JP4686825B2 - Method for producing battery electrode with solid electrolyte layer - Google Patents

Method for producing battery electrode with solid electrolyte layer Download PDF

Info

Publication number
JP4686825B2
JP4686825B2 JP2000230806A JP2000230806A JP4686825B2 JP 4686825 B2 JP4686825 B2 JP 4686825B2 JP 2000230806 A JP2000230806 A JP 2000230806A JP 2000230806 A JP2000230806 A JP 2000230806A JP 4686825 B2 JP4686825 B2 JP 4686825B2
Authority
JP
Japan
Prior art keywords
electrode
battery
solid electrolyte
battery electrode
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000230806A
Other languages
Japanese (ja)
Other versions
JP2002042792A (en
Inventor
謙一郎 加美
俊 大木島
啓史 上嶋
学 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000230806A priority Critical patent/JP4686825B2/en
Publication of JP2002042792A publication Critical patent/JP2002042792A/en
Application granted granted Critical
Publication of JP4686825B2 publication Critical patent/JP4686825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池用電極間のイオン導電性を担保する固体電解質を電池用電極の表面に一体的に形成した固体電解質層付き電池用電極の製造方法に関する。
【0002】
【従来の技術】
近年、ノート型コンピューター、小型携帯機器、あるいは自動車のクリーンなエネルギー源として高性能二次電池の開発が盛んである。ここで用いられる二次電池には小型、軽量でありながら大容量・高出力であること、即ち高エネルギーー密度・高出力密度であることが求められているが、高エネルギーを貯蔵することから安全性の確保が重要である。また、市場に早期に普及するために、材料コストの低減が求められている。
【0003】
高エネルギー密度・高出力密度を達成できる二次電池としては、リチウムイオン二次電池等の非水電解質二次電池が有力視されている。一般的にリチウムイオン二次電池は、リチウムイオンを吸蔵および放出できる薄膜状の正極および負極と、その間に介在・積層されたポリエチレンやポリプロピレン等の高分子から構成される微多孔膜であるセパレータと、正極と負極との間でリチウムイオンを移動させる電解液とを備えている。
【0004】
従来の電池に使われているポリオレフィン系の微多孔膜からなるセパレ−タは、製造方法が複雑なため高価で、電池コストの中で占める比率が大きくなっている。また、150℃を越えるような高温では、シャットダウン機能はうまく働かず、収縮・破膜するなどしてショートする危険性がある。
【0005】
ポリオレフィン系セパレ−タと有機電解液を組み合わせた電池では安全性を高めるために、PTCや過充電防止機構など、電池機能には直接関与しない部材、制御部品などが必要となりさらにコストが高くなっている。
【0006】
このため安価に安全性を高めるために、有機電解液を用いない高分子固体電解質膜あるいは電解液を含浸させた高分子ゲルを用いた電池の開発が急速に進んでいる。しかしながら固体電解質やゲル電解質は電気伝導度が低く特に電極とこれら固体電解質・ゲル電解質との界面での抵抗が大きいことから、大きな電流密度での充放電には正極、負極との接合を強固にする必要がある。このために、あらかじめ作製したフィルム状の高分子膜を正極、負極とラミネートする方法や正極あるいは負極上に直接高分子膜を形成する合剤を塗布する方法がある。前者の方法では、高分子膜を作製する工程とラミネートする工程が別々であり、工程が複雑でコストを引き上げており、また電極との接合が充分でない。後者では塗布基材が電極であることから、電極に平滑性、欠陥がないことが求められ、薄く均一な高分子膜の十分な歩留りが得られない。
【0007】
【発明が解決しようとする課題】
本発明は、安全性が高く、低コスト・高出力な二次電池を実現する目的で、固体電解質層付き電池用電極の製造方法を提供することを解決すべき課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決する目的で、本発明者らは鋭意研究の結果、電気泳動を応用することにより薄い固体電解質層を形成でき、かつ電池用電極と固体電解質層との接合性を向上できることを見出した。すなわち、電気泳動法は、学会(電気化学学会 第66回大会要旨 発表No.P24)で開示された集電体表面に電極活物質層の薄膜を形成することができる他に、電気泳動法を固体電解質層の形成に応用すると、固体電解質層薄膜の均一化、電池用電極と固体電解質層との接合性の向上をも達成できることを発見した。
【0009】
すなわち、本発明の固体電解質層付き電池用電極の製造方法は、電池用電極と、該電池用電極と一体的に形成され電池用電極間のイオン移動を可能とする固体電解質層とをもつ固体電解質層付き電池用電極の製造方法であって、前記固体電解質を構成する構成材料を溶媒中に分散ないし溶解させた溶液中に前記電池用電極を浸漬する浸漬工程と、電気泳動用電極を用いて前記溶液内に電位勾配を発生させて前記構成材料を電気泳動により前記電池用電極表面に付着させる電気泳動工程と、を有し、前記浸漬工程において、前記電池用電極は、ロール状に巻回された前記電池用電極を保持し送出する送出手段により前記溶液中に送出され、前記溶液を通過後、前記電池用電極を巻き取る取込手段により巻き取られ、 前記電気泳動用電極は、前記溶液内で前記電池用電極が通過する部分を覆うことを特徴とする。
【0010】
つまり、電気泳動法を固体電解質層の形成に応用すると、電池用電極表面の固体電解質層が形成されていない部分に集中的に電流が流れるので電流密度が高くなり、その部分に電気泳動が集中することで、固体電解質層が形成されていない部分に優先的に固体電解質層が形成される。したがって、固体電解質層形成が遅れている部分に優先して固体電解質層が形成されるので、固体電解質層の構成材料が粒子もしくは分子レベルで電池用電極の表面に接合でき、結果的に固体電解質層が均一に電池用電極表面に形成されることとなる。また、電気泳動時の印加電圧等を調節することで、固体電解質層と電池用電極との接合性を制御できるという効果がある。
【0011】
そして、前記電気泳動工程において少なくとも正極、負極からなる2種類の電極によって前記電位勾配を発生させており、該正極および負極のうちのいずれか一方は前記電池用電極が兼ね、他方は前記電気泳動用電極であることが好ましい。電池用電極に直接電圧を印加することにより、電気泳動の制御をより精密に行うことができ、さらに電気泳動専用の電極の総数を減らすことができる。また、電池用電極の両面に固体電解質層を形成するために、さらに他方の電極は前記電池用電極の両面側にそれぞれ1つずつ設けられた前記電気泳動用電極であることがより好ましい。
【0012】
さらに、固体電解質層の形成されていない部分を設けるために、前記電池用電極から独立した部材であって、該電池用電極表面の所定部位への前記構成材料の電気泳動を阻害する遮蔽部材をもつことが好ましい。
【0013】
また、前記構成材料の粒子径が50μm以下であることが好ましい。粒子径を50μm以下とすると、空隙率が同じであってもよりイオン伝導度が小さい固体電解質層となるからである。
