JPS6373673A - Semiconductor device for absorbing surge - Google Patents

Semiconductor device for absorbing surge

Info

Publication number
JPS6373673A
JPS6373673A JP21835686A JP21835686A JPS6373673A JP S6373673 A JPS6373673 A JP S6373673A JP 21835686 A JP21835686 A JP 21835686A JP 21835686 A JP21835686 A JP 21835686A JP S6373673 A JPS6373673 A JP S6373673A
Authority
JP
Japan
Prior art keywords
region
impurity concentration
type
capacitance
low impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21835686A
Other languages
Japanese (ja)
Other versions
JPH035071B2 (en
Inventor
Yasuo Hasegawa
長谷川 泰男
Kuniji Mizuno
水野 邦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP21835686A priority Critical patent/JPS6373673A/en
Publication of JPS6373673A publication Critical patent/JPS6373673A/en
Publication of JPH035071B2 publication Critical patent/JPH035071B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce a voltage drop of a surge absorber itself and to simultaneously reduce an electrostatic capacity of a capacity reducing element by providing a first conductivity type high impurity concentration region, a second conductivity type first region formed on the first conductivity type low impurity concentration region and a second conductivity type second region. CONSTITUTION:A low impurity concentration region is an N<-> type epitaxial layer having a very low impurity concentration formed on a single crystal semiconductor substrate or an N<-> type semiconductor substrate, buried regions 2, 2' are sufficiently high impurity concentration N<+> type buried regions, a first region 3 is a P<+> type region for commonly forming an anode region of one surge absorber SA1 and an anode region of a capacity reducing element D1, and a second region 3' is a P<+> type region for applying a common anode region of other surge absorber AB2 and a capacity reducing element D2. Most of the first region 3 form the region 2 and a main P-N junction J1, and a P-N junction is formed partly with a very thin low impurity concentration region 1a to the other buried region 2'.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発明は、PN接合の逆方向非線形特性を主に利用する
サージ吸収用半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device for surge absorption that mainly utilizes the reverse nonlinear characteristics of a PN junction.

〔従来の技術〕[Conventional technology]

一般に通信線及び各種電気機器の制御線などにおいては
、目然雷の直撃や誘導、或いは負荷の開閉などによって
サージ電圧が生じ、特に通信装置、他の電子機器などの
高密度モジュール化の進展に伴い、サージ電圧や過電圧
に極めて弱いIC,LSI素子などが多用されているた
め、電子機器にサージが侵入する前にサージアブソーバ
でもってサージを吸収する必要が多くなっている。
In general, surge voltages are generated in communication lines and control lines for various electrical equipment due to direct lightning strikes, induction, or switching of loads.In particular, surge voltages occur in communication lines and control lines for various electrical equipment, and surge voltages occur due to the development of high-density modularization of communication equipment and other electronic equipment. Accordingly, ICs, LSI elements, and the like that are extremely susceptible to surge voltages and overvoltages are often used, so it is increasingly necessary to use surge absorbers to absorb surges before they enter electronic devices.

斯かるサージアブソーバは大別して族1!型のものと、
金属酸化物バリスタ或いはシリコン半導体バリスタの様
な固体素子とに分けられ、本発明の属する固体素子はサ
ージ電圧上高速で吸収する機能tMするが、サージ耐量
は比較的小さく、サージ耐量を大きくとればn寛容量が
大きくなるという相反した関係にある。そして静電容量
が大きくなると、電力損失が増え、特にこの傾向は高周
波伝送路、高速のデジタル信号伝送路などにおいて著し
くなるので、サージ吸収能力又はクランプ電圧に影響を
与えることなく半導体装置の静電容量を低減式せること
か型費になっている。
Such surge absorbers can be broadly classified into group 1! type and
Solid-state devices are divided into metal oxide varistors and silicon semiconductor varistors, and the solid-state devices to which the present invention belongs have the function of absorbing surge voltage at high speed, but their surge withstand capacity is relatively small, and if the surge withstand capacity is increased, There is a contradictory relationship in which the amount of n tolerance increases. As capacitance increases, power loss increases, and this tendency is particularly noticeable in high-frequency transmission lines and high-speed digital signal transmission lines. The cost of molding is due to the reduction in capacity.

