JP4501247B2 - Battery electrode manufacturing method and battery electrode manufacturing apparatus - Google Patents

Battery electrode manufacturing method and battery electrode manufacturing apparatus Download PDF

Info

Publication number
JP4501247B2
JP4501247B2 JP2000226629A JP2000226629A JP4501247B2 JP 4501247 B2 JP4501247 B2 JP 4501247B2 JP 2000226629 A JP2000226629 A JP 2000226629A JP 2000226629 A JP2000226629 A JP 2000226629A JP 4501247 B2 JP4501247 B2 JP 4501247B2
Authority
JP
Japan
Prior art keywords
current collector
active material
electrode
battery
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000226629A
Other languages
Japanese (ja)
Other versions
JP2002042790A (en
Inventor
啓史 上嶋
謙一郎 加美
俊 大木島
学 山田
聖志 金村
寿一 濱上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000226629A priority Critical patent/JP4501247B2/en
Publication of JP2002042790A publication Critical patent/JP2002042790A/en
Application granted granted Critical
Publication of JP4501247B2 publication Critical patent/JP4501247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気泳動法を応用した電池用電極の製造方法および製造装置に関する。
【0002】
【従来の技術】
近年、ノート型コンピューター、小型携帯機器、自動車等に用いられるクリーンなエネルギー源として高性能二次電池の開発が盛んである。ここで用いられる二次電池には、小型軽量でありながら大容量・高出力であること、即ち高エネルギー密度・高出力密度であることが求められている。高エネルギー密度・高出力密度を達成できる二次電池としては、リチウムイオン二次電池等の非水電解質二次電池が有力視されている。
【0003】
リチウムイオン二次電池には、リチウムイオンを吸蔵および放出できる正極活物質層をもつ正極と、正極から放出されたリチウムイオンを吸蔵および放出できる負極活物質層をもつ負極と、正極及び負極の間に介在する多孔質セパレータと、正極と負極との間でリチウムイオンを移動させる電解液とを備えている。これら電極を作成する従来の方法としては、活物質を懸濁した懸濁液をダイコーター、コンマコーター、ブレードコーター等の塗布方式で金属箔等の薄膜からなる集電体表面に塗布・乾燥させた後に、プレス等を行い高密度化していた。
【0004】
しかしながら、近年、高出力でかつ大電流特性に優れた電池とするために電極の薄膜化が進み、従来の製作方法では均一で精度良い活物質層の作製が困難になってきた。この問題を解決するために、電気泳動法を用いて集電体の全面に正極活物質層を形成する方法が開示されている(電気化学学会 第66回大会要旨 発表No.P24)。
【0005】
ところで、電極は、図6に示すように、集電部分の抵抗を低減するために集電体10に活物質層未形成部Bを設け、その部分から複数の集電リード11を有する構造が採用されている。したがって、集電板表面には活物質層が形成されていない部分を作製する必要がある。
【0006】
しかしながら、従来技術では集電体表面の全部に活物質層が形成されることを防止する目的で、活物質層を形成したくない集電体の部分にあらかじめマスキングテープなどによりマスキングを行い、電気泳動により活物質層を形成した後にテープを剥がすことや、形成された活物質層の一部を剥がすことにより活物質層のない部分を作製していた。
【0007】
【発明が解決しようとする課題】
このように従来技術では活物質層を形成されていない部分を作製するためには多大な労力が必要であった。
【0008】
したがって、本発明は、電気泳動法により活物質層を形成する電池用電極の製造方法において、容易に活物質層が形成されていない部分を形成することができる電池用電極の製造方法を提供することを解決すべき課題とする。
【0009】
また、本発明は、電気泳動法により活物質層を形成する電池用電極を製造する装置において、容易に活物質層が形成されていない部分を形成することができる電池用電極の製造装置を提供することも解決すべき課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決する本発明の電池用電極の製造方法は、活物質を溶媒中に分散させた溶液中に集電体を浸漬する浸漬工程と、前記溶液内に電位勾配を発生させることで前記活物質を該溶液内で電気泳動させて該活物質を活物質層として前記集電体表面に付着させる電気泳動工程とを有する電池用電極の製造方法において、前記電気泳動工程では、前記集電体表面の所定部位への前記活物質の電気泳動を阻害する、該集電体と独立して配設された遮蔽部材を用い、前記遮蔽部材は、前記集電体と同電位に調節されることを特徴とする。
【0011】
つまり、独立した遮蔽部材によって電気泳動を阻害し、集電体の表面に活物質が付着しないようにしている。したがって、集電体にあらかじめ何らかの処理を行うことなく、また何らかの後処理を行うこともなく集電体の必要な部分に活物質層が形成されていない部分を形成可能である。
さらに、活物質層の形成されていない部分をより精密に制御するために前記遮蔽部材は、前記集電体と同電位に調節される。
【0012】
そして、前記電気泳動工程において少なくとも正極、負極からなる2種類の電極によって前記電位勾配を発生させており、該正極および負極のうちのいずれか一方は前記集電体が兼ねることが好ましい。集電体に直接電圧を印加することにより、電気泳動の制御をより精密に行うことができ、さらに電極の総数を減らすことができる。また、集電体の両面に活物質層を形成するために、さらに他方の電極は前記集電体の両面側にそれぞれ1つずつ設けられることがより好ましい。
【0014】
またさらに、前記電気泳動工程は、前記集電体の表面に前記活物質層の厚さが50μm以下、さらには25μm以下となるように調節することが好ましい。活物質層が薄い方が電池の内部抵抗が低くなるからである。
【0015】
また、活物質の表面電位を制御するために前記溶液中には、前記活物質の表面を帯電させる帯電剤を含むことが好ましい。
【0016】
そして、上記課題を解決する電池用電極の製造装置は、集電体と該集電体の表面に形成された活物質層とからなる電池用電極の製造装置であって、前記集電体を送り出す集電体送出手段と、前記電極活物質層を構成する活物質を溶媒中に分散させた溶液を保持し、該溶液内に前記集電体を通過させる溶液槽と、前記溶液槽内に電位勾配を発生させ、前記活物質を前記集電体上に電気泳動させて付着させる電圧印加手段と、前記集電体と独立して配設された部材であって、前記溶液槽内で前記集電体の所定部位を遮蔽する遮蔽部材と、前記活物質が付着した前記集電体を取り込む集電体取込手段とを有し、前記遮蔽部材は、前記集電体と同電位に調節されることを特徴とする。
【0017】
つまり、独立した遮蔽部材によって電気泳動を阻害し、集電体の表面に活物質が付着しないようにしている。したがって、集電体にあらかじめ何らかの処理を行うことなく、また何らかの後処理を行うこともなく集電体の必要な部分に活物質層が形成されていない部分を形成可能である。
【0018】
【発明の実施の形態】
本発明の電池用電極の製造方法および製造装置が適用できる「電池用電極」とは、集電体と集電体の表面に形成された活物質層とからなる電池用電極である。したがって、「電池」とは集電体上に活物質の層が形成されている電極を有する電池であれば特に限定しない。たとえば、リチウムイオン二次電池(アルミニウム製正極集電体:リチウム−金属複合酸化物、銅製集電体:炭素材料)、ニッケル水素二次電池(Ni正極集電体:NiOH、Ni負極集電体:水素吸蔵合金)等の一般的にいわれる電池の他に電気二重層キャパシタ(アルミニウム製集電体:炭素材料)をも含む意味である。
