived is referred to as a top side, and the short side opposite to the short side is referred to as a bottom side. The positive electrode lead 11 and the negative electrode lead 12 have, for example, a thin plate shape or a mesh shape. The positive electrode lead 11 and the negative electrode lead 12 are made of a metal material such as aluminum (Al), copper (Cu), nickel (Ni), or stainless steel (SUS).
 外装材10と正極リード11の間、外装材10と負極リード12の間にはそれぞれ、外気の侵入を抑制するための密着フィルム13が挿入されている。密着フィルム13は、正極リード11および負極リード12に対して密着性を有する材料、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、変性ポリエチレンまたは変性ポリプロピレン等のポリオレフィン樹脂により構成されている。 An adhesion film 13 for suppressing the intrusion of outside air is inserted between the exterior material 10 and the positive electrode lead 11 and between the exterior material 10 and the negative electrode lead 12, respectively. The adhesion film 13 is made of a material having adhesion to the positive electrode lead 11 and the negative electrode lead 12, for example, a polyolefin resin such as polyethylene (PE), polypropylene (PP), modified polyethylene or modified polypropylene.
(外装材)
 外装材10は、長方形状を有し、その長手方向の中央部から各辺が重なるようにして折り返されている。折返し部となる中央部には、切り込み等が予め設けられていてもよい。折り返された外装材10の間に電池素子20が挟み込まれている。折り返された外装材10の周囲のうちトップ側および二つの長辺側(両サイド)にシール部が形成されている。外装材10は、重ね合わされる一方の面に、電池素子20を収容するための収容部10Aを有している。収容部10Aは、重ね合わされる一方の面に設けられた凹部であり、例えば、深絞り加工により形成されている。
(Exterior material)
The exterior material 10 has a rectangular shape, and is folded back so that its sides overlap each other from the central portion in the longitudinal direction thereof. A notch or the like may be provided in advance in the central portion to be the folded portion. The battery element 20 is sandwiched between the folded exterior materials 10. Seal portions are formed on the top side and the two long side sides (both sides) of the circumference of the folded exterior material 10. The exterior material 10 has an accommodating portion 10A for accommodating the battery element 20 on one of the surfaces to be overlapped. The accommodating portion 10A is a recess provided on one of the surfaces to be overlapped, and is formed by, for example, deep drawing.
 外装材10は、例えば、柔軟性を有する長方形状のラミネートフィルムからなる。外装材10は、金属層と、金属層の一方の面(第1の面)に設けられた第1の樹脂層と、金属層の他方の面(第2の面)に設けられた第2の樹脂層とを備える。外装材10は、必要に応じて、金属層と第1の樹脂層との間、および金属層と第2の樹脂層との間のうちの少なくとも一方に接着層をさらに備えていてもよい。外装材10の両面のうち、第1の樹脂層側の面が外側の面となり、第2の樹脂層側の面が電池素子20を収納する内側の面となる。 The exterior material 10 is made of, for example, a flexible rectangular laminated film. The exterior material 10 has a metal layer, a first resin layer provided on one surface (first surface) of the metal layer, and a second surface provided on the other surface (second surface) of the metal layer. It is provided with a resin layer of. If necessary, the exterior material 10 may further include an adhesive layer between the metal layer and the first resin layer, and at least one of the metal layer and the second resin layer. Of both sides of the exterior material 10, the surface on the first resin layer side is the outer surface, and the surface on the second resin layer side is the inner surface for accommodating the battery element 20.
 金属層は、水分等の進入を抑制し、収納物である電池素子20を保護する役割を担うバリア層である。金属層は、金属箔であってもよく、例えば、アルミニウムまたはアルミニウム合金を含む。 The metal layer is a barrier layer that suppresses the ingress of moisture and plays a role of protecting the battery element 20 that is a stored object. The metal layer may be a metal leaf and may include, for example, aluminum or an aluminum alloy.
 第1の樹脂層は、外装材10の表面を保護する機能を有する表面保護層である。第1の樹脂層は、例えば、ナイロン(Ny)、ポリエチレンテレフタレート(PET)およびポリエチレンナフタレート(PEN)のうちの少なくとも1種を含む。 The first resin layer is a surface protective layer having a function of protecting the surface of the exterior material 10. The first resin layer contains, for example, at least one of nylon (Ny), polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
 第2の樹脂層は、折り返された外装材10の内側面の周縁同士を熱融着によりシールするための熱融着樹脂層である。第2の樹脂層は、例えば、ポリプロピレンおよびポリエチレンのうちの少なくとも1種を含む。 The second resin layer is a heat-sealing resin layer for sealing the peripheral edges of the inner side surfaces of the folded exterior material 10 by heat-sealing. The second resin layer contains, for example, at least one of polypropylene and polyethylene.
 なお、外装材10は、上述したラミネートフィルムに代えて、他の構造を有するラミネートフィルム、例えば、ポリプロピレン等の高分子フィルムまたは金属フィルムにより構成されていてもよい。あるいは、アルミニウム製フィルムを心材として、その片面または両面に高分子フィルムを積層したラミネートフィルムにより構成されていてもよい。 The exterior material 10 may be made of a laminated film having another structure, for example, a polymer film such as polypropylene or a metal film, instead of the above-mentioned laminated film. Alternatively, it may be composed of a laminated film in which an aluminum film is used as a core material and a polymer film is laminated on one side or both sides thereof.
 また、外装材10は、外観の美しさの点から、有色層をさらに備えていてもよいし、第1の樹脂層および第2の樹脂層のうちの少なくとも一方の層に着色材を含んでいてもよい。外装材10が、金属層と第1の樹脂層との間、および金属層と第2の樹脂層との間のうちの少なくとも一方に接着層をさらに備える場合には、接着層が着色材を含むようにしてもよい。 Further, the exterior material 10 may further include a colored layer from the viewpoint of the beauty of appearance, and at least one of the first resin layer and the second resin layer contains a coloring material. You may. When the exterior material 10 further includes an adhesive layer between the metal layer and the first resin layer, and at least one of the metal layer and the second resin layer, the adhesive layer provides a coloring material. It may be included.
(電池素子)
 図2は、図1に示した電池素子20のII-II線に沿った断面図である。電池素子20は、長尺状の正極21と、長尺状の負極22と、長尺状のセパレータ23とを備え、セパレータ23が正極21と負極22との間に挟まれている。正極21、負極22およびセパレータ23は、扁平状かつ渦巻状になるように長手方向に巻回されている。電池素子20の最内周には空間が設けられている。負極22の一方の長辺側(すなわち負極22のボトム側)には外装材10の折り返し部が設けられ、負極22の他方の長辺側(すなわち負極22のトップ側)には外装材10のシール部が設けられている。
(Battery element)
FIG. 2 is a cross-sectional view taken along the line II-II of the battery element 20 shown in FIG. The battery element 20 includes a long positive electrode 21, a long negative electrode 22, and a long separator 23, and the separator 23 is sandwiched between the positive electrode 21 and the negative electrode 22. The positive electrode 21, the negative electrode 22, and the separator 23 are wound in the longitudinal direction so as to be flat and spiral. A space is provided on the innermost circumference of the battery element 20. A folded portion of the exterior material 10 is provided on one long side of the negative electrode 22 (that is, the bottom side of the negative electrode 22), and the exterior material 10 is provided on the other long side of the negative electrode 22 (that is, the top side of the negative electrode 22). A seal portion is provided.
 図3は、正極21、負極22およびセパレータ23の幅方向の断面の一例を示す図である。正極21および負極22の幅方向22Dにおいて、正極21の両長辺は、負極22の両長辺の内側に設けられている。これにより、負極22の長辺側の端部にリチウムが析出することを抑制することができるので、電池の安全性を向上させることができる。 FIG. 3 is a diagram showing an example of a cross section of the positive electrode 21, the negative electrode 22, and the separator 23 in the width direction. In the width direction 22D of the positive electrode 21 and the negative electrode 22, both long sides of the positive electrode 21 are provided inside both long sides of the negative electrode 22. As a result, it is possible to suppress the precipitation of lithium on the end portion on the long side of the negative electrode 22, so that the safety of the battery can be improved.
 負極22およびセパレータ23の幅方向22Dにおいて、負極22の両長辺は、セパレータ23の両長辺の内側に設けられている。これにより、負極22と正極21の長辺側の端部の間にセパレータ23が介在するため、負極22と正極21の長辺側の端部が接触することを抑制することができる。したがって、正極21と負極22の短絡のリスクを低減させることができので、電池の安全性を向上させることができる。 In the width direction 22D of the negative electrode 22 and the separator 23, both long sides of the negative electrode 22 are provided inside both long sides of the separator 23. As a result, since the separator 23 is interposed between the negative electrode 22 and the end on the long side of the positive electrode 21, it is possible to prevent the negative electrode 22 from coming into contact with the end on the long side of the positive electrode 21. Therefore, the risk of a short circuit between the positive electrode 21 and the negative electrode 22 can be reduced, and the safety of the battery can be improved.
 電池素子20の最外周部は、保護テープ24により保護されている。外装材10の内部には、電解質としての電解液が注入され、正極21、負極22およびセパレータ23に含浸されている。 The outermost peripheral portion of the battery element 20 is protected by a protective tape 24. An electrolytic solution as an electrolyte is injected into the exterior material 10 and impregnated into the positive electrode 21, the negative electrode 22, and the separator 23.
 以下、電池を構成する正極21、負極22、セパレータ23および電解液について順次説明する。 Hereinafter, the positive electrode 21, the negative electrode 22, the separator 23, and the electrolytic solution constituting the battery will be sequentially described.
(正極)
 正極21は、例えば、正極集電体21Aと、正極集電体21Aの内側面に設けられた第1の正極活物質層21Bと、正極集電体21Aの外側面に設けられた第2の正極活物質層21Bとを備える。本明細書において、“内側面”とは、電池素子20の巻回中心側に位置する面を意味し、“外側面”とは、電池素子20の巻回中心とは反対側に位置する面を意味する。以下、第1の正極活物質層21Bと第2の正極活物質層21Bとを総称する場合には、正極活物質層21Bという。正極活物質層21Bは、正極集電体21Aの幅方向の両端まで設けられている。
(Positive electrode)
The positive electrode 21 is, for example, a positive electrode current collector 21A, a first positive electrode active material layer 21B 1 provided on the inner surface of the positive electrode current collector 21A, and a second positive electrode current collector 21A provided on the outer surface of the positive electrode current collector 21A. The positive electrode active material layer 21B 2 of the above is provided. In the present specification, the "inner surface" means a surface located on the winding center side of the battery element 20, and the "outer surface" means a surface located on the opposite side of the winding center of the battery element 20. Means. Hereinafter, when the first positive electrode active material layer 21B 1 and the second positive electrode active material layer 21B 2 are collectively referred to, they are referred to as a positive electrode active material layer 21B. The positive electrode active material layer 21B is provided up to both ends in the width direction of the positive electrode current collector 21A.
 正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔またはステンレス箔等の金属箔により構成されている。正極集電体21Aが、板状または網目状を有していてもよい。正極集電体21Aの周縁の一部を延設することにより正極リード11を構成するようにしてもよい。正極活物質層21Bは、リチウムを吸蔵および放出することが可能な1種または2種以上の正極活物質を含む。正極活物質層21Bは、必要に応じてバインダおよび導電助剤からなる群より選ばれた少なくとも1種をさらに含んでいてもよい。 The positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil. The positive electrode current collector 21A may have a plate shape or a mesh shape. The positive electrode lead 11 may be configured by extending a part of the peripheral edge of the positive electrode current collector 21A. The positive electrode active material layer 21B contains one or more positive electrode active materials capable of occluding and releasing lithium. The positive electrode active material layer 21B may further contain at least one selected from the group consisting of a binder and a conductive auxiliary agent, if necessary.