このような!#寛容量を低減したものとして特開111
B60−140878号公報に開示てれた半導体装置か
める。これは半導体装置の等価的な静電容量を小さくす
ることt主目的として、1つ以上の主PN接合の逆方向
非線形特性を利用する半導体装置内にその主PN接合と
は逆方向となる小石な容量低減用PN接合を形成してそ
の順方向特性上利用することによシ、主PN接合による
静電容量に対し容量低減用PN接合による小さな容量低
減用の静電容t’に直列に与え、これによって半導体素
子全体の静電容量を充分に小石<シ得る半導体装置を提
供したものでめる0 オ呑図<、A) 、 CB)により単一の半導体基板に
双方向のサージ吸収用素子と容量低減用素子と勿形成し
た従来例について述べる。
like this! #Unexamined Japanese Patent Publication No. 111 with reduced tolerance amount
A semiconductor device disclosed in B60-140878 is disclosed. The main purpose of this is to reduce the equivalent capacitance of a semiconductor device, and to utilize the reverse nonlinear characteristics of one or more main PN junctions. By forming a capacitance-reducing PN junction and utilizing its forward characteristics, the capacitance-reducing PN junction provides a small capacitance-reducing capacitance t' in series with the capacitance of the main PN junction. This provides a semiconductor device that can sufficiently reduce the capacitance of the entire semiconductor element. A conventional example in which an element and a capacitance reducing element are formed will be described.

従来のサージ吸収素子について、先ずn−低不純物濃度
の半導体基板10両側からp型不純物を拡散してp不純
物濃度の半導体146&、6bを形成することによシ、
主PN接合J1* J1’を形成する0半導体層6aに
n+高不純物濃度の小頭域7aとn不純物濃度の小領域
7bと音形成し、半導体層6bKn+高不純物濃度の小
領域71 aとn不純物濃度の小領域7/bとt形成す
る。更に、小頭域7 b 、 7’bにはp+高不純鐘
鑓度の小領域1”が夫・形成され、小頭域9に形成され
た電極8と小頭域7aに形成された電極10とか電気的
に結合され、小領域9′に形成嘔れた電極8′と小頭域
7′aに形成嘔れた電極10″とか電気的に結合式れる
0また導電性薄膜11 、11’でもって、半導体層6
&と小頭域7b、半導体層6bと小頭域7’b Fi夫
々電気的に短絡される。この様な構成によれば、単一の
半導体基板でもって、同図(B)に示す様な双方向性サ
ージ吸収用半導体装1!12得ることが出来る0 同図(A)とCB) ’r:対比させると、主PN接合
J1  + Jl’は夫々サージ吸収用素子D□ 、D
1′のPN接合を与え、PN接合J2  e ’z’は
夫々容量低減用素子D3sD3’のPN接合を与える。
Regarding the conventional surge absorption element, by first diffusing p-type impurities from both sides of the semiconductor substrate 10 having a low n-impurity concentration to form semiconductors 146 & 6b having a p-impurity concentration,
A small head region 7a of n+ high impurity concentration and a small region 7b of n impurity concentration are formed in the semiconductor layer 6a forming the main PN junction J1*J1', and the semiconductor layer 6bKn+small region 71 of high impurity concentration 71a and n Small regions 7/b and t with impurity concentration are formed. Furthermore, a small region 1'' with high p+ impurity is formed in the capitular region 7b, 7'b, and the electrode 8 formed in the capitular region 9 and the electrode formed in the capitular region 7a are connected to each other. An electrode 8' formed in the small area 9' and an electrode 10'' formed in the small head area 7'a are electrically coupled to each other. 'So, semiconductor layer 6
& and the small head region 7b, and the semiconductor layer 6b and the small head region 7'b Fi are electrically short-circuited. According to such a configuration, it is possible to obtain a bidirectional surge absorbing semiconductor device 1!12 as shown in the same figure (B) with a single semiconductor substrate. r: In comparison, the main PN junctions J1 + Jl' are surge absorbing elements D□ and D, respectively.
1', and the PN junctions J2 e 'z' provide the PN junctions of the capacitance reducing elements D3sD3', respectively.