【0014】
また、構成材料の表面電位を制御するために前記溶液中には、前記構成材料の表面を帯電させる帯電剤を含むことが好ましい。
【0015】
【発明の実施の形態】
本実施形態の固体電解質層付き電池用電極の製造方法は、浸漬工程と電気泳動工程とからなる。
【0016】
〔電池用電極〕
本製造方法が適用できる「電池用電極」は、どのような電池に用いられるものであっても良く、正極および負極のいずれかであって対極との間に電極間のイオン移動性を担保する固体電解質を介在させて電池が形成される電池に用いられる電池用電極である。たとえば、リチウムイオン二次電池が例示される。そして一般的な電池以外にも電気二重層キャパシタのようなものの電極をも含む意味である。なお、本明細書での「固体電解質」とは、純粋に固体のみから構成される電解質のみを意味するものではなく、ゾル・ゲル状のように内部に液体を保持している電解質であってもよい。
【0017】
〔浸漬工程〕
浸漬工程は、固体電解質層を構成する構成材料を溶媒中に分散させた溶液中に電池用電極を浸漬する工程である。この浸漬工程において、電池用電極は全体を同時に浸漬するばかりでなく連続的に溶液中に浸漬されても良い。
【0018】
構成材料は、溶液中においてよく分散するように、粒子径を50μm以下、特に1μm以下とすることが望ましい。また、粒度分布をよりブロードとすることで孔径が小さくでき、低抵抗化を図ることができるので好ましい。また、構成材料は、溶液中で分散させる他に溶媒に溶解させて用いることもできる。
【0019】
構成材料の溶液中への適正な含有割合は、用いる溶媒・電気泳動工程の条件等によって大きく異なる。これは、後述する電気泳動工程によって構成材料が一様に電池用電極の表面に付着するのではなく構成材料の荷電・質量等の変化により溶液中での移動速度が異なることによって付着の様子が異なるからである。また、構成材料の荷電は使用する溶媒、溶液温度、帯電剤によっても影響される。
【0020】
固体電解質層の構成材料は、Li等の電池に使用されているイオンがドープ・移動することが可能な材料である。たとえば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアクリロニトリル、ポリメチロールシロキサン、ポリメタクリル酸メチル、ポリフッ化ビニリデンなどの導電性高分子およびこれらの変性品(共重合、分岐を導入したもの等)などの高分子材料、またはヨウ化リチウム、窒化リチウム、リン酸チタン酸リチウム、リン酸ジルコニアリチウム、リチウムアルミ窒化物、酸化物ガラス、硫化物ガラスのうちから選ばれる1以上の化合物等のLiのドープ・移動が可能な無機電解質が望ましい。
【0021】
また、固体電解質層の構成材料以外の物質であっても必要に応じて混合することができる。
【0022】
構成材料を粉体のまま分散させて溶液中に分散させる場合、溶媒としてはアセトン等のケトン類およびエタノール等のアルコール類等の有機溶剤、水、およびこれらの混合溶媒が使用できる。また構成材料を膨潤・溶解させる溶媒を添加することで、構成材料を膨潤させ、溶液内での粒子の浮きや沈降を低減することができる。粒子が大きい・比重が溶媒と大きく異なるなど、安定した分散系が得られない場合には、スタラーや超音波などで物理的に粒子を分散させでも良い。
【0023】
この時に分散質である構成材料に電荷を付与するためヨウ素や界面活性剤などの粒子に電荷を付与できる帯電剤を添加しても良い。また、溶媒中のpHを調整することでも、構成材料を溶媒に安定に分散させたり、構成材料の電荷を制御することもできる。pHとしては、限定されるものでないが、3〜12が特に望ましい。
【0024】
こうした構成材料の分散安定性は、溶液の温度の影響も受けやすいことから、溶液の温度調整を行うことが好ましい。槽内の温度としては、限定されるものではないが、−10〜50℃が特に望ましい。たとえば、温度調整の方法としては、溶液を保持する槽内に冷却水などの熱媒を循環させたりすること等により達成できる。
【0025】
〔電気泳動工程〕
電気泳動工程は、溶液内に電位勾配を発生させることで固体電解質層の構成材料を溶液内で電気泳動させて電池用電極表面に付着させる工程である。この電気泳動工程では、電池用電極表面の所定部位への固体電解質層の構成材料の電気泳動を阻害する電池用電極と独立して配設された遮蔽部材を用いることが好ましい。たとえば、集電用のリード等を形成する部分に遮蔽部材を配設することにより、固体電解質層の形成される部分を制御できる。
【0026】
溶液内に電位勾配を発生させる方法としては、たとえば、対向する2つの電気泳動用電極に電圧を印加することで達成できる。電気泳動用電極の形状は、電池用電極の表面に均一に構成材料が付着するように、溶液内で電池用電極が通過する部分の電位勾配が一定とすることができる形状が好ましい。たとえば、電気泳動用電極の大きさを電池用電極が通過する部分を覆うのに充分な大きさとする。そして、電気泳動用電極のいずれか一方は溶液内に浸漬された電池用電極が兼ねることができる。電池用電極を電気泳動用電極とすることで、直接、構成材料を電池用電極に付着させることができる。なお、溶液内に発生させる電位勾配の向きは、構成材料等の溶液内における帯電電位により決定される。すなわち、帯電した構成材料等が電池用電極方向に移動するように電位勾配が決定される。たとえば、構成材料を正に帯電させた場合は電池用電極を負極とする。また、電気泳動用電極の数は2つに限られず、必要に応じて3以上としても良い。たとえば、電池用電極の両面に固体電解質層を形成したい場合に、電池用電極を正極とし、2つの負極を電池用電極の両面に設けることで電池用電極の両面に構成材料を付着させ固体電解質層を形成することができる。
【0027】
電気泳動用電極に印加する電圧、電圧印加時間等の条件としては特に限定されず、電池用電極表面に形成されるべき固体電解質層の厚さ、空隙率、組成等に応じて適宜選択される。電圧を高くすれば、固体電解質層が緊密化し空隙率が小さくなる。ヨウ素添加アセトン溶液を溶媒に用いた場合に好ましい印加電圧としては5〜1000V、より好ましくは10〜500V程度を挙げることができる。また、電圧を印加する時間を長くすると、電池用電極表面の固体電解質層が厚くなる。また、構成材料以外に溶媒に分散させた物質は、その性質により溶液中での表面電位が異なり電気泳動の速度が異なるので電気泳動用電極に印加する電圧を目的の固体電解質層組成・構造となるように調節する。なお、電池用電極表面に形成する固体電解質層の厚さは電池用電極片面当たり好ましくは50μm以下、より好ましくは25μm以下、さらに好ましくは10μm以下とする。固体電解質層の厚さが薄い方が電池の内部抵抗が低くなりより高出力の電池を提供できるからである。このように薄い固体電解質層は従来の溶剤キャスト法等では精度の高い形成が困難であった。それに対し電気泳動法によると、電気泳動は電位勾配の大きい部分に優先的に構成材料が付着するので固体電解質層の厚さに不均等が生じると固体電解質層が薄い部分から構成材料が付着して形成される固体電解質層の厚さは一定になるという利点がある。
【0028】
遮蔽部材は、電池用電極の固体電解質層を形成させたくない部位に近接して設けられる。遮蔽部材と電池用電極との隙間は小さい方が固体電解質層の構成材料の不必要な部分への回り込みが少なくなる。また、遮蔽部材は構成材料が移動する側と反対の電気泳動用電極の電位よりも構成材料が移動する側の電気泳動用電極の電位に近く調節されることが好ましい。さらに、遮蔽部材は電池用電極と同電位に調節されることがより好ましい。電位を調節することにより、遮蔽部材と電池用電極との隙間に電位勾配が少なくなるので、電池用電極への固体電解質層の付着が少なくなるからである。そして、遮蔽部材は絶縁体とすることもできる。遮蔽部材を絶縁体とすることにより遮蔽部材に付着する活物質量が材料の無駄が少なくなるので好ましい。
【0029】
また、電気泳動工程においても溶液内の構成材料が沈殿しないように何らかの方法で溶液の攪拌を続けることが好ましい。
【0030】
【実施例】
以下に実施例に基づき詳細に説明するが、本発明は下記の実施例に限定されるものではない。
【0031】
(電池用電極の製造)