【0019】
〈電池用電極の製造方法〉
本実施形態の電池用電極の製造方法は、浸漬工程と電気泳動工程とからなる。
【0020】
〔浸漬工程〕
浸漬工程は、活物質を溶媒中に分散させた溶液中に集電体を浸漬する工程である。この浸漬工程において、集電体は全体を同時に浸漬するばかりでなく連続的に溶液中に浸漬されても良い。
【0021】
活物質は、電池用電極が使用される電池によって異なる物質である。また、正極活物質、負極活物質のいずれであっても適用できる。活物質は、溶媒に溶解するものであっても良いし、溶解しないものであっても良い。溶媒に溶解しないものである場合には、活物質の粒子径が小さいことが好ましい。より緻密な活物質層の形成ができるからである。また、必要に応じてPVDF、PTFE等のバインダを加えても良い。活物質を溶媒中に分散させる方法としては特に限定しないが、超音波照射、攪拌子等による機械的攪拌が例として挙げられる。また、活物質以外にも必要に応じて種々の物質を溶媒中に溶解乃至は分散させることができる。たとえば、活物質を集電体表面に結合させる結着材、電気導電性を付与する導電剤等である。また、溶媒中には、活物質の表面を帯電させる帯電剤を含むことが好ましい。耐電状態を制御することで、後述の電気泳動工程における活物質の集電体表面への積層を制御しやすくなるからである。帯電剤としては、溶媒中に溶解することでイオン化するもの、たとえば、ヨウ素、カルボン酸、カルボン酸リチウム、リチウムイミド塩等が挙げられる。なお、活物質等を溶媒に分散乃至は溶解させる濃度は特に限定しない。物質の種類・状態によって溶媒中での帯電状態が異なるので所望の組成となるようにそれぞれの濃度を調節する。
【0022】
溶媒は、特に限定しないが、集電体および活物質に対して化学的・物理的に安定なものが好ましい。たとえば、水、アセトン等のケトン、アルコール類等である。
【0023】
〔電気泳動工程〕
電気泳動工程は、溶液内に電位勾配を発生させることで活物質を溶液内で電気泳動させて集電体表面に付着させる工程である。この電気泳動工程では、集電体表面の所定部位への活物質の電気泳動を阻害する集電体と独立して配設された遮蔽部材を用いる。
【0024】
溶液内に電位勾配を発生させる方法としては、たとえば、対向する2つの電極に電圧を印加することで達成できる。電極の形状は、集電体の表面に均一に活物質が付着するように、溶液内で集電体が通過する部分の電位勾配が一定とすることができる形状が好ましい。たとえば、電極の大きさを集電体が通過する部分を覆うのに充分な大きさとする。そして、電極のいずれか一方は溶液内に浸漬された集電体が兼ねることができる。集電体を電極とすることで、直接、活物質を集電体に付着させることができる。なお、溶液内に発生させる電位勾配の向きは、活物質等の溶液内における帯電電位により決定される。すなわち、帯電した活物質が集電体方向に移動するように電位勾配が決定される。たとえば、活物質を正に帯電させた場合は集電体を負極とする。また、電極の数は2つに限られず、必要に応じて3以上としても良い。たとえば、集電体の両面に活物質層を形成したい場合に、集電体を正極とし、2つの負極を集電体の両面に設けることで集電体の両面に活物質を付着させることができる。
【0025】
電極に印加する電圧、電圧印加時間等の条件としては特に限定されず、集電体表面に形成されるべき活物質層の厚さ、空隙率、組成等に応じて適宜選択される。電圧を高くすれば、活物質層が緊密化し空隙率が小さくなる。ヨウ素添加アセトン溶液を溶媒に用いた場合に好ましい印加電圧としては5〜500V程度を挙げることができる。また、電圧を印加する時間を長くすると、集電体表面の活物質層が厚くなる。また、活物質以外に溶媒に分散させた結着剤等は、その性質により溶液中での表面電位が異なり電気泳動の速度が異なるので電極に印加する電圧を目的の活物質層組成となるように調節する。なお、集電体表面に形成する活物質層の厚さは集電体片面当たり好ましくは50μm以下、より好ましくは25μm以下とする。活物質層の厚さが薄い方が電池の内部抵抗が低くなりより高出力の電池を提供できるからである。このように薄い活物質層は従来のダイコータ等により集電体表面に活物質を塗布する方法では精度の高い形成が困難であった。それに対し電気泳動法によると、電気泳動は電位勾配の大きい部分に優先的に活物質が付着するので活物質層の厚さに不均等が生じると活物質層が薄い部分から活物質が付着して活物質層の厚さは一定になるという利点がある。
【0026】
遮蔽部材は、集電体の活物質を付着させたくない部位に近接して設けられる。遮蔽部材と集電体との隙間は小さい方が活物質の不必要な部分への回り込みが少なくなる。また、遮蔽部材の電位は遮蔽効果を向上させるために集電体の近傍の電位に調節されることが好ましいため、遮蔽部材は集電体と同電位に調節される。電位を調節することにより、遮蔽部材と集電体との隙間に電位勾配が少なくなるので、集電体への活物質の付着が少なくなるからである
【0027】
また、電気泳動工程においても溶液内の活物質が沈殿しないように何らかの方法で溶液の攪拌を続けることが好ましい。
【0028】
〈電池用電極の製造装置〉
本実施形態の電池用電極の製造装置は、集電体送出手段と溶液槽と電圧印加手段と遮蔽部材と集電体取込手段とを有する。
【0029】
集電体送出手段は集電体を送り出す手段である。ここで「集電体」とは前述の集電体と同義である。集電体送出手段としては、たとえば、ロール状に集電体を巻き取り、必要に応じて集電体を送り出す手段がある。
【0030】
溶液槽は、活物質を溶媒中に分散させた溶液を保持し、その溶液内に集電体を通過させることができる部材である。ここで「活物質」、「溶媒」としては前述の活物質および溶媒と同義である。溶液槽の大きさとしては集電体の活物質層を形成したい部分が少なくとも溶液内に浸漬できる程度の大きさが必要である。また、溶液槽内には、分散した活物質が沈殿しないように撹拌装置を設けることが好ましい。撹拌装置としては超音波発生器、攪拌翼等が例示できる。
【0031】
電圧印加手段は、溶液槽内に電位勾配を発生させ、活物質を集電体上に電気泳動させて付着させる手段である。電圧印加手段としては、前述の複数の電極により電圧を印加する手段が例示される。電極としては前述したとおりである。
【0032】
遮蔽部材は、集電体と独立して配設された部材であって、溶液槽内で集電体の所定部位を遮蔽する部材である。遮蔽部材については前述したものと同じである。
【0033】
集電体取込手段は活物質が付着した集電体を取り込む手段である。具体的には、ロール状に集電体を巻き取る装置等が例示できる。
【0034】
そして、これらの装置の他、必要に応じて適当な手段を設けることができる。たとえば、集電体取込手段の前に溶液によって濡れた集電体を乾燥させる乾燥手段等である。
【0035】
【実施例】
(電極板の製造装置)
図1に示す電極板の製造装置を用いて電極板を製造した。本電極板の製造装置はロール状に巻回された集電体10を保持し送出する集電体送出手段1と溶液槽2と溶液槽2内に設けられた2枚の電極板31、32とその電極板31、32の間の集電体10進行方向に向かって右側に集電体10の厚さ程度の隙間をあけて設けられた金属製の遮蔽板51、52と溶液槽2内の電極板31、32および遮蔽板51、52の間に集電体10が通過して溶液内に浸漬するように保持するガイド6、7、8、9と集電体10を巻き取る集電体取込手段4とからなる。そして電圧の制御が可能な直流電源90の負極を集電体送出手段1を介して集電体10に接続し、正極を電極板31、32および遮蔽板51、52に接続する。これにより遮蔽板51、52と集電体10とは等電位となる。
【0036】
したがって、図2に示すように、電極板31、32から集電体10の方向へ電気泳動された活物質は遮蔽板51、52によって遮蔽されるので、集電体10のBの部分には活物質層が形成されない。遮蔽板51、52は集電体10と同電位に調節されているので、遮蔽板51、52と集電体10との間に活物質が回り込む量を減らすことができる。なお、図2においてAは集電体上に付着した活物質層を示す。
【0037】
集電体送出手段1に保持された集電体10は、ガイド6、7、8、9により溶液槽2内を通過し集電体取込手段3により取り込まれる。
【0038】
(参考例)
また、図3に示す電極板の製造装置を用いても上述の製造装置と同様の電極板を製造することができる。図3に示す電極板の製造装置は、集電体送出手段1’と溶液槽2’と電極板31’、32’とガイド6’、7’、8’、9’と集電体取込手段4’と遮蔽板61、62とからなる。集電体送出手段1’と溶液槽2’と電極板31’、32’とガイド6’、7’、8’、9’と集電体取込手段4’とについては、上述の製造装置と同様のものである。遮蔽板61、62は、電極板31’、32’の間の集電体10進行方向に向かって右側に集電体10の厚さ程度の隙間をあけて設けられた絶縁材料から構成される部材である。
【0039】
したがって、図4に示すように、電極板31、32から集電体10の方向へ電気泳動された活物質は遮蔽板61、62によって遮蔽されるので、集電体10のBの部分には活物質層が形成されない。遮蔽板61、62は、活物質の移動を空間的に阻害するものなので、遮蔽板61、62の表面への活物質層の付着量は少なくなる。
【0040】
なお、以下の実施例において電極板の製造は前者の製造装置を用いて行った。
【0041】
(実施例1−1)
〔電極板の製造〕
集電体10としてアルミニウム箔(厚さ15μm)を用いた。溶液槽2内に貯留される溶液はアセトンを溶媒として用いた。この溶媒中に活物質としてリチウムイオン二次電池の正極活物質であるLiNiO2 と導電材であるカーボンブラックと結着材であるPTFE(ポリテトラフルオロエチレン)をアセトン1000重量部に対し、それぞれ10、0.2、0.5重量部を混合した。さらに帯電剤として0.5mol/Lのよう素アセトン溶液をアセトン1000重量部に対して5重量部を添加した。
【0042】
これらの混合溶媒を5分超音波分散を行い充分に分散した後、溶液槽2内に貯留した。電極31、32は集電体の両側に10mmの距離をおいて設置した。電気泳動条件として、印加電圧は400Vであり、電気泳動を行う時間は集電体の送り速度を調節して集電体10が電極31、32間に存在する時間(電気泳動時間)を1分間とした。
【0043】
〔電極の評価〕
本製造装置により堆積した電極(集電体10)を乾燥した後、マイクロメータで厚みを、水銀圧入法で空隙率を測定した結果、片面44.1μmで空隙率は48.6%であり電極として十分な接着強度と可とう性を有していた。また、電極の湾曲度を測定した結果、1mm/m以下であった。電極のさらにロールプレスにて空隙率38.0%までプレスした。その結果、電極が扇形に湾曲し、その電極の湾曲度を測定した結果、3mm/mであった。湾曲度の測定方法としては、図5に示すように、長さa(今回は1mとした。)の電極の両端を結んだ直線から最大に離れた部分である電極中央部の距離bを測定して算出した。電極に湾曲が生じる原因としては、電極をプレスするときに、電極の活物質層が形成された部分Aの厚さが活物質層が形成されていない部分Bと比較して厚いのでAの部分にプレスの荷重が集中する。その結果、Aの部分はBの部分と比較して横方向に大きく伸張して長くなり、扇状に電極が湾曲変形するのである。湾曲度は小さいほど製造される電池の歩留まりが良く、さらに高速で巻回することができる。
【0044】
(実施例1−2)
本実施は電気泳動時間を集電体の送り速度を調節して30秒とした以外は実施例1−1と同じ条件で電極を作製した。その結果、活物質層の厚さが片面22.6μmで空隙率は48.5%であり電極として十分な接着強度と可とう性を有していた。さらにロールプレスにて空隙率38.1%までプレスした電極の湾曲度を測定した結果、1mm/m以下であった。
(実施例1−3)
本実施例では溶媒として純水を用い、帯電剤を使用しなかったこと、および電気泳動の印加電圧を50Vにした以外は実施例1−1と同じ条件で電極を作製した。その結果、活物質層の厚さが片面18.8μmで空隙率は39.6%でありプレスなしで十分に電池電極として使用できる空隙率であり、電極として十分な接着強度と可とう性を有していた。
(実施例2−1)
本実施例は活物質としてリチウムイオン二次電池の負極活物質であるグラファイトと結着材としてPVDF(ポリビニリデンフロライド)をアセトン1000重量部に対してそれぞれ10、0.5重量部で混合した溶液を用い、集電体10として厚さ10μmのCu箔を用いたこと以外は実施例1−1と同じ条件で電極を作製した。その結果、活物質層の厚さが片面47.0μmで空隙率は39.1%であり電極として十分な接着強度と可とう性を有しでいた。さらにロールプレスにて空隙率33.8%までプレスした電極の湾曲度を測定した結果、2mm/mであった。
(実施例2−2)
本実施例では電気泳動時間を30秒とした以外は実施例2−1と同じ条件で電極を作製した。その結果、活物質層の厚さが片面23.6μmで空隙率は39.0%であり電極として十分な接着強度を可とう性を有していた。さらにロールプレスにて空隙率33.8%までプレスした電極の湾曲度を測定した結果、1mm/m以下であった。
(実施例2−3)
本実施例では溶媒として純水を用いたこと、および電気泳動の印加電圧を50Vにした以外は実施例2−1と同じ条件で電極を作製した。その結果、活物質層の厚さが片面22.3μmで空隙率は35.7%でありプレスなしで十分に電池電極として使用できる空隙率であり、電極として十分な接着強度と可とう性を有していた。
(実施例3)
本実施例は活物質としてリチウムイオン二次電池の負極活物質であるグラファイトと結着材として高分子電解質であるPPO(ポリプロピレンオキサイド)をアセトン1000重量部に対してそれぞれ10、1重量部で混合した溶液を用いたこと以外は実施例2−1と同じ条件で電極を作製した。その結果、活物質層の厚さが片面46.8μmで空隙率は38.9%であり電極として十分な接着強度と可とう性を有していた。さらにロールプレスにて空隙率33.9%までプレスした電極の湾曲度を測定した結果、1mm/m以下であった。
【0045】
また、結着材としてPPOを用いることにより、安全性の高い固体電解質電池やゲル電解質電池の電極としての使用ができる。
(比較例)
本比較例は従来の作製方法である塗布方法で作製した。まず、塗布ペーストとしてNMP溶媒100重量部に対して実施例2−1と同じ負極活物質であるグラファイトと結着材であるPVDFをそれぞれ93、7重量部の割合で混合攪拌したペーストを作製した。このペーストを用いてコンマコーターで活物質のつまり等で塗布筋が発生するのを防止できる最小のギャップ幅に調節して塗布した。120℃乾燥後の厚みは片面112.2μmで空隙率は52.0%であった。この塗布電極は巻回電極として十分な接着強度を有しておらず巻回工程で電極合剤がはがれた。接着強度を増すためロールプレスにて空隙率38.3%までプレスした電極の湾曲度を測定した結果、10mm/mであった。
【0046】
(評価)
堆積させる活物質層の厚さ、組成は上記印加電圧や混合溶液の分散質の混合比を調整することにより所望の厚さ、組成で堆積することができた。また、電気泳動法を用いることにより従来のコンマコーター、ダイコーター等の塗布方法で作製できないような薄膜電極が可能になった。さらに高密度に堆積することができるので空隙率は塗布方法で作製した電極をプレスした従来の電極と同等以上であった。そして、接着性、可とう性においても従来品と同等であった。この電気泳動法で作製した電極はプレスする必要がないか、または従来の塗布法で作製した電極より低圧力で所望の密度、空隙率に加工できるため、プレスに伴う活物質層と集電体端部の伸びの差による電極の湾曲が抑制され、巻回電極を作製するのに生産性の優れた長尺電極を提供することができる。
【0047】
【発明の効果】
以上のように本発明の電池用電極の製造方法は、電気泳動法により活物質層を形成する電池用電極を製造方法において、容易に活物質層が形成されていない部分を形成することができる電池用電極の製造方法を提供することができるという効果を有する。
【0048】
また、本発明の電池用電極の製造装置は、電気泳動法により活物質層を形成する電池用電極を製造する装置において、容易に活物質層が形成されていない部分を形成することができる電池用電極の製造装置を提供することも解決すべき課題とする。
【図面の簡単な説明】
【図1】実施例で用いた電極製造装置の概略図である。
【図2】実施例で用いた電極製造装置の電極板と遮蔽部材との配置の様子を示した図である。
【図3】参考例で示した他の電極製造装置の概略図である。
【図4】参考例で示した他の電極製造装置の電極板と遮蔽部材との配置の様子を示した図である。
【図5】電極板の湾曲の測定方法を示した図である。
【図6】集電リードが設けられた従来の電極板を示した図である。
【符号の説明】
1、1’…集電体送出手段 10…集電体 A…集電体(活物質層形成部) B…集電体(活物質層未形成部) 11…集電リード 2、2’…溶液槽 31、32、31’、32’…電極板 4、4’…集電体取込手段
51、52…遮蔽部材(金属製) 61、62…遮蔽部材(絶縁材料製)
6、7、8、9、6’、7’、8’、9’…ガイド 90…直流電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery electrode manufacturing method and a manufacturing apparatus to which electrophoresis is applied.
