JPH05205777A - Macromolecular solid electrolyte battery - Google Patents

Macromolecular solid electrolyte battery

Info

Publication number
JPH05205777A
JPH05205777A JP4009146A JP914692A JPH05205777A JP H05205777 A JPH05205777 A JP H05205777A JP 4009146 A JP4009146 A JP 4009146A JP 914692 A JP914692 A JP 914692A JP H05205777 A JPH05205777 A JP H05205777A
Authority
JP
Japan
Prior art keywords
active material
material layer
electrode active
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4009146A
Other languages
Japanese (ja)
Inventor
Koji Higashimoto
晃二 東本
Kenji Nakai
賢治 中井
Kensuke Hironaka
健介 弘中
Takumi Hayakawa
他▲く▼美 早川
Akio Komaki
昭夫 小牧
Takefumi Nakanaga
偉文 中長
Masatoshi Taniguchi
正俊 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Resonac Corp
Original Assignee
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP4009146A priority Critical patent/JPH05205777A/en
Publication of JPH05205777A publication Critical patent/JPH05205777A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a macromolecular solid electrolyte battery which is low in internal resistance and is long in its life. CONSTITUTION:A positive electrode active material layer 3 and a negative electrode active material layer 6 are laminated via macromolecular solid electrolyte 7. Gas vent holes are disposed in the whole of the negative electrode active material layer 6 so as to be formed. By this constitution, gas produced by the reaction of impurities contained in the macromolecular solid electrolyte 7 with the negative electrode active material 6 is emitted out of the gas vent holes. Therefore no gas bank is allowed to be formed between the macromolecular solid electrolyte 7 and the negative electrode active material layer 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高分子固体電解質電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer solid electrolyte battery.

【0002】[0002]

【従来の技術】近年、固体の電解質を用いた電気化学セ
ル(固体電解質電池)の開発が盛んに行われている。
2. Description of the Related Art Recently, an electrochemical cell (solid electrolyte battery) using a solid electrolyte has been actively developed.

【0003】固体電解質電池に用いる固体電解質には、
無機物質を用いる固体電解質と、高分子化合物を用いる
固体電解質とがある。無機物質を用いる固体電解質はL
4SiO4 −Li3 PO4 ,Li2 S−LiI−B2
3 (キャリアイオンはLi)及びRbCuI1.5
3.5 (キャリアイオンはCu)等の無機物質を電解
質材料として用いている。高分子化合物を用いる固体電
解質はポリエチレンオキサイド(PEO)及びポリプロ
ピレンオキサイド(PPO)等のポリエーテル類[Li
をキャリアイオンとすると伝導度は10-5〜10-4
/cm(室温)]からなる高分子化合物を電解質材料とし
て用いている。
Solid electrolytes used in solid electrolyte batteries include
There are solid electrolytes using inorganic substances and solid electrolytes using polymer compounds. The solid electrolyte using an inorganic substance is L
i 4 SiO 4 -Li 3 PO 4 , Li 2 S-LiI-B 2
S 3 (carrier ion is Li + ) and RbCuI 1.5 C
An inorganic substance such as l 3.5 (carrier ion is Cu + ) is used as an electrolyte material. Solid electrolytes using polymer compounds include polyethers such as polyethylene oxide (PEO) and polypropylene oxide (PPO) [Li
When + is a carrier ion, the conductivity is 10 -5 to 10 -4 S
/ Cm (room temperature)] is used as an electrolyte material.

【0004】無機物質を用いる固体電解質は硬くてもろ
いため、電解質を薄膜にすることが困難である。これに
対して高分子化合物を用いる固体電解質は、電解質の表
面積を広くしても電解質を薄膜化しやすい。しかも高分
子化合物は柔軟性があるため電解質と活物質との密着性
がよい。このように無機物質に比べて高分子化合物の方
が固体電解質の材料として適しており、現在では高分子
化合物を用いる固体電解質(高分子固体電解質電池)の
研究が盛んに行われている。
Since a solid electrolyte using an inorganic substance is hard and brittle, it is difficult to form the electrolyte into a thin film. On the other hand, a solid electrolyte using a polymer compound is likely to have a thin electrolyte even if the surface area of the electrolyte is increased. Moreover, since the polymer compound is flexible, the adhesion between the electrolyte and the active material is good. As described above, a polymer compound is more suitable as a material for a solid electrolyte than an inorganic substance, and at present, a solid electrolyte (polymer solid electrolyte battery) using a polymer compound is actively researched.

【0005】一般に高分子固体電解質電池はイオン伝導
度が低くしかも薄膜化が容易であるため、正極活物質層
と負極活物質層とが高分子固体電解質を介してシート状
に積層されて構成されている。
In general, a polymer solid electrolyte battery has a low ionic conductivity and can be easily formed into a thin film. Therefore, a positive electrode active material layer and a negative electrode active material layer are laminated in a sheet form via a polymer solid electrolyte. ing.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、高分子
固体電解質を作成するために用いるジメキシエタン(D
ME)等の有機溶液には微量の水分または不純物が含ま
れている。また重合等で作成したポリエーテル類等の電
解質材料にも未反応物が不純物として残留している。こ
れら不純物は電池の製造工程において有機溶剤を蒸発す
る際に、そのほとんどは有機溶剤と一緒に除去される。
しかしながら、有機溶剤を完全に蒸発しても、不純物を
完全に除去することはできず、その一部は電解質中に残
留してしまう。そして、高分子固体電解質中に残留した
不純物は、活物質層と反応してガスを発生し、高分子固
体電解質と活物質層との間にガス溜りを形成する。この
ようなガス溜りが形成されると、電池の内部抵抗が高く
なるという問題が発生する。また、電池の製造工程にお
いて活物質層を電解質に密着させる際にも電解質中に残
留した不純物が活物質層と反応してガスを発生し、この
ガスが電解質と活物質層との間に残ると、内部抵抗の高
い電池が製造されるという問題が発生する。またこのよ
うなガス溜りができると、電極の一部分(ガス溜りを間
に有しないで電解質と負極活物質層が密着した部分)に
電極反応が集中するため電池寿命が短くなるという問題
もあった。
However, the dimexiethane (D) used for preparing the polymer solid electrolyte is
A small amount of water or impurities is contained in an organic solution such as ME). In addition, unreacted substances remain as impurities in electrolyte materials such as polyethers formed by polymerization and the like. Most of these impurities are removed together with the organic solvent when the organic solvent is evaporated in the battery manufacturing process.
However, even if the organic solvent is completely evaporated, the impurities cannot be completely removed, and some of them remain in the electrolyte. Then, the impurities remaining in the solid polymer electrolyte react with the active material layer to generate gas, and form a gas pool between the solid polymer electrolyte and the active material layer. When such a gas pool is formed, the internal resistance of the battery becomes high. Further, even when the active material layer is brought into close contact with the electrolyte in the battery manufacturing process, impurities remaining in the electrolyte react with the active material layer to generate a gas, and the gas remains between the electrolyte and the active material layer. Then, there arises a problem that a battery having a high internal resistance is manufactured. Further, when such a gas pool is formed, the electrode reaction concentrates on a part of the electrode (the part where the electrolyte and the negative electrode active material layer are in close contact without having the gas pool in between), which shortens the battery life. ..

【0007】本発明の目的は上記課題を解決して、内部
抵抗が小さく寿命の長い高分子固体電解質電池を提供す
ることにある。
An object of the present invention is to solve the above problems and to provide a polymer solid electrolyte battery having a small internal resistance and a long life.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、正極
活物質層と負極活物質層とが高分子固体電解質を介して
積層されている高分子固体電解質電池を対象として、正
極活物質層及び負極活物質層の少なくとも一方の層がガ
ス通気性を有している。
The invention of claim 1 is directed to a solid polymer electrolyte battery in which a positive electrode active material layer and a negative electrode active material layer are laminated via a solid polymer electrolyte, and a positive electrode active material. At least one of the layer and the negative electrode active material layer has gas permeability.

【0009】請求項2の発明は、負極活物質層全体にガ
ス通気孔を分散して形成する。
According to the second aspect of the present invention, gas vent holes are formed dispersed throughout the negative electrode active material layer.