また容量低減用素子り、 * D3’の構成とは異なる
か、PNN接合、 l J3’は容量低減用素子D2 
+ D2’のPN接合を夫々与える。
Also, the capacitance reducing element is different from the structure of D3', or is a PNN junction, l J3' is the capacitance reducing element D2
+ D2' PN junctions are provided respectively.

従って、この様な双方同性サージ吸収用半導体装置によ
れば、逆向きに直列接続されたサージ吸収用素子DI 
+ DI’に対し、逆向きでかつ並列接続嘔れた一対の
容量低減用素子D2とり1、D2′と烏′會夫々直列に
接続した構成となるので、半導体装置全体の静電容量を
小さくできると共に、サージ電流吸収時のはね上vt圧
七最少限に抑制できる。
Therefore, according to such a bidirectional surge absorbing semiconductor device, the surge absorbing elements DI connected in series in opposite directions
+ Since the pair of capacitance reducing elements D2, D2' and D2' are connected in series in opposite directions and connected in parallel with respect to DI', the capacitance of the entire semiconductor device can be reduced. At the same time, it is possible to suppress the splash VT pressure to a minimum when absorbing a surge current.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしこの様な従来のサージ吸収用半導体装置は半導体
基板10両主面から不純物tドーグせねばならないので
、製造工程が複雑になり、コストが筒くならざるt得な
いという欠点があるのは勿論のこと、端子12と12′
間に存在するPN接合の数が多いので電圧降下が大きい
という欠点がある。また、静電容量を小石くするために
は不軛′#濃度の小さい半導体基板1を用いるのが良い
が、この半導体基板1は機械的な強度等の関係からその
厚みt600〜400μmよりも更に薄くすることは難
しく、このような半導体基板10両側の所定領域に不純
物濃度の領域7aw7’ae7b+7’bh浅く形成す
る(静電容量を小さくするため)構造なので、これら領
域7aと71a、7bと7’b間の電圧降下は更に大き
くならざるを得ないという欠点があった。
However, in such a conventional surge absorbing semiconductor device, since impurities must be doped from both main surfaces of the semiconductor substrate 10, the manufacturing process becomes complicated and the cost inevitably increases. , terminals 12 and 12'
Since there are many PN junctions between them, there is a drawback that the voltage drop is large. In addition, in order to reduce the capacitance, it is preferable to use a semiconductor substrate 1 with a small concentration of tungsten. It is difficult to make the semiconductor substrate 10 thin, and the structure is such that the impurity concentration regions 7aw7'ae7b+7'bh are shallowly formed (to reduce the capacitance) in predetermined regions on both sides of the semiconductor substrate 10, so these regions 7a and 71a, 7b and 7 There was a drawback that the voltage drop between 'b' and 'b' had to become even larger.

〔問題点tS決するための手段〕[Means to resolve the problem]

本発明では上述したような従来のサージ吸収用半導体装
置の欠点を除去するために、第1の導電型の低不純物濃
度領域に埋め込まれた第1の導電型の高不純物濃度領域
と、該第1の導電型の高不純物磯度頑域とPN接合を形
成するよう前肥才1の導電型の低不純物濃度領域に形成
された第2の導電型の第10演域と、前記第1の導電型
の高年〃n物濃度領域との間に前記第1の導電型の低不
純物濃度領域の一部分が存在するように該第1の導電型
の低不純物濃度領域内に形成嘔れた第2の導電型の第2
の領域を備えている。
In order to eliminate the drawbacks of the conventional surge absorbing semiconductor device as described above, the present invention includes a first conductivity type high impurity concentration region embedded in a first conductivity type low impurity concentration region; a tenth region of a second conductivity type formed in a low impurity concentration region of a conductivity type 1 to form a PN junction with a high impurity concentration region of a conductivity type 1; A first conductivity type low impurity concentration region formed within the first conductivity type low impurity concentration region such that a portion of the first conductivity type low impurity concentration region exists between the conductivity type high n-doped concentration region. 2nd conductivity type
It has an area of

