JP3262647B2 - Method for producing positive electrode active material for polymer solid electrolyte lithium battery - Google Patents

Method for producing positive electrode active material for polymer solid electrolyte lithium battery

Info

Publication number
JP3262647B2
JP3262647B2 JP21032293A JP21032293A JP3262647B2 JP 3262647 B2 JP3262647 B2 JP 3262647B2 JP 21032293 A JP21032293 A JP 21032293A JP 21032293 A JP21032293 A JP 21032293A JP 3262647 B2 JP3262647 B2 JP 3262647B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
lithium
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21032293A
Other languages
Japanese (ja)
Other versions
JPH0765836A (en
Inventor
賢治 中井
健介 弘中
他▲く▼美 早川
昭夫 小牧
昭嘉 犬伏
偉文 中長
三千雄 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP21032293A priority Critical patent/JP3262647B2/en
Publication of JPH0765836A publication Critical patent/JPH0765836A/en
Application granted granted Critical
Publication of JP3262647B2 publication Critical patent/JP3262647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高分子固体電解質リチウ
ム電池用正極活物質の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material for a solid polymer electrolyte lithium battery.

【0002】[0002]

【従来の技術】MnO2 、V2 5 ・nH2 O等の正極
活物質材料からなる正極活物質層と、金属リチウムから
なる負極活物質層とが高分子固体電解質層を介して積層
された構造を有する高分子固体電解質リチウム電池が知
られている。この種の電池では、電池を最初に放電する
前に正極活物質層中に予め負極活物質材料の金属リチウ
ムを複合させた含リチウム正極活物質(放電生成物)を
含有させておくと、電池の充放電サイクル特性を高めら
れることが知られている。そこで従来から、正極活物質
層中に金属リチウムを複合化させた含リチウム正極活物
質を含ませる種々の方法が検討されている。前述した正
極活物質材料の内、MnO2 等の遷移金属の酸化物の場
合には、リチウム塩と混合して高温で加熱する化学的合
成を行うと、これらの酸化物が熱分解してLiMnO2
で示される含リチウム正極活物質になるため、簡単に含
リチウム正極活物質を得ることができる。
2. Description of the Related Art A positive electrode active material layer made of a positive electrode active material such as MnO 2 , V 2 O 5 .nH 2 O, and a negative electrode active material layer made of metallic lithium are laminated via a polymer solid electrolyte layer. Polymer solid electrolyte lithium batteries having a modified structure are known. In this type of battery, if the positive electrode active material layer contains a lithium-containing positive electrode active material (discharge product) in which metal lithium as a negative electrode active material is previously contained in the positive electrode active material layer before discharging the battery for the first time, It has been known that the charge / discharge cycle characteristics of the battery can be improved. Therefore, conventionally, various methods for including a lithium-containing positive electrode active material in which metal lithium is compounded in a positive electrode active material layer have been studied. Among the above-mentioned positive electrode active material materials, in the case of oxides of transition metals such as MnO 2 , when mixed with a lithium salt and subjected to chemical synthesis by heating at a high temperature, these oxides are thermally decomposed and LiMnO 2 Two
Thus, the lithium-containing positive electrode active material can be easily obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、五酸化
バナジウムキセロゲル(V2 5 ・nH2 O)からLi
xV2 5 ・nH2 Oで示される含リチウム正極活物質
を生成するために、このような化学的合成方法を用いる
と、V2 5 ・nH2 Oが加熱により結晶化するため、
2 5 ・nH2 OをLiと結合させることができず、
LixV2 5 ・nH2 Oを得ることはできない。ま
た、非晶質五酸化バナジウム(V2 5 )の水溶液中に
t−ブチルリチウム、水酸化リチウム等のリチウム塩を
添加し、これを溶解、乾燥して五酸化バナジウムキセロ
ゲル(V2 5 ・nH2 O)を生成させる方法も考えら
れたが、非晶質五酸化バナジウム(V2 5 )の水溶液
がゲル化するため、このような方法でもLixV2 5
・nH2 Oを得ることはできなかった。また、LixV
2 5 ・nH2 Oは放電生成物であるため、最初に電池
を使用する前に過放電を行って、含リチウム正極活物質
を正極活物質層中に含ませることもできる。しかしなが
ら、単に電池を過放電させただけでは、正極活物質層全
体をX値が所定の範囲にある含リチウム正極活物質(L
ixV2 5 ・nH2 O)を略均一に分散させることが
できず、電池の充放電サイクル特性を十分に高めること
はできない。
However, vanadium pentoxide xerogel (V 2 O 5 .nH 2 O) is converted to Li
When such a chemical synthesis method is used to generate a lithium-containing positive electrode active material represented by xV 2 O 5 .nH 2 O, V 2 O 5 .nH 2 O is crystallized by heating.
V 2 O 5 .nH 2 O cannot be combined with Li,
LixV 2 O 5 .nH 2 O cannot be obtained. Further, the amorphous five vanadium oxide (V 2 O 5) aqueous solution of t- butyllithium in a, was added lithium salt such as lithium hydroxide, dissolved this dried to vanadium pentoxide xerogel (V 2 O 5 NH 2 O) was considered, but an aqueous solution of amorphous vanadium pentoxide (V 2 O 5 ) gelled, and thus LixV 2 O 5 was also used in such a method.
-NH 2 O could not be obtained. In addition, LixV
Since 2 O 5 .nH 2 O is a discharge product, it can be over-discharged before using the battery for the first time so that the lithium-containing positive electrode active material can be contained in the positive electrode active material layer. However, simply over-discharging the battery causes the entire positive electrode active material layer to have a lithium-containing positive electrode active material (L) having an X value within a predetermined range.
ixV 2 O 5 .nH 2 O) cannot be substantially uniformly dispersed, and the charge / discharge cycle characteristics of the battery cannot be sufficiently improved.

