JPH0974052A - Method for manufacturing polarizable electrode - Google Patents

Method for manufacturing polarizable electrode

Info

Publication number
JPH0974052A
JPH0974052A JP7229191A JP22919195A JPH0974052A JP H0974052 A JPH0974052 A JP H0974052A JP 7229191 A JP7229191 A JP 7229191A JP 22919195 A JP22919195 A JP 22919195A JP H0974052 A JPH0974052 A JP H0974052A
Authority
JP
Japan
Prior art keywords
active carbon
foil
polarizable electrode
electrode
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7229191A
Other languages
Japanese (ja)
Inventor
Akihiko Yoshida
昭彦 吉田
Tetsuo Yukimasa
哲男 行政
Seiji Nonaka
誠治 野中
Susumu Nomoto
進 野本
Kazufumi Nishida
和史 西田
Masaki Ikeda
正樹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7229191A priority Critical patent/JPH0974052A/en
Publication of JPH0974052A publication Critical patent/JPH0974052A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrical double-layer capacitor with a high capacity density and a low resistance by depositing and adhering a layer with an active carbon as a main constituent to a conductive substrate by cataphoresis electrolytic deposition. SOLUTION: An active carbon powder 10 wt.pts and acetylene black 2 wt.pts are uniformly mixed and dissipated to methanol 5 wt.pts to obtain a liquid A. On the other hand, polyvinylpyrrolidone 2 wt.pt is dissolved to water 10 wt.pts to obtain a liquid B. The liquids A and B are mixed to obtain an active carbon slurry 2. By dipping Al foil which is subjected to surface polishing as a conductive substrate and Al plate as a counter electrode into an active carbon slurry 2 and setting Al foil 3 and Al plate 4 as positive and negative polarities, respectively, DC is applied between both at a room temperature. Then, the Al foil 3 is pulled up from the active carbon slurry 2 and the Al foil with the obtained active carbon layer is dried and is cut to a specific size, thus obtaining a foil electrode and hence obtaining a carbon electrode whose manufacture control can be simplified and which has a uniform film thickness where the volume filling rate of the active carbon is high and the controllability of the carbon film thickness can easily be controlled by an application voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層キャパ
シタに用いる分極性電極の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a polarizable electrode used in an electric double layer capacitor.

【0002】[0002]

【従来の技術】電気二重層キャパシタは、分極性電極と
して活性炭を用い、活性炭と電解液との界面電気二重層
に蓄積される電気二重層容量を利用した大容量コンデン
サである。この電気二重層キャパシタは、従来コイン形
のものと円筒形のものがある。図4は、コイン形キャパ
シタの代表的な構成を示すものである。活性炭繊維の織
布などからなるシート21、22の片面にアルミニウム
溶射層23、24を形成した一対の分極性電極と、両電
極間に介在させたセパレータ25、およびこれらに含浸
させたテトラエチルアンモニウムパークロレートのプロ
ピレンカーボネート溶液などからなる電解液を金属ケー
ス26、27と絶縁性ガスケットリング28でハウジン
グしたものである。
2. Description of the Related Art An electric double layer capacitor is a large-capacity capacitor which uses activated carbon as a polarizable electrode and utilizes the electric double layer capacitance accumulated in the interface electric double layer between the activated carbon and the electrolytic solution. The electric double layer capacitor is conventionally classified into a coin type and a cylindrical type. FIG. 4 shows a typical structure of a coin type capacitor. A pair of polarizable electrodes in which aluminum sprayed layers 23 and 24 are formed on one surface of sheets 21 and 22 made of woven cloth of activated carbon fiber, a separator 25 interposed between the electrodes, and tetraethylammonium permeate impregnated therein An electrolytic solution composed of a propylene carbonate solution of lorate is housed in metal cases 26, 27 and an insulating gasket ring 28.

【0003】また、円筒形のキャパシタは、後述する図
2のような構造を有する。活性炭、導電性付与材、バイ
ンダ、およびバインダの溶媒からなるスラリーをアルミ
ニウム箔に塗布、乾燥して活性炭層を形成した一対の電
極をセパレータとともに捲回し、これをアルミケース、
ゴム封口材でハウジングしたものである。このキャパシ
タも電解液としてコイン形と同じく有機系の電解液を用
いている。さらに、電解液として硫酸水溶液を用いたキ
ャパシタも開発されている。
The cylindrical capacitor has a structure as shown in FIG. 2 described later. Activated carbon, a conductivity-imparting material, a binder, and a slurry composed of a solvent of a binder is applied to an aluminum foil, and a pair of electrodes on which an activated carbon layer is formed by drying is wound with a separator, which is an aluminum case
It is a housing with a rubber sealing material. This capacitor also uses an organic electrolytic solution as the electrolytic solution as in the coin type. Furthermore, a capacitor using a sulfuric acid aqueous solution as an electrolytic solution has been developed.