[0002]
[Prior art]
In recent years, high-performance secondary batteries have been actively developed as clean energy sources used in notebook computers, small portable devices, automobiles, and the like. The secondary battery used here is required to have a large capacity and a high output while being small and light, that is, a high energy density and a high output density. As secondary batteries that can achieve high energy density and high output density, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are considered promising.
[0003]
A lithium ion secondary battery includes a positive electrode having a positive electrode active material layer capable of inserting and extracting lithium ions, a negative electrode having a negative electrode active material layer capable of inserting and extracting lithium ions released from the positive electrode, and a space between the positive electrode and the negative electrode. And an electrolyte solution that moves lithium ions between the positive electrode and the negative electrode. As a conventional method for producing these electrodes, a suspension in which an active material is suspended is applied and dried on a current collector surface made of a thin film such as a metal foil by a coating method such as a die coater, a comma coater, or a blade coater. After that, the density was increased by pressing or the like.
[0004]
However, in recent years, the electrode has been made thinner in order to obtain a battery having high output and excellent large current characteristics, and it has become difficult to produce a uniform and accurate active material layer by the conventional production method. In order to solve this problem, a method of forming a positive electrode active material layer on the entire surface of the current collector using electrophoresis is disclosed (Abstract No. P24 of the 66th Annual Meeting of the Electrochemical Society).
[0005]
By the way, as shown in FIG. 6, the electrode has a structure in which an active material layer non-formed part B is provided in the current collector 10 in order to reduce the resistance of the current collecting part, and a plurality of current collecting leads 11 are formed from that part. It has been adopted. Therefore, it is necessary to produce a portion where the active material layer is not formed on the surface of the current collector plate.
[0006]
However, in the prior art, for the purpose of preventing the active material layer from being formed on the entire surface of the current collector, the portion of the current collector on which the active material layer is not desired is masked in advance with a masking tape or the like. After forming the active material layer by electrophoresis, the tape was peeled off, or a part without the active material layer was produced by removing a part of the formed active material layer.
[0007]
[Problems to be solved by the invention]
As described above, in the prior art, a great amount of labor is required to produce a portion where the active material layer is not formed.
[0008]
Therefore, the present invention provides a battery electrode manufacturing method that can easily form a portion where the active material layer is not formed in the battery electrode manufacturing method of forming an active material layer by electrophoresis. This is a problem to be solved.
[0009]
The present invention also provides an apparatus for manufacturing a battery electrode that can easily form a portion where no active material layer is formed in an apparatus for manufacturing an electrode for a battery that forms an active material layer by electrophoresis. Doing it is also an issue to be solved.
[0010]
[Means for Solving the Problems]
The manufacturing method of the battery electrode of the present invention that solves the above problems includes an immersion step of immersing a current collector in a solution in which an active material is dispersed in a solvent, and generating a potential gradient in the solution. An electrophoretic process in which an active material is electrophoresed in the solution and the active material is attached to the surface of the current collector as an active material layer. In the method for producing a battery electrode, inhibiting the electrophoresis of the active material to a predetermined portion of the body surface, using a shielding member disposed independently of the current collector, wherein the shielding member, Ru is adjusted to the current collector and the same potential It is characterized by that.
[0011]
That is, electrophoresis is inhibited by an independent shielding member so that the active material does not adhere to the surface of the current collector. Therefore, it is possible to form a portion where the active material layer is not formed in a necessary portion of the current collector without performing any treatment on the current collector in advance and without performing any post-treatment.
Further, the shielding member is adjusted to the same potential as the current collector in order to more precisely control the portion where the active material layer is not formed.
[0012]
In the electrophoresis step, it is preferable that the potential gradient is generated by at least two types of electrodes including a positive electrode and a negative electrode, and one of the positive electrode and the negative electrode serves as the current collector. By directly applying a voltage to the current collector, electrophoresis can be controlled more precisely and the total number of electrodes can be reduced. Moreover, in order to form an active material layer on both sides of the current collector, it is more preferable that the other electrode is provided on each side of the current collector.
[0014]
Furthermore, the electrophoresis step is preferably adjusted so that the thickness of the active material layer on the surface of the current collector is 50 μm or less, further 25 μm or less. This is because the thinner the active material layer, the lower the internal resistance of the battery.
[0015]
In order to control the surface potential of the active material, the solution preferably contains a charging agent that charges the surface of the active material.
[0016]
And the manufacturing apparatus of the battery electrode which solves the said subject is a manufacturing apparatus of the battery electrode which consists of a collector and the active material layer formed in the surface of this collector, Comprising: Current collector delivery means for delivering, a solution tank in which an active material constituting the electrode active material layer is dispersed in a solvent, a solution tank for allowing the current collector to pass through the solution, and a solution tank A voltage applying means for generating a potential gradient and causing the active material to be electrophoresed and deposited on the current collector; and a member disposed independently of the current collector, wherein the member is disposed in the solution tank. possess a shielding member for shielding a predetermined portion of the current collector, the current collector capturing means for capturing the current collector the active material is adhered, the shield member is adjusted to the current collector and the same potential It is characterized by Rukoto.
[0017]
That is, electrophoresis is inhibited by an independent shielding member so that the active material does not adhere to the surface of the current collector. Therefore, it is possible to form a portion where the active material layer is not formed in a necessary portion of the current collector without performing any treatment on the current collector in advance and without performing any post-treatment.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The “battery electrode” to which the method and apparatus for producing a battery electrode of the present invention can be applied is a battery electrode comprising a current collector and an active material layer formed on the surface of the current collector. Therefore, the “battery” is not particularly limited as long as it has an electrode in which an active material layer is formed on a current collector. For example, lithium ion secondary battery (aluminum positive electrode current collector: lithium-metal composite oxide, copper current collector: carbon material), nickel hydride secondary battery (Ni positive electrode current collector: NiOH, Ni negative electrode current collector) : A hydrogen storage alloy) or the like, and an electric double layer capacitor (aluminum current collector: carbon material).
[0019]
<Method for producing battery electrode>
The manufacturing method of the battery electrode according to the present embodiment includes an immersion process and an electrophoresis process.
[0020]
[Immersion process]
The dipping step is a step of dipping the current collector in a solution in which an active material is dispersed in a solvent. In this dipping process, the current collector may be dipped into the solution continuously as well as the whole.
[0021]
The active material is a material that varies depending on the battery in which the battery electrode is used. Moreover, any of a positive electrode active material and a negative electrode active material is applicable. The active material may be dissolved in a solvent, or may not be dissolved. When it is not soluble in the solvent, it is preferable that the particle diameter of the active material is small. This is because a denser active material layer can be formed. Moreover, you may add binders, such as PVDF and PTFE, as needed. The method for dispersing the active material in the solvent is not particularly limited, and examples thereof include ultrasonic irradiation, mechanical stirring using a stirring bar, and the like. In addition to the active material, various materials can be dissolved or dispersed in the solvent as necessary. For example, a binding material that binds the active material to the surface of the current collector, a conductive agent that imparts electrical conductivity, and the like. The solvent preferably contains a charging agent that charges the surface of the active material. This is because by controlling the withstand voltage state, it becomes easier to control the stacking of the active material on the current collector surface in the electrophoresis step described later. Examples of the charging agent include those that are ionized by being dissolved in a solvent, such as iodine, carboxylic acid, lithium carboxylate, and lithium imide salt. The concentration at which the active material is dispersed or dissolved in the solvent is not particularly limited. Since the charged state in the solvent varies depending on the type and state of the substance, the respective concentrations are adjusted so as to obtain a desired composition.
[0022]
The solvent is not particularly limited, but a solvent that is chemically and physically stable with respect to the current collector and the active material is preferable. For example, water, ketones such as acetone, alcohols and the like.
[0023]
[Electrophoresis step]
The electrophoresis step is a step in which an active material is electrophoresed in the solution by generating a potential gradient in the solution and adhered to the current collector surface. In this electrophoresis step, a shielding member disposed independently of the current collector that inhibits the electrophoresis of the active material to a predetermined portion on the surface of the current collector is used.
[0024]
As a method for generating a potential gradient in the solution, for example, it can be achieved by applying a voltage to two opposing electrodes. The shape of the electrode is preferably a shape in which the potential gradient of the portion through which the current collector passes in the solution can be made constant so that the active material uniformly adheres to the surface of the current collector. For example, the electrode is made large enough to cover the portion through which the current collector passes. And either one of the electrodes can serve as a current collector immersed in the solution. By using the current collector as an electrode, the active material can be directly attached to the current collector. Note that the direction of the potential gradient generated in the solution is determined by the charging potential in the solution of the active material or the like. That is, the potential gradient is determined so that the charged active material moves in the direction of the current collector. For example, when the active material is positively charged, the current collector is a negative electrode. Further, the number of electrodes is not limited to two, and may be three or more as necessary. For example, when an active material layer is to be formed on both sides of a current collector, the active material can be attached to both sides of the current collector by providing the current collector as a positive electrode and providing two negative electrodes on both sides of the current collector. it can.
[0025]
The conditions such as the voltage applied to the electrode and the voltage application time are not particularly limited, and are appropriately selected according to the thickness, porosity, composition, etc. of the active material layer to be formed on the current collector surface. When the voltage is increased, the active material layer becomes closer and the porosity becomes smaller. A preferable applied voltage when an iodine-added acetone solution is used as a solvent is about 5 to 500V. Further, when the voltage application time is increased, the active material layer on the current collector surface becomes thicker. In addition to the active material, the binder or the like dispersed in the solvent has different surface potential in the solution depending on its property, and the electrophoresis speed is different, so that the voltage applied to the electrode becomes the target active material layer composition. Adjust to. Note that the thickness of the active material layer formed on the current collector surface is preferably 50 μm or less, more preferably 25 μm or less per side of the current collector. This is because the thinner the active material layer, the lower the internal resistance of the battery and the higher output battery can be provided. Such a thin active material layer is difficult to form with high accuracy by a method in which an active material is applied to the surface of a current collector by a conventional die coater or the like. On the other hand, according to the electrophoresis method, the active material preferentially adheres to the portion where the potential gradient is large, so if the thickness of the active material layer is uneven, the active material adheres from the thin active material layer. Thus, there is an advantage that the thickness of the active material layer becomes constant.
[0026]
The shielding member is provided in the vicinity of a portion where the active material of the current collector is not desired to be adhered. The smaller the gap between the shielding member and the current collector, the less the active material wraps around unnecessary portions. The potential of the shielding member for preferably adjusted to a potential in the vicinity of the current collector in order to improve the shielding effect, the shielding member is Ru is adjusted to the same potential as the current collector. This is because by adjusting the potential, the potential gradient is reduced in the gap between the shielding member and the current collector, so that the active material is less attached to the current collector .
[0027]
Further, it is preferable to continue stirring of the solution by some method so that the active material in the solution does not precipitate in the electrophoresis step.
[0028]
<Battery electrode manufacturing equipment>
The battery electrode manufacturing apparatus according to the present embodiment includes a current collector sending unit, a solution tank, a voltage applying unit, a shielding member, and a current collector taking unit.
[0029]
The current collector sending means is a means for sending the current collector. Here, the “current collector” has the same meaning as the above-described current collector. As the current collector sending means, for example, there is a means for winding the current collector in a roll shape and sending the current collector as required.
[0030]
The solution tank is a member that holds a solution in which an active material is dispersed in a solvent and allows a current collector to pass through the solution. Here, “active material” and “solvent” are synonymous with the above-described active material and solvent. The size of the solution tank needs to be at least large enough to immerse the current collector active material layer in the solution. Moreover, it is preferable to provide a stirring device in the solution tank so that the dispersed active material does not precipitate. Examples of the stirring device include an ultrasonic generator and a stirring blade.
[0031]
The voltage application means is means for generating a potential gradient in the solution tank and causing the active material to be electrophoresed and adhered onto the current collector. Examples of the voltage applying means include means for applying a voltage using the plurality of electrodes described above. The electrodes are as described above.
[0032]
The shielding member is a member arranged independently of the current collector, and is a member that shields a predetermined portion of the current collector in the solution tank. The shielding member is the same as described above.
[0033]
The current collector taking-in means is a means for taking in the current collector with the active material attached thereto. Specifically, an apparatus for winding a current collector in a roll shape can be exemplified.
[0034]
In addition to these devices, appropriate means can be provided as necessary. For example, there is a drying means for drying the current collector wetted with the solution before the current collector taking means.
[0035]
【Example】
(Electrode plate manufacturing equipment)
The electrode plate was manufactured using the electrode plate manufacturing apparatus shown in FIG. The electrode plate manufacturing apparatus has a current collector sending means 1 for holding and sending a current collector 10 wound in a roll shape, a solution tank 2, and two electrode plates 31 and 32 provided in the solution tank 2. And the metal shielding plates 51 and 52 provided in the solution tank 2 with a gap about the thickness of the current collector 10 on the right side in the direction of travel of the current collector 10 between the electrode plates 31 and 32 and the electrode plates 31 and 32 The current collector 10 passes between the electrode plates 31 and 32 and the shield plates 51 and 52 and guides 6, 7, 8, and 9 that hold the current collector 10 so as to be immersed in the solution and the current collector that winds up the current collector 10. It consists of body taking-in means 4. Then, the negative electrode of the DC power source 90 capable of controlling the voltage is connected to the current collector 10 via the current collector sending means 1, and the positive electrode is connected to the electrode plates 31 and 32 and the shielding plates 51 and 52. Thereby, the shielding plates 51 and 52 and the current collector 10 are equipotential.
[0036]
Therefore, as shown in FIG. 2, the active material electrophoresed from the electrode plates 31 and 32 toward the current collector 10 is shielded by the shield plates 51 and 52. An active material layer is not formed. Since the shielding plates 51 and 52 are adjusted to the same potential as the current collector 10, the amount of the active material that flows between the shielding plates 51 and 52 and the current collector 10 can be reduced. In FIG. 2, A indicates an active material layer attached on the current collector.
[0037]
The current collector 10 held by the current collector sending means 1 passes through the solution tank 2 by the guides 6, 7, 8, 9 and is taken in by the current collector taking-in means 3.
[0038]
(Reference example)
Moreover, even if the electrode plate manufacturing apparatus shown in FIG. 3 is used, an electrode plate similar to the above-described manufacturing apparatus can be manufactured. The electrode plate manufacturing apparatus shown in FIG. 3 includes a current collector sending means 1 ′, a solution tank 2 ′, electrode plates 31 ′, 32 ′, guides 6 ′, 7 ′, 8 ′, 9 ′ and current collector taking-in. It comprises means 4 ′ and shielding plates 61 and 62. Regarding the current collector delivery means 1 ′, the solution tank 2 ′, the electrode plates 31 ′, 32 ′, the guides 6 ′, 7 ′, 8 ′, 9 ′ and the current collector take-in means 4 ′, the above-described manufacturing apparatus Is the same. The shielding plates 61 and 62 are made of an insulating material provided with a gap about the thickness of the current collector 10 on the right side between the electrode plates 31 ′ and 32 ′ in the traveling direction of the current collector 10. It is a member.
[0039]
Therefore, as shown in FIG. 4, the active material electrophoresed from the electrode plates 31 and 32 toward the current collector 10 is shielded by the shield plates 61 and 62. An active material layer is not formed. Since the shielding plates 61 and 62 spatially inhibit the movement of the active material, the amount of the active material layer attached to the surfaces of the shielding plates 61 and 62 is reduced.
[0040]
In the following examples, the electrode plate was manufactured using the former manufacturing apparatus.
[0041]
(Example 1-1)
[Manufacture of electrode plates]
An aluminum foil (thickness: 15 μm) was used as the current collector 10. The solution stored in the solution tank 2 used acetone as a solvent. In this solvent, LiNiO 2 that is a positive electrode active material of a lithium ion secondary battery, carbon black that is a conductive material, and PTFE (polytetrafluoroethylene) that is a binder as active materials are each 10 parts per 1000 parts by weight of acetone. , 0.2 and 0.5 parts by weight were mixed. Further, 5 parts by weight of a 0.5 mol / L iodine acetone solution as a charging agent was added to 1000 parts by weight of acetone.
[0042]
These mixed solvents were sufficiently dispersed by ultrasonic dispersion for 5 minutes and then stored in the solution tank 2. The electrodes 31 and 32 were installed on both sides of the current collector with a distance of 10 mm. As an electrophoresis condition, the applied voltage is 400 V, and the time for performing electrophoresis is adjusted by adjusting the feeding speed of the current collector, and the time during which the current collector 10 exists between the electrodes 31 and 32 (electrophoresis time) is 1 minute. It was.
[0043]
(Evaluation of electrodes)
After the electrode (current collector 10) deposited by this manufacturing apparatus was dried, the thickness was measured with a micrometer, and the porosity was measured by a mercury intrusion method. As a result, the electrode was 44.1 μm on one side and the porosity was 48.6%. Had sufficient adhesive strength and flexibility. Moreover, as a result of measuring the curvature degree of an electrode, it was 1 mm / m or less. The electrode was further pressed by a roll press to a porosity of 38.0%. As a result, the electrode was bent into a fan shape, and the degree of curvature of the electrode was measured. As a result, it was 3 mm / m. As a method of measuring the degree of curvature, as shown in FIG. 5, the distance b at the center of the electrode, which is the portion farthest from the straight line connecting both ends of the electrode of length a (this time is 1 m), is measured. And calculated. The reason why the electrode is curved is that when the electrode is pressed, the portion A where the active material layer of the electrode is formed is thicker than the portion B where the active material layer is not formed. The load of the press is concentrated. As a result, the portion A expands and becomes longer in the lateral direction than the portion B, and the electrode is curved and deformed in a fan shape. The smaller the degree of curvature, the better the yield of the manufactured battery, and it can be wound at a higher speed.
[0044]
(Example 1-2)
In this example, an electrode was produced under the same conditions as in Example 1-1 except that the electrophoresis time was adjusted to 30 seconds by adjusting the feeding speed of the current collector. As a result, the thickness of the active material layer was 22.6 μm on one side and the porosity was 48.5%, which had sufficient adhesive strength and flexibility as an electrode. Furthermore, the degree of curvature of the electrode pressed to a porosity of 38.1% with a roll press was measured, and the result was 1 mm / m or less.
(Example 1-3)
In this example, an electrode was produced under the same conditions as in Example 1-1 except that pure water was used as a solvent, no charging agent was used, and the applied voltage of electrophoresis was set to 50V. As a result, the thickness of the active material layer is 18.8 μm on one side and the porosity is 39.6%, which is a porosity that can be used sufficiently as a battery electrode without pressing, and has sufficient adhesive strength and flexibility as an electrode. Had.
(Example 2-1)
In this example, graphite as a negative electrode active material of a lithium ion secondary battery as an active material and PVDF (polyvinylidene fluoride) as a binder were mixed at 10 and 0.5 parts by weight with respect to 1000 parts by weight of acetone, respectively. An electrode was produced under the same conditions as in Example 1-1 except that the solution was used and a 10 μm thick Cu foil was used as the current collector 10. As a result, the thickness of the active material layer was 47.0 μm on one side and the porosity was 39.1%, which had sufficient adhesive strength and flexibility as an electrode. Furthermore, the degree of curvature of the electrode pressed to a porosity of 33.8% by a roll press was measured and found to be 2 mm / m.
(Example 2-2)
In this example, an electrode was produced under the same conditions as in Example 2-1, except that the electrophoresis time was 30 seconds. As a result, the thickness of the active material layer was 23.6 μm on one side, the porosity was 39.0%, and the adhesive strength was sufficient as an electrode. Furthermore, the degree of curvature of the electrode pressed to a porosity of 33.8% with a roll press was measured and found to be 1 mm / m or less.
(Example 2-3)
In this example, an electrode was produced under the same conditions as in Example 2-1, except that pure water was used as a solvent and the applied voltage of electrophoresis was set to 50V. As a result, the thickness of the active material layer is 22.3 μm on one side and the porosity is 35.7%, which is a porosity that can be used sufficiently as a battery electrode without pressing, and has sufficient adhesive strength and flexibility as an electrode. Had.
(Example 3)
In this embodiment, graphite, which is a negative electrode active material of a lithium ion secondary battery, and PPO (polypropylene oxide), which is a polymer electrolyte, are mixed as active materials at 10 and 1 parts by weight, respectively, with respect to 1000 parts by weight of acetone. An electrode was produced under the same conditions as in Example 2-1, except that the prepared solution was used. As a result, the thickness of the active material layer was 46.8 μm on one side and the porosity was 38.9%, which had sufficient adhesive strength and flexibility as an electrode. Furthermore, the degree of curvature of the electrode pressed to a porosity of 33.9% with a roll press was measured and found to be 1 mm / m or less.
[0045]
In addition, by using PPO as a binder, it can be used as an electrode for a highly safe solid electrolyte battery or gel electrolyte battery.
(Comparative example)
This comparative example was manufactured by the coating method which is a conventional manufacturing method. First, a paste was prepared by mixing and stirring 93 and 7 parts by weight of graphite, which is the same negative electrode active material as in Example 2-1, and PVDF, which is a binder, with respect to 100 parts by weight of NMP solvent as a coating paste. . Using this paste, a comma coater was applied to adjust the gap width to the minimum that could prevent the occurrence of application streaks due to clogging of the active material. The thickness after drying at 120 ° C. was 112.2 μm on one side and the porosity was 52.0%. This coated electrode did not have sufficient adhesive strength as a wound electrode, and the electrode mixture was peeled off during the winding process. As a result of measuring the curvature of the electrode pressed to a porosity of 38.3% by a roll press in order to increase the adhesive strength, it was 10 mm / m.
[0046]
(Evaluation)
The thickness and composition of the active material layer to be deposited could be deposited with a desired thickness and composition by adjusting the applied voltage and the mixing ratio of the dispersoid of the mixed solution. Further, by using the electrophoresis method, a thin film electrode that cannot be produced by a conventional coating method such as a comma coater or a die coater has become possible. Since it can be deposited at a higher density, the porosity is equal to or higher than that of a conventional electrode obtained by pressing an electrode produced by a coating method. And it was equivalent to the conventional product also in adhesiveness and flexibility. The electrode produced by this electrophoresis method does not need to be pressed or can be processed to a desired density and porosity at a lower pressure than an electrode produced by a conventional coating method. The bending of the electrode due to the difference in elongation at the ends is suppressed, and a long electrode with excellent productivity can be provided for producing a wound electrode.
[0047]
【The invention's effect】
As described above, the battery electrode manufacturing method of the present invention can easily form a portion where the active material layer is not formed in the battery electrode manufacturing method in which the active material layer is formed by electrophoresis. It has the effect that the manufacturing method of the electrode for batteries can be provided.
[0048]
In addition, the battery electrode manufacturing apparatus of the present invention is an apparatus for manufacturing a battery electrode in which an active material layer is formed by electrophoresis, and can easily form a portion where no active material layer is formed. Another problem to be solved is to provide an electrode manufacturing apparatus.
[Brief description of the drawings]
FIG. 1 is a schematic view of an electrode manufacturing apparatus used in Examples.
FIG. 2 is a view showing a state of arrangement of an electrode plate and a shielding member of an electrode manufacturing apparatus used in an example.
FIG. 3 is a schematic view of another electrode manufacturing apparatus shown in the reference example.
FIG. 4 is a diagram showing a state of arrangement of an electrode plate and a shielding member of another electrode manufacturing apparatus shown in the reference example.
FIG. 5 is a diagram showing a method for measuring the curvature of an electrode plate.
FIG. 6 is a view showing a conventional electrode plate provided with a current collecting lead.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1 '... Current collector delivery means 10 ... Current collector A ... Current collector (active material layer formation part) B ... Current collector (active material layer non-formation part) 11 ... Current collection lead 2, 2' ... Solution tank 31, 32, 31 ', 32' ... Electrode plate 4, 4 '... Current collector taking means 51, 52 ... Shielding member (made of metal) 61, 62 ... Shielding member (made of insulating material)
6, 7, 8, 9, 6 ', 7', 8 ', 9' ... Guide 90 ... DC power supply

Claims (10)

活物質を溶媒中に分散させた溶液中に集電体を浸漬する浸漬工程と、
前記溶液内に電位勾配を発生させることで前記活物質を該溶液内で電気泳動させて該活物質を活物質層として前記集電体表面に付着させる電気泳動工程とを有する電池用電極の製造方法において、
前記電気泳動工程では、前記集電体表面の所定部位への前記活物質の電気泳動を阻害する、該集電体と独立して配設された遮蔽部材を用い
前記遮蔽部材は、前記集電体と同電位に調節されることを特徴とする電池用電極の製造方法。
An immersion step of immersing the current collector in a solution in which the active material is dispersed in a solvent;
Manufacturing an electrode for a battery having an electrophoretic process in which an active material is electrophoresed in the solution by generating a potential gradient in the solution, and the active material is attached to the surface of the current collector as an active material layer In the method
In the electrophoresis step, using a shielding member disposed independently of the current collector, which inhibits the electrophoresis of the active material to a predetermined portion of the current collector surface ,
The shielding member, manufacturing method of battery electrodes, wherein Rukoto adjusted to the current collector and the same potential.
前記電気泳動工程において少なくとも正極、負極からなる2種類の電極によって前記電位勾配を発生させており、該正極および該負極のいずれか一方は前記集電体が兼ねる請求項1に記載の電池用電極の製造方法。 2. The battery electrode according to claim 1, wherein the potential gradient is generated by at least two types of electrodes including a positive electrode and a negative electrode in the electrophoresis step, and one of the positive electrode and the negative electrode serves as the current collector. Manufacturing method. 前記電気泳動工程において少なくとも正極、負極からなる2種類の電極によって前記電位勾配を発生させており、該正極および該負極のいずれか一方は前記集電体が兼ね、他方は前記集電体の両面側にそれぞれ1つずつ設けられる請求項1に記載の電池用電極の製造方法。 In the electrophoresis step, the potential gradient is generated by at least two types of electrodes including a positive electrode and a negative electrode, and either the positive electrode or the negative electrode serves as the current collector, and the other serves as both surfaces of the current collector. The method for manufacturing a battery electrode according to claim 1, wherein one battery electrode is provided on each side. 前記電気泳動工程は、前記集電体の表面に前記活物質層の厚さが50μm以下となるように調節して付着させる工程である請求項1〜3の何れか1項に記載の電池用電極の製造方法。4. The battery according to claim 1, wherein the electrophoresis step is a step of adjusting and attaching the active material layer to a surface of the current collector so that a thickness of the active material layer is 50 μm or less. 5. Electrode manufacturing method. 前記活物質層の厚さが25μm以下となるように調節する請求項4に記載の電池用電極の製造方法。The method for manufacturing a battery electrode according to claim 4, wherein the thickness of the active material layer is adjusted to be 25 μm or less. 前記溶液中には、前記活物質の表面を帯電させる帯電剤を含む請求項1〜5の何れか1項に記載の電池用電極の製造方法。The method for producing a battery electrode according to claim 1, wherein the solution contains a charging agent that charges the surface of the active material. 集電体と該集電体の表面に形成された活物質層とからなる電池用電極の製造装置であって、A battery electrode manufacturing apparatus comprising a current collector and an active material layer formed on the surface of the current collector,
前記集電体を送り出す集電体送出手段と、  Current collector delivery means for delivering the current collector;
前記電極活物質層を構成する活物質を溶媒中に分散させた溶液を保持し、該溶液内に前記集電体を通過させる溶液槽と、  A solution tank for holding a solution in which an active material constituting the electrode active material layer is dispersed in a solvent, and allowing the current collector to pass through the solution;
前記溶液槽内に電位勾配を発生させ、前記活物質を前記集電体上に電気泳動させて付着させる電圧印加手段と、  A voltage applying means for generating a potential gradient in the solution tank and causing the active material to be electrophoresed and deposited on the current collector;
前記集電体と独立して配設された部材であって、前記溶液槽内で前記集電体の所定部位を遮蔽する遮蔽部材と、  A member disposed independently of the current collector, and a shielding member for shielding a predetermined portion of the current collector in the solution tank;
前記活物質が付着した前記集電体を取り込む集電体取込手段とを有し、  Current collector taking-in means for taking in the current collector to which the active material is attached;
前記遮蔽部材は、前記集電体と同電位に調節されることを特徴とする電池用電極の製造装置。  The battery electrode manufacturing apparatus, wherein the shielding member is adjusted to the same potential as the current collector.
前記電圧印加手段は、少なくとも正極、負極からなる2種類の電極によって前記電位勾配を発生させており、該正極および該負極のいずれか一方は前記集電体が兼ねる請求項7に記載の電池用電極の製造装置。 The battery application according to claim 7, wherein the voltage applying unit generates the potential gradient by at least two types of electrodes including a positive electrode and a negative electrode, and one of the positive electrode and the negative electrode serves as the current collector. Electrode manufacturing equipment. 前記電圧印加手段は、少なくとも正極、負極からなる2種類の電極によって前記電位勾配を発生させており、該正極および該負極のいずれか一方は前記集電体が兼ね、他方は前記集電体の両面側にそれぞれ1つずつ設けられる請求項7に記載の電池用電極の製造装置。 The voltage application means generates the potential gradient by at least two kinds of electrodes including a positive electrode and a negative electrode, and one of the positive electrode and the negative electrode serves as the current collector, and the other serves as the current collector. The apparatus for manufacturing a battery electrode according to claim 7, wherein one device is provided on each of both surfaces. 前記溶液中には、前記活物質の表面を帯電させる帯電剤を含む請求項7〜9の何れか1項に記載の電池用電極の製造装置。 The battery electrode manufacturing apparatus according to any one of claims 7 to 9, wherein the solution contains a charging agent that charges the surface of the active material.
JP2000226629A 2000-07-27 2000-07-27 Battery electrode manufacturing method and battery electrode manufacturing apparatus Expired - Fee Related JP4501247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226629A JP4501247B2 (en) 2000-07-27 2000-07-27 Battery electrode manufacturing method and battery electrode manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226629A JP4501247B2 (en) 2000-07-27 2000-07-27 Battery electrode manufacturing method and battery electrode manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2002042790A JP2002042790A (en) 2002-02-08
JP4501247B2 true JP4501247B2 (en) 2010-07-14

Family

ID=18720213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226629A Expired - Fee Related JP4501247B2 (en) 2000-07-27 2000-07-27 Battery electrode manufacturing method and battery electrode manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4501247B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013064779A1 (en) 2011-11-02 2013-05-10 Fabien Gaben Method for manufacturing all-solid-state thin-film batteries
WO2013064773A1 (en) 2011-11-02 2013-05-10 Fabien Gaben Method for the production of electrodes for fully solid batteries
WO2013064777A1 (en) 2011-11-02 2013-05-10 Fabien Gaben Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
WO2013064776A1 (en) 2011-11-02 2013-05-10 Fabien Gaben Method for producing dense thin films by electrophoresis
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894160B2 (en) * 2005-05-09 2012-03-14 パナソニック株式会社 Welding part and welding method of electrode mixture paste coating apparatus
JP5402363B2 (en) * 2009-03-19 2014-01-29 株式会社エクォス・リサーチ Method for manufacturing electrode for lithium ion battery and electrode for lithium ion battery
FR3000616B1 (en) * 2012-12-31 2015-01-02 I Ten PROCESS FOR MANUFACTURING SOLID BATTERIES IN MULTILAYER STRUCTURE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594821A (en) * 1990-04-04 1993-04-16 Gould Inc Manufacture of electrodeposited electrode for chemical battery
JPH0610362U (en) * 1992-04-27 1994-02-08 株式会社アルメックス Surface treatment tank for flat work
JPH09184099A (en) * 1996-01-05 1997-07-15 Murata Mfg Co Ltd Electroplating device for hoop material for metallic terminal
JP2000160389A (en) * 1998-12-01 2000-06-13 Fujitsu Ltd Plating and production of magnetic head

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362456A (en) * 1989-07-28 1991-03-18 Yuasa Battery Co Ltd Battery
JPH0371555A (en) * 1989-08-08 1991-03-27 Yuasa Battery Co Ltd Battery
JPH05135761A (en) * 1991-11-15 1993-06-01 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH0974052A (en) * 1995-09-06 1997-03-18 Matsushita Electric Ind Co Ltd Method for manufacturing polarizable electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594821A (en) * 1990-04-04 1993-04-16 Gould Inc Manufacture of electrodeposited electrode for chemical battery
JPH0610362U (en) * 1992-04-27 1994-02-08 株式会社アルメックス Surface treatment tank for flat work
JPH09184099A (en) * 1996-01-05 1997-07-15 Murata Mfg Co Ltd Electroplating device for hoop material for metallic terminal
JP2000160389A (en) * 1998-12-01 2000-06-13 Fujitsu Ltd Plating and production of magnetic head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013064779A1 (en) 2011-11-02 2013-05-10 Fabien Gaben Method for manufacturing all-solid-state thin-film batteries
WO2013064773A1 (en) 2011-11-02 2013-05-10 Fabien Gaben Method for the production of electrodes for fully solid batteries
WO2013064777A1 (en) 2011-11-02 2013-05-10 Fabien Gaben Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries
WO2013064776A1 (en) 2011-11-02 2013-05-10 Fabien Gaben Method for producing dense thin films by electrophoresis
US11967694B2 (en) 2018-05-07 2024-04-23 I-Ten Porous electrodes for electrochemical devices

Also Published As

Publication number Publication date
JP2002042790A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
CN102969480B (en) The manufacture method of electrode and electrode
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
CN103187576B (en) Collector, electrochemical cell electrode and electrochemical cell
US20110183203A1 (en) Polymer supported electrodes
CN111162246B (en) Continuous controllable pre-lithiation system and lithium supplementing method
JP5281706B2 (en) Current collector, current collector manufacturing method, electrode, and secondary battery
JP6916815B2 (en) Electrodes for secondary batteries, secondary batteries, and their manufacturing methods
JPH10308212A (en) Electrode plate processing device for secondary battery
JPWO2019088139A1 (en) Negative electrodes for secondary batteries, secondary batteries, and their manufacturing methods
JP2010061913A (en) Method for manufacturing electrode
JP4501247B2 (en) Battery electrode manufacturing method and battery electrode manufacturing apparatus
EP4027427A1 (en) All solid state battery
JP2001085042A (en) Lithium secondary battery and fabrication of wound electrode
CN105140459A (en) Electricity-storage device
JP4407020B2 (en) Method for producing electrode for battery with separator
JP4686825B2 (en) Method for producing battery electrode with solid electrolyte layer
JP7096184B2 (en) Lithium-ion secondary battery and its manufacturing method
JPWO2011114473A1 (en) Method for manufacturing battery electrode
CN108604681A (en) energy storage electrode and device
CN104795540A (en) Making method of flexibly packaged coiled battery with high specific energy
JPS60253157A (en) Nonaqueous secondary battery
JP5708928B2 (en) Battery current collector and manufacturing method thereof
RU2689413C2 (en) Electric accumulator and method of its manufacturing
WO2022264499A1 (en) Bipolar electrode and power storage device
JPH10177935A (en) Electric double-layered capacitor and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees