JPH05299102A - High molecular solid electrolyte battery - Google Patents

High molecular solid electrolyte battery

Info

Publication number
JPH05299102A
JPH05299102A JP4097696A JP9769692A JPH05299102A JP H05299102 A JPH05299102 A JP H05299102A JP 4097696 A JP4097696 A JP 4097696A JP 9769692 A JP9769692 A JP 9769692A JP H05299102 A JPH05299102 A JP H05299102A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer
active material
electrode active
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4097696A
Other languages
Japanese (ja)
Inventor
Kenji Nakai
賢治 中井
Koji Higashimoto
晃二 東本
Kensuke Hironaka
健介 弘中
Takumi Hayakawa
他▲く▼美 早川
Akio Komaki
昭夫 小牧
Takefumi Nakanaga
偉文 中長
Masatoshi Taniguchi
正俊 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Resonac Corp
Original Assignee
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP4097696A priority Critical patent/JPH05299102A/en
Publication of JPH05299102A publication Critical patent/JPH05299102A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To obtain a solid electrolyte battery capable of suppressing the generation of such dendrite as to cause a short-circuit between electrode plates by increasing the charge and discharge characteristics. CONSTITUTION:Auxiliary high molecular solid electrolyte layers 21, 22 are respectively arranged between a positive electrode active substance layer 3 and a negative electrode active substance layer 1. The auxiliary high molecular solid electrolyte layers 21, 22 are formed of a high molecular compound having smaller molecular weight than the high molecular compound which constitutes the high molecular solid electrolyte layer 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高分子固体電解質電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer solid electrolyte battery.

【0002】[0002]

【従来の技術】典型的な電池は電解質に液体の電解質
(電解液)を用いている。しかしながら、電解質に電解
液を用いると液漏れ及び枯渇により電解質が減少すると
いう問題がある。そこで電解質としてイオン伝導性のあ
る固体電解質を用いて電解質の減少を抑制した電池(固
体電解質電池)が提案された。固体電解質電池の代表的
なものとしては、高分子化合物に負極活物質材料を含有
させたものを電解質に用いた高分子固体電解質電池があ
る。この種の電池では電解質にセパレータとしての機能
を持たせるために高分子固体電解質層の機械的強度を高
める必要がある。そこで従来は高分子固体電解質層に比
較的分子量の高い高分子化合物を用いて、その強度を高
く維持している。
2. Description of the Related Art A typical battery uses a liquid electrolyte (electrolyte) as an electrolyte. However, when an electrolytic solution is used as the electrolyte, there is a problem that the electrolyte decreases due to liquid leakage and depletion. Therefore, a battery (solid electrolyte battery) has been proposed in which a solid electrolyte having ion conductivity is used as an electrolyte to suppress the decrease of the electrolyte. A typical solid electrolyte battery is a polymer solid electrolyte battery in which a polymer compound containing a negative electrode active material is used as an electrolyte. In this type of battery, it is necessary to increase the mechanical strength of the polymer solid electrolyte layer in order for the electrolyte to function as a separator. Therefore, conventionally, a polymer compound having a relatively high molecular weight is used for the polymer solid electrolyte layer to maintain its strength high.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、高分子
化合物は分子量が高いと粘性が高くなるために従来の高
分子固体電解質電池では活物質層と高分子固体電解質層
とを十分に密着させることができなかった。また高分子
化合物は分子量が高くなるほどイオン伝導度が低下す
る。そのため分子量の高い高分子化合物で高分子固体電
解質層を形成した場合には、負極活物質材料の金属イオ
ンを正極活物質層内に十分に拡散させることができない
ため、電池の充放電容量が低いという特性を有してい
る。特に低温においてはイオン伝導度が低下するため充
放電容量の低下が大きくなる問題があった。また活物質
層と電解質とが十分に密着させることができないと、高
率の充放電を行うことができない上、接触面積が小さい
負極活物質層と電解質間の界面部分の電流密度が充電時
に高くなって、極板間の短絡を生じさせるようなデンド
ライトが生成しやすくなり、電池の寿命が短くなるとい
う問題があった。
However, since a polymer compound has a high viscosity when the molecular weight is high, it is difficult to sufficiently adhere the active material layer and the polymer solid electrolyte layer in the conventional polymer solid electrolyte battery. could not. Further, the higher the molecular weight of the polymer compound, the lower the ionic conductivity. Therefore, when the solid polymer electrolyte layer is formed of a high molecular weight polymer compound, the metal ions of the negative electrode active material cannot be sufficiently diffused into the positive electrode active material layer, resulting in a low charge / discharge capacity of the battery. It has the characteristic that In particular, at low temperatures, there is a problem that the ionic conductivity decreases and the charge / discharge capacity decreases significantly. Further, if the active material layer and the electrolyte cannot be sufficiently adhered to each other, high-rate charge / discharge cannot be performed, and the current density at the interface portion between the negative electrode active material layer and the electrolyte, which has a small contact area, is high during charging. Then, there is a problem that a dendrite that causes a short circuit between the electrode plates is easily generated and the life of the battery is shortened.