(正極活物質)
 リチウムを吸蔵および放出することが可能な正極活物質としては、例えば、リチウム酸化物、リチウムリン酸化物、リチウム硫化物またはリチウムを含む層間化合物等のリチウム含有化合物が適当であり、これらの2種以上を混合して用いてもよい。エネルギー密度を高くするには、リチウムと遷移金属元素と酸素とを含むリチウム含有化合物が好ましい。このようなリチウム含有化合物としては、例えば、式(A)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(B)に示したオリビン型の構造を有するリチウム複合リン酸塩等が挙げられる。リチウム含有化合物としては、遷移金属元素として、Co、Ni、MnおよびFeからなる群より選ばれた少なくとも1種を含むものであればより好ましい。このようなリチウム含有化合物としては、例えば、式(C)、式(D)もしくは式(E)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(F)に示したスピネル型の構造を有するリチウム複合酸化物、または式(G)に示したオリビン型の構造を有するリチウム複合リン酸塩等が挙げられ、具体的には、LiNi0.50Co0.20Mn0.30、LiCoO、LiNiO、LiNiCo1-a(0<a<1)、LiMnまたはLiFePO等がある。
(Positive electrode active material)
As the positive electrode active material capable of storing and releasing lithium, for example, a lithium-containing compound such as a lithium oxide, a lithium phosphorus oxide, a lithium sulfide or an interlayer compound containing lithium is suitable, and these two types are suitable. The above may be mixed and used. In order to increase the energy density, a lithium-containing compound containing lithium, a transition metal element and oxygen is preferable. Examples of such a lithium-containing compound include a lithium composite oxide having a layered rock salt type structure represented by the formula (A), a lithium composite phosphate having an olivine type structure represented by the formula (B), and the like. Can be mentioned. As the lithium-containing compound, it is more preferable that the transition metal element contains at least one selected from the group consisting of Co, Ni, Mn and Fe. Examples of such a lithium-containing compound include a lithium composite oxide having a layered rock salt type structure represented by the formula (C), the formula (D) or the formula (E), and a spinel type represented by the formula (F). Examples thereof include a lithium composite oxide having a structure, a lithium composite phosphate having an olivine-type structure represented by the formula (G), and specifically, LiNi 0.50 Co 0.20 Mn 0.30 O. 2 , LiCoO 2 , LiNiO 2 , LiNi a Co 1-a O 2 (0 <a <1), LiMn 2 O 4 or LiFePO 4 and the like.
 LiNi(1-q-r)MnM1(2-y) ・・・(A)
(但し、式(A)中、M1は、Ni、Mnを除く2族~15族から選ばれる元素のうち少なくとも一種を示す。Xは、酸素以外の16族元素および17族元素からなる群より選ばれた少なくとも1種を示す。p、q、y、zは、0≦p≦1.5、0≦q≦1.0、0≦r≦1.0、-0.10≦y≦0.20、0≦z≦0.2の範囲内の値である。)
Li p Ni (1-q-r) Mn q M1 r O (2-y) X z ... (A)
(However, in the formula (A), M1 represents at least one of the elements selected from Group 2 to Group 15 excluding Ni and Mn. X is from the group consisting of Group 16 elements and Group 17 elements other than oxygen. Indicates at least one selected. P, q, y, z are 0 ≦ p ≦ 1.5, 0 ≦ q ≦ 1.0, 0 ≦ r ≦ 1.0, −0.10 ≦ y ≦ 0. .20, a value within the range of 0 ≦ z ≦ 0.2.)
 LiM2PO ・・・(B)
(但し、式(B)中、M2は、2族~15族から選ばれる元素のうち少なくとも一種を示す。a、bは、0≦a≦2.0、0.5≦b≦2.0の範囲内の値である。)
Li a M2 b PO 4 ... (B)
(However, in the formula (B), M2 represents at least one of the elements selected from groups 2 to 15. a and b are 0 ≦ a ≦ 2.0 and 0.5 ≦ b ≦ 2.0. It is a value within the range of.)
 LiMn(1-g-h)NiM3(2-j) ・・・(C)
(但し、式(C)中、M3は、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、SrおよびWからなる群より選ばれた少なくとも1種を表す。f、g、h、jおよびkは、0.8≦f≦1.2、0<g<0.5、0≦h≦0.5、g+h<1、-0.1≦j≦0.2、0≦k≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、fの値は完全放電状態における値を表している。)
Li f Mn (1-g-h) Ni g M3 h O (2-j) F k ... (C)
(However, in the formula (C), M3 was selected from the group consisting of Co, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Zr, Mo, Sn, Ca, Sr and W. Represents at least one species. F, g, h, j and k are 0.8 ≦ f ≦ 1.2, 0 <g <0.5, 0 ≦ h ≦ 0.5, g + h <1, −0. The value is in the range of 1 ≦ j ≦ 0.2 and 0 ≦ k ≦ 0.1. The composition of lithium differs depending on the state of charge and discharge, and the value of f represents the value in the state of complete discharge. )
 LiNi(1-n)M4(2-p) ・・・(D)
(但し、式(D)中、M4は、Co、Mn、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Mo、Sn、Ca、SrおよびWからなる群より選ばれた少なくとも1種を表す。m、n、pおよびqは、0.8≦m≦1.2、0.005≦n≦0.5、-0.1≦p≦0.2、0≦q≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、mの値は完全放電状態における値を表している。)
Li m Ni (1-n) M4 n O (2-p) F q ... (D)
(However, in the formula (D), M4 was selected from the group consisting of Co, Mn, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr and W. Represents at least one species. M, n, p and q are 0.8 ≦ m ≦ 1.2, 0.005 ≦ n ≦ 0.5, −0.1 ≦ p ≦ 0.2, 0 ≦ q ≦ The value is in the range of 0.1. The composition of lithium differs depending on the state of charge and discharge, and the value of m represents the value in the state of complete discharge.)
 LiCo(1-s)M5(2-t) ・・・(E)
(但し、式(E)中、M5は、Ni、Mn、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Mo、Sn、Ca、SrおよびWからなる群より選ばれた少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
Li r Co (1-s) M5 s O (2-t) Fu ... (E)
(However, in the formula (E), M5 was selected from the group consisting of Ni, Mn, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr and W. Represents at least one species. r, s, t and u are 0.8 ≦ r ≦ 1.2, 0 ≦ s <0.5, −0.1 ≦ t ≦ 0.2, 0 ≦ u ≦ 0. It is a value within the range of 1. The composition of lithium differs depending on the state of charge and discharge, and the value of r represents the value in the state of complete discharge.)
 LiMn2-wM6 ・・・(F)
(但し、式(F)中、M6は、Co、Ni、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Mo、Sn、Ca、SrおよびWからなる群より選ばれた少なくとも1種を表す。v、w、xおよびyは、0.9≦v≦1.1、0≦w≦0.6、3.7≦x≦4.1、0≦y≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
Li v Mn 2-w M6 w O x F y ... (F)
(However, in the formula (F), M6 was selected from the group consisting of Co, Ni, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, Mo, Sn, Ca, Sr and W. Represents at least one type. V, w, x and y are 0.9 ≦ v ≦ 1.1, 0 ≦ w ≦ 0.6, 3.7 ≦ x ≦ 4.1, 0 ≦ y ≦ 0.1. The composition of lithium differs depending on the state of charge and discharge, and the value of v represents the value in the state of complete discharge.)
 LiM7PO ・・・(G)
(但し、式(G)中、M7は、Co、Mg、Fe、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、WおよびZrからなる群より選ばれた少なくとも1種を表す。zは、0.9≦z≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、zの値は完全放電状態における値を表している。)
Li z M7PO 4 ... (G)
(However, in the formula (G), M7 is selected from the group consisting of Co, Mg, Fe, Ni, Mg, Al, B, Ti, V, Nb, Cu, Zn, Mo, Ca, Sr, W and Zr. Z represents a value within the range of 0.9 ≦ z ≦ 1.1. The composition of lithium differs depending on the state of charge and discharge, and the value of z is a value in the state of complete discharge. Represents.)
 リチウムを吸蔵および放出することが可能な正極活物質としては、これらの他にも、MnO、V、V13、NiS、MoS等のリチウムを含まない無機化合物を用いることもできる。 In addition to these, lithium-free inorganic compounds such as MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS can be used as the positive electrode active material capable of occluding and releasing lithium. can.
 リチウムを吸蔵および放出することが可能な正極活物質は、上記以外のものであってもよい。また、上記で例示した正極活物質は、任意の組み合わせで2種以上混合されてもよい。 The positive electrode active material capable of occluding and releasing lithium may be other than the above. Further, two or more kinds of the positive electrode active materials exemplified above may be mixed in any combination.
(バインダ)
 バインダとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリロニトリル、スチレンブタジエンゴムおよびカルボキシメチルセルロース等の樹脂材料、ならびにこれら樹脂材料を主体とする共重合体等からなる群より選ばれた少なくとも1種が用いられる。
(Binder)
As the binder, for example, at least one selected from the group consisting of resin materials such as polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber and carboxymethyl cellulose, and copolymers mainly composed of these resin materials. Seeds are used.
(導電助剤)
 導電助剤としては、例えば、黒鉛、炭素繊維、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブおよびグラフェン等からなる群より選ばれた少なくとも1種の炭素材料を用いることができる。なお、導電助剤は導電性を有する材料であればよく、炭素材料に限定されるものではない。例えば、導電助剤として金属材料または導電性高分子材料等を用いるようにしてもよい。また、導電助剤の形状としては、例えば粒状、鱗片状、中空状、針状または筒状等が挙げられるが、特にこれらの形状に限定されるものではない。
(Conductive aid)
As the conductive auxiliary agent, for example, at least one carbon material selected from the group consisting of graphite, carbon fiber, carbon black, acetylene black, ketjen black, carbon nanotubes, graphene and the like can be used. The conductive auxiliary agent may be any material having conductivity, and is not limited to the carbon material. For example, a metal material, a conductive polymer material, or the like may be used as the conductive auxiliary agent. The shape of the conductive auxiliary agent includes, for example, granules, scales, hollows, needles, cylinders, and the like, but is not particularly limited to these shapes.
(負極)
 負極22は、例えば、負極集電体22Aと、負極集電体22Aの内側面に設けられた第1の負極活物質層22Bと、負極集電体22Aの内側面に設けられた第2の負極活物質層22Bとを備える。以下、第1の負極活物質層22Bと第2の負極活物質層22Bとを総称する場合には、負極活物質層22Bという。負極活物質層22Bは、負極集電体22Aの幅方向22Dの両端まで設けられている。
(Negative electrode)
The negative electrode 22 is, for example, a negative electrode current collector 22A, a first negative electrode active material layer 22B 1 provided on the inner surface of the negative electrode current collector 22A, and a second negative electrode current collector 22A provided on the inner surface of the negative electrode current collector 22A. The negative electrode active material layer 22B 2 of the above is provided. Hereinafter, when the first negative electrode active material layer 22B 1 and the second negative electrode active material layer 22B 2 are collectively referred to, they are referred to as a negative electrode active material layer 22B. The negative electrode active material layer 22B is provided up to both ends of the negative electrode current collector 22A in the width direction 22D.
 負極集電体22Aは、例えば、銅箔、ニッケル箔またはステンレス箔等の金属箔により構成されている。負極集電体22Aが、板状または網目状を有していてもよい。負極集電体22Aの周縁の一部を延設することにより負極リード12を構成するようにしてもよい。負極活物質層22Bは、リチウムを吸蔵および放出することが可能な1種または2種以上の負極活物質と、バインダとを含む。負極活物質層22Bは、必要に応じて増粘剤および導電助剤からなる群より選ばれた少なくとも1種をさらに含んでいてもよい。 The negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil. The negative electrode current collector 22A may have a plate shape or a mesh shape. The negative electrode lead 12 may be configured by extending a part of the peripheral edge of the negative electrode current collector 22A. The negative electrode active material layer 22B contains one or more negative electrode active materials capable of occluding and releasing lithium, and a binder. The negative electrode active material layer 22B may further contain at least one selected from the group consisting of a thickener and a conductive auxiliary agent, if necessary.
 なお、この電池では、負極22または負極活物質の電気化学当量が、正極21の電気化学当量よりも大きくなっており、理論上、充電の途中において負極22にリチウム金属が析出しないようになっていることが好ましい。 In this battery, the electrochemical equivalent of the negative electrode 22 or the negative electrode active material is larger than the electrochemical equivalent of the positive electrode 21, and theoretically, lithium metal does not precipitate on the negative electrode 22 during charging. It is preferable to have.