NMPに溶解したフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(結着材)、ニッケル酸リチウム(正極活物質)、ゲッチェンブラック(導電材)からなるリチウムイオン二次電池用正極合剤ペーストを集電体としてのアルミ箔に塗布・乾燥後プレス成形することで電池用電極としての正極11を得た。
【0032】
次にNMPに溶解したフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(結着材)及びグラファイト(負極活物質)からなるリチウムイオン二次電池用負極合剤ペーストを集電体としての銅箔に塗布し乾燥後プレス成形することで電池用電極としての負極10を作製した。
【0033】
これらの正極・負極を用いて以下の実施例を説明する。
【0034】
(固体電解質層付き電池用電極の製造装置)
図1に示す固体電解質層付き電池用電極の製造装置を用いて固体電解質層付き電池用電極を製造した。本製造装置はロール状に巻回された電池用電極10、11を保持し送出する送出手段1と溶液槽2と溶液槽2内に設けられた2枚の電極板31、32とその電極板31、32の間の電池用電極10、11進行方向に向かって右側に電池用電極10、11の厚さ程度の隙間をあけて設けられた金属製の遮蔽部材51、52と溶液槽2内の電極板31、32および遮蔽部材51、52の間に電池用電極10、11が通過して溶液内に浸漬するように保持するガイド6、7、8、9と電池用電極10、11を巻き取る取込手段4とからなる。そして電圧の制御が可能な直流電源90の負極を遮蔽部材51、52および送出手段1を介して電池用電極10、11に接続し、正極を電極板31、32に接続する。これにより遮蔽部材51、52と電池用電極10、11とは等電位となる。
【0035】
したがって、図2に示すように、電極板31、32から電池用電極10、11の方向へ電気泳動された固体電解質の構成材料は遮蔽部材51、52によって遮蔽されるので、電池用電極10、11のBの部分には固体電解質層が形成されない。遮蔽部材51、52は電池用電極10、11と同電位に調節されているので、遮蔽部材51、52と電池用電極10、11との間に固体電解質の構成材料が回り込む量を減らすことができる。なお、図2においてAは電池用電極10、11上に付着した固体電解質層を示す。
【0036】
送出手段1に保持された電池用電極10、11は、ガイド6、7、8、9により溶液槽2内を通過し取込手段3により取り込まれる。
【0037】
(実施例1)
〔電気泳動槽中の高分子分散液の調製〕
NMPに溶解した固体電解質の構成材料としてのフッ化ビニリデン−ヘキサフルオロプロピレン共重合体10%溶液10gをアセトン中100g中に滴下し、スタラーで攪拌し、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体をアセトン中に分散した。
【0038】
〔電極上への高分子膜の作製〕
電池用電極として前述の負極10を正端子(正電位)に接続し、負端子(負電位)に電気泳動用電極板31、32を接続した。電池用電極10と電気泳動用電極板31、32との間を10mmとし、直流電源を接続し400Vの電圧を1分間印加することで、負極10上に高分子膜を作製した。断面構造観察の結果、図3に示すように、固体電解質層20は、電池用電極10内の空孔内にも析出し強固かつ一体的に固着していた。
【0039】
〔ゲル電解質電池の作製〕
上記高分子膜を正極および負極の間に積層し捲回した後、電池缶に挿入した。この後LiPF6 を溶解した炭酸エチレン、炭酸プロピレン電解質溶液を電池に含浸し、正極、負極、高分子膜中のフッ化ビニリデン−ヘキサフルオロプロピレン共重合体を膨潤させることで全ゲル電解質電池を作製した。
【0040】
(実施例2)
〔電気泳動槽中の高分子分散液の調製〕
NMPに溶解したフッ化ビニリデン−ヘキサフルオロプロピレン共重合体10%溶液10gをアセトン中100g中に滴下し、スタラーで攪拌し、フッ化ビニリデンーヘキサフルオロプロピレン共重合体をアセトン中に分散した。
【0041】
〔電極上への高分子膜の作製〕
電池用電極として前述の正極11を正端子に接続し、負端子に電気泳動用電極31、32を接続した。電池用電極10と電気泳動用電極板31、32との間を10mmとし、直流電源を接続し400Vの電圧を1分間印加することで、正極11上に高分子膜を作製した。
【0042】
次に負極10に正端子を接続し、電気泳動用電極31、32に負端子を接続した。電池用電極10と電気泳動用電極板31、32との間を10mmとし、直流電源を接続し400Vの電圧を1分間印加することで、負極10上に高分子膜を作製した。
【0043】
固体電解質層20を一体的に固着していた負極10および正極11を重ねあわせ加熱することで、断面構造観察の結果、図4に示すように、正極11、負極10間を固体電解質層20の接合面の境目なく連続的に接合した。
【0044】
〔ゲル電解質電池の作製〕
上記高分子膜を正極および負極の間に積層し捲回した後、電池缶に挿入した。この後LiPF6 を溶解した炭酸エチレン、炭酸プロピレン電解質溶液を電池に含浸し、正極、負極、高分子膜中のフッ化ビニリデン−ヘキサフルオロプロピレン共重合体を膨潤させることで全ゲル電解質電池を作製した。
【0045】
(比較例)
〔高分子膜の作製〕
NMPに溶解したフッ化ビニリデン−ヘキサフルオロプロピレン共重合体10%溶液をポリエステルフィルム上に塗布、乾燥することで高分子膜を得た。断面構造観察の結果、図5に示すように、固体電解質層20は、電池用電極10と表面的に接触するのみであった。
【0046】
〔ゲル電解質電池の作製〕
上記高分子膜を正極および負極の間に積層し捲回した後、電池缶に挿入した。この後LiPF6 を溶解した炭酸エチレン、炭酸プロピレン電解質溶液を電池に含浸し、正極、負極、高分子膜中のフッ化ビニリデン−ヘキサフルオロプロピレン共重合体を膨潤させることで全ゲル電解質電池を作製した。
【0047】
【内部抵抗の測定】
実施例1、実施例2および比較例の電池の内部抵抗を測定した。その結果比較例の内部抵抗を1.0とした時、実施例1および実施例2でそれぞれ0.9および0.8となった。
【0048】
以上のように、本発明の製造方法によると、電池用電極の表面状態・空隙率等に影響されることなく電池用電極に強力に結合した薄い固体電解質層を電池用電極の表面に一体的に形成することができるという利点がある。また、溶剤キャスト法等のように高分子溶液を塗布した後の析出工程等の工程を経ることなく少ない工程・短い時間で固体電解質層付き電池用電極を製造することができるという利点もある。また、固体電解質層を従来のものよりも容易に薄くすることができるので、電池の内部抵抗についても低いものを提供できるという利点がある。
【0049】
【発明の効果】
以上のように本発明の製造方法によると、安全性が高く、低コスト・高出力な二次電池を実現する目的で、固体電解質層付き電池用電極の製造方法を提供することができるという効果を有する。
【図面の簡単な説明】
【図1】実施例で用いた製造装置の概略図である。
【図2】実施例で用いた製造装置の電極板と遮蔽部材との配置の様子を示した図である。
【図3】実施例1の電池用電極の断面模式図である。
【図4】実施例2の電池用電極の断面模式図である。
【図5】比較例の電池用電極の断面模式図である。
【符号の説明】
1…送出手段 10…電池用電極(負極) 11…電池用電極(正極)
A…電池用電極(固体電解質層形成部) B…電池用電極(固体電解質層未形成部) 2…溶液槽 31、32…電極板 4…取込手段 51、52…遮蔽部材 6、7、8、9…ガイド 90…直流電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a battery electrode with a solid electrolyte layer in which a solid electrolyte that ensures ionic conductivity between battery electrodes is integrally formed on the surface of the battery electrode.
[0002]
[Prior art]
In recent years, high-performance secondary batteries have been actively developed as clean energy sources for notebook computers, small portable devices, and automobiles. The secondary battery used here is required to have a large capacity and high output despite its small size and light weight, that is, high energy density and high output density, but it is safe because it stores high energy. It is important to ensure sex. Moreover, in order to spread to the market at an early stage, reduction of material cost is required.
[0003]
As secondary batteries that can achieve high energy density and high output density, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are considered promising. In general, a lithium ion secondary battery includes a thin-film positive electrode and negative electrode that can occlude and release lithium ions, and a separator that is a microporous film composed of a polymer such as polyethylene or polypropylene interposed and laminated therebetween. And an electrolytic solution for moving lithium ions between the positive electrode and the negative electrode.
[0004]
Separators made of polyolefin-based microporous membranes used in conventional batteries are expensive due to the complicated manufacturing method, and the proportion of the battery cost is large. Also, at a high temperature exceeding 150 ° C., the shutdown function does not work well, and there is a risk of short-circuiting due to shrinkage or film breakage.
[0005]
Batteries that combine polyolefin-based separators and organic electrolytes require higher parts, such as PTC and overcharge prevention mechanisms, parts that are not directly related to battery functions, and control components. Yes.
[0006]
For this reason, in order to improve safety at low cost, development of a battery using a polymer solid electrolyte membrane that does not use an organic electrolyte solution or a polymer gel impregnated with an electrolyte solution is rapidly progressing. However, solid electrolytes and gel electrolytes have low electrical conductivity, especially resistance at the interface between the electrode and these solid electrolytes / gel electrolytes. Therefore, for charging / discharging at a large current density, the positive and negative electrodes should be firmly joined. There is a need to. For this purpose, there are a method of laminating a film-like polymer film prepared in advance with a positive electrode and a negative electrode, and a method of applying a mixture directly forming a polymer film on the positive electrode or the negative electrode. In the former method, the process of producing the polymer film and the process of laminating are separate, the process is complicated and the cost is increased, and the bonding with the electrode is not sufficient. In the latter case, since the coated substrate is an electrode, the electrode is required to be smooth and free from defects, and a sufficient yield of a thin and uniform polymer film cannot be obtained.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a battery electrode with a solid electrolyte layer for the purpose of realizing a secondary battery having high safety, low cost, and high output.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have found that, as a result of intensive research, a thin solid electrolyte layer can be formed by applying electrophoresis, and the bonding property between the battery electrode and the solid electrolyte layer can be improved. It was. That is, the electrophoresis method can form a thin film of an electrode active material layer on the surface of the current collector disclosed in an academic society (The Electrochemical Society 66th Annual Meeting Presentation No. P24). When applied to the formation of a solid electrolyte layer, it was found that the solid electrolyte layer thin film can be made uniform and the bonding property between the battery electrode and the solid electrolyte layer can be improved.
[0009]
That is, the method for producing a battery electrode with a solid electrolyte layer according to the present invention comprises a battery electrode and a solid electrode having a solid electrolyte layer formed integrally with the battery electrode and capable of ion migration between the battery electrodes. A method for producing an electrode for a battery with an electrolyte layer, comprising: an immersion step of immersing the battery electrode in a solution in which a constituent material constituting the solid electrolyte is dispersed or dissolved in a solvent; and an electrode for electrophoresis anda electrophoretic depositing on the cell electrode surface by electrophoresis the component material by generating a potential gradient in the solution within Te, in the immersion step, the battery electrode is wound into a roll It is sent into the solution by sending means for holding and sending the rotated battery electrode, and after passing through the solution, taken up by take-up means for winding the battery electrode, Said Wherein the cover portion has the cell electrode within the liquid passes.
[0010]
In other words, when the electrophoresis method is applied to the formation of the solid electrolyte layer, current flows intensively in the portion of the battery electrode surface where the solid electrolyte layer is not formed, so that the current density increases, and electrophoresis concentrates in that portion. By doing so, a solid electrolyte layer is preferentially formed in a portion where the solid electrolyte layer is not formed. Therefore, since the solid electrolyte layer is formed in preference to the portion where the formation of the solid electrolyte layer is delayed, the constituent material of the solid electrolyte layer can be bonded to the surface of the battery electrode at the particle or molecular level, resulting in the solid electrolyte. The layer is uniformly formed on the surface of the battery electrode. Moreover, there is an effect that the bonding property between the solid electrolyte layer and the battery electrode can be controlled by adjusting the applied voltage or the like during electrophoresis.
[0011]
In the electrophoresis step, the potential gradient is generated by at least two kinds of electrodes including a positive electrode and a negative electrode, and one of the positive electrode and the negative electrode serves as the battery electrode , and the other serves as the electrophoresis. use electrode der Rukoto is preferable. By directly applying a voltage to the battery electrode, the electrophoresis can be controlled more precisely, and the total number of electrodes dedicated to electrophoresis can be reduced. Moreover, in order to form a solid electrolyte layer on both surfaces of the battery electrode, it is more preferable that the other electrode is the electrophoresis electrode provided on the both surfaces of the battery electrode.
[0012]
Further, in order to provide a portion where the solid electrolyte layer is not formed, a shielding member that is an independent member from the battery electrode and inhibits electrophoresis of the constituent material to a predetermined portion on the surface of the battery electrode. It is preferable to have.
[0013]
Moreover, it is preferable that the particle diameter of the said constituent material is 50 micrometers or less. This is because if the particle diameter is 50 μm or less, a solid electrolyte layer having lower ion conductivity is obtained even if the porosity is the same.
[0014]
Further, in order to control the surface potential of the constituent material, the solution preferably contains a charging agent that charges the surface of the constituent material.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The manufacturing method of the battery electrode with a solid electrolyte layer of this embodiment consists of an immersion process and an electrophoresis process.
[0016]
[Battery electrode]
The “battery electrode” to which this production method can be applied may be used in any battery, and ensures ion mobility between the electrodes between the positive electrode and the negative electrode and the counter electrode. It is a battery electrode used for a battery in which a battery is formed with a solid electrolyte interposed. For example, a lithium ion secondary battery is illustrated. In addition to a general battery, it also includes an electrode such as an electric double layer capacitor. As used herein, the term “solid electrolyte” does not mean only an electrolyte composed purely of solid, but an electrolyte holding a liquid inside like a sol / gel. Also good.
[0017]
[Immersion process]
The dipping step is a step of dipping the battery electrode in a solution in which the constituent material constituting the solid electrolyte layer is dispersed in a solvent. In this dipping process, the battery electrode may be dipped into the solution continuously as well as the whole.
[0018]
It is desirable that the constituent materials have a particle size of 50 μm or less, particularly 1 μm or less so that they are well dispersed in the solution. Moreover, it is preferable to make the particle size distribution broader because the pore diameter can be reduced and the resistance can be reduced. Further, the constituent material can be used by being dissolved in a solvent in addition to being dispersed in a solution.
[0019]
The appropriate content ratio of the constituent materials in the solution varies greatly depending on the solvent used, the conditions of the electrophoresis step, and the like. This is because the constituent material is not uniformly attached to the surface of the battery electrode by the electrophoresis process described later, but the state of attachment is different because the moving speed in the solution is different due to changes in the charge, mass, etc. of the constituent material. Because it is different. The charge of the constituent material is also affected by the solvent used, the solution temperature, and the charging agent.
[0020]
The constituent material of the solid electrolyte layer is a material in which ions used in a battery such as Li can be doped and moved. For example, polymer materials such as conductive polymers such as polyethylene oxide, polypropylene oxide, polyacrylonitrile, polymethylolsiloxane, polymethyl methacrylate, and polyvinylidene fluoride, and modified products thereof (copolymerization, branched ones, etc.) Or Li doping or migration of one or more compounds selected from lithium iodide, lithium nitride, lithium phosphate titanate, lithium zirconia phosphate, lithium aluminum nitride, oxide glass, and sulfide glass An inorganic electrolyte is desirable.
[0021]
Moreover, even if it is substances other than the constituent material of a solid electrolyte layer, it can be mixed as needed.
[0022]
When the constituent material is dispersed in the form of powder and dispersed in the solution, as the solvent, organic solvents such as ketones such as acetone and alcohols such as ethanol, water, and a mixed solvent thereof can be used. Further, by adding a solvent that swells and dissolves the constituent material, the constituent material can be swollen, and the floating and sedimentation of particles in the solution can be reduced. If a stable dispersion system cannot be obtained because the particles are large or the specific gravity is significantly different from that of the solvent, the particles may be physically dispersed with a stirrer or ultrasonic wave.
[0023]
At this time, in order to impart a charge to the constituent material which is a dispersoid, a charging agent capable of imparting a charge to particles such as iodine or a surfactant may be added. Further, the constituent material can be stably dispersed in the solvent or the charge of the constituent material can be controlled by adjusting the pH in the solvent. Although it does not limit as pH, 3-12 are especially desirable.
[0024]
Since the dispersion stability of such constituent materials is easily affected by the temperature of the solution, it is preferable to adjust the temperature of the solution. Although it does not limit as temperature in a tank, -10-50 degreeC is especially desirable. For example, the temperature adjustment method can be achieved by circulating a heat medium such as cooling water in a tank holding the solution.
[0025]
[Electrophoresis step]
The electrophoresis step is a step in which the constituent material of the solid electrolyte layer is electrophoresed in the solution by generating a potential gradient in the solution and adhered to the surface of the battery electrode. In this electrophoresis step, it is preferable to use a shielding member that is disposed independently of the battery electrode that hinders the electrophoresis of the constituent material of the solid electrolyte layer to a predetermined site on the surface of the battery electrode. For example, the portion where the solid electrolyte layer is formed can be controlled by disposing a shielding member in the portion where the current collecting lead or the like is formed.
[0026]
A method for generating a potential gradient in the solution can be achieved, for example, by applying a voltage to two opposing electrophoresis electrodes. The shape of the electrode for electrophoresis is preferably a shape in which the potential gradient of the portion through which the battery electrode passes in the solution can be made constant so that the constituent material uniformly adheres to the surface of the battery electrode. For example, the size of the electrophoresis electrode is set to be large enough to cover a portion through which the battery electrode passes. And either one of the electrodes for electrophoresis can serve as the battery electrode immersed in the solution. By using the battery electrode as an electrophoresis electrode, the constituent material can be directly attached to the battery electrode. The direction of the potential gradient generated in the solution is determined by the charging potential in the solution of the constituent material or the like. That is, the potential gradient is determined so that the charged constituent material moves in the direction of the battery electrode. For example, when the constituent material is positively charged, the battery electrode is the negative electrode. Further, the number of electrophoresis electrodes is not limited to two, and may be three or more as necessary. For example, when it is desired to form a solid electrolyte layer on both surfaces of a battery electrode, the battery electrode is used as a positive electrode, and two negative electrodes are provided on both surfaces of the battery electrode so that a constituent material is attached to both surfaces of the battery electrode. A layer can be formed.
[0027]
The conditions such as the voltage applied to the electrophoresis electrode and the voltage application time are not particularly limited, and are appropriately selected according to the thickness, porosity, composition, etc. of the solid electrolyte layer to be formed on the surface of the battery electrode. . If the voltage is increased, the solid electrolyte layer becomes tighter and the porosity is reduced. When the iodine-added acetone solution is used as a solvent, a preferable applied voltage is about 5 to 1000 V, more preferably about 10 to 500 V. Moreover, if the time for applying the voltage is increased, the solid electrolyte layer on the surface of the battery electrode becomes thicker. In addition to the constituent materials, substances dispersed in a solvent have different surface potentials in the solution and have different electrophoresis speeds depending on their properties, so the voltage applied to the electrode for electrophoresis is different from the target solid electrolyte layer composition / structure. Adjust so that The thickness of the solid electrolyte layer formed on the surface of the battery electrode is preferably 50 μm or less, more preferably 25 μm or less, and even more preferably 10 μm or less per side of the battery electrode. This is because the thinner the solid electrolyte layer, the lower the internal resistance of the battery and the higher output battery can be provided. Such a thin solid electrolyte layer is difficult to form with high accuracy by a conventional solvent casting method or the like. On the other hand, according to the electrophoresis method, since the constituent material adheres preferentially to the portion where the potential gradient is large, if the thickness of the solid electrolyte layer is uneven, the constituent material adheres from the thin portion of the solid electrolyte layer. There is an advantage that the thickness of the solid electrolyte layer formed is constant.