【0004】本発明の目的は、従来よりも充放電容量を
高くして、しかも高率の充放電を行うことができる高分
子固体電解質電池を提供することにある。
An object of the present invention is to provide a polymer solid electrolyte battery which has a higher charge / discharge capacity than the conventional one and can be charged / discharged at a high rate.

【0005】本発明の他の目的は、負極活物質層での極
板間の短絡を生じさせるようなデンドライトの生成を抑
制することができる高分子固体電解質電池を提供するこ
とにある。
Another object of the present invention is to provide a polymer solid electrolyte battery capable of suppressing generation of dendrite which causes a short circuit between electrode plates in a negative electrode active material layer.

【0006】[0006]

【課題を解決するための手段】請求項1の発明では、正
極活物質層と高分子固体電解質層と負極活物質層とが積
層された高分子固体電解質電池を対象として、正極活物
質層及び負極活物質層の少なくとも一方の活物質層と高
分子固体電解質層との間に高分子固体電解質層を形成す
る高分子化合物よりも分子量の低い高分子化合物により
形成された補助高分子固体電解質層を配置する。
According to a first aspect of the present invention, a positive electrode active material layer and a positive electrode active material layer are provided for a solid polymer electrolyte battery in which a positive electrode active material layer, a solid polymer electrolyte layer, and a negative electrode active material layer are laminated. Auxiliary polymer solid electrolyte layer formed of a polymer compound having a lower molecular weight than the polymer compound forming the polymer solid electrolyte layer between at least one active material layer of the negative electrode active material layer and the polymer solid electrolyte layer To place.

【0007】請求項2の発明では、高分子固体電解質層
と正極活物質層との間及び高分子固体電解質層と負極活
物質層との間に、それぞれ補助高分子固体電解質層を配
置する。
In the second aspect of the present invention, the auxiliary polymer solid electrolyte layer is arranged between the polymer solid electrolyte layer and the positive electrode active material layer and between the polymer solid electrolyte layer and the negative electrode active material layer.

【0008】請求項3の発明では、高分子固体電解質層
と負極活物質層との間に、補助高分子固体電解質層を配
置する。
In the third aspect of the invention, the auxiliary polymer solid electrolyte layer is arranged between the polymer solid electrolyte layer and the negative electrode active material layer.

【0009】[0009]

【作用】分子量の低い高分子化合物は、分子量の高い同
材質の高分子化合物に比べて粘性が低い。そこで、請求
項1の発明のように正極活物質層及び負極活物質層の少
なくとも一方の活物質層と高分子固体電解質層との間に
高分子固体電解質層を形成する高分子化合物よりも分子
量の低い高分子化合物により形成された補助高分子固体
電解質層を配置すると、この補助高分子固体電解質層が
活物質層内に浸透し、電解質層と活物質層との接触面積
(反応面積)が増加する。本発明では、従来と同様に分
子量の高い高分子固体電解質層を備えているため、電解
質層にセパレータとして機能するのに必要な強度を維持
できる。よって本発明によれば電解質層の強度を低下さ
せることなく、充放電容量が高く、しかも高率の充放電
を行える電池を得ることができる。また、高分子固体電
解質電池では、図5に示すLiをイオンとするモデル
に見られるように、高分子化合物の主鎖Pから分枝した
側鎖Sに軽くトラップされた負極活物質材料(Li
が側鎖Sの運動によって隣の側鎖Sに移動することによ
りイオン伝導が行われる。高分子化合物は分子量が低い
程、側鎖の自由度が高くなり側鎖が運動しやすくなるの
で、分子量の低い高分子化合物は分子量の高い同材質の
高分子化合物に比べて側鎖が運動しやすくイオン伝導度
が高くなる。そのため本発明によれば補助高分子固体電
解質層を配置することにより、全体として見た固体電解
質中のイオン伝導度は高くなる。尚、補助高分子固体電
解質層を設けた分だけ分子量の高い高分子固体電解質層
の厚みを薄くすれば、電解質中のイオン伝導度を高くで
きる利点がある。請求項2の発明のように、高分子固体
電解質層と正極活物質層との間及び高分子固体電解質層
と負極活物質層との間に、それぞれ補助高分子固体電解
質層を配置すると、負極活物質材料の金属イオンの正極
活物質層への拡散が容易になる。請求項3の発明のよう
に、高分子固体電解質層と負極活物質層との間に補助高
分子固体電解質層を配置すると、負極活物質層と電解質
との接触面積が大きくなるので、負極活物質層と電解質
との界面部分の電流密度が低くなって、極板間の短絡を
生じさせるようなデンドライトの生成を抑制することが
できる。
[Function] A polymer compound having a low molecular weight has a lower viscosity than a polymer compound having the same material and a high molecular weight. Therefore, the molecular weight is higher than that of the polymer compound which forms the solid polymer electrolyte layer between the active material layer of at least one of the positive electrode active material layer and the negative electrode active material layer and the solid polymer electrolyte layer as in the invention of claim 1. When an auxiliary polymer solid electrolyte layer formed of a polymer compound having a low level is placed, the auxiliary polymer solid electrolyte layer penetrates into the active material layer, and the contact area (reaction area) between the electrolyte layer and the active material layer is reduced. To increase. In the present invention, since the solid polymer electrolyte layer having a high molecular weight is provided as in the conventional case, the strength required for the electrolyte layer to function as a separator can be maintained. Therefore, according to the present invention, it is possible to obtain a battery having a high charge / discharge capacity and capable of high-rate charge / discharge without lowering the strength of the electrolyte layer. Further, in the polymer solid electrolyte battery, as shown in the model in which Li + is used as an ion shown in FIG. 5, the negative electrode active material material (lightly trapped in the side chain S branched from the main chain P of the polymer compound ( Li + )
Is moved to the adjacent side chain S by the movement of the side chain S, so that ion conduction is performed. The lower the molecular weight of a polymer compound, the higher the degree of freedom of the side chain and the easier it is for the side chain to move.Therefore, a polymer compound with a lower molecular weight will have more side chain motion than a polymer compound with the same high molecular weight. Easy to have high ionic conductivity. Therefore, according to the present invention, by disposing the auxiliary polymer solid electrolyte layer, the ionic conductivity in the solid electrolyte as a whole is increased. If the thickness of the high molecular weight solid polymer electrolyte layer is reduced by the amount of the auxiliary solid polymer electrolyte layer, there is an advantage that the ionic conductivity in the electrolyte can be increased. When an auxiliary polymer solid electrolyte layer is arranged between the polymer solid electrolyte layer and the positive electrode active material layer and between the polymer solid electrolyte layer and the negative electrode active material layer as in the invention of claim 2, the negative electrode is obtained. Diffusion of metal ions of the active material into the positive electrode active material layer becomes easy. When the auxiliary solid polymer electrolyte layer is disposed between the solid polymer electrolyte layer and the negative electrode active material layer as in the third aspect of the present invention, the contact area between the negative electrode active material layer and the electrolyte is increased, and thus the negative electrode active material is formed. The current density at the interface between the material layer and the electrolyte is reduced, and it is possible to suppress the generation of dendrite that causes a short circuit between the electrode plates.

【0010】[0010]

【実施例】以下、本発明の高分子固体電解質電池をリチ
ウム高分子固体電解質電池に適用した実施例を図面を参
照して詳細に説明する。図1はリチウム高分子固体電解
質電池の概略断面図である。図1において、1は高分子
固体電解質層、2は補助高分子固体電解質層、3は正極
活物質層、4は負極活物質層、5は正極集電体、6は負
極集電体、そして7はホットメルトである。高分子固体
電解質層1は次の分子式で示されるようなメトキシオリ
ゴエチレンオキシポリホスファゼン(MEP7)等から
なる高分子化合物と過塩素酸リチウム(LiClO4
等からなる負極活物質材料との混合物により形成されて
いる。
EXAMPLE An example in which the polymer solid electrolyte battery of the present invention is applied to a lithium polymer solid electrolyte battery will be described in detail below with reference to the drawings. FIG. 1 is a schematic sectional view of a lithium polymer solid electrolyte battery. In FIG. 1, 1 is a solid polymer electrolyte layer, 2 is an auxiliary solid polymer electrolyte layer, 3 is a positive electrode active material layer, 4 is a negative electrode active material layer, 5 is a positive electrode current collector, 6 is a negative electrode current collector, and 7 is hot melt. The polymer solid electrolyte layer 1 is composed of a polymer compound such as methoxyoligoethyleneoxypolyphosphazene (MEP7) having the following molecular formula and lithium perchlorate (LiClO 4 ).
And the like, and is formed of a mixture with a negative electrode active material.

【0011】[0011]

【化1】 尚、上記式においてnの値が大きくなると高分子化合物
の主鎖が長くなり、高分子化合物の分子量は大きくな
る。
[Chemical 1] In the above formula, the larger the value of n, the longer the main chain of the polymer compound and the larger the molecular weight of the polymer compound.

【0012】ちなみに本実施例では、高分子固体電解質
層1は分子量約120万のMEP7で形成されており、
80μm の厚みを有している。補助高分子固体電解質層
2は、正極活物質層3と高分子固体電解質層1との間に
配置された第1の補助高分子固体電解質層21と、負極
活物質層4と高分子固体電解質層1との間に配置された
第2の補助高分子固体電解質層22とからなる。第1の
補助高分子固体電解質層21は正極活物質層3と高分子
固体電解質層1とに密着した状態で形成されており、第
2の補助高分子固体電解質層22は負極活物質層4と高
分子固体電解質層1とに密着した状態で形成されてい
る。第1及び第2の補助高分子固体電解質層21,22
も高分子固体電解質層1と同様にMEP7と過塩素酸リ
チウムとの混合物により形成されており、このMEP7
としては高分子固体電解質層1を形成するMEP7より
も分子量の低いものが用いられている。尚、本実施例で
は第1及び第2の補助高分子固体電解質層21,22を
分子量約10万のMEP7を用いて形成しており、それ
ぞれの層は20μm の厚みを有している。高分子固体電
解質層1と補助高分子固体電解質層2との厚みの比率、
並びに各電解質層1,2を形成するそれぞれの高分子化
合物の分子量は、電解質層がセパレータとしての強度を
維持することができ、しかも電池の容量を高くできる範
囲になっている。正極活物質層3は五酸化バナジウムキ
セロゲル膜(V2 5 ・nH2 O)から形成されてお
り、この正極活物質層3は正極集電体5の表面5a上に
外周端面5bを残すように形成されている。負極活物質
層4は金属リチウム箔により構成されており、負極集電
体6の表面6a上に外周端面6bを残すように配置され
ている。正極集電体5及び負極集電体6はニッケル等に
より形成されている金属箔であり、両集電体5及び6は
共に同じ寸法を有している。正極集電体5と負極集電体
6とは、それぞれ電池の外装ケースの一部を構成し、且
つ端子の機能を果たしている。ホットメルト7は、加熱
されると表面側から溶融して接着性を示す枠部材であ
る。このホットメルト7は集電体5及び6の外周端面5
b及び6bに対応した輪郭が矩形状を呈するリングであ
り、具体的にはポリオレフィン系樹脂から形成されてい
る。集電体5及び6の外周端面5b及び6bがホットメ
ルト7に接続されて電池が組み立てられている。
By the way, in this embodiment, the solid polymer electrolyte layer 1 is made of MEP7 having a molecular weight of about 1.2 million,
It has a thickness of 80 μm. The auxiliary solid polymer electrolyte layer 2 includes a first auxiliary solid polymer electrolyte layer 21 disposed between the positive electrode active material layer 3 and the solid polymer electrolyte layer 1, a negative electrode active material layer 4, and a solid polymer electrolyte. The second auxiliary polymer solid electrolyte layer 22 is disposed between the second auxiliary polymer solid electrolyte layer 22 and the layer 1. The first auxiliary polymer solid electrolyte layer 21 is formed in a state of being in close contact with the positive electrode active material layer 3 and the polymer solid electrolyte layer 1, and the second auxiliary polymer solid electrolyte layer 22 is the negative electrode active material layer 4. And the solid polymer electrolyte layer 1 are in close contact with each other. First and second auxiliary solid polymer electrolyte layers 21, 22
Like the solid polymer electrolyte layer 1, is also formed of a mixture of MEP7 and lithium perchlorate.
As the material, a material having a lower molecular weight than MEP7 forming the polymer solid electrolyte layer 1 is used. In this example, the first and second auxiliary polymer solid electrolyte layers 21 and 22 were formed using MEP7 having a molecular weight of about 100,000, and each layer had a thickness of 20 μm. The ratio of the thickness of the solid polymer electrolyte layer 1 to the auxiliary solid polymer electrolyte layer 2,
In addition, the molecular weight of each polymer compound forming each of the electrolyte layers 1 and 2 is within a range in which the electrolyte layer can maintain the strength as a separator and the capacity of the battery can be increased. The positive electrode active material layer 3 is formed of a vanadium pentoxide xerogel film (V 2 O 5 .nH 2 O), and the positive electrode active material layer 3 is formed so that the outer peripheral end surface 5 b is left on the surface 5 a of the positive electrode current collector 5. Is formed in. The negative electrode active material layer 4 is composed of a metallic lithium foil, and is arranged so as to leave the outer peripheral end face 6b on the surface 6a of the negative electrode current collector 6. The positive electrode current collector 5 and the negative electrode current collector 6 are metal foils made of nickel or the like, and both the current collectors 5 and 6 have the same size. Each of the positive electrode current collector 5 and the negative electrode current collector 6 constitutes a part of the outer case of the battery and also functions as a terminal. The hot melt 7 is a frame member that melts from the surface side when heated and exhibits adhesiveness. The hot melt 7 is the outer peripheral end surface 5 of the current collectors 5 and 6.
The ring corresponding to b and 6b is a ring having a rectangular shape, and is specifically formed of a polyolefin resin. The outer peripheral end surfaces 5b and 6b of the current collectors 5 and 6 are connected to the hot melt 7 to assemble the battery.