【0010】[0010]

【作用】請求項1の発明のように、活物質層にガス通気
性を持たせると、高分子固体電解質中に残存する不純物
が活物質層と反応して発生するガスは、活物質層のガス
通気性により、電解質層と活物質層との間から外に放出
される。そのため、高分子固体電解質と活物質層との間
に実質的にガス溜りが形成されることがなく、電池の内
部抵抗の増加を防止できる。
When the active material layer is made gas permeable as in the invention of claim 1, the gas generated by the reaction of impurities remaining in the solid polymer electrolyte with the active material layer is generated in the active material layer. Due to the gas permeability, the gas is released outside between the electrolyte layer and the active material layer. Therefore, a gas pool is not substantially formed between the polymer solid electrolyte and the active material layer, and an increase in internal resistance of the battery can be prevented.

【0011】請求項2の発明のように、負極活物質層全
体にガス通気孔を分散して形成することにより、ガス通
気性を負極活物質層に付与すると、ガス溜りの発生を全
体的に阻止できる上、ガス通気孔の中に高分子固体電解
質の一部が入ることにより、負極活物質層と高分子固体
電解質との接触面積が増大するため、電池の充放電特性
が向上する。また、電池の充放電によりリチウムイオン
の出入りが生じて正極活物質が体積変化を起こしても、
ガス通気孔中に弾性を有する高分子固体電解質が更に入
ることにより、正極活物質中の体積膨脹を吸収するので
電池全体の膨脹収縮を緩和できる。
When gas permeation is imparted to the negative electrode active material layer by forming gas vent holes dispersed throughout the negative electrode active material layer as in the second aspect of the present invention, generation of a gas pool is entirely generated. In addition, the contact area between the negative electrode active material layer and the solid polymer electrolyte is increased due to the part of the solid polymer electrolyte entering the gas vent hole, which improves the charge / discharge characteristics of the battery. In addition, even if the positive and negative electrode active material undergoes volume change due to the inflow and outflow of lithium ions due to charge and discharge of the battery,
When the solid polymer electrolyte having elasticity is further introduced into the gas vent hole, the expansion of volume of the positive electrode active material is absorbed, so that the expansion and contraction of the entire battery can be relaxed.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0013】図1は本発明の一実施例の高分子固体電解
質電池を切断したものの斜視図である。図1において、
1は正極であり、この正極1はステンレス箔からなる正
極集電体2と、該集電体2の一方の表面2a上に配置さ
れたバナジン酸(V2 5 ・nH2 O)からなる正極活
物質層3とから構成されている。この正極活物質層3
は、集電体2の表面2aに対して外周端部2bを残すよ
うにして配置されている。4は負極であり、この負極4
はステンレス箔からなる負極集電体5と、該集電体5の
一方の表面5a上に配置されたリチウム(Li)箔から
なる負極活物質層6とから構成されている。この負極活
物質層6は、集電体5の表面5aに対して外周端部5b
を残すようにして配置されている。本実施例の電池では
負極活物質層6を形成するLi箔にガス通気孔6aが分
散して形成されている[図2(b)参照]。尚、正極集
電体2及び負極集電体5は、それぞれ電池の外装ケース
の一部を構成し且つ端子の機能を果たしている。7は高
分子固体電解質であり、この高分子固体電解質7に正極
活物質層3と負極活物質層6とを接触させるようにして
正極1と負極4と高分子固体電解質7とが積層されてい
る。この実施例では、高分子固体電解質7はメトキシオ
リゴエチレンオキシポリホスファゼン(MEP7)と過
塩素酸リチウム(LiClO4 )との混合物により形成
されている。8は加熱されると表面から溶融して接着性
を示す枠部材としてのホットメルトである。このホット
メルト8は集電体2または5の外周端部2bまたは5b
に対応した輪郭が矩形状を呈するリングであり、具体的
にはポリオレフィン系樹脂から形成されている。集電体
2及び5の外周端部2b及び5bがホットメルト8に接
続されて電池が組み立てられている。
FIG. 1 is a perspective view of a cut polymer solid electrolyte battery of one embodiment of the present invention. In FIG.
Reference numeral 1 is a positive electrode, and the positive electrode 1 is composed of a positive electrode current collector 2 made of stainless steel foil, and vanadic acid (V 2 O 5 .nH 2 O) arranged on one surface 2 a of the current collector 2. It is composed of the positive electrode active material layer 3. This positive electrode active material layer 3
Are arranged so that the outer peripheral end 2b is left with respect to the surface 2a of the current collector 2. 4 is a negative electrode, and this negative electrode 4
Is composed of a negative electrode current collector 5 made of a stainless foil and a negative electrode active material layer 6 made of a lithium (Li) foil arranged on one surface 5a of the current collector 5. The negative electrode active material layer 6 has an outer peripheral end 5b with respect to the surface 5a of the current collector 5.
It is arranged so as to leave. In the battery of this example, the gas vent holes 6a are formed dispersedly in the Li foil forming the negative electrode active material layer 6 [see FIG. 2 (b)]. The positive electrode current collector 2 and the negative electrode current collector 5 each form a part of the outer case of the battery and also function as terminals. 7 is a solid polymer electrolyte, and the positive electrode 1, the negative electrode 4, and the solid polymer electrolyte 7 are laminated so that the positive electrode active material layer 3 and the negative electrode active material layer 6 are brought into contact with the solid polymer electrolyte 7. There is. In this example, the solid polymer electrolyte 7 is formed of a mixture of methoxyoligoethyleneoxypolyphosphazene (MEP7) and lithium perchlorate (LiClO 4 ). Reference numeral 8 is a hot melt as a frame member that melts from the surface when heated and exhibits adhesiveness. This hot melt 8 is the outer peripheral end 2b or 5b of the current collector 2 or 5.
Is a ring having a rectangular outline corresponding to, and is specifically formed of a polyolefin resin. The outer peripheral ends 2b and 5b of the current collectors 2 and 5 are connected to the hot melt 8 to assemble the battery.

【0014】次にこの実施例の高分子固体電解質電池を
製造する方法を具体的に説明する。まずアモルファスの
2 5 を2〜3重量%の割合で蒸留水に溶かした溶液
を45×45×0.02mmのステンレス箔からなる正極
集電体2の一方の表面2aの中央部分に35×35mmの
大きさで塗布した。これを常温で乾燥させた後、さらに
比較的高温で乾燥させて、正極集電体2の表面2aに厚
み10μm のV2 5・nH2 Oの正極活物質層3を有
する正極1を作った。次に図2(a)に示すように厚み
40μm のLi箔のロール9を35×35mmの寸法に切
断して負極活物質用Li箔を作り、この負極活物質用L
i箔に図2(b)に示すように径0.01〜0.03mm
のガス通気孔6aをLi箔全体に分散するようにあけ、
メッシュ状のLi箔からなる負極活物質層6を得た。ち
なみに、負極活物質層6の表面積に対するガス通気孔6
aの総面積は80%〜90%とするのが好ましい。次に
100重量%のMEP7と6重量%のLiClO4 とを
DME中に溶かした高分子固体電解質用溶液を正極1の
正極活物質層3全体を覆うように37×37mmの大きさ
で正極1上に塗布した。これを1時間程度常温で乾燥さ
せて半乾燥電解質を作った。乾燥中に電解質用溶液から
水分と一緒にDMEの大部分は除去される。次に半乾燥
電解質の上にLi箔からなる負極活物質層6を載置し、
正極集電体2の外周端部2bの上にホットメルト8を載
置した。そして、負極活物質層6とホットメルト8とを
覆うようにして正極集電体2と同寸法同材質の負極集電
体5を載置した。次にホットメルト8を集電体2及び5
の外周端部2b及び5bに数箇所溶着させた後、真空乾
燥を約1日行なった。この真空乾燥により電解質中にわ
ずかに残っているDMEや水分またはポリホスファゼン
の未反応の低分子物を電解質から略完全に除去して高分
子固体電解質7を得た。その後、集電体2及び5の外周
端部2b及び5bにホットメルト8を完全に溶着して高
分子固体電解質電池を製造した。
Next, a method for manufacturing the polymer solid electrolyte battery of this embodiment will be specifically described. First, a solution prepared by dissolving amorphous V 2 O 5 in distilled water in a proportion of 2 to 3% by weight was applied to the central portion of one surface 2 a of the positive electrode current collector 2 made of stainless steel foil of 45 × 45 × 0.02 mm. It was applied in a size of × 35 mm. This is dried at room temperature and then at a relatively high temperature to form a positive electrode 1 having a positive electrode active material layer 3 of V 2 O 5 .nH 2 O having a thickness of 10 μm on the surface 2a of the positive electrode current collector 2. It was Next, as shown in FIG. 2A, a roll 9 of Li foil having a thickness of 40 μm is cut into a size of 35 × 35 mm to prepare a Li foil for negative electrode active material.
As shown in Fig. 2 (b), the i foil has a diameter of 0.01 to 0.03 mm.
The gas vents 6a of 6 are opened so as to be dispersed over the entire Li foil,
A negative electrode active material layer 6 made of a mesh Li foil was obtained. Incidentally, the gas vent holes 6 with respect to the surface area of the negative electrode active material layer 6
The total area of a is preferably 80% to 90%. Next, a solution for polymer solid electrolyte in which 100 wt% of MEP7 and 6 wt% of LiClO 4 were dissolved in DME was applied to the positive electrode 1 in a size of 37 × 37 mm so as to cover the entire positive electrode active material layer 3 of the positive electrode 1. Applied on top. This was dried at room temperature for about 1 hour to prepare a semi-dry electrolyte. Most of the DME along with water is removed from the electrolyte solution during drying. Next, the negative electrode active material layer 6 made of Li foil was placed on the semi-dry electrolyte,
The hot melt 8 was placed on the outer peripheral end 2 b of the positive electrode current collector 2. Then, the negative electrode current collector 5 having the same size and the same material as the positive electrode current collector 2 was placed so as to cover the negative electrode active material layer 6 and the hot melt 8. Next, the hot melt 8 is added to the current collectors 2 and 5
After being welded to the outer peripheral ends 2b and 5b at several points, vacuum drying was performed for about 1 day. By this vacuum drying, DME, water, or unreacted low-molecular substances such as polyphosphazene slightly remaining in the electrolyte were almost completely removed from the electrolyte to obtain a polymer solid electrolyte 7. Then, the hot melt 8 was completely welded to the outer peripheral end portions 2b and 5b of the current collectors 2 and 5 to manufacture a polymer solid electrolyte battery.

【0015】本実施例では電池を製造する際に、半乾燥
電解質上にLi箔(負極活物質層6)を載置するため、
半乾燥電解質中の不純物が負極活物質層6と反応して水
素ガスが発生する。しかしながら、水素ガスはガス通気
孔6aを通って、半乾燥電解質と負極活物質層6との間
から放出される。また、電池を密封した後に高分子固体
電解質7に残存している不純物と負極活物質層6とが反
応して水素ガスが発生しても、水素ガスはガス通気孔6
aを通った後、負極活物質層6と負極集電体5との間及
び負極集電体5とホットメルト8との間のわずかな空隙
部を通って電池外に放出される。
In this embodiment, since the Li foil (negative electrode active material layer 6) is placed on the semi-dried electrolyte when the battery is manufactured,
Impurities in the semi-dry electrolyte react with the negative electrode active material layer 6 to generate hydrogen gas. However, hydrogen gas is released from between the semi-dry electrolyte and the negative electrode active material layer 6 through the gas vent holes 6a. In addition, even if impurities remaining in the solid polymer electrolyte 7 react with the negative electrode active material layer 6 after the battery is sealed to generate hydrogen gas, the hydrogen gas is discharged through the gas vent holes 6.
After passing through a, it is discharged to the outside of the battery through a slight gap between the negative electrode active material layer 6 and the negative electrode current collector 5 and between the negative electrode current collector 5 and the hot melt 8.

【0016】次に本発明の実施例の電池の特性を調べる
ために試験を行った。まず本発明の実施例の電池と、負
極活物質層にガス通気孔を形成しない従来の電池とを各
々10個製造した。尚、従来の電池は、負極活物質層に
ガス通気孔が形成されていないこと以外は本発明の実施
例の電池と同じ構造を有している。各電池の放電容量
は、25μA/cm2 ,終了電圧2.0V,25℃の放電条
件で測定した。表1は測定結果を示している。
Next, a test was conducted to examine the characteristics of the battery of the example of the present invention. First, 10 batteries were manufactured for each of the battery of the example of the present invention and a conventional battery in which a gas vent was not formed in the negative electrode active material layer. The conventional battery has the same structure as the battery of the embodiment of the present invention except that the gas vent is not formed in the negative electrode active material layer. The discharge capacity of each battery was measured under the discharge conditions of 25 μA / cm 2 , final voltage of 2.0 V, and 25 ° C. Table 1 shows the measurement results.

【0017】[0017]

【表1】 この測定結果から本発明の実施例の電池では、負極活物
質層6と高分子固体電解質7との間にガス溜りが実質的
に存在しないため、負極活物質層6と高分子固体電解質
7と間の密着性が良くなって内部抵抗が小さくなり、そ
の結果、従来の電池に比べて放電容量のバラツキが小さ
く、しかも放電容量の平均値が高くなるのが判る。
[Table 1] From the measurement results, in the battery of the example of the present invention, since there was substantially no gas pool between the negative electrode active material layer 6 and the solid polymer electrolyte 7, the negative electrode active material layer 6 and the solid polymer electrolyte 7 were It can be seen that the adhesion between the two is improved and the internal resistance is reduced, resulting in less variation in discharge capacity and higher average discharge capacity than in conventional batteries.

【0018】次に本発明の実施例の電池と従来の電池と
を用いて以下の条件で充放電を繰り返してサイクル特性
を測定した。
Next, using the battery of the example of the present invention and the conventional battery, charging and discharging were repeated under the following conditions to measure cycle characteristics.

【0019】 測定温度:25℃ 充電条件:電流密度 25μA/cm3 、4.2Vカット 放電条件:電流密度 25μA/cm3 、終止電圧 2V 図3は測定結果を示した表である。本図において、曲線
Aは本発明の実施例の電池の特性曲線を示し、曲線Bは
従来の電池の特性曲線を示している。図3より本発明の
実施例の電池のサイクル特性が従来の電池のサイクル特
性より高いのが判る。
Measurement temperature: 25 ° C. Charge condition: Current density 25 μA / cm 3 , 4.2 V cut Discharge condition: Current density 25 μA / cm 3 , Final voltage 2 V FIG. 3 is a table showing the measurement results. In the figure, a curve A shows the characteristic curve of the battery of the example of the present invention, and a curve B shows the characteristic curve of the conventional battery. It can be seen from FIG. 3 that the cycle characteristics of the battery of the embodiment of the present invention are higher than the cycle characteristics of the conventional battery.

【0020】尚、本実施例の電池ではLi箔にパンチン
グ等によりガス通気孔を分散して形成した負極活物質層
を用いたが、Li線等により形成した導電性不織布に活
物質を保持させて形成した負極活物質層や、Li箔等を
エキスパンダ状に加工して形成した負極活物質層を用い
ても構わない。
In the battery of this embodiment, a negative electrode active material layer formed by dispersing gas vent holes in a Li foil by punching or the like was used. However, the conductive material is held in a conductive non-woven fabric formed of Li wire or the like. The negative electrode active material layer formed by the above process or the negative electrode active material layer formed by processing Li foil or the like into an expander shape may be used.

【0021】上記実施例では、負極活物質層6だけにガ
ス通気性を付与している。しかしながら、高分子固体電
解質7に残存する不純物と正極活物質層3とが反応する
と僅かであるが、一酸化炭素または二酸化炭素等のガス
が発生する。したがって、正極活物質層と正極集電体と
の間にもガス溜りが発生する可能性がある。しかしなが
ら、このガス溜りはガス通気性を有しない負極活物質層
と高分子固体電解質との間に発生するガス溜りと比べれ
ば僅かなものであり内部抵抗への影響は少ない。したが
って、実用的な見地から見た場合には、正極活物質に積
極的にガス通気性を持たせることは必要ない。尚、正極
活物質層にガス通気性を付与する場合には、上記実施例
と同様に、正極活物質層の層全体にガス通気孔を分散し
て形成すればよい。また、カーボン繊維等からなる導電
性不織布に正極活物質を保持させてガス通気性を有する
正極活物質層を形成してもよい。
In the above embodiment, gas permeability is imparted only to the negative electrode active material layer 6. However, when impurities remaining in the solid polymer electrolyte 7 and the positive electrode active material layer 3 react with each other, a gas such as carbon monoxide or carbon dioxide is slightly generated. Therefore, gas accumulation may occur between the positive electrode active material layer and the positive electrode current collector. However, this gas pool is slight compared with the gas pool generated between the negative electrode active material layer having no gas permeability and the solid polymer electrolyte, and has little influence on the internal resistance. Therefore, from a practical point of view, it is not necessary that the positive electrode active material be positively gas permeable. When the positive electrode active material layer is provided with gas permeability, gas vent holes may be dispersed throughout the layer of the positive electrode active material layer as in the above-described embodiment. Alternatively, a positive electrode active material layer having gas permeability may be formed by holding a positive electrode active material on a conductive non-woven fabric made of carbon fiber or the like.

【0022】また本実施例の電池は正極活物質層として
2 5 ・nH2 Oを用い、負極活物質層としてLiを
用いているが、他の材質からなる活物質層を用いる高分
子固体電解質電池にも本発明を適応できるのは勿論であ
る。
In the battery of this embodiment, V 2 O 5 .nH 2 O is used as the positive electrode active material layer and Li is used as the negative electrode active material layer, but a polymer using an active material layer made of another material is used. Of course, the present invention can be applied to a solid electrolyte battery.

【0023】[0023]

【発明の効果】請求項1の発明によれば、活物質層がガ
ス通気性を有しているため、高分子固体電解質と活物質
層との間にガス溜りが形成されず、電池の内部抵抗を低
くできる。そのため寿命の長い高分子固体電解質電池を
提供できる。
According to the first aspect of the present invention, since the active material layer has gas permeability, no gas reservoir is formed between the solid polymer electrolyte and the active material layer, and the inside of the battery is The resistance can be lowered. Therefore, a polymer solid electrolyte battery having a long life can be provided.

【0024】請求項2の発明によれば、負極活物質層全
体にガス通気孔が分散して形成されているため、ガス溜
りの発生を負極活物質層全体で阻止できる。また、負極
活物質層と高分子固体電解質との接触面積が増大するた
め、電池の充放電特性が向上する。また、電池の充放電
により正極活物質が体積変化を起こしても、ガス通気孔
中に弾性を有する高分子固体電解質が更に入ることによ
り電池全体の膨脹収縮を緩和でき、電池の長寿命化が図
れる。
According to the second aspect of the present invention, since the gas vent holes are formed dispersedly in the entire negative electrode active material layer, generation of a gas pool can be prevented in the entire negative electrode active material layer. Moreover, since the contact area between the negative electrode active material layer and the solid polymer electrolyte is increased, the charge / discharge characteristics of the battery are improved. Further, even if the positive electrode active material undergoes a volume change due to charge / discharge of the battery, expansion and contraction of the entire battery can be relaxed by further inclusion of the elastic polymer solid electrolyte in the gas vent hole, which prolongs the life of the battery. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の高分子固体電解質電池を切断
したものの斜視図である。
FIG. 1 is a perspective view of a cut polymer solid electrolyte battery of an example of the present invention.

【図2】(a)及び(b)は、本発明の実施例の高分子
固体電解質電池に用いる負極活物質層を製造する過程を
示す図である。
2A and 2B are diagrams showing a process of producing a negative electrode active material layer used in a polymer solid electrolyte battery of an example of the present invention.

【図3】試験に用いた電池のサイクル特性を示す図であ
る。
FIG. 3 is a diagram showing cycle characteristics of a battery used in a test.

【符号の説明】[Explanation of symbols]

3…正極活物質層、6…負極活物質層、6a…ガス通気
孔、7…高分子固体電解質。
3 ... Positive electrode active material layer, 6 ... Negative electrode active material layer, 6a ... Gas vent, 7 ... Polymer solid electrolyte.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 弘中 健介 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 早川 他▲く▼美 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 小牧 昭夫 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 谷口 正俊 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kensuke Hironaka, Kensuke Hironaka, 2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo Within Shinjin Todenki Co., Ltd. (72) Inventor, Hayakawa, etc. 2-1-1 Shinshin-Toden Electric Co., Ltd. (72) Inventor Akio Komaki 2-1-1-1 Nishishinjuku, Shinjuku-ku, Tokyo Shinjin-Toden Electric Co., Ltd. (72) Inventor, Weibun Tokushima Prefecture 463 Kagasuno, Kawauchi-cho, Tokushima City, Tokushima Laboratory, Otsuka Chemical Co., Ltd. (72) Masatoshi Taniguchi 463, Kagasuno, Kawauchi-cho, Tokushima City, Tokushima Prefecture, Tokushima Laboratory, Otsuka Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極活物質層と負極活物質層とが高分子固
体電解質を介して積層されている高分子固体電解質電池
において、 前記正極活物質層及び負極活物質層の少なくとも一方の
層がガス通気性を有していることを特徴とする高分子固
体電解質電池。
1. A solid polymer electrolyte battery in which a positive electrode active material layer and a negative electrode active material layer are laminated with a solid polymer electrolyte interposed between at least one of the positive electrode active material layer and the negative electrode active material layer. A polymer solid electrolyte battery having gas permeability.
【請求項2】前記負極活物質層全体にガス通気孔が分散
して形成されていることを特徴とする請求項1に記載の
高分子固体電解質電池。
2. The polymer solid electrolyte battery according to claim 1, wherein gas vent holes are formed dispersedly throughout the negative electrode active material layer.
JP4009146A 1992-01-22 1992-01-22 Macromolecular solid electrolyte battery Pending JPH05205777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4009146A JPH05205777A (en) 1992-01-22 1992-01-22 Macromolecular solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4009146A JPH05205777A (en) 1992-01-22 1992-01-22 Macromolecular solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPH05205777A true JPH05205777A (en) 1993-08-13

Family

ID=11712486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4009146A Pending JPH05205777A (en) 1992-01-22 1992-01-22 Macromolecular solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPH05205777A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052745A (en) * 1999-08-04 2001-02-23 Sony Corp Nonaqueous gel secondary battery and its manufacture
JP2001068165A (en) * 1999-08-26 2001-03-16 Sony Corp Nonaqueous system polymer secondary battery
JP2008308722A (en) * 2007-06-13 2008-12-25 Mitsubishi Heavy Ind Ltd Water electrolysis cell, water electrolysis stack using the same, hydrogen production apparatus and solid polymer film water electrolytic apparatus
WO2020097327A3 (en) * 2018-11-08 2020-07-23 Maxwell Technologies, Inc. Compositions and methods for energy storage devices including salts and/or foams

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052745A (en) * 1999-08-04 2001-02-23 Sony Corp Nonaqueous gel secondary battery and its manufacture
JP2001068165A (en) * 1999-08-26 2001-03-16 Sony Corp Nonaqueous system polymer secondary battery
JP4501180B2 (en) * 1999-08-26 2010-07-14 ソニー株式会社 Non-aqueous polymer secondary battery
JP2008308722A (en) * 2007-06-13 2008-12-25 Mitsubishi Heavy Ind Ltd Water electrolysis cell, water electrolysis stack using the same, hydrogen production apparatus and solid polymer film water electrolytic apparatus
WO2020097327A3 (en) * 2018-11-08 2020-07-23 Maxwell Technologies, Inc. Compositions and methods for energy storage devices including salts and/or foams
CN113302762A (en) * 2018-11-08 2021-08-24 麦斯韦尔技术股份有限公司 Compositions and methods for energy storage devices comprising salt and/or foam

Similar Documents

Publication Publication Date Title
Kim et al. Preparation of a trilayer separator and its application to lithium-ion batteries
US6558840B1 (en) Electrode for use in a non-aqueous battery
KR100286147B1 (en) Battery separators and batteries
US4730239A (en) Double layer capacitors with polymeric electrolyte
KR100783305B1 (en) A method of assembling a cell
JPH0722023B2 (en) Method for manufacturing solid state electrochemical cell
BRPI0617556A2 (en) lithium battery and battery
BR102019013896A2 (en) GRID CHAIN COLLECTOR AND ASSOCIATED DEVICES AND METHODS
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
JPH05205777A (en) Macromolecular solid electrolyte battery
JP2003022793A (en) Separator for battery and battery
CN113474920B (en) Electrode for rechargeable energy storage device
TW501304B (en) Cell incorporation polymer electrolyte
US20020177037A1 (en) Method for producing a separator/electrode assembly for electrochemical elements
JP3021517B2 (en) Organic electrolyte secondary battery
JP3441765B2 (en) Method for forming positive electrode active material layer
JPH0286073A (en) Thin, ribbon-shaped, flexible and chargeable zinc/halide battery
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
JP3421409B2 (en) Polymer solid electrolyte battery
JP3108186B2 (en) Solid electrolyte battery
JP3273997B2 (en) Polymer solid electrolyte battery and method of manufacturing the same
JP4152454B2 (en) Separator for alkaline zinc battery
JP3942232B2 (en) Gel-like solid electrolyte and battery
JPH0532868B2 (en)
JPH05299102A (en) High molecular solid electrolyte battery