[0028]
The shielding member is provided in the vicinity of a portion where the solid electrolyte layer of the battery electrode is not desired to be formed. The smaller the gap between the shielding member and the battery electrode, the less the wraparound of the constituent material of the solid electrolyte layer into unnecessary portions. Further, the shielding member is preferably adjusted to be closer to the potential of the electrophoresis electrode on the side where the constituent material moves than the potential of the electrophoresis electrode opposite to the side on which the constituent material moves. Furthermore, the shielding member is more preferably adjusted to the same potential as the battery electrode. This is because, by adjusting the potential, the potential gradient is reduced in the gap between the shielding member and the battery electrode, so that the adhesion of the solid electrolyte layer to the battery electrode is reduced. The shielding member can be an insulator. By making the shielding member an insulator, the amount of active material adhering to the shielding member is preferable because waste of material is reduced.
[0029]
Moreover, it is preferable to continue stirring of the solution by some method so that the constituent materials in the solution do not precipitate in the electrophoresis step.
[0030]
【Example】
The present invention will be described in detail below based on examples, but the present invention is not limited to the following examples.
[0031]
(Manufacture of battery electrodes)
Collection of positive electrode mixture paste for lithium ion secondary batteries consisting of vinylidene fluoride-hexafluoropropylene copolymer (binder) dissolved in NMP, lithium nickelate (positive electrode active material), and ghetjen black (conductive material) A positive electrode 11 as a battery electrode was obtained by applying and drying an aluminum foil as an electric body, followed by press molding.
[0032]
Next, a negative electrode mixture paste for a lithium ion secondary battery made of vinylidene fluoride-hexafluoropropylene copolymer (binder) and graphite (negative electrode active material) dissolved in NMP is applied to a copper foil as a current collector. The negative electrode 10 as a battery electrode was produced by press molding after drying.
[0033]
The following examples will be described using these positive and negative electrodes.
[0034]
(Production device for battery electrode with solid electrolyte layer)
A battery electrode with a solid electrolyte layer was manufactured using the apparatus for manufacturing a battery electrode with a solid electrolyte layer shown in FIG. The manufacturing apparatus includes a feeding means 1 for holding and sending battery electrodes 10 and 11 wound in a roll shape, a solution tank 2, two electrode plates 31 and 32 provided in the solution tank 2, and the electrode plates. Between the battery electrodes 10 and 11 between 31 and 32, the metal shielding members 51 and 52 provided in the solution tank 2 with a gap of about the thickness of the battery electrodes 10 and 11 on the right side in the traveling direction Between the electrode plates 31 and 32 and the shielding members 51 and 52, the guides 6, 7, 8 and 9 and the battery electrodes 10 and 11 that hold the battery electrodes 10 and 11 so as to be immersed in the solution. It consists of the taking-in means 4 to wind up. Then, the negative electrode of the DC power source 90 capable of controlling the voltage is connected to the battery electrodes 10 and 11 via the shielding members 51 and 52 and the sending means 1, and the positive electrode is connected to the electrode plates 31 and 32. As a result, the shielding members 51 and 52 and the battery electrodes 10 and 11 are equipotential.
[0035]
Therefore, as shown in FIG. 2, the constituent material of the solid electrolyte that has been electrophoresed from the electrode plates 31 and 32 in the direction of the battery electrodes 10 and 11 is shielded by the shielding members 51 and 52. A solid electrolyte layer is not formed in the portion B of 11. Since the shielding members 51 and 52 are adjusted to the same potential as the battery electrodes 10 and 11, the amount of the constituent material of the solid electrolyte that wraps between the shielding members 51 and 52 and the battery electrodes 10 and 11 can be reduced. it can. In FIG. 2, A indicates a solid electrolyte layer attached on the battery electrodes 10 and 11.
[0036]
The battery electrodes 10, 11 held by the delivery means 1 pass through the solution tank 2 by the guides 6, 7, 8, 9 and are taken in by the taking-in means 3.
[0037]
Example 1
(Preparation of polymer dispersion in electrophoresis tank)
10 g of a vinylidene fluoride-hexafluoropropylene copolymer 10% solution as a constituent material of a solid electrolyte dissolved in NMP is dropped into 100 g of acetone, stirred with a stirrer, and vinylidene fluoride-hexafluoropropylene copolymer is added. Dispersed in acetone.
[0038]
[Production of polymer film on electrode]
As the battery electrode, the negative electrode 10 described above was connected to the positive terminal (positive potential), and the electrophoresis electrode plates 31 and 32 were connected to the negative terminal (negative potential). A polymer film was formed on the negative electrode 10 by setting the distance between the battery electrode 10 and the electrophoresis electrode plates 31 and 32 to 10 mm, connecting a DC power source and applying a voltage of 400 V for 1 minute. As a result of observing the cross-sectional structure, as shown in FIG. 3, the solid electrolyte layer 20 was precipitated in the pores in the battery electrode 10 and was firmly and integrally fixed.
[0039]
[Production of gel electrolyte battery]
The polymer film was laminated between a positive electrode and a negative electrode, wound, and then inserted into a battery can. Thereafter, the battery is impregnated with an ethylene carbonate / propylene carbonate electrolyte solution in which LiPF 6 is dissolved, and a vinylidene fluoride-hexafluoropropylene copolymer in the positive electrode, the negative electrode, and the polymer film is swollen to produce an all-gel electrolyte battery. did.
[0040]
(Example 2)
(Preparation of polymer dispersion in electrophoresis tank)
10 g of a vinylidene fluoride-hexafluoropropylene copolymer 10% solution dissolved in NMP was dropped into 100 g of acetone and stirred with a stirrer to disperse the vinylidene fluoride-hexafluoropropylene copolymer in acetone.
[0041]
[Production of polymer film on electrode]
The positive electrode 11 described above as a battery electrode was connected to the positive terminal, and the electrophoresis electrodes 31 and 32 were connected to the negative terminal. A polymer film was formed on the positive electrode 11 by setting the distance between the battery electrode 10 and the electrophoresis electrode plates 31 and 32 to 10 mm, connecting a DC power source and applying a voltage of 400 V for 1 minute.
[0042]
Next, a positive terminal was connected to the negative electrode 10, and a negative terminal was connected to the electrophoresis electrodes 31 and 32. A polymer film was formed on the negative electrode 10 by setting the distance between the battery electrode 10 and the electrophoresis electrode plates 31 and 32 to 10 mm, connecting a DC power source and applying a voltage of 400 V for 1 minute.
[0043]
As shown in FIG. 4, as a result of observing the cross-sectional structure by superimposing and heating the negative electrode 10 and the positive electrode 11 on which the solid electrolyte layer 20 has been integrally fixed, the solid electrolyte layer 20 has a space between the positive electrode 11 and the negative electrode 10. It joined continuously without the boundary of the joint surface.
[0044]
[Production of gel electrolyte battery]
The polymer film was laminated between a positive electrode and a negative electrode, wound, and then inserted into a battery can. Thereafter, the battery is impregnated with an ethylene carbonate / propylene carbonate electrolyte solution in which LiPF 6 is dissolved, and a vinylidene fluoride-hexafluoropropylene copolymer in the positive electrode, the negative electrode, and the polymer film is swollen to produce an all-gel electrolyte battery. did.
[0045]
(Comparative example)
(Production of polymer film)
A 10% vinylidene fluoride-hexafluoropropylene copolymer solution dissolved in NMP was applied onto a polyester film and dried to obtain a polymer film. As a result of the cross-sectional structure observation, as shown in FIG. 5, the solid electrolyte layer 20 was only in surface contact with the battery electrode 10.
[0046]
[Production of gel electrolyte battery]
The polymer film was laminated between a positive electrode and a negative electrode, wound, and then inserted into a battery can. Thereafter, the battery is impregnated with an ethylene carbonate / propylene carbonate electrolyte solution in which LiPF 6 is dissolved, and a vinylidene fluoride-hexafluoropropylene copolymer in the positive electrode, the negative electrode, and the polymer film is swollen to produce an all-gel electrolyte battery. did.
[0047]
[Measurement of internal resistance]
The internal resistances of the batteries of Example 1, Example 2, and Comparative Example were measured. As a result, when the internal resistance of the comparative example was 1.0, it was 0.9 and 0.8 in Example 1 and Example 2, respectively.
[0048]
As described above, according to the manufacturing method of the present invention, the thin solid electrolyte layer that is strongly bonded to the battery electrode is integrated with the surface of the battery electrode without being affected by the surface state, porosity, etc. of the battery electrode. There is an advantage that it can be formed. In addition, there is an advantage that a battery electrode with a solid electrolyte layer can be produced in a small number of steps and in a short time without passing through a step such as a deposition step after applying a polymer solution such as a solvent casting method. In addition, since the solid electrolyte layer can be made thinner than the conventional one, there is an advantage that a low internal resistance of the battery can be provided.
[0049]
【The invention's effect】
As described above, according to the manufacturing method of the present invention, it is possible to provide a method for manufacturing a battery electrode with a solid electrolyte layer for the purpose of realizing a secondary battery having high safety, low cost, and high output. Have
[Brief description of the drawings]
FIG. 1 is a schematic view of a production apparatus used in Examples.
FIG. 2 is a view showing a state of arrangement of an electrode plate and a shielding member of a manufacturing apparatus used in an example.
3 is a schematic cross-sectional view of the battery electrode of Example 1. FIG.
4 is a schematic cross-sectional view of a battery electrode of Example 2. FIG.
FIG. 5 is a schematic cross-sectional view of a battery electrode of a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sending means 10 ... Battery electrode (negative electrode) 11 ... Battery electrode (positive electrode)
A ... Battery electrode (solid electrolyte layer forming part) B ... Battery electrode (solid electrolyte layer non-formed part) 2 ... Solution tank 31, 32 ... Electrode plate 4 ... Taking-in means 51, 52 ... Shielding member 6, 7, 8, 9 ... Guide 90 ... DC power supply

Claims (5)

電池用電極と、該電池用電極と一体的に形成され電池用電極間のイオン移動を可能とする固体電解質層とをもつ固体電解質層付き電池用電極の製造方法であって、
前記固体電解質層を構成する構成材料を溶媒中に分散ないし溶解させた溶液中に前記電池用電極を浸漬する浸漬工程と、
電気泳動用電極を用いて前記溶液内に電位勾配を発生させて前記構成材料を電気泳動により前記電池用電極表面に付着させる電気泳動工程と
有し、
前記浸漬工程において、前記電池用電極は、ロール状に巻回された前記電池用電極を保持し送出する送出手段により前記溶液中に送出され、前記溶液を通過後、前記電池用電極を巻き取る取込手段により巻き取られ、
前記電気泳動用電極は、前記溶液内で前記電池用電極が通過する部分を覆うことを特徴とする固体電解質層付き電池用電極の製造方法。
A method for producing a battery electrode with a solid electrolyte layer, comprising: a battery electrode; and a solid electrolyte layer formed integrally with the battery electrode and enabling ion transfer between the battery electrodes,
An immersion step of immersing the battery electrode in a solution in which a constituent material constituting the solid electrolyte layer is dispersed or dissolved in a solvent;
An electrophoresis step of generating a potential gradient in the solution using an electrophoresis electrode and attaching the constituent material to the surface of the battery electrode by electrophoresis ;
Have,
In the dipping step, the battery electrode is fed into the solution by a feeding means that holds and sends the battery electrode wound in a roll shape, and after passing through the solution, winds up the battery electrode. Rolled up by the take-in means,
The method for producing a battery electrode with a solid electrolyte layer , wherein the electrode for electrophoresis covers a portion of the solution through which the battery electrode passes .
前記電気泳動工程において少なくとも正極、負極からなる2種類の電極によって前記電位勾配を発生させており、該正極および該負極のいずれか一方は前記電池用電極が兼ね、他方は前記電気泳動用電極である請求項1に記載の固体電解質層付き電池用電極の製造方法。In the electrophoresis step, the potential gradient is generated by at least two kinds of electrodes including a positive electrode and a negative electrode, and either the positive electrode or the negative electrode serves as the battery electrode , and the other is the electrophoresis electrode. method for producing a solid electrolyte layer with the battery electrode according to claim 1 Ru Oh. 前記電気泳動工程において少なくとも正極、負極からなる2種類の電極によって前記電位勾配を発生させており、該正極および該負極のいずれか一方は前記電池用電極が兼ね、他方は前記電池用電極の両面側にそれぞれ1つずつ設けられた前記電気泳動用電極である請求項1に記載の固体電解質層付き電池用電極の製造方法。In the electrophoresis step, the potential gradient is generated by at least two kinds of electrodes including a positive electrode and a negative electrode, and one of the positive electrode and the negative electrode serves as the battery electrode, and the other serves as both surfaces of the battery electrode. The method for producing a battery electrode with a solid electrolyte layer according to claim 1, wherein the electrodes are one for each electrophoresis provided on each side. 前記電気泳動工程では、前記電池用電極から独立した部材であって、該電池用電極表面の所定部位への前記構成材料の電気泳動を阻害する遮蔽部材をもつ請求項1に記載の固体電解質層付き電池用電極の製造方法。  2. The solid electrolyte layer according to claim 1, wherein in the electrophoresis step, the solid electrolyte layer has a shielding member that is an independent member from the battery electrode and inhibits the electrophoresis of the constituent material to a predetermined portion on the surface of the battery electrode. Method for manufacturing an electrode for a battery with a battery. 前記電気泳動工程において前記溶液内には前記構成材料に帯電させる帯電剤を含む請求項1に記載の固体電解質層付き電池用電極の製造方法。  The method for producing a battery electrode with a solid electrolyte layer according to claim 1, wherein the solution includes a charging agent that charges the constituent material in the electrophoretic step.