〔作 用〕[For production]

本発明はこのような脣徴七有Tるので、低不純物W度の
半導体基板上用いているにも拘らず、−サージ吸収用素
子を導電型の異なる高不純物濃度領域の組合せで形成で
き、しかも容量低減用素子の一部を形成する低不純物濃
度層の厚み會非常に薄く、好ましくはキャリア自由行程
距離以内にできるので、サージ吸収用素子自身の電圧降
下全小きくできると同時に1.大電流領域においても容
量低減用素子の電圧降下を増大させることなく、十分に
静電容ilt小さくできる。
Since the present invention has such characteristics, it is possible to form a surge absorbing element by combining high impurity concentration regions of different conductivity types even though it is used on a semiconductor substrate with a low impurity concentration. Furthermore, since the thickness of the low impurity concentration layer forming a part of the capacitance reducing element is very thin, preferably within the carrier free path distance, the total voltage drop of the surge absorbing element itself can be reduced. Even in a large current region, the capacitance ilt can be sufficiently reduced without increasing the voltage drop of the capacitance reducing element.

〔実施1タリ〕 第1図、第1図のX−X’、Y−Y’での断面を示す第
2図(A) 、 CB)及び第1図の半導体装置半導体
装置の一実施例について説明すると、1は単結晶半導体
基板(図示せず)上に形成された非常に不純物濃度の低
いN−型のエピタキシャルノー或いはN−型の半導体基
板(以下低不純物濃度填域という)、2.2’はイオン
打込み技術によってドナ不純物上注入することによって
、或いは拡散法によって形成された十分に不純物濃度の
高いN+型の埋込み領域、3は第6図に示す一方のサー
ジ吸収用素子SA1のアノード領域と容量低減用素子D
1  のアノード領域を共通に形成するP+型の領域、
3′は第6図に示す他方のサージ吸収用素子SA、と容
量低減用素子D2の共通の7ノード領域金与えるP+型
の領域でろる。領域6の大部分は第2図(B)からも分
るように埋込み領域2と主PN接&J、t−形成し、そ
の一部分は他方の埋込み領域2′との間の非常に薄い低
不純物濃度層域1aとPNN会合形成する。この低不純
物濃度領域1aの厚みはキャリアの自由行程距離以下に
することが好筐しく、このようにすることによって、そ
の比抵抗ρが十分大きくなっても(例えばρ;250g
−on)大電流領域における電圧降下が増大することは
ない。ここで念のため説明すると、P”N−N+のダイ
オードにおいてN−型の領域の比抵抗七人きくするほど
七の静電容量が小姑くなることが知られている。また同
様に、領域6′もその大部分が埋込み領域2′と主PN
接合、r1′w形成し、その一部分は他方の埋込み領域
2との間の非常に薄い低不純物濃度領域1/、とPN接
合を形成して ゛いる。ここで主PN接合J1  e 
J1’は第6図に示すサージ吸収用素子5A11 sA
、夫々のPN接合全形成し、また夫々のPN接合Jz 
* J2’は容量低減用素子D1.D2のPN接合を形
成している。
[Embodiment 1] Fig. 1, Fig. 2 (A) and CB) showing the cross sections along the lines X-X' and Y-Y' in Fig. 1, and the semiconductor device shown in Fig. 1 An example of the semiconductor device To explain, 1 is an N-type epitaxial no or N-type semiconductor substrate (hereinafter referred to as a low impurity concentration filling region) with a very low impurity concentration formed on a single crystal semiconductor substrate (not shown); 2. 2' is an N+ type buried region with a sufficiently high impurity concentration formed by implanting donor impurities using ion implantation technology or by a diffusion method; 3 is an anode of one surge absorbing element SA1 shown in FIG. 6; Area and capacity reduction element D
a P+ type region that commonly forms an anode region of 1;
3' is a common 7-node region between the other surge absorbing element SA and the capacitance reducing element D2 shown in FIG. 6, and is a P+ type region. As can be seen from FIG. 2(B), most of the region 6 forms a main PN contact &J,t- with the buried region 2, and a part of it forms a very thin low impurity contact with the other buried region 2'. A PNN association is formed with the concentration layer region 1a. It is preferable that the thickness of this low impurity concentration region 1a be less than or equal to the free path distance of the carriers.
-on) The voltage drop in the large current region does not increase. To explain here, it is known that in a P''N-N+ diode, as the resistivity in the N- type region increases, the capacitance in the region decreases. Most of 6' is buried area 2' and main PN.
A junction r1'w is formed, and a part thereof forms a PN junction with the very thin low impurity concentration region 1/ between the other buried region 2. Here the main PN junction J1 e
J1' is the surge absorbing element 5A11 sA shown in FIG.
, each PN junction is fully formed, and each PN junction Jz
*J2' is the capacitance reducing element D1. It forms a PN junction of D2.

なお、4.4′は夫々P+型の領域6.6′とオーミッ
クコンタクト七形成するt極であり、第6図において、
素子SA1とDl  のアノード同士を接続する導体p
1、素子SA、とD2のアノ 。
Note that 4.4' are t-poles that form ohmic contact with the P+ type regions 6 and 6', respectively, and in FIG.
Conductor p connecting the anodes of elements SA1 and Dl
1. Element SA and D2.

−ド同士km続する導体2□ を夫々与える。ま九5は
絶縁膜である。
- Provide a conductor 2□ which is connected to each other for km. The numeral 5 is an insulating film.

このような構造の双方向性のサージ吸収用半導体装It
Kよれば、サージ吸収用素子における低不純物濃度領域
を従来装置に比べて十分に薄くできるので、その静電容
量上十分に小姑くできると同時に順方向電圧降下tも小
さくでき、またPN接合の必要個数を1/2にできるた
めにこのことが更に順方向電圧降下を低減しているO 次に第4図LA)、 (B、)によυ本発明の他の一実
施例を説明する。同図(B)は上面it示す同図(A)
のx −x’での断面を示す。同図において第1図及び
第2図(AJ 、 (B)で示した記号と同一の記号は
同一性のある部材で示すものとする。
A bidirectional surge absorbing semiconductor device with such a structure
According to K., the low impurity concentration region in the surge absorbing element can be made sufficiently thinner than in conventional devices, so the capacitance can be sufficiently reduced, and the forward voltage drop t can also be reduced, and the PN junction Since the required number can be reduced to 1/2, this further reduces the forward voltage drop.Next, another embodiment of the present invention will be explained with reference to FIG. 4 LA) and (B,). . The same figure (B) is the same figure (A) showing the top surface.
A cross section taken along x-x' is shown. In the same figure, the same symbols as those shown in FIGS. 1 and 2 (AJ, (B)) are indicated by the same members.

P+型の第1、第2の領域6.6′は5字形をしており
、互いに逆に向い合うよう配置されているので、小型化
か可能である。領域6,3′の大部分は対応するN十型
の埋込み領域2.2′との間で主PN接合J1. J、
”k形成し、領域6,6′の僅かな部分が夫々埋込み領
域2′、2の上方まで延在し、薄い低不純物濃度領域を
介してこれら埋込み領域2′、2と対面するよう配置嘔
れる。
The P+ type first and second regions 6,6' have a 5-shape and are arranged to face each other in opposite directions, so that miniaturization is possible. Most of the regions 6, 3' form the main PN junction J1. J.
A small portion of the regions 6, 6' extends above the buried regions 2', 2, respectively, and is arranged so as to face the buried regions 2', 2 through a thin low impurity concentration region. It will be done.

次に第5図によp本発明の他の一実施例全説明すると、
その(A、)は平面図、(B)及び<C)は夫々(A)
のX−X’、Y−YKおける断面を示す図である。
Next, referring to FIG. 5, another embodiment of the present invention will be fully explained.
(A,) is a plan view, (B) and <C) are respectively (A)
It is a figure which shows the cross section in XX' and YYK of.