【0004】[0004]

【発明が解決しようとする課題】電気二重層キャパシタ
のセル体積当たりの容量密度を大きくすることは重要な
ポイントである。このためには単位セル体積当たりにで
きるだけ大量の活性炭を詰めなければならない。従来の
円筒形キャパシタの電極は、活性炭の充填率が30〜7
0%であった。従来のスラリーをアルミニウム基材の上
に担持させる方法は、塗布、印刷、ロールコート、ドク
ターブレード、ディップなど種々可能であるが、いずれ
の方法でもその充填率は70%が限界であった。また、
電極の電気抵抗値は、活性炭の充填率が高いほど活性炭
同志の接触面積が増えるために、充填率に比例して小さ
くなる。このようにキャパシタの容量密度をさらに高く
し、抵抗をさらに小さくするためには、活性炭の充填密
度を大きくすることが必須条件である。本発明は、容量
密度が高く、内部抵抗の低い電気二重層キャパシタを与
える分極性電極の製造方法を提供することを目的とす
る。
It is an important point to increase the capacitance density per cell volume of the electric double layer capacitor. For this purpose, it is necessary to pack as much activated carbon per unit cell volume as possible. A conventional cylindrical capacitor electrode has an activated carbon filling rate of 30 to 7
It was 0%. Various methods can be used for supporting a conventional slurry on an aluminum substrate, such as coating, printing, roll coating, doctor blade, and dipping, but the filling rate of each method was limited to 70%. Also,
The electric resistance value of the electrode becomes smaller in proportion to the filling rate because the contact area between the activated carbons increases as the filling rate of the activated carbon increases. As described above, in order to further increase the capacitance density of the capacitor and further reduce the resistance, it is an essential condition to increase the packing density of activated carbon. It is an object of the present invention to provide a method for manufacturing a polarizable electrode that provides an electric double layer capacitor having high capacitance density and low internal resistance.

【0005】[0005]

【課題を解決するための手段】本発明の分極性電極の製
造方法は、導電性基板上に電気泳動電着により活性炭を
主成分とする層を析出付着させるものである。ここで、
電気泳動電着は、活性炭、バインダ、および前記バイン
ダの溶媒を含むスラリー中で、導電性基板を正として対
向電極との間に直流電界を印加することにより行う。前
記スラリーは、さらに導電性付与材を含むことが好まし
い。
The method of manufacturing a polarizable electrode according to the present invention is to deposit a layer containing activated carbon as a main component on a conductive substrate by electrophoretic deposition. here,
Electrophoretic electrodeposition is performed by applying a DC electric field between the counter electrode and a positive electrode in a slurry containing activated carbon, a binder, and a solvent of the binder. It is preferable that the slurry further contains a conductivity imparting material.

【0006】導電性付与材としては、カーボンブラッ
ク、アセチレンブラック、ケッチェンブラック、黒鉛粉
末、炭素繊維、および酸化ルテニウムからなる群より選
択されたものが好ましい。また、バインダは、多糖類か
ら選ばれたものが好ましい。導電性基体としては、金属
または炭素の箔、ネット、またはパンチング板が用いら
れる。前記溶媒としては、水、およびアルコールから選
ばれたものが好ましい。
The conductivity-imparting material is preferably selected from the group consisting of carbon black, acetylene black, Ketjen black, graphite powder, carbon fiber, and ruthenium oxide. Further, the binder is preferably selected from polysaccharides. A metal or carbon foil, a net, or a punching plate is used as the conductive substrate. The solvent is preferably selected from water and alcohol.

【0007】本発明によれば、電極の活性炭の体積充填
率が飛躍的に大きくなり、このために高容量密度で低抵
抗の電気二重層キャパシタを得ることができる。また、
電極製造時の活性炭層の膜厚の制御も容易にできる。
According to the present invention, the volume filling factor of the activated carbon of the electrode is remarkably increased, and therefore, an electric double layer capacitor having a high capacity density and a low resistance can be obtained. Also,
It is also possible to easily control the thickness of the activated carbon layer during electrode production.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は、電気泳動電着のための装置の概略構成を
示す。活性炭、導電性付与材、バインダ、およびバイン
ダの溶媒からなるスラリー2を収容した容器1内に、分
極性電極を構成する導電性基板3および対極4、4を浸
漬し、導電性基板3を正、対極4を負にして直流電源5
により両極間に直流電圧を印加する。こうして導電性基
板の両面に活性炭、導電性付与材およびバインダからな
る分極性電極を形成することができる。次に、具体的な
実施例を説明する。
Embodiments of the present invention will be described below. FIG. 1 shows a schematic configuration of an apparatus for electrophoretic electrodeposition. The conductive substrate 3 and the counter electrodes 4 and 4 constituting the polarizable electrode are immersed in a container 1 containing a slurry 2 composed of activated carbon, a conductivity-imparting material, a binder, and a solvent of the binder, and the conductive substrate 3 is positively charged. , Negative electrode 4 and DC power supply 5
A DC voltage is applied between both electrodes by. In this way, polarizable electrodes composed of activated carbon, a conductivity-imparting material and a binder can be formed on both surfaces of the conductive substrate. Next, specific examples will be described.

【0009】[実施例1]活性炭粉末(比表面積:17
00m2/g、平均粒径:2μm)10重量部とアセチ
レンブラック2重量部とをメタノール5重量部に均一に
混合分散し液Aとする。一方、ポリビニルピロリドン2
重量部を水10重量部に溶解し液Bとする。液Aと液B
を混合し活性炭スラリーを得る。導電性基板として表面
研磨した厚さ30μmのアルミニウム箔、対極として厚
さ1mmのアルミニウム板をそれぞれを用いる。これら
を図1のように、上記の活性炭スラリー2中に浸漬し、
アルミニウム箔3を正、アルミニウム板4、4を負極性
として両者の間に10Vの直流を5分間室温で印加す
る。続いて、アルミニウム箔3を活性炭スラリー2から
引き上げる。得られた活性炭層を有するアルミニウム箔
を150℃で30分間乾燥し、所定の大きさに切断して
箔電極を得る。
[Example 1] Activated carbon powder (specific surface area: 17
00 m 2 / g, average particle size: 2 μm) 10 parts by weight and 2 parts by weight of acetylene black are uniformly mixed and dispersed in 5 parts by weight of methanol to prepare a liquid A. On the other hand, polyvinylpyrrolidone 2
Part by weight is dissolved in 10 parts by weight of water to prepare a liquid B. Liquid A and liquid B
Are mixed to obtain an activated carbon slurry. A surface-polished aluminum foil having a thickness of 30 μm is used as a conductive substrate, and an aluminum plate having a thickness of 1 mm is used as a counter electrode. These are immersed in the above activated carbon slurry 2 as shown in FIG.
The aluminum foil 3 is made positive and the aluminum plates 4, 4 are made negative, and a direct current of 10 V is applied between them for 5 minutes at room temperature. Then, the aluminum foil 3 is pulled up from the activated carbon slurry 2. The obtained aluminum foil having an activated carbon layer is dried at 150 ° C. for 30 minutes and cut into a predetermined size to obtain a foil electrode.

【0010】図2は上記のようにして得た分極性電極を
用いた円筒形のキャパシタの構造を示す。12および1
5は分極性電極を示し、それぞれ導電性基板10および
13とそれらの両面に形成した活性炭層11および14
から構成されている。分極性電極の大きさは、幅10m
m、長さ50mmである。これらの電極は、セパレータ
16を介して捲回してアルミケース17内に挿入し、電
解液を注入後、ゴムパッキン18で密封する。19、2
0は電極リードを表す。電解液としては、1モル/lの
テトラエチルアンモニウムパークロレートを溶解したプ
ロピレンカーボネートを用いた。
FIG. 2 shows the structure of a cylindrical capacitor using the polarizable electrode obtained as described above. 12 and 1
Reference numeral 5 denotes a polarizable electrode, and conductive substrates 10 and 13 and activated carbon layers 11 and 14 formed on both surfaces thereof, respectively.
It is composed of The size of the polarizable electrode is 10m wide
m and length 50 mm. These electrodes are wound via the separator 16 and inserted into the aluminum case 17, and after the electrolytic solution is injected, the electrodes are sealed with the rubber packing 18. 19, 2
0 represents an electrode lead. As the electrolytic solution, propylene carbonate in which 1 mol / l tetraethylammonium perchlorate was dissolved was used.

【0011】図3は本実施例で得られた分極性電極の断
面を模式的に示すもので、3はアルミニウム箔、6は活
性炭粉末、7は導電付与材のアセチレンブラック、8は
バインダをそれぞれ表している。本実施例で得られた分
極性電極の活性炭粉末の充填率は、約90%であった。
このように活性炭の充填率が高くなるのは、アルミニウ
ム箔の表面に活性炭が直流電界の力により強く引き付け
られ、さらに活性炭同志も電界のなかでの電気エネルギ
ーにより相互に強く引き付けられることに起因すると考
えられる。
FIG. 3 schematically shows a cross section of the polarizable electrode obtained in this example. 3 is an aluminum foil, 6 is activated carbon powder, 7 is acetylene black as a conductivity-imparting material, and 8 is a binder. It represents. The filling factor of the activated carbon powder of the polarizable electrode obtained in this example was about 90%.
The high filling factor of activated carbon is due to the fact that activated carbon is strongly attracted to the surface of the aluminum foil by the force of the DC electric field, and the activated carbons are also strongly attracted to each other by the electric energy in the electric field. Conceivable.

【0012】[実施例2]ポリビニルピロリドンの代わ
りにカルボキシメチルセルロースのアンモニウム塩を用
いた他は実施例1と同様にして分極性電極を製造し、円
筒形キャパシタを組み立てた。
Example 2 A polarizable electrode was manufactured in the same manner as in Example 1 except that ammonium salt of carboxymethyl cellulose was used instead of polyvinylpyrrolidone, and a cylindrical capacitor was assembled.

【0013】[実施例3]アルミニウム箔の代わりに黒
鉛とスチレンブタジエンゴム(SBR)との混合物から
なるフレキシブル導電基材を用いた他は実施例1と同様
にして分極性電極を製造し、円筒形キャパシタを組み立
てた。
[Example 3] A polarizable electrode was manufactured in the same manner as in Example 1 except that a flexible conductive substrate made of a mixture of graphite and styrene-butadiene rubber (SBR) was used in place of the aluminum foil, and a cylindrical electrode was prepared. Shaped capacitors were assembled.

【0014】[比較例]活性炭粉末(比表面積:170
0m2/g、平均粒径:2μm)10重量部、アセチレ
ンブラック2重量部、ポリビニルピロリドン2重量部、
メタノール5重量部および水10重量部からなるスラリ
ーを表面研磨した厚さ30μmのアルミニウム箔に塗布
し、乾燥して分極性電極を製造し、図2のような円筒形
キャパシタを構成した。以上の実施例および比較例で得
られたキャパシタの特性を表1に示す。
[Comparative Example] Activated carbon powder (specific surface area: 170
0 m 2 / g, average particle size: 2 μm) 10 parts by weight, acetylene black 2 parts by weight, polyvinylpyrrolidone 2 parts by weight,
A slurry composed of 5 parts by weight of methanol and 10 parts by weight of water was applied to a surface-polished aluminum foil having a thickness of 30 μm and dried to manufacture a polarizable electrode, thereby forming a cylindrical capacitor as shown in FIG. Table 1 shows the characteristics of the capacitors obtained in the above Examples and Comparative Examples.

【0015】[0015]

【表1】 [Table 1]

【0016】上記の実施例では、活性炭材料として活性
炭粉末を用いたが、チョップ状の活性炭繊維を用いるこ
とも可能である。また、導電性基材としてアルミニウム
箔、炭素/SBR混合体を用いたが、炭素繊維またはこ
れから構成される織布のような構造体を用いてもよい。
導電性付与剤として、黒鉛粉末、酸化ルテニウム、炭素
繊維も使用できる。導電性付与剤を用いなくてもよい。
バインダとして、多糖類全般が使用可能である。また、
電気泳動電着により高充填密度の炭素層を得る思想を発
展させて、リチウム電池用の高密度負極炭素電極を得る
こともできる。
In the above embodiments, activated carbon powder was used as the activated carbon material, but chopped activated carbon fibers can also be used. Further, although the aluminum foil and the carbon / SBR mixture are used as the conductive base material, a structure such as carbon fiber or a woven fabric made of the carbon fiber may be used.
Graphite powder, ruthenium oxide, and carbon fiber can also be used as the conductivity imparting agent. The conductivity imparting agent may not be used.
As a binder, all polysaccharides can be used. Also,
It is also possible to develop a concept of obtaining a carbon layer having a high packing density by electrophoretic electrodeposition to obtain a high density negative electrode carbon electrode for a lithium battery.

【0017】[0017]

【発明の効果】以上のように本発明によれば、活性炭の
充填率の非常に高い炭素電極を得ることが出来、これを
分極性電極に用いたキャパシタは体積当りのエネルギー
密度が非常の高くなる。またセルの内部抵抗も非常に低
い。電極箔製造時の炭素膜厚の制御性も印加電圧で容易
に制御でき、簡易な製造制御で非常に均一な膜厚の炭素
電極を得ることが出来、工業的にも本発明の価値は非常
に第なるものである。
As described above, according to the present invention, it is possible to obtain a carbon electrode having a very high filling factor of activated carbon, and a capacitor using this as a polarizable electrode has a very high energy density per volume. Become. The internal resistance of the cell is also very low. The controllability of the carbon film thickness during the production of the electrode foil can be easily controlled by the applied voltage, and a carbon electrode with a very uniform film thickness can be obtained by simple production control, and the value of the present invention is industrially very high. Is the first one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた電極を製造するための
装置の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an apparatus for manufacturing an electrode used in an example of the present invention.

【図2】本発明の実施例による電気二重層キャパシタの
一部を切り欠いた斜視図である。
FIG. 2 is a perspective view in which a part of an electric double layer capacitor according to an exemplary embodiment of the present invention is cut away.

【図3】本発明の実施例による分極性電極の断面を示す
模式図である。
FIG. 3 is a schematic view showing a cross section of a polarizable electrode according to an example of the present invention.

【図4】従来のキャパシタの構成例を示す縦断面図であ
る。
FIG. 4 is a vertical cross-sectional view showing a configuration example of a conventional capacitor.

【符号の説明】[Explanation of symbols]

1 容器 2 スラリー 3 導電性基板 4 対極 5 直流電源 6 活性炭粉末 7 導電性付与材 8 バインダ 10、13 導電性基板 11、14 活性炭層 12、15 分極性電極 16 セパレータ 17 容器 18 ゴムパッキン 19、20 電極リード 1 Container 2 Slurry 3 Conductive Substrate 4 Counter Electrode 5 DC Power Supply 6 Activated Carbon Powder 7 Conductivity-Giving Material 8 Binder 10, 13 Conductive Substrate 11, 14 Activated Carbon Layer 12, 15 Polarity Electrode 16 Separator 17 Container 18 Rubber Packing 19, 20 Electrode lead

フロントページの続き (72)発明者 野本 進 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西田 和史 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 池田 正樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continued (72) Inventor Susumu Nomoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Inventor Masaki Ikeda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導電性基板上に電気泳動電着により活性
炭を主成分とする層を析出付着させることを特徴とする
分極性電極の製造方法。
1. A method for producing a polarizable electrode, which comprises depositing a layer containing activated carbon as a main component on a conductive substrate by electrophoretic deposition.
【請求項2】 電気泳動電着が、活性炭、バインダ、お
よび前記バインダの溶媒を含むスラリー中で、導電性基
板を正として対向電極との間に直流電界を印加して行う
請求項1記載の分極性電極の製造方法。
2. The electrophoretic electrodeposition is performed by applying a DC electric field between the counter electrode and a positive electrode of the conductive substrate in a slurry containing activated carbon, a binder, and a solvent of the binder. Manufacturing method of polarizable electrode.
【請求項3】 前記スラリーが、さらに導電性付与材を
含む請求項2記載の分極性電極の製造方法。
3. The method of manufacturing a polarizable electrode according to claim 2, wherein the slurry further contains a conductivity imparting material.
【請求項4】 導電性付与材が、カーボンブラック、ア
セチレンブラック、ケッチェンブラック、黒鉛粉末、炭
素繊維、および酸化ルテニウムからなる群より選択され
たものである請求項3記載の分極性電極の製造方法。
4. The production of a polarizable electrode according to claim 3, wherein the conductivity-imparting material is selected from the group consisting of carbon black, acetylene black, Ketjen black, graphite powder, carbon fiber, and ruthenium oxide. Method.
【請求項5】 バインダが多糖類から選ばれたものであ
る請求項2記載の分極性電極の製造方法。
5. The method for producing a polarizable electrode according to claim 2, wherein the binder is selected from polysaccharides.
【請求項6】 導電性基体が、金属または炭素の箔、ネ
ット、およびパンチング板のいずれかである請求項1ま
たは2記載の分極性電極の製造方法。
6. The method for producing a polarizable electrode according to claim 1, wherein the conductive substrate is one of a metal or carbon foil, a net, and a punching plate.
【請求項7】 溶媒が水およびアルコールからなる群よ
り選ばれたものである請求項2記載の分極性電極の製造
方法。
7. The method for producing a polarizable electrode according to claim 2, wherein the solvent is selected from the group consisting of water and alcohol.
JP7229191A 1995-09-06 1995-09-06 Method for manufacturing polarizable electrode Pending JPH0974052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7229191A JPH0974052A (en) 1995-09-06 1995-09-06 Method for manufacturing polarizable electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7229191A JPH0974052A (en) 1995-09-06 1995-09-06 Method for manufacturing polarizable electrode

Publications (1)

Publication Number Publication Date
JPH0974052A true JPH0974052A (en) 1997-03-18

Family

ID=16888237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7229191A Pending JPH0974052A (en) 1995-09-06 1995-09-06 Method for manufacturing polarizable electrode

Country Status (1)

Country Link
JP (1) JPH0974052A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042790A (en) * 2000-07-27 2002-02-08 Denso Corp Method for manufacturing battery electrode and device for manufacturing battery electrode
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
EP0867901A3 (en) * 1997-03-28 2005-04-13 Nec Tokin Corporation Electric double layer capacitor
JP2006237357A (en) * 2005-02-25 2006-09-07 Shinshu Univ Transparent thin film electrode and elecrochemical storage element including the same
JP2022530458A (en) * 2019-04-26 2022-06-29 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Electrode with conformal coating deposited on a porous current collector
WO2022166996A1 (en) * 2021-02-05 2022-08-11 太原科技大学 Method and apparatus for electrodepositing active material particles on electrode current collector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867901A3 (en) * 1997-03-28 2005-04-13 Nec Tokin Corporation Electric double layer capacitor
JP2002042790A (en) * 2000-07-27 2002-02-08 Denso Corp Method for manufacturing battery electrode and device for manufacturing battery electrode
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2006237357A (en) * 2005-02-25 2006-09-07 Shinshu Univ Transparent thin film electrode and elecrochemical storage element including the same
JP4621912B2 (en) * 2005-02-25 2011-02-02 国立大学法人信州大学 Transparent thin film electrode and electrochemical storage device having the same
JP2022530458A (en) * 2019-04-26 2022-06-29 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Electrode with conformal coating deposited on a porous current collector
WO2022166996A1 (en) * 2021-02-05 2022-08-11 太原科技大学 Method and apparatus for electrodepositing active material particles on electrode current collector

Similar Documents

Publication Publication Date Title
US8593787B2 (en) Electrochemical capacitor having lithium containing electrolyte
EP0112923B1 (en) Double electric layer capacitor
US10644324B2 (en) Electrode material and energy storage apparatus
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
RU2427052C1 (en) Electrode material for electric capacitor, its manufacturing method, and electric supercapacitor
KR20140073492A (en) Lithium ion capacitor, power storage device, power storage system
CN105745727A (en) Capacitor and method for manufacturing same
US20060126263A1 (en) Polarizable electrode for electric double layer capacitor, method for manufacturing same and electric double layer capacitor
KR101391136B1 (en) Method for manufacturing graphite film electro-deposited metal oxide for supercapacitor electrode and supercapacitor comprising the same
JP2002231585A (en) Electric double-layered capacitor
US6830594B2 (en) Process for producing an electric double layer capacitor and positive electrode for an electric double layer capacitor
JP4822554B2 (en) Foamed nickel chromium current collector for capacitor, electrode using the same, capacitor
JPH0974052A (en) Method for manufacturing polarizable electrode
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP4911294B2 (en) Slurry for electrode of electric double layer capacitor enclosing non-aqueous electrolyte and electric double layer capacitor using the slurry
JP2507125B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2014521231A5 (en)
JP3680883B2 (en) Electric double layer capacitor and manufacturing method thereof
CN104662627B (en) Capacitor electrode and use its capacitor
JPH06204085A (en) Electric double layer capacitor and manufacture thereof
JPH10223487A (en) Electrode for electric double layer capacitor and electric double layer capacitor
JP4043675B2 (en) Carbon material activation device, carbon material activation method, and electric double layer capacitor manufacturing method
JPH1064765A (en) Method of manufacturing electric double layer capacitor
JP2000306784A (en) Electrode for capacitor, manufacture thereof, and capacitor
JP2003309045A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041104