(負極活物質)
 負極活物質としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維または活性炭等の炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスまたは石油コークス等がある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂等の高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れたサイクル特性が得られるので好ましい。さらにまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
(Negative electrode active material)
Examples of the negative electrode active material include non-graphitizable carbon, easily graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, calcined organic polymer compounds, carbon fibers, and carbon materials such as activated carbon. Can be mentioned. Among these, cokes include pitch coke, needle coke, petroleum coke and the like. An organic polymer compound calcined body is a carbonized product obtained by calcining a polymer material such as a phenol resin or a furan resin at an appropriate temperature, and a part of it is graphitizable carbon or graphitizable carbon. Some are classified as. These carbon materials are preferable because the change in the crystal structure that occurs during charging / discharging is very small, a high charging / discharging capacity can be obtained, and good cycle characteristics can be obtained. In particular, graphite is preferable because it has a large electrochemical equivalent and can obtain a high energy density. Further, graphitizable carbon is preferable because excellent cycle characteristics can be obtained. Furthermore, those having a low charge / discharge potential, specifically those having a charge / discharge potential close to that of lithium metal, are preferable because high energy density of the battery can be easily realized.
 また、高容量化が可能な他の負極活物質としては、金属元素および半金属元素からなる群より選ばれた少なくとも1種を構成元素(例えば、合金、化合物または混合物)として含む材料も挙げられる。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本発明において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物またはそれらのうちの2種以上が共存するものがある。 Further, as another negative electrode active material capable of increasing the capacity, a material containing at least one selected from the group consisting of a metal element and a metalloid element as a constituent element (for example, an alloy, a compound or a mixture) can be mentioned. .. This is because a high energy density can be obtained by using such a material. In particular, when used together with a carbon material, high energy density can be obtained and excellent cycle characteristics can be obtained, which is more preferable. In the present invention, the alloy includes not only an alloy composed of two or more kinds of metal elements but also an alloy containing one or more kinds of metal elements and one or more kinds of metalloid elements. It may also contain non-metal elements. Some of the structures are solid solutions, eutectics (eutectic mixtures), intermetallic compounds, or two or more of them coexist.
 このような負極活物質としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、Mg、B、Al、Ti、Ga、In、Si、Ge、Sn、Pb、Bi、Cd、Ag、Zn、Hf、Zr、Y、PdまたはPtが挙げられる。これらは結晶質のものでもアモルファスのものでもよい。 Examples of such a negative electrode active material include a metal element or a metalloid element capable of forming an alloy with lithium. Specific examples thereof include Mg, B, Al, Ti, Ga, In, Si, Ge, Sn, Pb, Bi, Cd, Ag, Zn, Hf, Zr, Y, Pd or Pt. These may be crystalline or amorphous.
 負極活物質としては、短周期型周期表における4B族の金属元素または半金属元素を構成元素として含むものが好ましく、より好ましいのはSiおよびSnの少なくとも一方を構成元素として含むものである。SiおよびSnは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。このような負極活物質としては、例えば、Siの単体、合金または化合物や、Snの単体、合金または化合物や、それらの1種または2種以上を少なくとも一部に有する材料が挙げられる。 The negative electrode active material preferably contains a metal element or a metalloid element of Group 4B in the short periodic table as a constituent element, and more preferably contains at least one of Si and Sn as a constituent element. This is because Si and Sn have a large ability to occlude and release lithium, and a high energy density can be obtained. Examples of such a negative electrode active material include a simple substance of Si, an alloy or a compound, a simple substance of Sn, an alloy or a compound, and a material having at least one or more of them.
 Siの合金としては、例えば、Si以外の第2の構成元素として、Sn、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、Sb、Nb、Mo、Al、P、GaおよびCrからなる群より選ばれた少なくとも1種を含むものが挙げられる。Snの合金としては、例えば、Sn以外の第2の構成元素として、Si、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、Sb、Nb、Mo、Al、P、GaおよびCrからなる群より選ばれた少なくとも1種を含むものが挙げられる。 As the alloy of Si, for example, as the second constituent element other than Si, Sn, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al, Examples include those containing at least one selected from the group consisting of P, Ga and Cr. As the alloy of Sn, for example, as the second constituent element other than Sn, Si, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb, Nb, Mo, Al, Examples include those containing at least one selected from the group consisting of P, Ga and Cr.
 Snの化合物またはSiの化合物としては、例えば、OまたはCを構成元素として含むものが挙げられる。これらの化合物は、上述した第2の構成元素を含んでいてもよい。 Examples of the Sn compound or Si compound include those containing O or C as a constituent element. These compounds may contain the second constituent element described above.
 中でも、Sn系の負極活物質としては、Coと、Snと、Cとを構成元素として含み、結晶性の低いまたは非晶質な構造を有しているものが好ましい。 Among them, the Sn-based negative electrode active material preferably contains Co, Sn, and C as constituent elements and has a low crystallinity or an amorphous structure.
 その他の負極活物質としては、例えば、リチウムを吸蔵および放出することが可能な金属酸化物または高分子化合物等も挙げられる。金属酸化物としては、例えば、チタン酸リチウム(LiTi12)等のLiとTiとを含むリチウムチタン酸化物、酸化鉄、酸化ルテニウムまたは酸化モリブデン等が挙げられる。高分子化合物としては、例えば、ポリアセチレン、ポリアニリンまたはポリピロール等が挙げられる。 Other negative electrode active materials include, for example, metal oxides or polymer compounds capable of occluding and releasing lithium. Examples of the metal oxide include lithium titanium oxide containing Li and Ti such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, molybdenum oxide and the like. Examples of the polymer compound include polyacetylene, polyaniline, polypyrrole and the like.
(バインダ)
 バインダとしては、正極活物質層21Bと同様のものを例示することができる。
(Binder)
As the binder, the same as that of the positive electrode active material layer 21B can be exemplified.
(導電助剤)
 導電助剤としては、正極活物質層21Bと同様のものを例示することができる。
(Conductive aid)
As the conductive auxiliary agent, the same as the positive electrode active material layer 21B can be exemplified.
(負極のボトム側端部)
 図3に示すように、負極22のボトム側端部(すなわち負極22の一方の長辺側の端部)が、負極22の内側面側に曲げられている。このようにボトム側端部が曲げられていることで、電池に衝撃が加えられた際に、負極22のボトム側端部が曲がる方向を、電池素子20の最内周に設けられた空間の方向に制約することができる。これにより、電池に衝撃が加えられた際に、負極22のボトム側端部が、正極21と負極22のボトム側端部が接触するような変形を起こすことを抑制することができるので、正極21と負極22の短絡のリスクを低減させることができる。したがって、落下等により衝撃に対する電池の安全性を向上させることができる。負極22のボトム側端部の曲げは、屈曲であってもよいし、湾曲であってもよい。
(Bottom end of negative electrode)
As shown in FIG. 3, the bottom side end portion of the negative electrode 22 (that is, the one long side end portion of the negative electrode 22) is bent toward the inner side surface side of the negative electrode 22. Since the bottom side end is bent in this way, the direction in which the bottom side end of the negative electrode 22 bends when an impact is applied to the battery is defined as the space provided on the innermost circumference of the battery element 20. Can be constrained in direction. As a result, when an impact is applied to the battery, it is possible to prevent the bottom end of the negative electrode 22 from being deformed so that the positive electrode 21 and the bottom end of the negative electrode 22 come into contact with each other. The risk of short circuit between 21 and the negative electrode 22 can be reduced. Therefore, it is possible to improve the safety of the battery against impact due to dropping or the like. The bending of the bottom side end portion of the negative electrode 22 may be bending or bending.
 負極22のボトム側における第2の負極活物質層22Bの端面厚みAと、負極22のボトム側における第1の負極活物質層22Bの端面厚みBとの厚み比(A/B)が、1.1以上2.0以下である。厚み比(A/B)が1.1未満であると、第1の負極活物質層22Bと第2の負極活物質層22Bの強度が近づくため、電池に衝撃が加えられた際に負極22が所定の方向に変形しにくくなり、衝撃に対する電池の安全性が低下する。一方、厚み比(A/B)が2.0を超えると、充放電時に第1の負極活物質層22Bと第2の負極活物質層22Bの膨張収縮に伴う厚み変化の差が増大する。これにより、ボトム側端部の屈曲部において負極集電体22Aにダメージが与えられるリスクが高まり、衝撃に対する電池の安全性が低下する。 Thickness ratio of the end face thickness A1 of the second negative electrode active material layer 22B 2 on the bottom side of the negative electrode 22 to the end face thickness B 1 of the first negative electrode active material layer 22B 1 on the bottom side of the negative electrode 22 (A 1 / B 1 ) is 1.1 or more and 2.0 or less. When the thickness ratio (A 1 / B 1 ) is less than 1.1, the strengths of the first negative electrode active material layer 22B 1 and the second negative electrode active material layer 22B 2 approach each other, so that a shock is applied to the battery. At that time, the negative electrode 22 is less likely to be deformed in a predetermined direction, and the safety of the battery against impact is lowered. On the other hand, when the thickness ratio (A 1 / B 1 ) exceeds 2.0, the difference in thickness change due to expansion and contraction of the first negative electrode active material layer 22B 1 and the second negative electrode active material layer 22B 2 during charging and discharging. Will increase. This increases the risk of damage to the negative electrode current collector 22A at the bent portion of the bottom end, and reduces the safety of the battery against impact.
 負極22のボトム側における第2の負極活物質層22Bの端面厚みAは、好ましくは50μm以上90μm以下である。負極22のボトム側における第1の負極活物質層22Bの端面厚みBは、好ましくは30μm以上80μm以下である。 The end face thickness A1 of the second negative electrode active material layer 22B 2 on the bottom side of the negative electrode 22 is preferably 50 μm or more and 90 μm or less. The end face thickness B 1 of the first negative electrode active material layer 22B 1 on the bottom side of the negative electrode 22 is preferably 30 μm or more and 80 μm or less.
 上記の端面厚みA、端面厚みBおよび厚み比(A/B)は、以下のようにして測定される。まず、電池を3.0Vに放電したのち、電池を解体して負極22を取り出す。次に、負極22を乾燥させたのち、負極22の最内周部分を切り出し、測定サンプルを作製する。次に、Arイオンミリング加工(CP加工)により測定サンプルを加工し、負極22の幅方向22Dおよび厚さ方向の両方向に平行である平滑な断面を形成する。次に、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)を用いて、上記の形成断面のうち負極22のボトム側端部に相当する部分を観察し、SEM像(二次電子像)を取得する。SEM像の観察条件は、以下のとおりである。
 装置:日本電子株式会社製 JSM-7401F
 照射電圧:0.5kV
 倍率:2000倍
 次に、取得したSEM像から、第1の負極活物質層22Bの端面厚みBと、第2の負極活物質層22Bの端面厚みAとを求める。次に、求められた端面厚みBおよび端面厚みAを用いて、厚み比(A/B)を算出する。
The end face thickness A 1 , the end face thickness B 1 and the thickness ratio (A 1 / B 1 ) are measured as follows. First, after discharging the battery to 3.0 V, the battery is disassembled and the negative electrode 22 is taken out. Next, after the negative electrode 22 is dried, the innermost peripheral portion of the negative electrode 22 is cut out to prepare a measurement sample. Next, the measurement sample is processed by Ar ion milling processing (CP processing) to form a smooth cross section parallel to both the width direction 22D and the thickness direction of the negative electrode 22. Next, using a scanning electron microscope (SEM), the portion of the above-mentioned forming cross section corresponding to the bottom end portion of the negative electrode 22 is observed, and an SEM image (secondary electron image) is obtained. .. The observation conditions of the SEM image are as follows.
Equipment: JSM-7401F manufactured by JEOL Ltd.
Irradiation voltage: 0.5kV
Magnification: 2000 times Next, from the acquired SEM image, the end face thickness B 1 of the first negative electrode active material layer 22B 1 and the end face thickness A 1 of the second negative electrode active material layer 22B 2 are obtained. Next, the thickness ratio (A 1 / B 1 ) is calculated using the obtained end face thickness B 1 and end face thickness A 1 .
(負極のトップ側端部)
 負極22のトップ側端部(すなわち負極22の他方の長辺側の端部)は、負極22の外側面側または内側面側に曲げられていてもよいし、曲げられていなくてもよいが、図3に示すように、負極22の外側面側に曲げられていることが好ましい。負極22のトップ側端部が負極22の外側面側に屈曲されていることで、最内周部に設けられている電極端子と電極の接触(正極リード11と負極22の接触、および/または負極リード12と正極21の接触)を抑制することができるため、衝撃に対する電池の安全性をさらに向上させることができる。負極22のトップ側端部の曲げは、屈曲であってもよいし、湾曲であってもよい。
(Top side end of negative electrode)
The top side end portion of the negative electrode 22 (that is, the other long side end portion of the negative electrode 22) may or may not be bent toward the outer side surface side or the inner side surface side of the negative electrode 22. As shown in FIG. 3, it is preferable that the negative electrode 22 is bent toward the outer surface side. Since the top end of the negative electrode 22 is bent toward the outer surface side of the negative electrode 22, the contact between the electrode terminal provided on the innermost peripheral portion and the electrode (contact between the positive electrode lead 11 and the negative electrode 22 and / or Since the contact between the negative electrode lead 12 and the positive electrode 21) can be suppressed, the safety of the battery against impact can be further improved. The bending of the top side end portion of the negative electrode 22 may be bending or bending.
 上述のように、負極22のトップ側端部では、負極22のボトム側端部とは異なり、端部曲げの方向が負極22の内側面側に制限されない。これは以下の理由による。すなわち、外装材10のシール部が電池素子20のトップ側の端面に沿って形成されているため、電池のトップ側では、外装材10による電池素子20の拘束が電池のボトム側に比べて強く、電池素子20のトップ側端面と外装材10の間に余剰空間が形成され難い。したがって、落下等により電池に衝撃が加えられた場合にも、負極22のトップ側端部では、負極22のボトム側端部に比べて変形が生じ難い。 As described above, at the top side end portion of the negative electrode 22, unlike the bottom side end portion of the negative electrode 22, the direction of bending the end portion is not limited to the inner side surface side of the negative electrode 22. This is due to the following reasons. That is, since the sealing portion of the exterior material 10 is formed along the end surface of the battery element 20 on the top side, the restraint of the battery element 20 by the exterior material 10 is stronger on the top side of the battery than on the bottom side of the battery. , It is difficult to form an extra space between the top side end surface of the battery element 20 and the exterior material 10. Therefore, even when an impact is applied to the battery due to dropping or the like, the top side end portion of the negative electrode 22 is less likely to be deformed than the bottom side end portion of the negative electrode 22.
 負極22のトップ側における第2の負極活物質層22Bの端面厚みAと、負極22のトップ側における第1の負極活物質層22Bの端面厚みBとの厚み比(A/B)が、好ましくは0.5以上0.9以下である。厚み比(A/B)が0.5以上であると、充放電時に第1の負極活物質層22Bと第2の負極活物質層22Bの膨張収縮に伴う厚み変化の差が過度に増大することを抑制できる。これにより、トップ側端部の屈曲部において負極集電体22Aにダメージが与えられるリスクを低減することができるため、衝撃に対する電池の安全性をさらに向上させることができる。一方、厚み比(A/B)が0.9以下であると、第1の負極活物質層22Bと第2の負極活物質層22Bの強度に差が生じるため、電池に衝撃が加えられた際に負極22が所定の方向に変形しやすくなるため、衝撃に対する電池の安全性をさらに向上させることができる。 Thickness ratio of the end face thickness A 2 of the second negative electrode active material layer 22B 2 on the top side of the negative electrode 22 to the end face thickness B 2 of the first negative electrode active material layer 22B 1 on the top side of the negative electrode 22 (A 2 / B 2 ) is preferably 0.5 or more and 0.9 or less. When the thickness ratio (A 2 / B 2 ) is 0.5 or more, the difference in thickness change due to expansion and contraction of the first negative electrode active material layer 22B 1 and the second negative electrode active material layer 22B 2 during charging and discharging It is possible to suppress an excessive increase. As a result, the risk of damage to the negative electrode current collector 22A at the bent portion on the top side end can be reduced, so that the safety of the battery against impact can be further improved. On the other hand, when the thickness ratio (A 2 / B 2 ) is 0.9 or less, the strength of the first negative electrode active material layer 22B 1 and the second negative electrode active material layer 22B 2 are different, so that the battery is impacted. Is added, the negative electrode 22 is likely to be deformed in a predetermined direction, so that the safety of the battery against impact can be further improved.
 負極22のトップ側における第2の負極活物質層22Bの端面厚みAは、好ましくは30μm以上80μm以下である。負極22のトップ側における第1の負極活物質層22Bの端面厚みBは、好ましくは50μm以上90μm以下である。 The end face thickness A 2 of the second negative electrode active material layer 22B 2 on the top side of the negative electrode 22 is preferably 30 μm or more and 80 μm or less. The end face thickness B 2 of the first negative electrode active material layer 22B 1 on the top side of the negative electrode 22 is preferably 50 μm or more and 90 μm or less.
 上記の端面厚みA、端面厚みBおよび厚み比(A/B)の測定方法は、サンプルの形成断面のうち負極22のトップ側端部に相当する部分を観察しSEM像を取得すること以外は、上記の端面厚みA、端面厚みBおよび厚み比(A/B)の測定方法と同様である。 In the above-mentioned measurement method of the end face thickness A 2 , the end face thickness B 2 and the thickness ratio (A 2 / B 2 ), an SEM image is obtained by observing the portion corresponding to the top side end portion of the negative electrode 22 in the formed cross section of the sample. Except for the above, the method for measuring the end face thickness A 1 , the end face thickness B 1 and the thickness ratio (A 1 / B 1 ) is the same.
(負極と収容部の幅に関する規定)
 負極22の幅W21と、負極22の幅方向22Dにおける収容部10Aの幅W10との差ΔWが、1.3mm以下である。ΔWが1.3mmを超えると、電池素子20のボトム側端面と外装材10との間の余剰空間、および電池素子20のトップ側端面と外装材10との間の余剰空間が大きくなる。このため、落下等の衝撃が電池に加えられた場合に、収容部10A内での電池素子20の動き(ズレや滑り等)を抑制することできなくなる。また、外装材10による電池素子20のボトム側端部の拘束が弱まるので、充放電に伴い負極22のボトム側端部の形状が変化しやすくなる。このため、落下等の衝撃に対して有利な、ボトム側端部の曲がり(負極22の内側面側への曲がり)を維持できなくなる虞がある。したがって、衝撃に対する電池の安全性が低下する。
(Regulations regarding the width of the negative electrode and the housing)
The difference ΔWA A between the width W 21 of the negative electrode 22 and the width W 10 of the accommodating portion 10A in the width direction 22D of the negative electrode 22 is 1.3 mm or less. When ΔWA exceeds 1.3 mm, the surplus space between the bottom side end surface of the battery element 20 and the exterior material 10 and the surplus space between the top side end surface of the battery element 20 and the exterior material 10 become large. Therefore, when an impact such as a drop is applied to the battery, the movement (displacement, slippage, etc.) of the battery element 20 in the accommodating portion 10A cannot be suppressed. Further, since the restraint of the bottom side end portion of the battery element 20 by the exterior material 10 is weakened, the shape of the bottom side end portion of the negative electrode 22 is likely to change with charging and discharging. Therefore, there is a possibility that the bending of the bottom side end portion (the bending toward the inner side surface side of the negative electrode 22), which is advantageous against an impact such as dropping, cannot be maintained. Therefore, the safety of the battery against impact is reduced.
 また、ΔWが1.3mmを超えると、外装材10による電池素子20のトップ側端部の拘束も弱まる。このため、トップ側端部が負極22の外側面側に曲げられている場合には、落下等の衝撃に対して有利な、トップ側端部の曲がり(負極22の外側面側への曲がり)を維持できなくなる虞がある。 Further, when ΔWA A exceeds 1.3 mm, the restraint of the top side end portion of the battery element 20 by the exterior material 10 is weakened. Therefore, when the top side end portion is bent toward the outer surface side of the negative electrode 22, the top side end portion is bent (bending toward the outer surface side of the negative electrode 22), which is advantageous against impacts such as dropping. May not be maintained.
 なお、収容部10Aの幅W10とは、収容部10Aの深さ1/2の位置にて負極22の幅方向22Dに測定される収容部10Aの内部空間の幅を意味する。 The width W 10 of the accommodating portion 10A means the width of the internal space of the accommodating portion 10A measured in the width direction 22D of the negative electrode 22 at the position of the depth 1/2 of the accommodating portion 10A.
(負極と正極の幅に関する規定)
 負極22の幅W22と正極21の幅W21との差ΔWは、好ましくは1.2mm以上1.8mm以下である。ΔWが1.2mm以上であると、巻回時に正極21と負極22の間に生じるずれ、および電池の落下時に正極21と負極22の間に生じるずれを加味しても、幅方向で正極21と負極22の位置関係が逆転するリスクを低減することができるため、衝撃に対する電池の安全性をさらに向上させることができる。一方、ΔWが1.8mm以下であると、衝撃が加わった際の負極22の変形を抑制することができるため、衝撃に対する電池の安全性をさらに向上させることができる。
(Regulations regarding the width of the negative electrode and the positive electrode)
The difference ΔWB between the width W 22 of the negative electrode 22 and the width W 21 of the positive electrode 21 is preferably 1.2 mm or more and 1.8 mm or less. When ΔWB is 1.2 mm or more, the positive electrode in the width direction is positive even if the deviation that occurs between the positive electrode 21 and the negative electrode 22 during winding and the deviation that occurs between the positive electrode 21 and the negative electrode 22 when the battery is dropped are taken into consideration. Since the risk that the positional relationship between the 21 and the negative electrode 22 is reversed can be reduced, the safety of the battery against impact can be further improved. On the other hand, when ΔWB is 1.8 mm or less, deformation of the negative electrode 22 when an impact is applied can be suppressed, so that the safety of the battery against an impact can be further improved.
(負極とセパレータの幅に関する規定)
 セパレータ23の幅W23と負極22の幅W22の差ΔWは、3.0mm以上4.0mm以下である。ΔWが3.0mm以上であると、巻回時にセパレータ23と負極22の間に生じるずれ、および電池の落下時にセパレータ23と負極22の間に生じるずれを加味しても、セパレータ23と負極22の間のクリアランスを保持することができるため、衝撃に対する電池の安全性をさらに向上させることができる。一方、ΔWが4.0mm以下であると、組立工程においてセパレータ23のラミネートフィルムヒートシール時の噛み込みを防ぎ、電解液の漏液を防ぐことができるため、衝撃に対する電池の安全性をさらに向上させることができる。
(Regulations regarding the width of the negative electrode and separator)
The difference ΔWC between the width W 23 of the separator 23 and the width W 22 of the negative electrode 22 is 3.0 mm or more and 4.0 mm or less. When ΔWC is 3.0 mm or more, even if the deviation generated between the separator 23 and the negative electrode 22 during winding and the deviation generated between the separator 23 and the negative electrode 22 when the battery is dropped are taken into consideration, the separator 23 and the negative electrode 22 are taken into consideration. Since the clearance between 22 can be maintained, the safety of the battery against impact can be further improved. On the other hand, when ΔWC is 4.0 mm or less, it is possible to prevent the separator 23 from being caught during the heat sealing of the laminated film in the assembly process and to prevent the electrolytic solution from leaking, so that the safety of the battery against impact is further improved. Can be improved.
(セパレータ)
 セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリオレフィン樹脂(ポリプロピレン(PP)またはポリエチレン(PE)等)、アクリル樹脂、スチレン樹脂、ポリエステル樹脂もしくはナイロン樹脂、または、これらの樹脂をブレンドした樹脂からなる多孔質膜によって構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。
(Separator)
The separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. The separator 23 is made of, for example, polytetrafluoroethylene, a polyolefin resin (polypropylene (PP) or polyethylene (PE), etc.), an acrylic resin, a styrene resin, a polyester resin or a nylon resin, or a resin blended with these resins. It is composed of a quality film, and may have a structure in which two or more of these porous films are laminated.
 中でも、ポリオレフィン製の多孔質膜は、短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。その中でも、低密度ポリエチレン、高密度ポリエチレンまたは線状ポリエチレンは、溶融温度が適当であり、入手が容易なので好適に用いられる。他にも、化学的安定性を備えた樹脂を、ポリエチレンまたはポリプロピレンと共重合またはブレンド化した材料を用いることができる。あるいは、多孔質膜は、ポリプロピレン層と、ポリエチレン層と、ポリプロピレン層を順次に積層した3層以上の構造を有していてもよい。例えば、PP/PE/PPの三層構造とし、PPとPEの質量比[質量%]が、PP:PE=60:40~75:25とすることが望ましい。あるいは、コストの観点から、PPが100質量%またはPEが100質量%の単層基材とすることもできる。セパレータ23の作製方法としては、湿式、乾式を問わない。 Among them, the porous film made of polyolefin is preferable because it has an excellent short-circuit prevention effect and can improve the safety of the battery by the shutdown effect. In particular, polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect in the range of 100 ° C. or higher and 160 ° C. or lower and is also excellent in electrochemical stability. Among them, low-density polyethylene, high-density polyethylene or linear polyethylene are preferably used because they have an appropriate melting temperature and are easily available. In addition, a material obtained by copolymerizing or blending a resin having chemical stability with polyethylene or polypropylene can be used. Alternatively, the porous membrane may have a structure of three or more layers in which a polypropylene layer, a polyethylene layer, and a polypropylene layer are sequentially laminated. For example, it is desirable to have a three-layer structure of PP / PE / PP and have a mass ratio [mass%] of PP to PE of PP: PE = 60: 40 to 75:25. Alternatively, from the viewpoint of cost, a single-layer base material containing 100% by mass of PP or 100% by mass of PE can be used. The method for producing the separator 23 may be wet or dry.
 セパレータ23としては、不織布を用いてもよい。不織布を構成する繊維としては、アラミド繊維、ガラス繊維、ポリオレフィン繊維、ポリエチレンテレフタレート(PET)繊維およびナイロン繊維等からなる群より選ばれた少なくとも1種を用いることができる。 A non-woven fabric may be used as the separator 23. As the fiber constituting the non-woven fabric, at least one selected from the group consisting of aramid fiber, glass fiber, polyolefin fiber, polyethylene terephthalate (PET) fiber, nylon fiber and the like can be used.
 セパレータ23は、基材と、基材の片面または両面に設けられた表面層を備える構成を有していてもよい。表面層は、絶縁性を有する無機粒子と、無機粒子を基材の表面に結着すると共に、無機粒子同士を結着する樹脂材料とを含む。この樹脂材料は、例えば、フィブリル化し、複数のフィブリルが繋がった三次元的なネットワーク構造を有していてもよい。この場合、無機粒子は、この三次元的なネットワーク構造を有する樹脂材料に担持されていてもよい。また、樹脂材料は、フィブリル化せずに基材の表面や無機粒子同士を結着してもよい。この場合、より高い結着性を得ることができる。上述のように基材の片面または両面に表面層を設けることで、セパレータ23の耐酸化性、耐熱性および機械強度等を高めることができる。 The separator 23 may have a structure including a base material and a surface layer provided on one side or both sides of the base material. The surface layer contains inorganic particles having an insulating property and a resin material that binds the inorganic particles to the surface of the base material and also binds the inorganic particles to each other. This resin material may have, for example, a three-dimensional network structure in which fibrils are formed and a plurality of fibrils are connected. In this case, the inorganic particles may be supported on the resin material having this three-dimensional network structure. Further, the resin material may bind the surface of the base material or the inorganic particles to each other without forming fibril. In this case, higher binding properties can be obtained. By providing the surface layer on one side or both sides of the base material as described above, the oxidation resistance, heat resistance, mechanical strength and the like of the separator 23 can be improved.
(電解液)
 電解液は、いわゆる非水電解液であり、非水溶媒(有機溶媒)と、この非水溶媒に溶解された電解質塩とを含んでいる。電解液が、電池特性を向上させるために、公知の添加剤を含んでいてもよい。なお、電池が、電解液に代えて、電解液と、この電解液を保持する保持体となる高分子化合物とを含む電解質層を備えるようにしてもよい。この場合、電解質層は、ゲル状となっていてもよい。
(Electrolytic solution)
The electrolytic solution is a so-called non-aqueous electrolytic solution, and contains a non-aqueous solvent (organic solvent) and an electrolyte salt dissolved in the non-aqueous solvent. The electrolytic solution may contain known additives in order to improve the battery characteristics. The battery may be provided with an electrolyte layer containing an electrolytic solution and a polymer compound serving as a retainer for holding the electrolytic solution, instead of the electrolytic solution. In this case, the electrolyte layer may be in the form of a gel.
 非水溶媒が、サイクル特性の向上の観点から、少なくとも1種の環状の炭酸エステルをさらに含んでいることが好ましい。環状の炭酸エステルとしては、炭酸エチレン(EC)および炭酸プロピレン(PC)等からなる群より選ばれた少なくとも1種を用いることが好ましく、炭酸エチレンおよび炭酸プロピレンの両方を含むことが特に好ましい。 It is preferable that the non-aqueous solvent further contains at least one cyclic carbonate ester from the viewpoint of improving the cycle characteristics. As the cyclic carbonate ester, it is preferable to use at least one selected from the group consisting of ethylene carbonate (EC) and propylene carbonate (PC), and it is particularly preferable to contain both ethylene carbonate and propylene carbonate.
 非水溶媒が、イオン伝導性の向上の観点から、少なくとも1種の鎖状の炭酸エステルをさらに含んでいることが好ましい。鎖状の炭酸エステルとしては、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルおよび炭酸メチルプロピル等からなる群より選ばれた少なくとも1種を用いることが好ましい。 It is preferable that the non-aqueous solvent further contains at least one chain-like carbonic acid ester from the viewpoint of improving ionic conductivity. As the chain carbonic acid ester, it is preferable to use at least one selected from the group consisting of diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate and the like.
 非水溶媒は、2,4-ジフルオロアニソールおよび炭酸ビニレン等からなる群より選ばれた少なくとも1種を含んでいてもよい。2,4-ジフルオロアニソールは放電容量をさらに向上させることができ、また、炭酸ビニレンはサイクル特性をさらに向上させることができるからである。 The non-aqueous solvent may contain at least one selected from the group consisting of 2,4-difluoroanisole, vinylene carbonate and the like. This is because 2,4-difluoroanisole can further improve the discharge capacity, and vinylene carbonate can further improve the cycle characteristics.
 これらの他にも、非水溶媒は、炭酸ブチレン、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピロニトリル、N,N-ジメチルフォルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドおよびリン酸トリメチル等からなる群より選ばれた少なくとも1種を含んでいてもよい。 In addition to these, non-aqueous solvents include butylene carbonate, γ-butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methylnitrile, 1,3-dioxolane, 4-methyl-1,3. -Dioxolane, Methyl acetate, Methyl propionate, acetonitrile, Glutaronitrile, Adiponitrile, Acetonitrile, 3-methoxypropyronitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N- It may contain at least one selected from the group consisting of dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, dimethylsulfoxide, trimethyl phosphate and the like.
 電解質塩としては、例えば、少なくとも1種のリチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiBF、LiAsF、LiClO、LiB(C、LiCHSO、LiCFSO、LiN(SOCF、LiC(SOCF、LiAlCl、LiSiF、LiCl、ジフルオロ[オキソラト-O,O']ホウ酸リチウム、リチウムビスオキサレートボレートおよびLiBr等からなる群より選ばれた少なくとも1種が挙げられる。中でも、LiPFは高いイオン伝導性を得ることができると共に、サイクル特性をさらに向上させることができるので好ましい。 As the electrolyte salt, for example, at least one lithium salt is used. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO). 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, difluoro [oxorat-O, O'] lithium borate, lithium bisoxalate borate, LiBr and the like can be mentioned at least one selected from the group. Among them, LiPF 6 is preferable because it can obtain high ionic conductivity and further improve the cycle characteristics.
[電池の動作]
 上述の構成を有する電池では、充電を行うと、例えば、正極活物質層21Bからリチウムイオンが放出され、電解液を介して負極活物質層22Bに吸蔵される。また、放電を行うと、例えば、負極活物質層22Bからリチウムイオンが放出され、電解液を介して正極活物質層21Bに吸蔵される。
[Battery operation]
In the battery having the above-described configuration, when charging is performed, for example, lithium ions are released from the positive electrode active material layer 21B and stored in the negative electrode active material layer 22B via the electrolytic solution. Further, when the electric discharge is performed, for example, lithium ions are released from the negative electrode active material layer 22B and are occluded in the positive electrode active material layer 21B via the electrolytic solution.
[電池の製造方法]
 次に、本発明の第1の実施形態に係る電池の製造方法の一例について説明する。
[Battery manufacturing method]
Next, an example of a method for manufacturing a battery according to the first embodiment of the present invention will be described.
(正極の作製工程)
 正極21を次のようにして作製する。まず、例えば、正極活物質と、バインダと、導電助剤とを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン(NMP)等の溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体21Aの第1の面、第2の面にそれぞれ塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより第1の正極活物質層21Bおよび第2の正極活物質層21Bを形成し、長尺の正極21を得る。得られた正極21を所定の幅にスリットしてもよい。
(Process for manufacturing positive electrode)
The positive electrode 21 is manufactured as follows. First, for example, a positive electrode active material, a binder, and a conductive auxiliary agent are mixed to prepare a positive electrode mixture, and this positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) and pasted. A positive electrode mixture slurry is prepared. Next, this positive electrode mixture slurry is applied to the first surface and the second surface of the positive electrode current collector 21A, respectively, the solvent is dried, and the first positive electrode active material layer is compression-molded by a roll press machine or the like. 21B 1 and a second positive electrode active material layer 21B 2 are formed to obtain a long positive electrode 21. The obtained positive electrode 21 may be slit to a predetermined width.
(負極の作製工程)
 負極22を次のようにして作製する。まず、例えば、負極活物質と、バインダとを混合して負極合剤を調製し、この負極合剤をN-メチル-2-ピロリドン等の溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体22Aの第1の面、第2の面にそれぞれ塗布し溶剤を乾燥させ、ロールプレス機等により圧縮成型することにより第1の負極活物質層22Bおよび第2の負極活物質層22Bを形成し、長尺の負極22を得る。得られた負極22を所定の幅にスリットしてもよい。
(Negative electrode manufacturing process)
The negative electrode 22 is manufactured as follows. First, for example, a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a paste-like negative electrode mixture slurry. do. Next, this negative electrode mixture slurry is applied to the first surface and the second surface of the negative electrode current collector 22A, respectively, the solvent is dried, and the first negative electrode active material layer is compression-molded by a roll press machine or the like. The 22B 1 and the second negative electrode active material layer 22B 2 are formed to obtain a long negative electrode 22. The obtained negative electrode 22 may be slit to a predetermined width.
 次に、例えば金属板を使用して、負極22の一方の長辺側の端部に外力を加えることにより、負極22の第1の面側に負極22の一方の長辺側の端部を曲げる。次に、必要に応じて、例えば金属板を使用して、負極22の他方の長辺側の端部に外力を加えることにより、負極22の第2の面側に他方の長辺側の端部を曲げる。なお、負極22の一方の長辺側の端部は、完成電池ではボトム側となり、負極22の他方の長辺側の端部は、完成電池ではトップ側となる。また、負極22の第1の面は、完成電池では内側面となり、負極22の第2の面は、完成電池では外側面となる。 Next, for example, by applying an external force to one long side end of the negative electrode 22 using a metal plate, one long side end of the negative electrode 22 is placed on the first surface side of the negative electrode 22. bend. Next, if necessary, for example, by using a metal plate and applying an external force to the other long side end of the negative electrode 22, the other long side end is applied to the second surface side of the negative electrode 22. Bend the part. The end of one long side of the negative electrode 22 is the bottom side of the finished battery, and the end of the other long side of the negative electrode 22 is the top side of the finished battery. Further, the first surface of the negative electrode 22 is the inner surface of the finished battery, and the second surface of the negative electrode 22 is the outer surface of the finished battery.
(電池素子の作製工程)
 巻回型の電池素子20を次のようにして作製する。まず、正極集電体21Aの一方の端部に正極リード11を溶接により取り付けると共に、負極集電体22Aの一方の端部に負極リード12を溶接により取り付ける。次に、正極21と負極22とをセパレータ23を介して扁平状の巻芯の周囲に巻き付けて、長手方向に多数回巻回したのち、最外周部に保護テープ24を接着して電池素子20を得る。
(Battery element manufacturing process)
The winding type battery element 20 is manufactured as follows. First, the positive electrode lead 11 is attached to one end of the positive electrode current collector 21A by welding, and the negative electrode lead 12 is attached to one end of the negative electrode current collector 22A by welding. Next, the positive electrode 21 and the negative electrode 22 are wound around the flat winding core via the separator 23, wound many times in the longitudinal direction, and then the protective tape 24 is adhered to the outermost peripheral portion to adhere the battery element 20. To get.
(封止工程)
 外装材10により電池素子20を次のようにして封止する。まず、収容部10Aに電池素子20を収容するようにして、電池素子20を外装材10で挟み、一辺を除く外周縁部を熱融着して袋状とし、外装材10の内部に収納する。その際、正極リード11および負極リード12と外装材10との間に密着フィルム13を挿入する。なお、正極リード11、負極リード12にそれぞれ密着フィルム13を予め取り付けておいてもよい。次に、未融着の一辺から電解液を外装材10の内部に注入したのち、未融着の一辺を真空雰囲気下で熱融着して密封する。以上により、図1、図2に示した電池が得られる。
(Sealing process)
The battery element 20 is sealed with the exterior material 10 as follows. First, the battery element 20 is accommodated in the accommodating portion 10A, the battery element 20 is sandwiched between the exterior materials 10, and the outer peripheral edge portion excluding one side is heat-sealed to form a bag shape, and the battery element 20 is accommodated inside the exterior material 10. .. At that time, the adhesion film 13 is inserted between the positive electrode lead 11 and the negative electrode lead 12 and the exterior material 10. The adhesion film 13 may be attached to the positive electrode lead 11 and the negative electrode lead 12 in advance. Next, the electrolytic solution is injected into the exterior material 10 from one side of the unfused, and then one side of the unfused is heat-fused and sealed in a vacuum atmosphere. As a result, the batteries shown in FIGS. 1 and 2 can be obtained.
[作用効果]
 上述したように、第1の実施形態に係る電池では、負極22のボトム側端部が、負極22の内側面側(すなわち電池素子30の最内周側)に曲げられている。このようにボトム側端部が曲げられていることで、電池に衝撃が加えられた際に、負極22のボトム側端部が曲がる方向を、電池素子20の最内周に設けられた空間の方向に制約することができる。これにより、電池に衝撃が加えられた際に、負極22のボトム側端部が、正極21と負極22のボトム側端部が接触するような変形を起こすことが抑制され、正極21と負極22の短絡のリスクを低減させることができる。したがって、落下等により衝撃に対する電池の安全性を向上させることができる。
[Action effect]
As described above, in the battery according to the first embodiment, the bottom side end portion of the negative electrode 22 is bent toward the inner side surface side of the negative electrode 22 (that is, the innermost peripheral side of the battery element 30). Since the bottom side end is bent in this way, the direction in which the bottom side end of the negative electrode 22 bends when an impact is applied to the battery is defined as the space provided on the innermost circumference of the battery element 20. Can be constrained in direction. As a result, when an impact is applied to the battery, the bottom side end portion of the negative electrode 22 is prevented from being deformed so that the positive electrode 21 and the bottom side end portion of the negative electrode 22 come into contact with each other, and the positive electrode 21 and the negative electrode 22 are prevented from being deformed. The risk of short circuit can be reduced. Therefore, it is possible to improve the safety of the battery against impact due to dropping or the like.
 また、負極22の幅W21と、負極22の幅方向22Dにおける収容部10Aの幅W10との差ΔWが、1.3mm以下である。これにより、電池素子20のボトム側端面と外装材10との間の余剰空間、および電池素子20のトップ側端面と外装材10との間の余剰空間が小さくなり、落下等の衝撃が電池に加えられた場合に、収容部10A内で電池素子20の動き(ズレや滑り等)を抑制することができる。また、電池素子20のボトム側端面と外装材10との間の余剰空間が小さくなることで、外装材10による電池素子20のボトム側端部の拘束が強まるので、充放電に伴い負極22のボトム側端部の形状が変化することを抑制することができる。このため、落下等の衝撃に対して有利な、ボトム側端部の曲がり(負極22の内側面側への曲がり)を維持することができる。 Further, the difference ΔWA between the width W 21 of the negative electrode 22 and the width W 10 of the accommodating portion 10A in the width direction 22D of the negative electrode 22 is 1.3 mm or less. As a result, the surplus space between the bottom end surface of the battery element 20 and the exterior material 10 and the surplus space between the top end surface of the battery element 20 and the exterior material 10 are reduced, and an impact such as a drop is applied to the battery. When added, the movement (displacement, slippage, etc.) of the battery element 20 can be suppressed in the accommodating portion 10A. Further, since the surplus space between the bottom side end surface of the battery element 20 and the exterior material 10 becomes smaller, the restraint of the bottom side end portion of the battery element 20 by the exterior material 10 is strengthened, so that the negative electrode 22 is charged and discharged. It is possible to suppress the change in the shape of the bottom side end portion. Therefore, it is possible to maintain the bending of the bottom side end portion (the bending toward the inner side surface side of the negative electrode 22), which is advantageous for impacts such as dropping.
<2 第2の実施形態>
 第2の実施形態では、上述の第1の実施形態に係る電池を備える電子機器について説明する。
<2 Second Embodiment>
In the second embodiment, the electronic device including the battery according to the first embodiment described above will be described.
 図4は、本発明の第2の実施形態に係る電子機器400の構成の一例を示す。電子機器400は、電子機器本体の電子回路401と、電池パック300とを備える。電池パック300は、正極端子331aおよび負極端子331bを介して電子回路401に対して電気的に接続されている。電子機器400は、電池パック300を着脱自在な構成を有していてもよい。 FIG. 4 shows an example of the configuration of the electronic device 400 according to the second embodiment of the present invention. The electronic device 400 includes an electronic circuit 401 of the main body of the electronic device and a battery pack 300. The battery pack 300 is electrically connected to the electronic circuit 401 via the positive electrode terminal 331a and the negative electrode terminal 331b. The electronic device 400 may have a structure in which the battery pack 300 can be attached and detached.
 電子機器400としては、例えば、ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォン等)、携帯情報端末(Personal Digital Assistants:PDA)、表示装置(LCD(Liquid Crystal Display)、EL(Electro Luminescence)ディスプレイ、電子ペーパ等)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラ等)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器またはロボット等が挙げられるが、これに限定されるものでなない。 Examples of the electronic device 400 include a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a personal digital assistant (PDA), a display device (LCD (Liquid Crystal Display), and an EL (Electro Luminescence). ) Display, electronic paper, etc.), image pickup device (for example, digital still camera, digital video camera, etc.), audio equipment (for example, portable audio player), game equipment, cordless phone handset, electronic book, electronic dictionary, radio, headphones, navigation Systems, memory cards, pacemakers, hearing aids, power tools, electric shavers, refrigerators, air conditioners, TVs, stereos, water heaters, microwave ovens, dishwashers, washing machines, dryers, lighting equipment, toys, medical equipment or robots, etc. However, it is not limited to this.
(電子回路)
 電子回路401は、例えば、CPU(Central Processing Unit)、周辺ロジック部、インターフェース部および記憶部等を備え、電子機器400の全体を制御する。
(Electronic circuit)
The electronic circuit 401 includes, for example, a CPU (Central Processing Unit), a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
(電池パック)
 電池パック300は、組電池301と、充放電回路302とを備える。電池パック300が、必用に応じて組電池301および充放電回路302を収容する外装材(図示せず)をさらに備えるようにしてもよい。
(Battery pack)
The battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302. The battery pack 300 may further include an exterior material (not shown) that houses the assembled battery 301 and the charge / discharge circuit 302, if necessary.
 組電池301は、複数の二次電池301aを直列および/または並列に接続して構成されている。複数の二次電池301aは、例えばn並列m直列(n、mは正の整数)に接続される。なお、図4では、6つの二次電池301aが2並列3直列(2P3S)に接続された例が示されている。二次電池301aとしては、上述の第1の実施形態に係る電池が用いられる。 The assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel. The plurality of secondary batteries 301a are connected, for example, in n parallel m series (n and m are positive integers). Note that FIG. 4 shows an example in which six secondary batteries 301a are connected in two parallels and three series (2P3S). As the secondary battery 301a, the battery according to the first embodiment described above is used.
 ここでは、電池パック300が、複数の二次電池301aにより構成される組電池301を備える場合について説明するが、電池パック300が、組電池301に代えて1つの二次電池301aを備える構成を採用してもよい。 Here, a case where the battery pack 300 includes an assembled battery 301 composed of a plurality of secondary batteries 301a will be described, but the battery pack 300 includes one secondary battery 301a instead of the assembled battery 301. It may be adopted.
 充放電回路302は、組電池301の充放電を制御する制御部である。具体的には、充電時には、充放電回路302は、組電池301に対する充電を制御する。一方、放電時(すなわち電子機器400の使用時)には、充放電回路302は、電子機器400に対する放電を制御する。 The charge / discharge circuit 302 is a control unit that controls the charge / discharge of the assembled battery 301. Specifically, at the time of charging, the charging / discharging circuit 302 controls the charging of the assembled battery 301. On the other hand, at the time of discharging (that is, when the electronic device 400 is used), the charge / discharge circuit 302 controls the discharge to the electronic device 400.
 外装材としては、例えば、金属、高分子樹脂またはこれらの複合材料等より構成されるケースを用いることができる。複合材料としては、例えば、金属層と高分子樹脂層とが積層された積層体が挙げられる。 As the exterior material, for example, a case made of a metal, a polymer resin, a composite material thereof, or the like can be used. Examples of the composite material include a laminate in which a metal layer and a polymer resin layer are laminated.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
 以下の実施例および比較例において、完成電池の端面厚みA、B、A、Bおよび完成電池の厚み比A/B、A/Bは、第1の実施形態にて説明した測定方法により求められたものである。 In the following examples and comparative examples, the end face thicknesses A 1 , B 1 , A 2 , B 2 of the finished battery and the thickness ratios A 1 / B 1 and A 2 / B 2 of the finished battery are included in the first embodiment. It was obtained by the measurement method described above.
[実施例1~3、比較例1、2]
(正極の作製工程)
 正極を次のようにして作製した。まず、正極活物質としてリチウムコバルト複合酸化物97質量部と、導電剤としてカーボンブラック1質量部と、バインダとしてポリフッ化ビニリデン(PVdF)2質量部とを混合することにより正極合剤としたのち、N-メチル-2-ピロリドンに分散させることにより、ペースト状の正極合剤スラリーとした。次に、厚さ10μmを有する帯状のアルミニウム箔(正極集電体)の第1の面、第2の面にそれぞれ正極合剤スラリーを塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、アルミニウム箔の第1の面、第2の面にそれぞれ第1の正極活物質層、第2の正極活物質層を形成した。次に、得られた積層体を所定幅にスリット(切断)することにより、帯状の正極を得た。
[Examples 1 to 3, Comparative Examples 1 and 2]
(Process for manufacturing positive electrode)
The positive electrode was prepared as follows. First, 97 parts by mass of lithium cobalt composite oxide as a positive electrode active material, 1 part by mass of carbon black as a conductive agent, and 2 parts by mass of polyvinylidene fluoride (PVdF) as a binder are mixed to prepare a positive electrode mixture. By dispersing it in N-methyl-2-pyrrolidone, a paste-like positive electrode mixture slurry was obtained. Next, the positive electrode mixture slurry is applied to the first surface and the second surface of the strip-shaped aluminum foil (positive electrode current collector) having a thickness of 10 μm, dried, and then compression-molded by a roll press machine. As a result, a first positive electrode active material layer and a second positive electrode active material layer were formed on the first surface and the second surface of the aluminum foil, respectively. Next, a strip-shaped positive electrode was obtained by slitting (cutting) the obtained laminate to a predetermined width.
(負極の作製工程)
 負極を次のようにして作製した。まず、負極活物質として人造黒鉛粉末96質量%と、バインダとしてポリフッ化ビニリデン(PVdF)4質量%とを混合することにより負極合剤としたのち、この負極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させて、ペースト状の負極合剤スラリーとした。次に、厚さ10μmを有する帯状の銅箔(負極集電体)の第1の面、第2の面にそれぞれ負極合剤スラリーを塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、銅箔の第1の面、第2の面にそれぞれ第1の負極活物質層、第2の負極活物質層を形成した。ここで、銅箔の第1の面は、負極の巻回後に内側面となる面であり、銅箔の第2の面は、負極の巻回後に外側面となる面である。次に、得られた積層体を所定幅にスリット(切断)することにより、帯状の負極を得た。
(Negative electrode manufacturing process)
The negative electrode was prepared as follows. First, 96% by mass of artificial graphite powder as a negative electrode active material and 4% by mass of polyvinylidene fluoride (PVdF) as a binder are mixed to prepare a negative electrode mixture, and then this negative electrode mixture is used as an organic solvent (N-methyl-). 2-Pyrrolidone: NMP) was dispersed to prepare a paste-like negative electrode mixture slurry. Next, the negative electrode mixture slurry is applied to the first surface and the second surface of the strip-shaped copper foil (negative electrode current collector) having a thickness of 10 μm, dried, and then compression-molded by a roll press machine. As a result, a first negative electrode active material layer and a second negative electrode active material layer were formed on the first surface and the second surface of the copper foil, respectively. Here, the first surface of the copper foil is the surface that becomes the inner surface after the negative electrode is wound, and the second surface of the copper foil is the surface that becomes the outer surface after the negative electrode is wound. Next, a strip-shaped negative electrode was obtained by slitting (cutting) the obtained laminate to a predetermined width.
 次に、金属板を使用して負極の両長辺側の端部に外力を加えることにより、両長辺側の端部を屈曲させた。この際、完成電池において負極のボトム側端部が負極の内側面側に屈曲し、かつ、完成電池において負極のトップ側端部が負極の外側面側に屈曲するように、両長辺側の端部の屈曲方向を設定した。また、完成電池の端面厚みA、B、A、B、および完成電池の厚み比A/B、A/Bが表1に示す値となるようにするために、負極合剤スラリーの塗布時の塗工機ギャップを変化させて負極活物質層の厚みを調整した。 Next, by applying an external force to the ends on both long sides of the negative electrode using a metal plate, the ends on both long sides were bent. At this time, on both long sides, the bottom end of the negative electrode is bent toward the inner side surface of the negative electrode in the finished battery, and the top end of the negative electrode is bent toward the outer side of the negative electrode in the finished battery. The bending direction of the end was set. In addition, in order to ensure that the end face thicknesses A 1 , B 1 , A 2 , and B 2 of the finished battery and the thickness ratios A 1 / B 1 and A 2 / B 2 of the finished battery are the values shown in Table 1. The thickness of the negative electrode active material layer was adjusted by changing the coating machine gap at the time of applying the negative electrode mixture slurry.
(電解液の調製工程)
 電解液を次のようにして調製した。まず、炭酸エチレン(EC)と炭酸プロピレン(PC)と炭酸ジエチル(DEC)とを、質量比でEC:PC:DEC=15:15:70となるようにして混合して混合溶媒を調製した。続いて、この混合溶媒に、電解質塩として六フッ化リン酸リチウム(LiPF)を1mol/lとなるように溶解させて電解液を調製した。
(Preparation process of electrolytic solution)
The electrolyte was prepared as follows. First, ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC) were mixed in a mass ratio of EC: PC: DEC = 15: 15: 70 to prepare a mixed solvent. Subsequently, lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was dissolved in this mixed solvent so as to be 1 mol / l to prepare an electrolytic solution.
(電池の作製工程)
 電池を次のようにして作製した。まず、正極集電体にアルミニウム製の正極リードを溶接すると共に、負極集電体に銅製の負極リードを溶接した。続いて、正極および負極を、微多孔性のポリエチレンフィルムを介して密着させたのち、長手方向に巻回して、最外周部に保護テープを貼り付けることにより、扁平状を有する巻回型の電池素子を作製した。
(Battery manufacturing process)
The battery was made as follows. First, an aluminum positive electrode lead was welded to the positive electrode current collector, and a copper negative electrode lead was welded to the negative electrode current collector. Subsequently, the positive electrode and the negative electrode are brought into close contact with each other via a microporous polyethylene film, then wound in the longitudinal direction, and a protective tape is attached to the outermost peripheral portion to form a flat wound battery. The element was manufactured.
 次に、深絞り加工により外装材に収容部を形成したのち、電池素子を収容部に収容するようにして、電池素子を外装材の間に装填し、外装材の3辺を熱融着し、一辺は熱融着せずに開口を有するようにした。外装材としては、最外層から順に25μm厚のナイロンフィルムと、40μm厚のアルミニウム箔と、30μm厚のポリプロピレンフィルムとが積層された防湿性のアルミラミネートフィルムを用いた。その後、電解液を外装材の開口から注入し、外装材の残りの1辺を減圧下において熱融着し、電池素子を密封した。これにより、目的とする電池が得られた。 Next, after forming an accommodating portion in the exterior material by deep drawing, the battery element is accommodated in the accommodating portion, the battery element is loaded between the exterior materials, and the three sides of the exterior material are heat-sealed. , One side has an opening without heat fusion. As the exterior material, a moisture-proof aluminum laminated film in which a nylon film having a thickness of 25 μm, an aluminum foil having a thickness of 40 μm, and a polypropylene film having a thickness of 30 μm were laminated in order from the outermost layer was used. Then, the electrolytic solution was injected through the opening of the exterior material, and the remaining one side of the exterior material was heat-sealed under reduced pressure to seal the battery element. As a result, the target battery was obtained.
 なお、正極の作製工程および負極の作製工程において積層体のスリット幅を調整すると共に、電池の作製工程において準備するセパレータの幅を調整することにより、正極の両長辺が負極の両長辺の内側に設けられ、負極の両長辺がセパレータの両長辺の内側に設けられるようにした。また、ΔW=0.9mm、ΔW=1.5mm、ΔW=3.5mmとなるようにした。なお、ΔW、ΔWおよびΔWは以下のとおりである。
 ΔW:負極の幅W21と、負極の幅方向における収容部の幅W10との差(図1、図3参照)
 ΔW:負極の幅W22と正極の幅W21との差(図3参照)
 ΔW:セパレータの幅W23と負極の幅W22の差(図3参照)
By adjusting the slit width of the laminate in the positive electrode manufacturing step and the negative electrode manufacturing step and adjusting the width of the separator prepared in the battery manufacturing step, both long sides of the positive electrode become both long sides of the negative electrode. It is provided on the inside so that both long sides of the negative electrode are provided inside both long sides of the separator. Further, ΔW A = 0.9 mm, ΔW B = 1.5 mm, and ΔWC = 3.5 mm. In addition, ΔW A , ΔWB B and ΔWC are as follows.
ΔWA A : Difference between the width W 21 of the negative electrode and the width W 10 of the accommodating portion in the width direction of the negative electrode (see FIGS. 1 and 3).
ΔWB : Difference between the negative electrode width W 22 and the positive electrode width W 21 (see FIG. 3).
ΔWC : Difference between the width W 23 of the separator and the width W 22 of the negative electrode (see FIG. 3).
[比較例3]
 負極の作製工程において、負極の一方の長辺側の端部に外力を加えず、一方の長辺側の端部を平坦としたこと以外は実施例2と同様にして電池を得た。なお、負極の一方の長辺側が、完成電池においてボトム側となる。
[Comparative Example 3]
In the process of manufacturing the negative electrode, a battery was obtained in the same manner as in Example 2 except that no external force was applied to the end on the long side of one of the negative electrodes and the end on the long side of one was flattened. One long side of the negative electrode is the bottom side of the completed battery.
[比較例4]
 負極の作製工程において、完成電池において負極のボトム側端部が負極の外側面側に屈曲し、かつ、完成電池において負極のトップ側端部が負極の外側面側に屈曲するように、両長辺側の端部の屈曲方向を設定したこと以外は実施例2と同様にして電池を得た。
[Comparative Example 4]
In the process of manufacturing the negative electrode, both lengths are such that the bottom end of the negative electrode is bent toward the outer side of the negative electrode in the finished battery, and the top end of the negative electrode is bent toward the outer side of the negative electrode in the finished battery. A battery was obtained in the same manner as in Example 2 except that the bending direction of the end portion on the side side was set.
[実施例4、5、比較例5、6]
 ΔW、ΔW、ΔWが表3に示す値となるように、正極の作製工程および負極の作製工程において積層体のスリット幅を調整したと共に、電池の作製工程において準備するセパレータの幅を調整したこと以外は実施例2と同様にして電池を得た。
[Examples 4 and 5, Comparative Examples 5 and 6]
The slit width of the laminate was adjusted in the positive electrode manufacturing step and the negative electrode manufacturing step so that ΔWA A , ΔWB B , and ΔWC were the values shown in Table 3, and the width of the separator prepared in the battery manufacturing step was adjusted. A battery was obtained in the same manner as in Example 2 except that the adjustment was made.
[実施例6~10]
 完成電池の厚み比A/Bが表4に示す値となるように、負極合剤スラリーの塗布時の塗工機ギャップを変化させて負極活物質層の厚みを調整し、かつ、他方の長辺側の端部に加えられる外力を調整したこと以外は実施例2と同様にして電池を得た。なお、負極の他方の長辺側が、完成電池においてトップ側となる。
[Examples 6 to 10]
The thickness of the negative electrode active material layer is adjusted by changing the coating machine gap at the time of applying the negative electrode mixture slurry so that the thickness ratio A 2 / B 2 of the completed battery becomes the value shown in Table 4, and the other A battery was obtained in the same manner as in Example 2 except that the external force applied to the end portion on the long side of the above was adjusted. The other long side of the negative electrode is the top side of the completed battery.
[実施例11]
 負極の作製工程において、負極の他方の長辺側の端部に外力を加えず、他方の長辺側の端部を平坦としたこと以外は実施例2と同様にして電池を得た。
[Example 11]
In the process of manufacturing the negative electrode, a battery was obtained in the same manner as in Example 2 except that no external force was applied to the other end on the long side of the negative electrode and the other end on the long side was flattened.
[実施例12~16]
 ΔW、ΔW、ΔWが表5に示す値となるように、正極の作製工程および負極の作製工程において積層体のスリット幅を調整したと共に、電池の作製工程において準備するセパレータの幅を調整したこと以外は実施例2と同様にして電池を得た。
[Examples 12 to 16]
The slit width of the laminate was adjusted in the positive electrode manufacturing step and the negative electrode manufacturing step so that ΔWA A , ΔWB B , and ΔWC were the values shown in Table 5, and the width of the separator prepared in the battery manufacturing step was adjusted. A battery was obtained in the same manner as in Example 2 except that the adjustment was made.
[実施例17~21]
 ΔW、ΔW、ΔWが表6に示す値となるように、正極の作製工程および負極の作製工程において積層体のスリット幅を調整したと共に、電池の作製工程において準備するセパレータの幅を調整したこと以外は実施例2と同様にして電池を得た。
[Examples 17 to 21]
The slit width of the laminate was adjusted in the positive electrode manufacturing step and the negative electrode manufacturing step so that ΔWA A , ΔWB B , and ΔWC were the values shown in Table 6, and the width of the separator prepared in the battery manufacturing step was adjusted. A battery was obtained in the same manner as in Example 2 except that the adjustment was made.
(落下安全性)
 上述のようにして得られた電池の落下安全性を以下のようにして評価した。落下試験は民生用途の電子機器に組み込まれた状態を模擬した治具に装着した状態で行われた。電池重量は約30g、治具は約150gであった。治具に取り付けられた電池を1.5mの高さから平板上に落下させた。一回落下させる毎にOCV(Open Circuit Voltage:開回路電圧)の測定を行い、発煙および発火の有無を確認した。20回の落下試験後にOCV低下および発煙発火が発生していない場合に落下安全性試験をパスしたと定義した。上記試験を100個の電池に行い、上記試験をパスした電池のパス比率([(上記試験をパスした電池の個数)/(上記試験を行った電池の個数)]×100[%])を求めた。
(Fall safety)
The drop safety of the battery obtained as described above was evaluated as follows. The drop test was conducted with the device mounted on a jig simulating the state of being incorporated in a consumer electronic device. The battery weight was about 30 g and the jig was about 150 g. The battery attached to the jig was dropped onto a flat plate from a height of 1.5 m. The OCV (Open Circuit Voltage) was measured each time it was dropped, and the presence or absence of smoke and ignition was confirmed. It was defined that the drop safety test was passed when OCV reduction and smoke ignition did not occur after 20 drop tests. The above test was performed on 100 batteries, and the pass ratio of the batteries that passed the above test ([(the number of batteries that passed the above test) / (the number of batteries that passed the above test)] × 100 [%]) was calculated. I asked.
 表1は、実施例1~3、比較例1、2の電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the configurations and evaluation results of the batteries of Examples 1 to 3 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
 表2は、実施例2、比較例3、4の電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the configurations and evaluation results of the batteries of Example 2, Comparative Examples 3 and 4.
Figure JPOXMLDOC01-appb-T000002
 表3は、実施例2、4、5、比較例5、6の電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the configurations and evaluation results of the batteries of Examples 2, 4, 5, and Comparative Examples 5, 6.
Figure JPOXMLDOC01-appb-T000003
 表4は、実施例2、6~11の電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
Table 4 shows the configurations and evaluation results of the batteries of Examples 2 and 6 to 11.
Figure JPOXMLDOC01-appb-T000004
 表5は、実施例12~16の電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000005
Table 5 shows the configurations and evaluation results of the batteries of Examples 12 to 16.
Figure JPOXMLDOC01-appb-T000005
 表6は、実施例17~21の電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000006
Table 6 shows the configurations and evaluation results of the batteries of Examples 17 to 21.
Figure JPOXMLDOC01-appb-T000006
 表1~3から以下のことがわかる。負極のボトム側端部が負極の内側面側に屈曲され、厚み比A/Bが1.1以上2.0以下であり、ΔWが1.3mm以下であると、落下安全性を向上させることができる。 The following can be seen from Tables 1 to 3. When the bottom end of the negative electrode is bent toward the inner side surface of the negative electrode, the thickness ratio A 1 / B 1 is 1.1 or more and 2.0 or less, and ΔWA is 1.3 mm or less, the drop safety is improved. Can be improved.
 表4から以下のことがわかる。負極のトップ側端部が負極の内側面側に屈曲された電池では、負極のトップ側端部が負極の外側面側に屈曲された電池、および負極のトップ側端部が屈曲されていない電池に比べて落下安全性を向上させることができる(実施例2、10、11参照)。
 負極のトップ側端部が負極の内側面側に屈曲された電池では、落下安全性の向上の観点から、厚み比A/Bが0.5以上0.9以下であることが好ましい(実施例2、6~9参照)。
The following can be seen from Table 4. Among the batteries in which the top side end of the negative electrode is bent toward the inner side surface of the negative electrode, the battery in which the top side end of the negative electrode is bent toward the outer side of the negative electrode and the battery in which the top side end of the negative electrode is not bent. It is possible to improve the drop safety as compared with (see Examples 2, 10 and 11).
In a battery in which the top end of the negative electrode is bent toward the inner side surface of the negative electrode, the thickness ratio A 2 / B 2 is preferably 0.5 or more and 0.9 or less from the viewpoint of improving drop safety (from the viewpoint of improving drop safety). See Examples 2 and 6-9).
 表5から以下のことがわかる。落下安全性の向上の観点から、ΔWが1.2mm以上1.8mm以下であることが好ましい。 The following can be seen from Table 5. From the viewpoint of improving drop safety, it is preferable that ΔWB is 1.2 mm or more and 1.8 mm or less.
 表6から以下のことがわかる。落下安全性の向上の観点から、ΔWが3.0mm以上4.0mm以下であることが好ましい。 The following can be seen from Table 6. From the viewpoint of improving drop safety, it is preferable that ΔWC is 3.0 mm or more and 4.0 mm or less.
 以上、本発明の実施形態について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。 Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible.
 例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。 For example, the configurations, methods, processes, shapes, materials, numerical values, etc. given in the above-described embodiments are merely examples, and different configurations, methods, processes, shapes, materials, numerical values, etc. may be used as necessary. May be good.
 上述の実施形態の構成、方法、工程、形状、材料および数値等は、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。 The configurations, methods, processes, shapes, materials, numerical values, etc. of the above-described embodiments can be combined with each other as long as they do not deviate from the gist of the present invention.
 上述の実施形態で段階的に記載された数値範囲において、ある段階の数値範囲の上限値または下限値は、他の段階の数値範囲の上限値または下限値に置き換えてもよい。 In the numerical range described stepwise in the above embodiment, the upper limit value or the lower limit value of the numerical range of one stage may be replaced with the upper limit value or the lower limit value of the numerical range of another stage.
 上述の実施形態に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。 Unless otherwise specified, the materials exemplified in the above-described embodiments can be used alone or in combination of two or more.
 10  外装材
 10A  収容部
 11  正極リード
 12  負極リード
 13  密着フィルム
 20  電池素子
 21  正極
 21A  正極集電体
 21B  第1の正極活物質層
 21B  第2の正極活物質層
 22  負極
 22A  負極集電体
 22B  第1の負極活物質層
 22B  第2の負極活物質層
 23  セパレータ
 24  保護テープ
 300  電池パック
 400  電子機器
10 Exterior material 10A Accommodating part 11 Positive electrode lead 12 Negative electrode lead 13 Adhesive film 20 Battery element 21 Positive electrode 21A Positive electrode current collector 21B 1 First positive electrode active material layer 21B 2 Second positive electrode active material layer 22 Negative electrode 22A Negative electrode current collector 22B 1 First negative electrode active material layer 22B 2 Second negative electrode active material layer 23 Separator 24 Protective tape 300 Battery pack 400 Electronic equipment

Claims (5)

  1.  巻回型の電池素子と、
     前記電池素子を収容するフィルム状の外装材と
     を備え、
     前記電池素子は、長尺状の正極と、長尺状の負極と、長尺状のセパレータとを備え、前記正極、前記負極および前記セパレータは、長手方向に巻回されると共に、前記正極の両長辺は、前記負極の両長辺の内側に設けられ、
     前記負極は、負極集電体と、前記負極集電体の内側面に設けられた第1の負極活物質層と、前記負極集電体の外側面に設けられた第2の負極活物質層とを備え、
     前記負極の一方の長辺側の端部が、前記負極の内側面側に曲げられ、
     前記負極の一方の長辺側における前記第2の負極活物質層の端面厚みAと、前記負極の一方の長辺側における前記第1の負極活物質層の端面厚みBとの厚み比(A/B)が、1.1以上2.0以下であり、
     前記外装材は、前記電池素子を収容する収容部を有し、前記負極の幅と、前記負極の幅方向における前記収容部の幅との差が、1.3mm以下である電池。
    With a winding type battery element
    A film-like exterior material for accommodating the battery element is provided.
    The battery element includes a long positive electrode, a long negative electrode, and a long separator, and the positive electrode, the negative electrode, and the separator are wound in the longitudinal direction and of the positive electrode. Both long sides are provided inside both long sides of the negative electrode.
    The negative electrode has a negative electrode current collector, a first negative electrode active material layer provided on the inner surface of the negative electrode current collector, and a second negative electrode active material layer provided on the outer surface of the negative electrode current collector. And with
    One end of the negative electrode on the long side is bent toward the inner side surface of the negative electrode.
    The thickness ratio between the end face thickness A1 of the second negative electrode active material layer on one long side of the negative electrode and the end face thickness B1 of the first negative electrode active material layer on one long side of the negative electrode. (A 1 / B 1 ) is 1.1 or more and 2.0 or less.
    The exterior material has an accommodating portion for accommodating the battery element, and the difference between the width of the negative electrode and the width of the accommodating portion in the width direction of the negative electrode is 1.3 mm or less.
  2.  前記外装材は、前記負極の一方の長辺側に設けられた折り返し部と、前記負極の他方の長辺側に設けられたシール部とを有する請求項1に記載の電池。 The battery according to claim 1, wherein the exterior material has a folded-back portion provided on one long side of the negative electrode and a sealing portion provided on the other long side of the negative electrode.
  3.  前記負極の他方の長辺側の端部が、前記負極の外側面側に曲げられ、
     前記負極の他方の長辺側における前記第2の負極活物質層の端面厚みAと、前記負極の他方の長辺側における前記第1の負極活物質層の端面厚みBとの厚み比(A/B)が、0.5以上0.9以下である請求項2に記載の電池。
    The other long side end of the negative electrode is bent toward the outer surface side of the negative electrode.
    The thickness ratio between the end face thickness A 2 of the second negative electrode active material layer on the other long side of the negative electrode and the end face thickness B 2 of the first negative electrode active material layer on the other long side of the negative electrode. The battery according to claim 2, wherein (A 2 / B 2 ) is 0.5 or more and 0.9 or less.
  4.  前記負極の幅と前記正極の幅との差は、1.2mm以上1.8mm以下である請求項1から3のいずれか1項に記載の電池。 The battery according to any one of claims 1 to 3, wherein the difference between the width of the negative electrode and the width of the positive electrode is 1.2 mm or more and 1.8 mm or less.
  5.  前記負極の両長辺は、前記セパレータの両長辺の内側に設けられ、
     前記セパレータの幅と前記負極の幅との差は、3.0mm以上4.0mm以下である請求項1から4のいずれか1項に記載の電池。
    Both long sides of the negative electrode are provided inside both long sides of the separator.
    The battery according to any one of claims 1 to 4, wherein the difference between the width of the separator and the width of the negative electrode is 3.0 mm or more and 4.0 mm or less.
PCT/JP2021/045590 2020-12-24 2021-12-10 Battery WO2022138243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-215657 2020-12-24
JP2020215657 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138243A1 true WO2022138243A1 (en) 2022-06-30

Family

ID=82157804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045590 WO2022138243A1 (en) 2020-12-24 2021-12-10 Battery

Country Status (1)

Country Link
WO (1) WO2022138243A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014355A (en) * 2002-06-07 2004-01-15 Sony Corp Nonaqueous electrolytic cell
JP2009129722A (en) * 2007-11-26 2009-06-11 Nec Tokin Corp Lithium-ion secondary battery
JP2017112055A (en) * 2015-12-18 2017-06-22 日立マクセル株式会社 Sealed battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014355A (en) * 2002-06-07 2004-01-15 Sony Corp Nonaqueous electrolytic cell
JP2009129722A (en) * 2007-11-26 2009-06-11 Nec Tokin Corp Lithium-ion secondary battery
JP2017112055A (en) * 2015-12-18 2017-06-22 日立マクセル株式会社 Sealed battery

Similar Documents

Publication Publication Date Title
JP2013118194A (en) Pouch, and secondary battery comprising the same
US10186691B2 (en) Battery and assembled battery
EP3322024A1 (en) Nonaqueous electrolyte battery and battery pack
JP7247353B2 (en) Electrodes, batteries and battery packs
US20210210789A1 (en) Secondary battery
JP7003775B2 (en) Lithium ion secondary battery
US20220085411A1 (en) Secondary battery
US11929485B2 (en) Secondary battery
WO2022138243A1 (en) Battery
WO2023106099A1 (en) Battery
WO2022071317A1 (en) Non-aqueous electrolyte secondary battery
US20210265622A1 (en) Secondary battery
US20230290938A1 (en) Negative electrode active material, negative electrode and lithium-ion secondary battery
WO2022264419A1 (en) Electrode group, battery, and battery pack
WO2022019078A1 (en) Secondary battery
US20240047828A1 (en) Non-aqueous electrolyte secondary battery
US20230137208A1 (en) Secondary battery
US20220384794A1 (en) Lithium ion secondary battery
WO2022186083A1 (en) Non-aqueous electrolyte secondary battery
US20210288308A1 (en) Secondary battery
WO2020203038A1 (en) Battery
WO2020218020A1 (en) Negative-electrode active material, negative electrode, and secondary battery
WO2020138317A1 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
WO2020059873A1 (en) Secondary battery
JP2023096745A (en) battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910392

Country of ref document: EP

Kind code of ref document: A1