【0004】本発明の目的は、X値が所定の範囲にある
LixV2 5 ・nH2 Oを含んだ正極活物質層を形成
するのに用いることができる高分子固体電解質リチウム
電池用正極活物質の製造方法を提供することにある。
An object of the present invention is to provide a cathode active material for a polymer solid electrolyte lithium battery which can be used to form a cathode active material layer containing LixV 2 O 5 .nH 2 O having an X value within a predetermined range. An object of the present invention is to provide a method for producing a substance.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、高分
子固体電解質リチウム電池用正極活物質の製造方法を対
象にする。本発明では、まず高分子固体電解質を溶媒に
溶解させた溶液と五酸化バナジウムキセロゲル粉末と
を、内部に攪拌部材を備え、アノードに金属リチウムを
配置した電解槽に入れ、攪拌部材を作動させながら電解
を行ってLixV2 5 ・nH2 Oで示される含リチウ
ム五酸化バナジウムキセロゲルを含む電解スラリーを作
る。そして、電解槽から取り出した電解スラリーから溶
媒を揮発除去して高分子固体電解質リチウム電池用正極
活物質を作る。尚、高分子固体電解質を溶媒に溶解させ
た溶液及び五酸化バナジウムキセロゲル粉末は、両者を
混合した混合スラリーの状態で電解槽に入れてもよく、
両者を別々に電解槽に入れてもよい。
The invention of claim 1 is directed to a method for producing a positive electrode active material for a solid polymer electrolyte lithium battery. In the present invention, first, a solution in which a polymer solid electrolyte is dissolved in a solvent and a vanadium pentoxide xerogel powder are provided with an agitating member inside, and placed in an electrolytic tank in which metallic lithium is arranged on the anode, and the agitating member is operated. Electrolysis is performed to produce an electrolytic slurry containing lithium-containing vanadium pentoxide xerogel represented by LixV 2 O 5 .nH 2 O. Then, the solvent is volatilized and removed from the electrolytic slurry taken out of the electrolytic cell to produce a positive electrode active material for a polymer solid electrolyte lithium battery. Incidentally, the solution in which the polymer solid electrolyte is dissolved in the solvent and the vanadium pentoxide xerogel powder may be put in an electrolytic cell in a state of a mixed slurry in which both are mixed,
Both may be put separately in the electrolytic cell.

【0006】請求項2の発明では、LixV2 5 ・n
2 Oのxの値が0.05<x<3.0となるように電
解槽で電解する。電解を行う際の通電量を調整すること
によりxの値を簡単に変えることができる。
In the invention of claim 2, LixV 2 O 5 .n
Electrolysis is performed in an electrolytic cell so that the value of x of H 2 O is 0.05 <x <3.0. The value of x can be easily changed by adjusting the amount of electricity when performing electrolysis.

【0007】請求項3の発明では、攪拌部材をカソード
にする。
According to the third aspect of the present invention, the stirring member is a cathode.

【0008】請求項4の発明は、高分子固体電解質リチ
ウム電池用正極活物質の製造方法を対象にする。本発明
では、まず五酸化バナジウムキセロゲル膜を粉砕して五
酸化バナジウムキセロゲル粉末を作り、更にポリフォス
ファゼン誘導体を溶媒に溶解させた溶液にリチウム塩を
溶解させてリチウムイオン伝導性高分子固体電解質溶液
を作る。次に五酸化バナジウムキセロゲル粉末と、リチ
ウムイオン伝導性高分子固体電解質溶液と導電助材とを
混合して混合スラリーを作る。次に内部に攪拌部材を備
え、攪拌部材をカソードとし、アノードに金属リチウム
を配置した電解槽に混合スラリーを入れて攪拌部材を作
動させながら電解を行って含リチウム五酸化バナジウム
キセロゲルを含む電解スラリーを作る。次に、電解槽か
ら取り出した電解スラリーから溶媒を揮発除去したもの
をローラプレスによりシート状に圧延して正極活物質シ
ートを作り、正極活物質シートから所定形状の高分子固
体電解質リチウム電池用正極活物質を製造する。
[0008] The invention of claim 4 is directed to a method for producing a positive electrode active material for a polymer solid electrolyte lithium battery. In the present invention, first, a vanadium pentoxide xerogel film is pulverized to prepare a vanadium pentoxide xerogel powder, and further, a lithium salt is dissolved in a solution in which a polyphosphazene derivative is dissolved in a solvent to form a lithium ion conductive polymer solid electrolyte solution. make. Next, a mixed slurry is prepared by mixing the vanadium pentoxide xerogel powder, the lithium ion conductive polymer solid electrolyte solution and the conductive additive. Next, a stirring member is provided inside, the mixed slurry is put in an electrolytic cell in which the stirring member is used as a cathode, and metal lithium is placed in the anode, and electrolysis is performed while the stirring member is operated to perform electrolytic slurry containing lithium-containing vanadium pentoxide xerogel. make. Next, a material obtained by volatilizing and removing the solvent from the electrolytic slurry taken out of the electrolytic cell is rolled into a sheet by a roller press to form a positive electrode active material sheet, and a positive electrode for a polymer solid electrolyte lithium battery having a predetermined shape is formed from the positive electrode active material sheet. Manufacture active material.

【0009】[0009]

【作用】請求項1の発明は、電解により五酸化バナジウ
ムキセロゲル(V2 5 ・nH2 O)からLixV2
5 ・nH2 Oで示される含リチウム正極活物質を作る方
法である。本発明では、高分子固体電解質を電解用電解
質として利用して、五酸化バナジウムキセロゲル粉末と
高分子固体電解質を溶媒に溶解させた溶液とを混合した
物に通電処理を行うことによりLixV2 5 ・nH2
Oで示される含リチウム正極活物質を簡単に作ることが
できる。しかも本発明によれば、混合物を攪拌しながら
混合物中の五酸化バナジウムキセロゲル粉末を電解する
ので、正極活物質層全体中にX値が所定の範囲に入った
含リチウム正極活物質(LixV25 ・nH2 O)を
略均等に分散させることができる。
According to the first aspect of the present invention, LixV 2 O is converted from vanadium pentoxide xerogel (V 2 O 5 .nH 2 O) by electrolysis.
This is a method for producing a lithium-containing positive electrode active material represented by 5 · nH 2 O. In the present invention, a mixture of a vanadium pentoxide xerogel powder and a solution obtained by dissolving a polymer solid electrolyte in a solvent is used as an electrolyte for electrolysis, using a polymer solid electrolyte as an electrolyte for electrolysis, whereby LixV 2 O 5・ NH 2
A lithium-containing positive electrode active material represented by O can be easily produced. Moreover, according to the present invention, the vanadium pentoxide xerogel powder in the mixture is electrolyzed while the mixture is being stirred, so that the lithium-containing positive electrode active material (LixV 2 O) having an X value within a predetermined range in the entire positive electrode active material layer. 5 · nH 2 O) can be substantially uniformly dispersed.

【0010】電解スラリーを作る電解は請求項2の発明
のようにLixV2 5 ・nH2 Oのxの値が0.05
<x<3.0となるように行うのが好ましい。xの値が
0.05以下のLixV2 5 ・nH2 Oを含む正極活
物質を、負極側に金属リチウム(負極活物質)層を配置
した初充電を必要としない電池に用いると、放電容量の
容量保持率(初回の放電容量に対する2サイクル目以降
の放電容量の割合)が低下するという問題が生じる。こ
れは、理由は定かではないが、含リチウム正極活物質
(LixV2 5 ・nH2 O)を正極活物質層中に含む
電池は、充電を行ってもxの値が0.05以下になるま
で充電できないためである。またxの値が3.0以上に
なると正極活物質が充電生成物に戻り難くなるという問
題が生じる。
In the electrolysis for producing the electrolytic slurry, the value of x of LixV 2 O 5 .nH 2 O is 0.05
It is preferable to carry out such that <x <3.0. When a positive electrode active material containing LixV 2 O 5 .nH 2 O having a value of x of 0.05 or less is used in a battery that does not require initial charge and a metal lithium (negative electrode active material) layer is disposed on the negative electrode side, discharge occurs. There is a problem that the capacity retention rate of the capacity (the ratio of the discharge capacity after the second cycle to the first discharge capacity) decreases. The reason for this is not clear, but for a battery containing a lithium-containing positive electrode active material (LixV 2 O 5 .nH 2 O) in the positive electrode active material layer, the value of x becomes 0.05 or less even after charging. This is because the battery cannot be charged until it becomes. Further, when the value of x is 3.0 or more, there is a problem that it is difficult for the positive electrode active material to return to the charge product.

【0011】請求項3の発明のように、攪拌部材をカソ
ードとして構成すると、電解を行う電槽の装置を簡略で
きる上、電解効率(クーロン効率)を高めることができ
る。
When the stirring member is configured as a cathode as in the third aspect of the present invention, the apparatus of the battery case for performing electrolysis can be simplified and the electrolysis efficiency (coulomb efficiency) can be increased.

【0012】[0012]

【実施例】以下、本発明の実施例の製造方法を図面を参
照して詳細に説明する。まず、以下のようにして五酸化
バナジウムキセロゲル粉末を作った。まず非晶質五酸化
バナジウム3重量%の水溶液をステンレス板、四フッ化
エチレン樹脂板等の基体に塗布した後に乾燥して、五酸
化バナジウムキセロゲル(V2 5 ・nH2 O)膜を形
成した。尚、V2 5 ・nH2 Oのnの値が0.1<n
<1.6の範囲になるようにV2 5 ・nH2 Oを形成
するのが好ましい。nの値が0.1以下になると五酸化
バナジウムが結晶化しやすくなるという問題がある。ま
たnの値が1.6以上になると負極活物質(リチウム)
が過剰の結合水と反応するため、電池性能が低下すると
いう問題がある。次にこの五酸化バナジウムキセロゲル
膜を基体から剥がし粉砕してから、120℃、10−2
気圧で16時間減圧乾燥して平均粒径10μm の五酸化
バナジウムキセロゲル粉末を作った。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a manufacturing method of an embodiment of the present invention. First, a vanadium pentoxide xerogel powder was prepared as follows. First, an aqueous solution containing 3% by weight of amorphous vanadium pentoxide is applied to a substrate such as a stainless steel plate or an ethylene tetrafluoride resin plate, and then dried to form a vanadium pentoxide xerogel (V 2 O 5 .nH 2 O) film. did. The value of n of V 2 O 5 .nH 2 O is 0.1 <n
It is preferable to form V 2 O 5 .nH 2 O so as to fall within the range of <1.6. When the value of n is 0.1 or less, there is a problem that vanadium pentoxide is easily crystallized. When the value of n is 1.6 or more, the negative electrode active material (lithium)
Reacts with excess bound water, which causes a problem that battery performance is reduced. Next, this vanadium pentoxide xerogel film after grinding peeled from the substrate, 120 ℃, 10 -2
Drying under reduced pressure at atmospheric pressure for 16 hours gave a vanadium pentoxide xerogel powder having an average particle size of 10 μm.

【0013】次にポリフォスファゼン誘導体の一種であ
るメトキシオリゴエチレンオキシポリフォスファゼン
(MEP)と該MEPに対して8重量%のLiClO4
からなるリチウム塩とを1、2−ジメトキシエタン(D
ME)からなる溶媒中に13重量%溶かしてリチウムイ
オン伝導性高分子固体電解質用溶液を作った。尚、ME
Pに対するLiClO4 の量は3〜18重量%が好まし
く、MEPとLiClO4 との混合物をDMEに溶かす
割合は5〜20重量%が好ましい。
Next, methoxy oligoethylene oxy polyphosphazene (MEP), which is a kind of polyphosphazene derivative, and 8% by weight of LiClO 4 based on the MEP.
And 1,2-dimethoxyethane (D
ME) was dissolved in a solvent of 13% by weight to prepare a solution for a lithium ion conductive polymer solid electrolyte. In addition, ME
The amount of LiClO 4 with respect to P is preferably 3 to 18% by weight, and the ratio of dissolving a mixture of MEP and LiClO 4 in DME is preferably 5 to 20% by weight.