【0013】次にこのリチウム固体電解質電池の製造方
法について説明する。まずアモルファスのV2 5 2重
量%の溶液を厚み20μm のニッケル箔からなる正極集
電体5の一方の表面5aにスクリーン印刷等により塗布
した後、これを乾燥させて正極集電体5の表面5aに厚
み約10μm の五酸化バナジウムキセロゲル膜(V2
5 ・nH2 O)からなる正極活物質層3を作った。次に
ポリフォスファゼン誘導体の一種である分子量約10万
のMEP7を10重量%含み、またこのMEP7に対し
て6重量%のLiClO4 が1、2−ジメトキシエタン
(DME)中に溶かされた高分子固体電解質用溶液を作
り、この溶液を正極活物質層3を全体的に覆うようにし
て正極活物質層3上に塗布した。尚、負極活物質材料を
含む溶液としてはLiClO4 以外にLiPF6 、Li
BF4 、LiSO3 CF3 等を用いることができる。そ
して、これを乾燥してDMEを揮発して厚み20μm の
第1の補助高分子固体電解質層21を作った。次に分子
量約120万のMEP7を10重量%含み、またこのM
EP7に対して6重量%のLiClO4 がDME中に溶
かされた高分子固体電解質用溶液を作り、この溶液を第
1の補助高分子固体電解質層21上に塗布した。そし
て、これを乾燥して高分子固体電解質層1を作った。次
に補助高分子固体電解質層21を形成する方法と同様に
して分子量約10万のMEP7を10重量%含み、また
このMEP7に対して6重量%のLiClO4 が1、2
−ジメトキシエタン(DME)中に溶かされた高分子固
体電解質用溶液を作り、この溶液を厚み30μm のLi
箔からなる負極活物質層4の一方の面に塗布した。そし
て、これを乾燥して負極活物質層4上に厚み20μm の
第2の補助高分子固体電解質層22を形成した。その後
に第2の補助高分子固体電解質層22を高分子固体電解
質層1に密着させるようにして、第2の補助高分子固体
電解質層22を備えた負極活物質層4を高分子固体電解
質層1の上に載置した。次に正極集電体5の外周端部5
bの上にホットメルト7を載置してから負極活物質層4
とホットメルト7とを覆うようにして負極集電体6を載
置し、加熱によりホットメルト7を集電体5及び6の外
周端部5b及び6bに完全に接続して高分子固体電解質
電池を製造した。
Next, a method of manufacturing this lithium solid electrolyte battery will be described. First, an amorphous V 2 O 5 2% by weight solution is applied to one surface 5a of the positive electrode current collector 5 made of nickel foil having a thickness of 20 μm by screen printing or the like, and then dried to dry the positive electrode current collector 5 A vanadium pentoxide xerogel film (V 2 O) having a thickness of about 10 μm is formed on the surface 5a.
A positive electrode active material layer 3 composed of 5 · nH 2 O) was prepared. Next, 10% by weight of MEP7 having a molecular weight of about 100,000, which is a kind of polyphosphazene derivative, was added, and 6% by weight of LiClO 4 was dissolved in 1,2-dimethoxyethane (DME). A solution for a molecular solid electrolyte was prepared, and this solution was applied onto the positive electrode active material layer 3 so as to entirely cover the positive electrode active material layer 3. As the solution containing the negative electrode active material, other than LiClO 4 , LiPF 6 , Li
BF 4 , LiSO 3 CF 3 or the like can be used. Then, this was dried to volatilize DME to form a first auxiliary polymer solid electrolyte layer 21 having a thickness of 20 μm. Next, it contains 10% by weight of MEP7 having a molecular weight of about 1.2 million.
A solution for a solid polymer electrolyte in which 6 wt% of LiClO 4 with respect to EP7 was dissolved in DME was prepared, and this solution was applied onto the first auxiliary solid polymer electrolyte layer 21. Then, this was dried to prepare a polymer solid electrolyte layer 1. Next, similar to the method of forming the auxiliary polymer solid electrolyte layer 21, 10% by weight of MEP7 having a molecular weight of about 100,000 is added, and 6% by weight of LiClO 4 is added to this MEP7.
-Preparation of a solution for a solid polymer electrolyte dissolved in dimethoxyethane (DME), and adding this solution to a 30 μm thick Li
It was applied to one surface of the negative electrode active material layer 4 made of foil. Then, this was dried to form a second auxiliary polymer solid electrolyte layer 22 having a thickness of 20 μm on the negative electrode active material layer 4. After that, the second auxiliary solid polymer electrolyte layer 22 is brought into close contact with the solid polymer electrolyte layer 1, and the negative electrode active material layer 4 provided with the second auxiliary solid polymer electrolyte layer 22 is attached to the solid polymer electrolyte layer. Placed on top of 1. Next, the outer peripheral end portion 5 of the positive electrode current collector 5
The hot melt 7 is placed on top of the negative electrode active material layer 4
The negative electrode current collector 6 is placed so as to cover the hot melt 7 and the hot melt 7, and the hot melt 7 is completely connected to the outer peripheral end portions 5b and 6b of the current collectors 5 and 6 by heating, so that the solid polymer electrolyte battery Was manufactured.

【0014】本実施例の高分子固体電解質電池の特性を
調べるために二種類の電池a,bを製造した。電池aは
本実施例の電池であり、電池bは従来の電池である。電
池bの電解質層は分子量約120万のMEP7のみを用
いて形成した厚み120μmの高分子固体電解質層であ
り、電池bの電解質以外の構成は電池aの構成と同じに
なっている。これらの電池a,bを0℃の温度下で25
μA/cm2 の電流密度により2Vになるまで定電流連続
放電を行い、各電池a,bの低温時における放電特性を
測定した。図2はその測定結果を示している。図におい
て横軸は放電生成物Lix 2 5 のX値の変化を示
し、縦軸は電池電圧を示している。本図より本発明の電
池aは従来の電池bに比べて低温時における放電容量が
高いのが判る。
Two types of batteries a and b were manufactured in order to investigate the characteristics of the polymer solid electrolyte battery of this example. The battery a is the battery of this embodiment, and the battery b is the conventional battery. The electrolyte layer of the battery b is a polymer solid electrolyte layer having a thickness of 120 μm formed by using only MEP7 having a molecular weight of about 1.2 million, and the structure other than the electrolyte of the battery b is the same as that of the battery a. These batteries a and b are stored at a temperature of 0 ° C for 25
Constant-current continuous discharge was performed at a current density of μA / cm 2 until the voltage reached 2 V, and the discharge characteristics of the batteries a and b at low temperature were measured. FIG. 2 shows the measurement result. In the figure, the horizontal axis represents the change in the X value of the discharge product Li x V 2 O 5 , and the vertical axis represents the battery voltage. From this figure, it can be seen that the battery a of the present invention has a higher discharge capacity at low temperatures than the conventional battery b.

【0015】次に25℃の温度下で電池a,bを共に1
00μA/cm2 と500μA/cm2の電流密度で2Vま
で定電流連続放電を行い、各電池の高率放電特性を測定
した。図3はその測定結果を示している。図において曲
線a1 及びa2 はそれぞれ100μA/cm2 及び500
μA/cm2 の電流密度で連続放電した本発明の電池の特
性曲線であり、曲線b1及びb2はそれぞれ100μA/cm
2 及び500μA/cm2 の電流密度で連続放電した従来
の電池の特性曲線である。本図より本発明の電池aは1
00μA/cm2 及び500μA/cm2 のいずれにおいて
も、従来の電池bに比べて放電容量が高いのが判る。
Next, at a temperature of 25 ° C., both batteries a and b are set to 1
Constant-current continuous discharge was performed up to 2 V at current densities of 00 μA / cm 2 and 500 μA / cm 2 , and the high rate discharge characteristics of each battery were measured. FIG. 3 shows the measurement result. In the figure, the curves a1 and a2 are 100 μA / cm 2 and 500, respectively.
3 is a characteristic curve of a battery of the present invention continuously discharged at a current density of μA / cm 2 , where curves b1 and b2 are 100 μA / cm, respectively.
2 is a characteristic curve of a conventional battery continuously discharged at current densities of 2 and 500 μA / cm 2 . From this figure, the battery a of the present invention is 1
It can be seen that the discharge capacity is higher than that of the conventional battery b at both 00 μA / cm 2 and 500 μA / cm 2 .

【0016】次に25℃の温度下で25μA/cm2 の電
流密度で2Vまで放電した後に、25μA/cm2 の電流
密度で4.2Vまで充電する充放電を電池a及びbに繰
り返して、各電池a,bのサイクル寿命特性を調べた。
図4は測定結果を示している。本図より本発明の電池a
の放電容量は従来の電池bの放電容量に対して、約8%
程度高く、本発明の電池aは従来の電池bに比べて電池
寿命が長くなるのが判る。尚、本図において電池が寿命
に達する原因は正極活物質の劣化ではなく負極活物質に
デンドライトが析出して電池内部でショートが発生した
ためである。
[0016] Then after discharging to 2V at a current density of 25 .mu.A / cm 2 at a temperature of 25 ° C., by repeating charge and discharge for charging to 4.2V at a current density of 25 .mu.A / cm 2 in cell a and b, The cycle life characteristics of the batteries a and b were examined.
FIG. 4 shows the measurement results. From this figure, battery a of the present invention
The discharge capacity of is about 8% of the discharge capacity of conventional battery b.
It can be seen that the battery a of the present invention has a longer battery life than the conventional battery b. In this figure, the reason why the battery reaches the end of its life is not that the positive electrode active material deteriorates but that dendrites are deposited on the negative electrode active material and a short circuit occurs inside the battery.

【0017】尚、本実施例の電池では高分子固体電解質
層と正極活物質層との間及び高分子固体電解質層と負極
活物質層との間に、それぞれ補助高分子固体電解質層を
配置したが、正極活物質層及び負極活物質層のどちらか
一方の活物質層と高分子固体電解質層との間に補助高分
子固体電解質層を配置しても構わない。特に高分子固体
電解質層と負極活物質層との間に補助高分子固体電解質
層を配置すれば、負極活物質層と電解質との界面部分の
電流密度が低くなり、極板間の短絡を生じさせるような
デンドライトの生成を抑制することができる。
In the battery of this example, an auxiliary polymer solid electrolyte layer was arranged between the polymer solid electrolyte layer and the positive electrode active material layer, and between the polymer solid electrolyte layer and the negative electrode active material layer. However, the auxiliary polymer solid electrolyte layer may be disposed between the polymer solid electrolyte layer and either one of the positive electrode active material layer and the negative electrode active material layer. In particular, if an auxiliary polymer solid electrolyte layer is placed between the polymer solid electrolyte layer and the negative electrode active material layer, the current density at the interface between the negative electrode active material layer and the electrolyte becomes low, causing a short circuit between the electrode plates. The generation of such dendrites can be suppressed.

【0018】[0018]

【発明の効果】請求項1の発明によれば、正極活物質層
及び負極活物質層の少なくとも一方の活物質層と高分子
固体電解質層との間に高分子固体電解質層の形成する高
分子化合物よりも分子量の低い高分子化合物により形成
された補助高分子固体電解質層を配置するので、充放電
容量が高く、しかも高率での充放電を行える電池を得る
ことができる。請求項2の発明によれば、高分子固体電
解質層と正極活物質層との間及び高分子固体電解質層と
負極活物質層との間に、それぞれ補助高分子固体電解質
層を配置するので、負極活物質材料の金属イオンの正極
活物質層への拡散が容易になり、電池の充放電容量が高
くなる。請求項3の発明によれば、高分子固体電解質層
と負極活物質層との間に、補助高分子固体電解質層を配
置するので、デンドライトが生成を抑制でき、長寿命の
電池を得ることができる。
According to the invention of claim 1, the polymer formed by the polymer solid electrolyte layer is provided between the polymer solid electrolyte layer and at least one of the positive electrode active material layer and the negative electrode active material layer. Since the auxiliary polymer solid electrolyte layer formed of a polymer compound having a lower molecular weight than the compound is arranged, a battery having a high charge / discharge capacity and capable of high-rate charge / discharge can be obtained. According to the invention of claim 2, since the auxiliary solid polymer electrolyte layer is arranged between the solid polymer electrolyte layer and the positive electrode active material layer and between the solid polymer electrolyte layer and the negative electrode active material layer, respectively, Diffusion of metal ions of the negative electrode active material into the positive electrode active material layer is facilitated, and the charge / discharge capacity of the battery is increased. According to the invention of claim 3, since the auxiliary polymer solid electrolyte layer is disposed between the polymer solid electrolyte layer and the negative electrode active material layer, generation of dendrites can be suppressed, and a long-life battery can be obtained. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の高分子固体電解質電池の概略
断面図である。
FIG. 1 is a schematic cross-sectional view of a polymer solid electrolyte battery of an example of the present invention.

【図2】試験に用いた電池の低温時における放電特性を
示す図である。
FIG. 2 is a diagram showing discharge characteristics at low temperature of a battery used for a test.

【図3】試験に用いた電池の高率放電特性を示す図であ
る。
FIG. 3 is a diagram showing a high rate discharge characteristic of a battery used in a test.

【図4】試験に用いた電池のサイクル寿命特性を示す図
である。
FIG. 4 is a diagram showing cycle life characteristics of a battery used in a test.

【図5】高分子固体電解質中において負極活物質材料の
金属イオンが伝導する様子を示す図である。
FIG. 5 is a diagram showing how metal ions of a negative electrode active material are conducted in a polymer solid electrolyte.

【符号の説明】[Explanation of symbols]

1…高分子固体電解質層、2…補助高分子固体電解質
層、3…正極活物質層、4…負極活物質層。
1 ... Polymer solid electrolyte layer, 2 ... Auxiliary polymer solid electrolyte layer, 3 ... Positive electrode active material layer, 4 ... Negative electrode active material layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 弘中 健介 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 早川 他▲く▼美 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 小牧 昭夫 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 谷口 正俊 大阪府大阪市中央区大手通3丁目2番27号 大塚化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kensuke Hironaka, Kensuke Hironaka, 2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo Within Shinjin Todenki Co., Ltd. (72) Inventor, Hayakawa, etc. 2-1-1 Shinshin-Toden Electric Co., Ltd. (72) Inventor Akio Komaki 2-1-1-1 Nishishinjuku, Shinjuku-ku, Tokyo Shinjin-Toden Electric Co., Ltd. (72) Inventor, Weibun Tokushima Prefecture 463 Kagasuno, Kawauchi-cho, Tokushima City Otsuka Chemical Co., Ltd. Tokushima Laboratory (72) Inventor Masatoshi Taniguchi 3-27 Otedori, Chuo-ku, Osaka City, Osaka Otsuka Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質層と高分子固体電解質層と負
極活物質層とが積層されてなる高分子固体電解質電池に
おいて、 前記正極活物質層及び前記負極活物質層の少なくとも一
方の活物質層と前記高分子固体電解質層との間には前記
高分子固体電解質層を形成する高分子化合物よりも分子
量の低い高分子化合物により形成された補助高分子固体
電解質層が配置されていることを特徴とする高分子固体
電解質電池。
1. A polymer solid electrolyte battery in which a positive electrode active material layer, a polymer solid electrolyte layer, and a negative electrode active material layer are laminated, wherein at least one of the positive electrode active material layer and the negative electrode active material layer is an active material. Between the layer and the polymer solid electrolyte layer, an auxiliary polymer solid electrolyte layer formed of a polymer compound having a lower molecular weight than the polymer compound forming the polymer solid electrolyte layer is arranged. A characteristic polymer solid electrolyte battery.
【請求項2】 前記高分子固体電解質層と前記正極活物
質層との間及び前記高分子固体電解質層と前記負極活物
質層との間には、それぞれ前記補助高分子固体電解質層
が配置されていることを特徴とする請求項1に記載の高
分子固体電解質電池。
2. The auxiliary polymer solid electrolyte layer is disposed between the polymer solid electrolyte layer and the positive electrode active material layer and between the polymer solid electrolyte layer and the negative electrode active material layer, respectively. The polymer solid electrolyte battery according to claim 1, wherein
【請求項3】 前記高分子固体電解質層と前記負極活物
質層との間には、前記補助高分子固体電解質層が配置さ
れていることを特徴とする請求項1に記載の高分子固体
電解質電池。
3. The solid polymer electrolyte according to claim 1, wherein the auxiliary solid polymer electrolyte layer is disposed between the solid polymer electrolyte layer and the negative electrode active material layer. battery.
JP4097696A 1992-04-17 1992-04-17 High molecular solid electrolyte battery Pending JPH05299102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4097696A JPH05299102A (en) 1992-04-17 1992-04-17 High molecular solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4097696A JPH05299102A (en) 1992-04-17 1992-04-17 High molecular solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPH05299102A true JPH05299102A (en) 1993-11-12

Family

ID=14199108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4097696A Pending JPH05299102A (en) 1992-04-17 1992-04-17 High molecular solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPH05299102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142017A (en) * 2010-01-07 2011-07-21 Nissan Motor Co Ltd Lithium ion secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289767A (en) * 1987-05-20 1988-11-28 Hitachi Ltd Full solid lithium battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289767A (en) * 1987-05-20 1988-11-28 Hitachi Ltd Full solid lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142017A (en) * 2010-01-07 2011-07-21 Nissan Motor Co Ltd Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR100460570B1 (en) Supercapacitor structure and method of making same
KR100711669B1 (en) Solid Electrolyte Battery
US6252762B1 (en) Rechargeable hybrid battery/supercapacitor system
JP4352475B2 (en) Solid electrolyte secondary battery
JP2020526897A (en) Composite solid electrolyte membrane for all-solid-state battery and all-solid-state battery containing it
EP2065954A1 (en) Battery electrode structure
US7462420B2 (en) Electrode with a phase-separated binder that includes a vinylidene fluoride binder polymer and a polyether polar polymer with a lithium salt
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
US20220293930A1 (en) Positive Electrode for Lithium Secondary Battery, Method for Manufacturing the Same, and Lithium Secondary Battery Including the Same
JP4686825B2 (en) Method for producing battery electrode with solid electrolyte layer
JPH0652891A (en) Lithium secondary battery
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH06188030A (en) Nonaqueous electrolyte battery
JPH05299102A (en) High molecular solid electrolyte battery
CN110611119B (en) Composite solid electrolyte and preparation method and application thereof
JP3994496B2 (en) Lithium ion secondary battery and manufacturing method thereof
KR0179723B1 (en) Lithium or lithium ion secondary battery using polyelectrolyte
JP3108187B2 (en) Lithium secondary battery
JP5135649B2 (en) Solid polymer electrolyte battery and method for producing solid polymer electrolyte
JPH05205777A (en) Macromolecular solid electrolyte battery
JPH07169507A (en) Polymer solid electrolytic battery
JPH06275323A (en) Nonaqueous electrolytic secondary battery
KR200244307Y1 (en) Solid electrolyte battery
KR20230007424A (en) Methods and systems for all-conductive battery electrodes

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980224