また同図において、第1図及び第2図(A)。Also in the figure, FIG. 1 and FIG. 2 (A).

CB)で示した記号と同一の記号は同一性らる部材を示
すものとする。
Symbols that are the same as those shown in CB) indicate the same members.

この実施例では、P+型の高不純物濃度領域3.6′と
は別にr型の領域3X 、 3’Xが低不純物濃度領域
1内に前記実施例に比べて浅く形既されている。これに
伴い埋込み領域2.2′の領域5 X 、 3’Xに対
応する部分2 X 、 2’Xは夫々領域3 X 、 
3’X方向に向けて突出しており、領域3 X 、 3
’Xと夫々対応する領域2’X、2X間には非常に薄い
低不純物濃度領域1の一部分が存在する。セしてP+型
の領域3と3X、3’と3’Xは夫々を極4.4′で接
続されている。この実施例によれば、夫々の容量低減用
素子のアノード領域を形成するP+型の領域3 X 、
 3’Xが浅いことも併せて接合面積全前記実施例より
更に小石くできるので、よp一層静電容量を小石くでき
る。
In this embodiment, in addition to the P+ type high impurity concentration regions 3.6', r type regions 3X and 3'X are formed in the low impurity concentration region 1 to be shallower than in the previous embodiment. Accordingly, the portions 2.X and 2'X of the embedded region 2.2' corresponding to the regions 5
It protrudes toward the 3'X direction, and the area 3'X, 3
A part of the very thin low impurity concentration region 1 exists between the regions 2'X and 2X corresponding to 'X'. P+ type regions 3 and 3X, and 3' and 3'X are connected by poles 4.4', respectively. According to this embodiment, the P+ type region 3X forming the anode region of each capacitance reducing element,
In addition to the fact that 3'X is shallow, the total junction area can be made even smaller than in the embodiment described above, so that the capacitance can be made even smaller.

前記実施例において、サージ吸収用素子SA1又はSA
、の靜電容ttCユ、容量低減用素子D2又I/iD1
  の静電容量kc、  とし、素子SAlとD2、又
はSA2とDlの静電容ireとすると、静電容量C1
とC2は直列であるので、 C= C,@  C2/(C,十02)となる。ここで
C□〉C2とすれば、Cキ02  となり、従ってサー
ジ吸収用半導体装置全体の静電容量は、容量低減用素子
の静電容量かサージ吸収用素子の静1に容量に比べて十
分に小さければ、はぼ容量低減用素子の靜′wLW量に
等しくなることが分る。このことから本発明に係るサー
ジ吸収用半導体装置によれば、特にサージ吸収用素子自
身の静電容量を小さくするための設計に行う必要がない
ので、容易に所望のサージ吸収特性が得られ易く、サー
ジ吸収用素子の順方向電圧降下の小さい構造とすること
もできる。
In the embodiment, the surge absorbing element SA1 or SA
, the capacitance ttC, the capacitance reducing element D2 or I/iD1
Let the capacitance kc be , and the capacitance ire of the elements SAl and D2, or SA2 and Dl, then the capacitance C1
and C2 are in series, so C=C,@C2/(C, 102). Here, if C□〉C2, then Cki02 is obtained. Therefore, the capacitance of the entire semiconductor device for surge absorption is sufficient compared to the capacitance of the capacitance reduction element or the capacitance of the surge absorption element. It can be seen that if the value is smaller than , then it becomes equal to the amount of wLW of the capacitance reducing element. Therefore, according to the surge absorbing semiconductor device according to the present invention, it is not necessary to particularly design the surge absorbing element itself to reduce its capacitance, so that desired surge absorbing characteristics can be easily obtained. , it is also possible to have a structure in which the forward voltage drop of the surge absorbing element is small.

なおここで、サージ吸収用素子がサージ吸収作用上行う
ときは、容量低減用素子は必ず順方向に4通するので、
サージ吸収用素子に比べ電流の通流する有効面C1七は
るη・に小さくすることが出来る。このことがサージ吸
収用素子に比べ容量低減用素子の静電容量上十分に小妬
くできる1つの大きな理由である。
Note that when the surge absorbing element performs the surge absorbing function, the capacitance reducing element is always passed through four in the forward direction, so
Compared to the surge absorbing element, the effective surface C1 through which current flows can be made much smaller. This is one of the major reasons why the capacitance reduction element has a much smaller capacitance than the surge absorption element.

また、容量低減用素子はサージ吸収用素子のアバランシ
ェ降伏電圧より大きな逆耐電圧をもたねばならないが、
容量低減用素子のP+型の領域6X又は3’X、!:N
+型の埋込み領域2又は2′間の低不純物濃度領域の厚
みをキャリアの自由行程距離以下にしたとしても、通常
要求される電圧よりも高い電圧、例えば200〜250
V程度の逆耐電圧を容易に得ることが出来る。
In addition, the capacitance reducing element must have a reverse withstand voltage greater than the avalanche breakdown voltage of the surge absorbing element.
P+ type region 6X or 3'X of the capacitance reducing element,! :N
Even if the thickness of the low impurity concentration region between the + type buried regions 2 or 2' is made equal to or less than the carrier free path distance, a voltage higher than the normally required voltage, for example 200 to 250
A reverse withstand voltage of about V can be easily obtained.

竹にこのサージ吸収用半導体装置の構造によれば、LS
Iの半導体チップに一緒に組み込むことが容易でおるの
で、機能回路全組み込んだ各樵牛導体チックのテージ保
謙にM用である。
According to the structure of this semiconductor device for surge absorption in bamboo, LS
Since it is easy to incorporate it into the semiconductor chip of I, it is suitable for use as a stage protector for each conductor with all the functional circuits incorporated therein.

また更に、必要に応じて単一の半導体チップに前記実施
例に係るサージ吸収構造を任意数形成しても勿論よい。
Furthermore, it is of course possible to form an arbitrary number of the surge absorbing structures according to the above embodiments on a single semiconductor chip if necessary.

〔発明の効果〕〔Effect of the invention〕

以上述べ次ように本発明によれば、同一の半導体基板内
においてサージ吸収用素子に悪影響を与えることなく非
常に静電容量の小さい容量低減用素子をサージ吸収用素
子に直列に与えることが出来るので、極めて静電容量の
小さいサージ吸収用半導体装置を提供することが出来る
と共に、その電圧降下を小妬くできるので電力損失を低
減できる。
As described above, according to the present invention, a capacitance reducing element with very low capacitance can be provided in series with a surge absorbing element within the same semiconductor substrate without adversely affecting the surge absorbing element. Therefore, it is possible to provide a surge absorbing semiconductor device with an extremely small capacitance, and since the voltage drop can be minimized, power loss can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るサージ吸収用半導体装置の一実施
例上水す斜視図、第2図(A、l、(B)は夫々第1図
におけるX−X’、Y−Y’での断面を示す図、26図
はこのサージ吸収用半導体装置を回路剤厄的に示す図、
第4図(A)、(、、B)夫々はこの発明の他の一実施
例の平面、断面葡示丁図、第5図は本発明の他の一実施
例を示す図でろり、その(A)は平面を示す図、(B)
、<C)は(A)におけるx−x’、Y −Y’での断
面を示す図、第6図(A)、  CB)は従来例を示す
図である。 1・・・低不純物濃度領域 2.2′・・・埋込み領域 6.6′・・・第1、第2の領域 4.4′・・・電極 特許出願人  オリジン電気株式会社 第 Z 口 第 3 図 2’      (A) CB) 禎午口 第 S 図
FIG. 1 is a perspective view of an embodiment of a semiconductor device for surge absorption according to the present invention, and FIG. 2 is a perspective view of a semiconductor device for surge absorption according to the present invention. 26 is a diagram showing a cross section of this surge absorbing semiconductor device, and FIG.
Figures 4 (A), (, and B) are plan and cross-sectional views of another embodiment of the present invention, and Figure 5 is a diagram showing another embodiment of the present invention. (A) is a diagram showing a plane, (B)
, <C) is a diagram showing a cross section along xx' and Y-Y' in (A), and FIGS. 6(A) and 6(CB) are diagrams showing a conventional example. 1...Low impurity concentration region 2.2'...Buried region 6.6'...First and second regions 4.4'...Electrode patent applicant Origin Electric Co., Ltd. No. Z 3 Figure 2' (A) CB) Teigoguchi No. S

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型の低不純物濃度領域に夫々離れて埋め込ま
れた第1の導電型の第1、第2の高不純物濃度領域と、
該第1の高不純物濃度領域の一部分とはPN接合を形成
するが、前記第2の高不純物濃度領域の一部分とは前記
低不純物濃度領域のある一部分を介して対面するよう前
記低不純物濃度領域に形成される第2の導電型の第1の
領域と、前記第2の高不純物濃度領域の一部分とはPN
接合を形成するが、前記第1の高不純物濃度領域の一部
分とは前記低不純物濃度領域の他の一部分を介して対面
するよう前記低不純物濃度領域に形成される第2の導電
型の第2の領域とを備えたことを特徴とするサージ吸収
用半導体装置。
first and second high impurity concentration regions of a first conductivity type embedded separately in the low impurity concentration region of the first conductivity type;
A PN junction is formed with a part of the first high impurity concentration region, and the low impurity concentration region faces a part of the second high impurity concentration region through a certain part of the low impurity concentration region. The first region of the second conductivity type formed in PN and a portion of the second high impurity concentration region are PN.
A second conductive layer of a second conductivity type formed in the low impurity concentration region faces a portion of the first high impurity concentration region through another portion of the low impurity concentration region to form a junction. A semiconductor device for surge absorption, characterized by comprising a region.
JP21835686A 1986-09-17 1986-09-17 Semiconductor device for absorbing surge Granted JPS6373673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21835686A JPS6373673A (en) 1986-09-17 1986-09-17 Semiconductor device for absorbing surge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21835686A JPS6373673A (en) 1986-09-17 1986-09-17 Semiconductor device for absorbing surge

Publications (2)

Publication Number Publication Date
JPS6373673A true JPS6373673A (en) 1988-04-04
JPH035071B2 JPH035071B2 (en) 1991-01-24

Family

ID=16718598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21835686A Granted JPS6373673A (en) 1986-09-17 1986-09-17 Semiconductor device for absorbing surge

Country Status (1)

Country Link
JP (1) JPS6373673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236058U (en) * 1988-08-31 1990-03-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236058U (en) * 1988-08-31 1990-03-08

Also Published As

Publication number Publication date
JPH035071B2 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
JP2570022B2 (en) Constant voltage diode, power conversion device using the same, and method of manufacturing constant voltage diode
US5401985A (en) Low voltage monolithic protection diode with a low capacitance
JPH0563949B2 (en)
CN112234056B (en) Semiconductor device
JPS61296770A (en) Insulated gate field effect type semiconductor device
CN109065541B (en) Bidirectional transient voltage suppressor and preparation method thereof
EP0564473B1 (en) Electrostatic discharge protection device
US4520382A (en) Semiconductor integrated circuit with inversion preventing electrode
TWI777880B (en) Low capacitance transient voltage suppressor device and equipment with high holding voltage
JP2003060059A (en) Protective circuit and protective element
JPS6373673A (en) Semiconductor device for absorbing surge
US5729044A (en) Protection diode for a vertical semiconductor component
JPH01202867A (en) Semiconductor device
JPH01214055A (en) Electrostatic breakdown protective device
JP4029549B2 (en) Semiconductor device
JPH0516194B2 (en)
CN212676278U (en) Novel low-capacitance TVS structure
KR200308025Y1 (en) Layout of electrostatic discharge input protection circuit of semiconductor device
JPH10223843A (en) Protective circuit of semiconductor device
JPH01125873A (en) Surge-absorbing semiconductor device
JP3594725B2 (en) Semiconductor device protection circuit
JPH1098202A (en) Semiconductor surge protection element
CN111933718A (en) Novel low-capacitance TVS structure and manufacturing method thereof
JPS61274343A (en) Semiconductor device
JPH0258864A (en) Semiconductor device