【0014】次に前述の五酸化バナジウムキセロゲル粉
末と高分子固体電解質用溶液とアセチレンブラック(A
B)からなる導電助材とを重量比5:3:2の割合で混
合して混合スラリーを作った。尚、アセチレンブラック
は150℃、10−2 気圧で48時間減圧乾燥したもの
を用いた。そして図1の概略断面図に示す電解槽に混合
スラリーを入れ、混合スラリーを攪拌しながら混合スラ
リーS中の五酸化バナジウムキセロゲル(V2 5 ・n
2 O)粉末を下記の反応式により含リチウム酸化バナ
ジウムキセロゲル(LixV2 5 ・nH2 O)にして
含リチウム五酸化バナジウムキセロゲルを含む電解スラ
リーを作った。 V2 5 ・nH2 O+xLi+xe→LixV2
5 ・nH2 O ここで図1に示される電解槽の構造について説明する。
本図において、1は電解容器であり、2はアノードであ
り、3はアノード側電解部材であり、4はセパレータで
あり、5はカソードを構成する攪拌部材であり、6は電
源であり、7は電解容器用蓋部である。電解容器1はガ
ラスにより形成されており、直径50mm×高さ50mmの
円筒形を有している。アノード2はステンレス製の網部
2aに端子部2bが連結された構造を有している。網部
2aは円筒形を成しており、電解容器1の内壁面1aと
所定の間隔を隔てて対向する。端子部2bは蓋部7に支
持されており、その端部が電源6の正極出力端子に接続
されている。アノード電解部材3は500gの金属リチ
ウムからなり、アノード2の網部2aの内壁部2cの全
面に亘って圧接されている。セパレータ4はポリプロピ
レン製の不織布により形成されており、電解容器1内を
アノード領域1bとカソード領域1cとに区切ってい
る。アノード領域1b内には前述の電解スラリーを作る
際に用いたものと同成分のリチウムイオン伝導性高分子
固体電解質用溶液Yが満たされており、カソード領域1
c内には混合スラリーSが満たされている。セパレータ
4はその正極領域1b側の側面4aがアノード側電解部
材3に接合されてアノード側電解部材3に支持されてい
る。攪拌部材5は回転軸5aに4枚の攪拌羽5bが等角
度間隔で連結された構造を有している。回転軸5aはス
テンレス管により形成されており、一端が電源6の負極
出力端子に接続されている。回転軸5aは電解容器用蓋
部7に図示しない軸受を介して回転自在に軸支され、図
示しないモータにより回転駆動される。攪拌羽5bは回
転軸5aに固定されたステンレス製のフレームにステン
レス製の網が取り付けられて構成されている。網の網目
形状及び寸法は、負極領域1c内の混合スラリーSを満
遍なく攪拌できるように定められている。電解容器用蓋
部7は電解容器1と同様にガラスにより形成されてい
る。
Next, the above-mentioned vanadium pentoxide xerogel powder, a solution for a solid polymer electrolyte, and acetylene black (A
A mixed slurry was prepared by mixing the conductive assistant composed of B) in a weight ratio of 5: 3: 2. The acetylene black used was dried under reduced pressure at 150 ° C. and 10 −2 atm for 48 hours. Then, the mixed slurry is put into the electrolytic cell shown in the schematic sectional view of FIG. 1, and the mixed slurry S is stirred while vanadium pentoxide xerogel (V 2 O 5 .n
The H 2 O) powder was converted into a lithium-containing vanadium oxide xerogel (LixV 2 O 5 .nH 2 O) according to the following reaction formula to prepare an electrolytic slurry containing the lithium-containing vanadium pentoxide xerogel. V 2 O 5 .nH 2 O + xLi + + xe → LixV 2 O
5 · nH 2 O Here, the structure of the electrolytic cell shown in FIG. 1 will be described.
In this figure, 1 is an electrolytic container, 2 is an anode, 3 is an anode-side electrolytic member, 4 is a separator, 5 is a stirring member constituting a cathode, 6 is a power source, 7 Denotes a lid for an electrolytic container. The electrolytic vessel 1 is formed of glass and has a cylindrical shape with a diameter of 50 mm and a height of 50 mm. The anode 2 has a structure in which a terminal 2b is connected to a mesh 2a made of stainless steel. The mesh portion 2a has a cylindrical shape, and faces the inner wall surface 1a of the electrolytic container 1 at a predetermined interval. The terminal 2 b is supported by the lid 7, and its end is connected to the positive output terminal of the power supply 6. The anode electrolytic member 3 is made of 500 g of metallic lithium, and is pressed against the entire inner wall 2 c of the mesh 2 a of the anode 2. The separator 4 is formed of a nonwoven fabric made of polypropylene, and divides the inside of the electrolytic container 1 into an anode region 1b and a cathode region 1c. The anode region 1b is filled with a solution Y for a lithium ion conductive polymer solid electrolyte having the same components as those used in preparing the above-mentioned electrolytic slurry.
The mixed slurry S is filled in c. The side surface 4a of the separator 4 on the positive electrode region 1b side is joined to the anode-side electrolytic member 3 and supported by the anode-side electrolytic member 3. The stirring member 5 has a structure in which four stirring blades 5b are connected to the rotating shaft 5a at equal angular intervals. The rotating shaft 5a is formed of a stainless steel tube, and one end is connected to a negative output terminal of the power source 6. The rotating shaft 5a is rotatably supported by the electrolytic container lid 7 via a bearing (not shown) via a bearing (not shown), and is rotationally driven by a motor (not shown). The stirring blade 5b is configured by attaching a stainless steel net to a stainless steel frame fixed to the rotating shaft 5a. The mesh shape and size of the mesh are determined so that the mixed slurry S in the negative electrode region 1c can be stirred uniformly. The electrolytic container lid 7 is formed of glass similarly to the electrolytic container 1.

【0015】本実施例では、混合スラリーS中の五酸化
バナジウムキセロゲル粉末の量を5gとし、回転軸5a
を20r/mで回転させながら、電解電流を10mAと
し、カット電圧を2.5Vとして、電解電流がカット電
圧に達するまで通電した後に、2.5V(30℃)で定
電圧通電して、電解外部回路に設たクーロメータのクー
ロン量が2650クーロンになるまで電解した。尚、ク
ーロン量が2650クーロンになるまで電解するとLi
xV2 5 ・nH2 Oのxの平均値は1.0になる。
In this embodiment, the amount of the vanadium pentoxide xerogel powder in the mixed slurry S is set to 5 g, and the rotating shaft 5a
While rotating at 20 r / m, the electrolytic current was set to 10 mA, the cut voltage was set to 2.5 V, and the current was supplied until the electrolytic current reached the cut voltage. Electrolysis was performed until the coulomb amount of the coulometer provided in the external circuit reached 2650 coulombs. When electrolysis is performed until the coulomb amount becomes 2650 coulombs, Li
The average value of x of xV 2 O 5 .nH 2 O is 1.0.

【0016】次に電解槽から電解スラリーを取り出して
から、電解スラリーを40℃の雰囲気中に24時間放置
して電解スラリーから溶媒(DME)を揮発除去した。
そして、溶媒を揮発除去した電解スラリーをローラプレ
スによりシート状に圧延して正極活物質シートを作り、
この正極活物質シートを厚み1.18mm×35mm×35
mmの寸法に切断して所定形状の高分子固体電解質リチウ
ム電池用正極活物質を完成した。尚、この正極活物質中
の含リチウム五酸化バナジウムキセロゲル(LixV2
5 ・nH2 O)は0.1gであった。
Next, after taking out the electrolytic slurry from the electrolytic bath, the electrolytic slurry was left in an atmosphere of 40 ° C. for 24 hours to volatilize and remove the solvent (DME) from the electrolytic slurry.
Then, the electrolytic slurry from which the solvent was removed by volatilization was rolled into a sheet by a roller press to form a positive electrode active material sheet,
This positive electrode active material sheet has a thickness of 1.18 mm × 35 mm × 35.
By cutting into a size of mm, a positive electrode active material for a polymer solid electrolyte lithium battery having a predetermined shape was completed. The positive electrode active material contained lithium-containing vanadium pentoxide xerogel (LixV 2
O 5 .nH 2 O) was 0.1 g.

【0017】次に本実施例の方法で製造した正極活物質
を用いて図2に示すような断面を有する偏平形の高分子
固体電解質リチウム電池を以下のようにして製造し、こ
の電池のサイクル寿命特性を調べた。まず厚み20μm
のニッケル箔からなる正極集電体11の一方の表面11
aの中央部分に本実施例の方法で製造した正極活物質を
貼り付けて厚み1.18mmの五酸化バナジウムキセロゲ
ル(V2 5 ・nH2O) からなる正極活物質層12を
形成した。
Next, using the positive electrode active material produced by the method of this embodiment, a flat polymer solid electrolyte lithium battery having a cross section as shown in FIG. 2 is produced as follows. The life characteristics were examined. First, thickness 20μm
Surface 11 of positive electrode current collector 11 made of nickel foil
The positive electrode active material produced by the method of this example was attached to the central portion of a to form a positive electrode active material layer 12 of vanadium pentoxide xerogel (V 2 O 5 .nH 2 O) having a thickness of 1.18 mm.

【0018】次に、以下のようにしてリチウム保持体層
(負極活物質保持体層)13を作った。まず天然グラフ
ァイトとメトキシオリゴエチレンオキシポリフォスファ
ゼン(MEP)との重量比が3:7になるように、天然
グラファイトと前述の正極活物質を製造する際に用いた
リチウムイオン伝導性高分子固体電解質用溶液とを十分
に混練した。そしてこれを40℃の雰囲気中に24時間
放置して溶媒(DME)を揮発除去して負極活物質保持
体材料を作った。次にこの負極活物質保持体材料をロー
ラプレスによりシート状に圧延して負極活物質保持体シ
ートを作り、この負極活物質保持体シートを厚み0.1
mm×35mm×35mmの寸法に切断して所定形状の負極活
物質保持体を完成した。そして厚み20μm のステンレ
ス箔からなる負極集電体14の一方の表面14aの中央
部分に負極活物質保持体を貼り付けて厚み0.1mmの負
極活物質保持体層13を形成した。
Next, a lithium carrier layer (negative electrode active material carrier layer) 13 was formed as follows. First, the lithium ion conductive polymer solid electrolyte used in producing the natural graphite and the above-described positive electrode active material so that the weight ratio of the natural graphite to methoxy oligoethyleneoxy polyphosphazene (MEP) is 3: 7. And the solution for mixing. Then, this was left in an atmosphere of 40 ° C. for 24 hours to evaporate and remove the solvent (DME) to prepare a negative electrode active material holding material. Next, the negative electrode active material holding material was rolled into a sheet by a roller press to form a negative electrode active material holding sheet, and the negative electrode active material holding sheet was formed to a thickness of 0.1%.
By cutting into dimensions of mm × 35 mm × 35 mm, a negative electrode active material holder having a predetermined shape was completed. Then, a negative electrode active material holder was attached to the center of one surface 14a of the negative electrode current collector 14 made of a stainless steel foil having a thickness of 20 μm to form a negative electrode active material holder layer 13 having a thickness of 0.1 mm.

【0019】次に正極集電体11の外周端部11bの上
にホットメルト15を載置してから正極活物質層12を
全体的に覆うようにして正極活物質層12上にリチウム
イオン伝導性高分子固体電解質用溶液を塗布した。そし
て、このリチウムイオン伝導性高分子固体電解質用溶液
を乾燥した。また負極活物質保持体層13上にもリチウ
ムイオン伝導性高分子固体電解質用溶液を塗布してか
ら、このリチウムイオン伝導性高分子固体電解質用溶液
を乾燥した。そして正極活物質層12と負極活物質保持
体層13とが対向するように正極集電体11と負極集電
体14とを積層した。このようにして積層すると正極活
物質層12と負極活物質保持体層13との間には両者の
層に塗布された乾燥状態のリチウムイオン伝導性高分子
固体電解質用溶液が接合して厚み100μm の高分子固
体電解質層16が形成される。次に加熱によりホットメ
ルト15を集電体11及び14の外周端部11b及び1
4bに完全に接続して高分子固体電解質リチウム電池を
完成した。このようにリチウムイオンをドープするリチ
ウム保持体(負極活物質保持体)を負極側に配置した高
分子固体電解質リチウム電池の正極活物質層を含リチウ
ム五酸化バナジウムキセロゲル(LixV2 5 ・nH
2 O)で構成すると、負極活物質保持体中に負極活物質
を配置する必要がなく電池の製造が簡単になる。
Next, the hot melt 15 is placed on the outer peripheral end 11 b of the positive electrode current collector 11, and the lithium ion conductive material 12 is placed on the positive electrode active material layer 12 so as to entirely cover the positive electrode active material layer 12. The solution for conductive polymer solid electrolyte was applied. Then, the solution for a lithium ion conductive polymer solid electrolyte was dried. Further, a solution for a lithium ion conductive polymer solid electrolyte was applied also on the negative electrode active material holding layer 13, and then the solution for a lithium ion conductive polymer solid electrolyte was dried. Then, the positive electrode current collector 11 and the negative electrode current collector 14 were stacked such that the positive electrode active material layer 12 and the negative electrode active material holding layer 13 faced each other. When the layers are laminated in this manner, the solution for the lithium ion conductive polymer solid electrolyte in a dry state applied to both layers is joined between the positive electrode active material layer 12 and the negative electrode active material holding layer 13 to have a thickness of 100 μm. Is formed. Next, the hot melt 15 is heated so that the outer peripheral ends 11b and 1 of the current collectors 11 and 14 are removed.
4b to complete a solid polymer electrolyte lithium battery. As described above, the positive electrode active material layer of the polymer solid electrolyte lithium battery in which the lithium holder doped with lithium ions (negative electrode active material holder) is disposed on the negative electrode side contains lithium vanadium pentoxide xerogel (LixV 2 O 5 .nH).
When composed of 2O), it is not necessary to dispose the negative electrode active material in the negative electrode active material holder, and the production of the battery is simplified.

【0020】次にこの電池を電解電流を0.5mAと
し、カット電圧を2.5Vとして、電解電流がカット電
圧に達するまで通電した後に、4.0Vで定電圧充電す
る初充電を行った後に、電池に充放電を繰返して、電池
の充放電サイクル特性を調べた。尚、充放電は下記の条
件で行った。 放電:0.5mA、終止電圧:2.0V(25℃) 充電:0.5mA、終止電圧:4.0V(25℃)、
4.0V定電圧充電併用 図3は充放電サイクル特性の測定結果を示している。本
図より本実施例の方法で製造した正極活物質を用いると
200サイクルを超えても電池容量を13mAhという比
較的高い容量で維持できる電池を得られるのが判る。
Next, the battery was subjected to an electrolytic current of 0.5 mA, a cut voltage of 2.5 V, and a current was supplied until the electrolytic current reached the cut voltage. The battery was repeatedly charged and discharged, and the charge and discharge cycle characteristics of the battery were examined. The charging and discharging were performed under the following conditions. Discharge: 0.5 mA, final voltage: 2.0 V (25 ° C.) Charge: 0.5 mA, final voltage: 4.0 V (25 ° C.)
FIG. 3 shows the measurement results of the charge / discharge cycle characteristics. From this figure, it can be seen that a battery capable of maintaining a relatively high battery capacity of 13 mAh can be obtained by using the positive electrode active material manufactured by the method of the present embodiment even after 200 cycles.

【0021】次に二種類の正極活物質を用いた電池A,
Bを製造して、各電池の充放電サイクルに対する初回放
電容量保持率(初回放電の放電容量に対する各サイクル
時の放電容量の割合)を調べた。電池Aの正極活物質は
本発明の他の実施例の方法で製造した正極活物質であ
り、LixV2 5 ・nH2 Oのxの平均値が0.1に
なるまで電解を行い、その他は前述の実施例と同様の方
法で製造した。電池Bの正極活物質はV2 5 ・nH2
Oで示されるLiを含まない正極活物質である。また電
池A,Bは共に負極活物質保持体層の代わりに25mg
の金属リチウムにより負極活物質層を形成し、負極活物
質保持体層と正極活物質層とを除いては前述の図2に示
す電池と同様の構造を有している。そして、電池A,B
に図3に示す充放電サイクル特性試験と同じ条件の充放
電を繰り返して、各電池の充放電サイクルに対する初回
放電容量保持率を測定した。図4はその測定結果を示し
ている。本図より本発明の他の実施例の方法で製造した
正極活物質を用いた電池Aは、充放電サイクルが40サ
イクルを過ぎても初回放電容量保持率を高く(略100
%)維持できるのに対して、Liを含まない正極活物質
を用いた電池Bは、初回放電容量保持率が低い(略90
%)のが判る。これは、電池Aは1回目の放電で正極活
物質中に取り込まれたLiが次に行う1回目の充電で全
て脱離するので2回目の放電の容量を高く維持できるの
に対して、Liを含まない正極活物質を用いた電池Bは
1回目の放電で正極活物質中に取り込まれたLiが次に
行う1回目の充電で電池を充電しても取り込まれたLi
の10%が正極活物質中に残留するため2回目の放電の
容量が10%低下するためである。
Next, batteries A using two kinds of positive electrode active materials,
B was manufactured, and the initial discharge capacity retention rate (the ratio of the discharge capacity in each cycle to the discharge capacity of the initial discharge) for the charge / discharge cycle of each battery was examined. The positive electrode active material of the battery A is a positive electrode active material manufactured by the method of another embodiment of the present invention, and electrolysis is performed until the average value of x of LixV 2 O 5 .nH 2 O becomes 0.1. Was manufactured in the same manner as in the above-mentioned example. The positive electrode active material of Battery B was V 2 O 5 .nH 2
The positive electrode active material does not contain Li and is represented by O. The batteries A and B each contained 25 mg instead of the negative electrode active material holding layer.
The negative electrode active material layer is formed of metallic lithium, and has the same structure as that of the battery shown in FIG. 2 except for the negative electrode active material holding layer and the positive electrode active material layer. And batteries A and B
The charge and discharge under the same conditions as the charge and discharge cycle characteristics test shown in FIG. 3 were repeated, and the initial discharge capacity retention rate of each battery with respect to the charge and discharge cycles was measured. FIG. 4 shows the measurement results. From this figure, it can be seen that the battery A using the positive electrode active material manufactured by the method of another embodiment of the present invention has a high initial discharge capacity retention ratio (approximately 100) even after 40 charge / discharge cycles.
%), The battery B using the positive electrode active material containing no Li has a low initial discharge capacity retention (about 90%).
%). This is because in the battery A, Li taken in the positive electrode active material in the first discharge is completely desorbed in the next first charge, so that the capacity of the second discharge can be kept high, whereas Li In the battery B using the positive electrode active material containing no Li, the Li taken in the positive electrode active material in the first discharge is charged even when the battery is charged in the next first charge.
This is because 10% of the remaining in the positive electrode active material decreases the capacity of the second discharge by 10%.

【0022】尚、本実施例では攪拌部材をカソードによ
り構成したが、本発明はこれに限定されるものではな
く、攪拌部材とカソードとを別々に構成しても構わない
のは勿論である。
In this embodiment, the stirring member is constituted by the cathode, but the present invention is not limited to this, and the stirring member and the cathode may be constituted separately.

【0023】[0023]

【発明の効果】請求項1の発明は、電解により五酸化バ
ナジウムキセロゲル(V2 5 ・nH2 O)からLix
2 5 ・nH2 Oで示される含リチウム正極活物質を
作る方法である。本発明では、混合スラリー中の高分子
固体電解質を電解用電解質として利用して、五酸化バナ
ジウムキセロゲル粉末と高分子固体電解質を溶媒に溶解
させた溶液とを混合した物に通電処理を行うことにより
LixV2 5 ・nH2Oで示される含リチウム正極活
物質を簡単に作ることができる。しかも本発明によれ
ば、混合物を攪拌しながら混合物中の五酸化バナジウム
キセロゲル粉末を電解するので、正極活物質層全体中に
X値が所定の範囲に入った含リチウム正極活物質(Li
xV2 5 ・nH2 O)を略均等に分散させることがで
きる。
According to the first aspect of the present invention, Lix is converted from vanadium pentoxide xerogel (V 2 O 5 .nH 2 O) by electrolysis.
This is a method for producing a lithium-containing positive electrode active material represented by V 2 O 5 .nH 2 O. In the present invention, by using the polymer solid electrolyte in the mixed slurry as an electrolyte for electrolysis, by applying a current treatment to a mixture of a vanadium pentoxide xerogel powder and a solution obtained by dissolving the polymer solid electrolyte in a solvent. A lithium-containing positive electrode active material represented by LixV 2 O 5 .nH 2 O can be easily produced. In addition, according to the present invention, the vanadium pentoxide xerogel powder in the mixture is electrolyzed while stirring the mixture, so that the lithium-containing positive electrode active material (Li) having the X value within a predetermined range in the entire positive electrode active material layer.
xV 2 O 5 .nH 2 O) can be substantially uniformly dispersed.

【0024】請求項2の発明によれば、負極側に金属リ
チウム(負極活物質)層を配置した初充電を必要としな
い電池に用いると、放電容量の容量保持率(初回の放電
容量に対する2サイクル目以降の放電容量の割合)を高
く維持でき、正極活物質が充電生成物に戻り難くなると
いう問題を解決できるる。
According to the second aspect of the present invention, when used in a battery that does not require initial charging, in which a metal lithium (negative electrode active material) layer is disposed on the negative electrode side, the capacity retention ratio of discharge capacity (2. Thus, the problem that the positive electrode active material is hardly returned to the charge product can be solved.

【0025】請求項3の発明によれば、攪拌部材をカソ
ードとして構成するので、電解を行う電槽の装置を簡略
できる上、電解効率(クーロン効率)を高めることがで
きる。
According to the third aspect of the present invention, since the stirring member is configured as a cathode, the device of the battery case for performing electrolysis can be simplified, and the electrolysis efficiency (coulomb efficiency) can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施例の製造方法で用いる電解槽の概略断
面図である。
FIG. 1 is a schematic cross-sectional view of an electrolytic cell used in a production method of the present embodiment.

【図2】 本実施例の方法で製造した正極活物質を用い
た電池の断面図である。
FIG. 2 is a cross-sectional view of a battery using the positive electrode active material manufactured by the method of the present example.

【図3】 本実施例の方法で製造した正極活物質を用い
た電池の充放電サイクル特性を示す図である。
FIG. 3 is a diagram showing charge / discharge cycle characteristics of a battery using the positive electrode active material manufactured by the method of the present example.

【図4】 試験に用いた電池の充放電サイクルに対する
初回放電容量保持率を示す図である。
FIG. 4 is a diagram showing an initial discharge capacity retention ratio for a charge / discharge cycle of a battery used in a test.

【符号の説明】[Explanation of symbols]

2 アノード 3 アノード側電解部材(金属リチウム) 5 カソード(攪拌部材) 2 Anode 3 Anode-side electrolytic member (metal lithium) 5 Cathode (stirring member)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 他▲く▼美 東京都新宿区西新宿二丁目1番1号 新 神戸電機株式会社内 (72)発明者 小牧 昭夫 東京都新宿区西新宿二丁目1番1号 新 神戸電機株式会社内 (72)発明者 犬伏 昭嘉 徳島県徳島市川内町加賀須野463番地 大塚化学株式会社 徳島研究所内 (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463番地 大塚化学株式会社 徳島研究所内 (72)発明者 笹岡 三千雄 徳島県徳島市川内町加賀須野463番地 大塚化学株式会社 徳島研究所内 (56)参考文献 特開 平5−94818(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 4/02 - 4/04 H01M 10/40 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hayakawa et al. ▲ KU ▼ Beauty 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Shin-Kobe Electric Co., Ltd. (72) Inventor Akio Komaki Nishi-Shinjuku, Shinjuku-ku, Tokyo Chome 1-1 Shin Shin Kobe Electric Co., Ltd. 463 Kagasuno, Tokushima Research Laboratories, Otsuka Chemical Co., Ltd. (58) Fields surveyed (Int. Cl. 7 , DB name) H01M 4/36-4/62 H01M 4/02-4/04 H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高分子固体電解質を溶媒に溶解させた溶
液と五酸化バナジウムキセロゲル粉末とを、内部に攪拌
部材を備えてアノードに金属リチウムを配置した電解槽
に入れ、前記攪拌部材を作動させながら電解を行ってL
ixV2 O5 ・nH2 Oで示される含リチウム五酸化バ
ナジウムキセロゲルを含む電解スラリーを作り、 前記電解槽から取り出した前記電解スラリーから前記溶
媒を揮発除去して高分子固体電解質リチウム電池用正極
活物質を製造することを特徴とする高分子固体電解質リ
チウム電池用正極活物質の製造方法。
1. A solution prepared by dissolving a solid polymer electrolyte in a solvent and a vanadium pentoxide xerogel powder are placed in an electrolytic tank provided with a stirring member inside and lithium metal disposed on an anode, and the stirring member is operated. While performing electrolysis, L
An electrolytic slurry containing lithium-containing vanadium pentoxide xerogel represented by ixV2O5.nH2O is prepared, and the solvent is volatilized and removed from the electrolytic slurry taken out of the electrolytic cell to produce a positive electrode active material for a polymer solid electrolyte lithium battery. A method for producing a positive electrode active material for a polymer solid electrolyte lithium battery.
【請求項2】 前記LixV2 O5 ・nH2 Oの前記x
の値が0.05<x<3.0となるように前記電解槽で
電解することを特徴とする請求項1に記載の高分子固体
電解質リチウム電池用正極活物質の製造方法。
2. The said x of said LixV2O5.nH2O.
The method for producing a positive electrode active material for a polymer solid electrolyte lithium battery according to claim 1, wherein the electrolysis is performed in the electrolytic cell so that the value of A is 0.05 <x <3.0.
【請求項3】 前記攪拌部材をカソードにしたことを特
徴とする請求項1に記載の高分子固体電解質リチウム電
池用正極活物質の製造方法。
3. The method according to claim 1, wherein the stirring member is a cathode.
【請求項4】 五酸化バナジウムキセロゲル膜を粉砕し
て五酸化バナジウムキセロゲル粉末を作り、 ポリフォスファゼン誘導体を溶媒に溶解させた溶液にリ
チウム塩を溶解させてリチウムイオン伝導性高分子固体
電解質溶液を作り、 前記五酸化バナジウムキセロゲル粉末と、前記リチウム
イオン伝導性高分子固体電解質溶液と導電助材とを混合
して混合スラリーを作り、 内部に攪拌部材を備え、前記攪拌部材をカソードとしア
ノードに金属リチウムを配置した電解槽に前記混合スラ
リーを入れて前記攪拌部材を作動させながら電解を行っ
て含リチウム五酸化バナジウムキセロゲルを含む電解ス
ラリーを作り、 前記電解槽から取り出した前記電解スラリーから前記溶
媒を揮発除去したものをローラプレスによりシート状に
圧延して正極活物質シートを作り、 前記正極活物質シートから所定形状の高分子固体電解質
リチウム電池用正極活物質を製造することを特徴とする
高分子固体電解質リチウム電池用正極活物質の製造方
法。
4. A vanadium pentoxide xerogel film is pulverized to form a vanadium pentoxide xerogel powder, and a lithium salt is dissolved in a solution in which a polyphosphazene derivative is dissolved in a solvent to form a lithium ion conductive polymer solid electrolyte solution. Making a mixed slurry by mixing the vanadium pentoxide xerogel powder, the lithium ion conductive polymer solid electrolyte solution, and a conductive auxiliary, having a stirring member inside, and using the stirring member as a cathode and a metal on the anode. Putting the mixed slurry in an electrolytic cell in which lithium is placed and performing electrolysis while operating the stirring member to form an electrolytic slurry containing lithium-containing vanadium pentoxide xerogel, and removing the solvent from the electrolytic slurry taken out of the electrolytic cell Rolled into a sheet with a roller press after removal of volatilization Making a chromatography bets, the positive electrode active material manufacturing method of positive active material for solid polymer electrolyte lithium battery, characterized in that the sheet to produce a positive active material for solid polymer electrolyte lithium battery having a predetermined shape from.
JP21032293A 1993-08-25 1993-08-25 Method for producing positive electrode active material for polymer solid electrolyte lithium battery Expired - Fee Related JP3262647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21032293A JP3262647B2 (en) 1993-08-25 1993-08-25 Method for producing positive electrode active material for polymer solid electrolyte lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21032293A JP3262647B2 (en) 1993-08-25 1993-08-25 Method for producing positive electrode active material for polymer solid electrolyte lithium battery

Publications (2)

Publication Number Publication Date
JPH0765836A JPH0765836A (en) 1995-03-10
JP3262647B2 true JP3262647B2 (en) 2002-03-04

Family

ID=16587510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21032293A Expired - Fee Related JP3262647B2 (en) 1993-08-25 1993-08-25 Method for producing positive electrode active material for polymer solid electrolyte lithium battery

Country Status (1)

Country Link
JP (1) JP3262647B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399053B1 (en) * 2000-12-14 2003-09-26 한국전자통신연구원 Organic-inorganic composite as positive electrode for rechargeable lithium battery and the preparation thereof
JP5609773B2 (en) * 2011-05-27 2014-10-22 トヨタ自動車株式会社 Manufacturing method of solid secondary battery
CN115954477B (en) * 2023-02-27 2023-06-02 安徽盟维新能源科技有限公司 Lithium metal battery, negative electrode protection material thereof and preparation method thereof

Also Published As

Publication number Publication date
JPH0765836A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
US4194062A (en) Rechargeable dichalcogenide cell
Morimoto et al. Mechanochemical synthesis and anode properties of SnO‐based amorphous materials
JPH10508141A (en) Method of manufacturing cathode components for use in electrochemical cells
CN113562714A (en) High-compaction-density lithium iron phosphate and preparation method thereof
JPH09194214A (en) Lithium manganese oxide compound and its preparation
JP2964732B2 (en) Rechargeable battery
JPH09503882A (en) Method for producing rechargeable manganese oxide compounds and related electrode materials
CN108565456A (en) Potassium national standard method and preparation method thereof, positive electrode and its preparation method and application
JP3262647B2 (en) Method for producing positive electrode active material for polymer solid electrolyte lithium battery
CN109671920B (en) Nano-diamond and titanium dioxide hollow sphere composite electrode material and preparation method thereof
KR20150032413A (en) Cathode Catalyst for Metal-Air Battery, Method of Manufacturing the Same, and Metal-Air Battery Comprising the Same
CN114864894A (en) High-pressure-resistant coating-layer-modified lithium-rich manganese-based positive electrode material and preparation method and application thereof
JP3406984B2 (en) Electrode for Li battery and Li battery using the same
JP2599975B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3451602B2 (en) Non-aqueous electrolyte battery
JP2819027B2 (en) All-solid secondary battery
CN110137482B (en) Carbon-coated negative electrode material, preparation method thereof and battery
JPH05325961A (en) Lithium battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
CN108328589B (en) PSe negative electrode material with high coulombic efficiency for the first time and preparation method thereof
CN115084485B (en) Carbon fiber loaded manganese molybdate/manganese oxide nano heterojunction material and preparation method and application thereof
Opra et al. Effect of Al (OH) 3 in enhancing PbSnF4 anode performances for rechargeable lithium-ion battery
JP2523997B2 (en) Non-aqueous electrolyte secondary battery
JPH01260767A (en) Secondary battery
JP2712428B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011127

LAPS Cancellation because of no payment of annual fees