JP2000230806A 2000-07-31 2000-07-31 Method for producing battery electrode with solid electrolyte layer Expired - Fee Related JP4686825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230806A JP4686825B2 (en) 2000-07-31 2000-07-31 Method for producing battery electrode with solid electrolyte layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230806A JP4686825B2 (en) 2000-07-31 2000-07-31 Method for producing battery electrode with solid electrolyte layer

Publications (2)

Publication Number Publication Date
JP2002042792A JP2002042792A (en) 2002-02-08
JP4686825B2 true JP4686825B2 (en) 2011-05-25

Family

ID=18723716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230806A Expired - Fee Related JP4686825B2 (en) 2000-07-31 2000-07-31 Method for producing battery electrode with solid electrolyte layer

Country Status (1)

Country Link
JP (1) JP4686825B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002067355A1 (en) * 2001-02-22 2002-08-29 Matsushita Electric Industrial Co., Ltd. Lithium polymer cell
FR2982082B1 (en) * 2011-11-02 2013-11-22 Fabien Gaben PROCESS FOR PRODUCING THIN-FILT THIN-FILTER BATTERIES
FR2982086B1 (en) 2011-11-02 2013-11-22 Fabien Gaben METHOD FOR MANUFACTURING MICRO-BATTERIES IN THIN LITHIUM ION LAYERS, AND MICRO-BATTERIES OBTAINED THEREBY
FR2981952B1 (en) 2011-11-02 2015-01-02 Fabien Gaben PROCESS FOR MAKING THIN FILMS DENSED BY ELECTROPHORESIS
FR2982083B1 (en) * 2011-11-02 2014-06-27 Fabien Gaben METHOD FOR PRODUCING SOLID ELECTROLYTE THIN FILMS FOR LITHIUM ION BATTERIES
FR3000616B1 (en) * 2012-12-31 2015-01-02 I Ten PROCESS FOR MANUFACTURING SOLID BATTERIES IN MULTILAYER STRUCTURE
CN104852084B (en) * 2015-04-07 2017-03-01 长江大学 A kind of preparation method of lithium ion battery polymer electrolyte
FR3080952B1 (en) 2018-05-07 2020-07-17 I-Ten ELECTROLYTE FOR THIN FILM ELECTROCHEMICAL DEVICES
FR3080957B1 (en) 2018-05-07 2020-07-10 I-Ten MESOPOROUS ELECTRODES FOR THIN FILM ELECTROCHEMICAL DEVICES
FR3080945A1 (en) 2018-05-07 2019-11-08 I-Ten MESOPOROUS ELECTROLYTES FOR THIN-FILM ELECTROCHEMICAL DEVICES
CN112514108B (en) * 2018-08-16 2024-07-30 株式会社Lg新能源 Method of manufacturing negative electrode for lithium secondary battery and negative electrode for lithium secondary battery manufactured using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171696A (en) * 1981-04-17 1982-10-22 Sumitomo Metal Ind Ltd Continuous electrodeposition painting method of metallic material
JPS63105269U (en) * 1986-12-25 1988-07-07
JPH0230797A (en) * 1988-07-21 1990-02-01 Mitsubishi Metal Corp Production of thick film by electrophoretic method
JPH0475207A (en) * 1990-07-17 1992-03-10 Sumitomo Electric Ind Ltd Inorganic insulated wire
JPH0594821A (en) * 1990-04-04 1993-04-16 Gould Inc Manufacture of electrodeposited electrode for chemical battery
JPH0610362U (en) * 1992-04-27 1994-02-08 株式会社アルメックス Surface treatment tank for flat work
JPH09184099A (en) * 1996-01-05 1997-07-15 Murata Mfg Co Ltd Electroplating device for hoop material for metallic terminal
JPH1064564A (en) * 1996-08-14 1998-03-06 Nkk Corp Manufacture of solid electrolyte film
JP2000160389A (en) * 1998-12-01 2000-06-13 Fujitsu Ltd Plating and production of magnetic head

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171696A (en) * 1981-04-17 1982-10-22 Sumitomo Metal Ind Ltd Continuous electrodeposition painting method of metallic material
JPS63105269U (en) * 1986-12-25 1988-07-07
JPH0230797A (en) * 1988-07-21 1990-02-01 Mitsubishi Metal Corp Production of thick film by electrophoretic method
JPH0594821A (en) * 1990-04-04 1993-04-16 Gould Inc Manufacture of electrodeposited electrode for chemical battery
JPH0475207A (en) * 1990-07-17 1992-03-10 Sumitomo Electric Ind Ltd Inorganic insulated wire
JPH0610362U (en) * 1992-04-27 1994-02-08 株式会社アルメックス Surface treatment tank for flat work
JPH09184099A (en) * 1996-01-05 1997-07-15 Murata Mfg Co Ltd Electroplating device for hoop material for metallic terminal
JPH1064564A (en) * 1996-08-14 1998-03-06 Nkk Corp Manufacture of solid electrolyte film
JP2000160389A (en) * 1998-12-01 2000-06-13 Fujitsu Ltd Plating and production of magnetic head

Also Published As

Publication number Publication date
JP2002042792A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
Kim et al. Preparation of a trilayer separator and its application to lithium-ion batteries
KR101198806B1 (en) Electrode of secondary cell including por0us insulating layer and manufacturing thereof
US9083056B2 (en) Method for manufacturing nonaqueous secondary battery electrode
CN100399603C (en) Non-aqueous solution electrochemical device polar plate and its manufacturing method
US20160118684A1 (en) Electrophoretic deposition of thin film batteries
JP2002512430A (en) Composite polymer electrolyte for rechargeable lithium batteries
DE102015101448A1 (en) Negative electrode material for a lithium-ion battery
JP2004095400A (en) Bipolar battery and its control method
JP4686825B2 (en) Method for producing battery electrode with solid electrolyte layer
JP2003109666A (en) Structure of whole solid polymer battery, whole solid polymer battery and its manufacturing method
JP2013105680A (en) Secondary battery
CN112599847A (en) Double-layer solid electrolyte film for lithium battery and preparation method thereof
JP4407020B2 (en) Method for producing electrode for battery with separator
US20220302436A1 (en) Electrode, energy storage device, and method for manufacturing electrode
Gambe et al. A photo-curable gel electrolyte ink for 3D-printable quasi-solid-state lithium-ion batteries
JP2008262791A (en) Lithium-ion secondary battery
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
JP2014519143A (en) Lithium ion battery electrode
JP4501247B2 (en) Battery electrode manufacturing method and battery electrode manufacturing apparatus
JP7288004B2 (en) electrode plate and battery
RU2522947C2 (en) Supercapacitor with inorganic composite electrolyte (versions)
JP3114651B2 (en) Lithium secondary battery
Ollinger et al. Laser direct-write of polymer nanocomposites
JP4682395B2 (en) Non-aqueous battery
KR20000055680A (en) Lithium ion polymer battery having superior temperatrure property and process for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees