JPH0516194B2 - - Google Patents

Info

Publication number
JPH0516194B2
JPH0516194B2 JP58249920A JP24992083A JPH0516194B2 JP H0516194 B2 JPH0516194 B2 JP H0516194B2 JP 58249920 A JP58249920 A JP 58249920A JP 24992083 A JP24992083 A JP 24992083A JP H0516194 B2 JPH0516194 B2 JP H0516194B2
Authority
JP
Japan
Prior art keywords
junction
conductivity type
capacitance
semiconductor layer
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58249920A
Other languages
Japanese (ja)
Other versions
JPS60140878A (en
Inventor
Hideyuki Kurosawa
Hidetaka Sato
Yasuo Hasegawa
Mitsuyoshi Ebizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24992083A priority Critical patent/JPS60140878A/en
Publication of JPS60140878A publication Critical patent/JPS60140878A/en
Publication of JPH0516194B2 publication Critical patent/JPH0516194B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Description

【発明の詳細な説明】 本発明は、PN接合の逆方向非線形抵抗特性を
主に利用するサージ吸収用半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surge absorbing semiconductor device that mainly utilizes the reverse nonlinear resistance characteristics of a PN junction.

一般に通信線及び各種電気機器の制御線などに
おいては、自然雷の直撃や誘導、或いは負荷の開
閉などによつてサージ電圧が生じ、特に通信装
置、他の電子機器などの高密度モジユール化の進
展に伴い、サージ電圧や過電圧に極めて弱いIC、
LSI素子などが多用されているため、電子機器に
サージが侵入する前にサージアブソーバでもつて
サージを吸収する必要が多くなつている。
In general, surge voltages are generated in communication lines and control lines of various electrical devices due to direct strikes or induction of natural lightning, or switching of loads, etc., and especially with the progress of high-density modularization of communication devices and other electronic devices. As a result, ICs that are extremely susceptible to surge voltages and overvoltages,
As LSI devices and other devices are being used extensively, it is becoming increasingly necessary to use surge absorbers to absorb surges before they enter electronic equipment.

斯かるサージアブソーバは大別して放電型のも
のと、金属酸化物バリスタ或いはシリコン半導体
バリスタの様な固体素子とに分けられ、本発明の
属する固体素子はサージ電圧を高速で吸収する機
能を有するが、サージ耐量は比較的小さく、サー
ジ耐量を大きくとれば静電容量が大きくなるとい
う相反した関係にある。そして静電容量が大きく
なると、電力損失が増え、特にこの傾向は高周波
伝送路、高速のデジタル信号伝送路などにおいて
著しくなるので、サージ吸収能力又はクランプ電
圧に影響を与えることなく半導体装置の静電容量
を低減させることが重要になつている。
Such surge absorbers can be roughly divided into discharge type ones and solid-state elements such as metal oxide varistors or silicon semiconductor varistors.The solid-state elements to which the present invention belongs have the function of absorbing surge voltage at high speed. The surge resistance is relatively small, and the larger the surge resistance, the larger the capacitance, which is a contradictory relationship. As capacitance increases, power loss increases, and this tendency is particularly noticeable in high-frequency transmission lines and high-speed digital signal transmission lines. It is becoming important to reduce capacity.

本発明は、サージ吸収用半導体装置の等価的な
静電容量を小さくすることを主目的として、1つ
以上の主PN接合の逆方向非線形抵抗特性を利用
する半導体装置内にその主PN接合とは逆方向と
なる小さな容量低減用の従PN接合を形成してそ
の順方向特性を利用することにより、主PN接合
による静電容量に対し従PN接合による小さな容
量低減用の静電容量を直列に与え、これによつて
半導体素子全体の静電容量を充分に小さくし得る
サージ吸収用半導体装置を提供するものである。
The present invention aims to reduce the equivalent capacitance of a semiconductor device for surge absorption, and the present invention provides a main PN junction and a main PN junction in a semiconductor device that utilizes the reverse nonlinear resistance characteristics of one or more main PN junctions. By forming a secondary PN junction for small capacitance reduction in the opposite direction and utilizing its forward characteristics, the capacitance for small capacitance reduction by the secondary PN junction is connected in series with the capacitance due to the main PN junction. It is an object of the present invention to provide a semiconductor device for surge absorption, which can thereby sufficiently reduce the capacitance of the entire semiconductor element.

以下図面に従つて本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図A,B,Cにより本発明の一実施例を説
明する。
An embodiment of the present invention will be explained with reference to FIGS. 1A, B, and C.

第1図A,B,Cにより本発明の一実施例を説
明すると、1は不純物濃度の低いn-導電型の半
導体基板、2は不純物濃度の高いp+高不純物濃
度の半導体層、3はこの領域の主面に形成された
絶縁被膜、4はこの絶縁被膜3の開口を利用して
形成された本発明の重要な小領域である。先ず不
純物濃度の低いn-導電型の半導体基板1の一方
の面側からp導電型の不純物を拡散してp+高不
純物濃度の層2を形成して、主PN接合J1を形成
する。これら半導体層1,2及び主PN接合J1
アバランシエブレークダウン機能を与える。一般
に、サージ耐量を大きくするには主PN接合J1
接合面積を大きくするが、接合面積とそのPN接
合による静電容量はほぼ比例するので、サージ耐
量を増大させようとすると必然的にPN接合によ
る静電容量も大きくなる。従つて、この実施例で
は主PN接合J1による静電容量C1を小さくするた
めに、半導体基板1における層2とは逆にの面に
形成された絶縁被膜3の所定の小さな窓からp導
電型の不純物を拡散してp+高不純物濃度の小領
域4を形成し、これにより接合面積の小さな従
PN接合J2を形成して小さな静電容量C2を前記静
電容量C1に対し直列に与えている。
An embodiment of the present invention will be explained with reference to FIGS. 1A, B, and C. 1 is an n - conductivity type semiconductor substrate with a low impurity concentration, 2 is a p + high impurity concentration semiconductor layer with a high impurity concentration, and 3 is a semiconductor substrate with a high impurity concentration. The insulating film 4 formed on the main surface of this region is an important small region of the present invention formed using the opening of the insulating film 3. First, a p conductivity type impurity is diffused from one side of an n - conductivity type semiconductor substrate 1 having a low impurity concentration to form a p + high impurity concentration layer 2 to form a main PN junction J 1 . These semiconductor layers 1, 2 and the main PN junction J1 provide an avalanche breakdown function. Generally, to increase the surge withstand capacity, the junction area of the main PN junction J1 is increased, but since the junction area and the capacitance due to the PN junction are almost proportional, if you try to increase the surge withstand capacity, the PN The capacitance due to the junction also increases. Therefore, in this embodiment, in order to reduce the capacitance C 1 due to the main PN junction J 1 , p is A conductive type impurity is diffused to form a small region 4 with a high p
A PN junction J 2 is formed to provide a small capacitance C 2 in series with the capacitance C 1 .

この構造によれば、第1図Cで示すように接合
面積の大きな主PN接合J1を有するアバランシエ
ブレークダウンタイプのダイオードD1と主PN接
合J1の接合面積に比べて充分に接合面積の小さい
PN接合J2を有するダイオードD2とを直列接続し
たのと等価になる。従つて、これら主PN接合J1
による静電容量C1とPN接合J2による静電容量C2
とが直列接続されたことになり、合成静電容量、
つまりこの半導体装置全体の等価的な静電容量C
は、 C≒C1C2/C1+C2となる。
According to this structure , as shown in FIG. small
This is equivalent to connecting a diode D 2 with a PN junction J 2 in series. Therefore, these main PN junctions J 1
Capacitance C 1 due to and capacitance C 2 due to PN junction J 2
are connected in series, and the combined capacitance is
In other words, the equivalent capacitance C of the entire semiconductor device
becomes C≒C 1 C 2 /C 1 +C 2 .

ここでC2≪C1とすれば、上記静電容量CはC
2になる。
Here, if C 2 ≪ C 1 , the above capacitance C is C
≒ becomes 2 .

従つて、主PN接合J1の接合面積に比べて従PN
接合J2の接合面積が小さくなるように、小領域4
を形成すれば、半導体装置の等価的な静電容量C
は従PN接合J2による静電容量C2とほぼ等しくな
る。
Therefore, compared to the joint area of the main PN junction J1 , the secondary PN
Small area 4 is
If the equivalent capacitance C of the semiconductor device is formed,
is approximately equal to the capacitance C 2 due to secondary PN junction J 2 .

ここでPN接合J2は静電容量を小さくするため
にだけに用いられる容量低減用のPN接合であ
り、このPN接合J2は順方向バイアス状態で使用
されるので、PN接合J2はサージ耐量に制限を与
えない程度にその接合面積を充分に小さくでき
る。
Here, PN junction J 2 is a capacitance reduction PN junction used only to reduce capacitance, and since this PN junction J 2 is used in a forward bias state, PN junction J 2 The bonding area can be made sufficiently small without limiting the withstand capacity.

ここで図中、5,6は電極、7,8はこれら
夫々の電極から引出された端子であり、使用状態
においては、端子7に負の電圧、端子8に正の電
圧が印加される。
In the figure, 5 and 6 are electrodes, and 7 and 8 are terminals drawn out from these respective electrodes. In use, a negative voltage is applied to the terminal 7, and a positive voltage is applied to the terminal 8.

次に第2図に示す別の実施例では、半導体装置
全体の等価的な静電容量Cを小さくすると共に、
サージ電流が半導体基板1を均一に流れ易くする
ため、p+高不純物濃度の小領域4a,4b,4
c……を複数個形成し、これら小領域に夫々形成
された電極6a,6b,6c……をすべて共通に
結合している。この実施例において、小領域4
a,4b,4c……の形成に伴い形成される夫々
の静電容量Ca,Cb,Cc……が互いに並列接続さ
れるので、これらを合成した静電容量C2は、C2
≒Ca+Cb+Cc+……となる。従つて、小領域4
a,4b,4c……を充分に小さくすることが好
ましい。
Next, in another embodiment shown in FIG. 2, the equivalent capacitance C of the entire semiconductor device is reduced, and
In order to make it easier for the surge current to flow uniformly through the semiconductor substrate 1, small regions 4a, 4b, 4 with high p + impurity concentration are formed.
A plurality of electrodes 6a, 6b, 6c, . . . formed in these small regions are all commonly connected. In this example, the small area 4
Since the respective capacitances C a , C b , C c ... formed with the formation of a, 4b, 4c ... are connected in parallel with each other, the combined capacitance C 2 is C 2
≒C a +C b +C c +... Therefore, small area 4
It is preferable to make a, 4b, 4c... sufficiently small.

第3図に示す他の実施例ではn導電型の不純物
濃度が非常に低いn--不純物濃度の半導体基板1
を用いることにより、この基板1と小領域4とに
より形成されるPN接合J2に起因する静電容量C2
を更に小さくできる。
In another embodiment shown in FIG. 3, the semiconductor substrate 1 has a very low n - type impurity concentration.
By using , the capacitance C 2 due to the PN junction J 2 formed by the substrate 1 and the small region 4
can be made even smaller.

次に第4図A,Bにより本発明の他の実施例を
説明すると、半導体基板1にp導電型の不純物を
拡散してp+高不純物濃度の小領域4を形成する
とき、同時に小領域4と離してp+高不純物濃度
の第2の小領域4′を形成し、更に通常のフオト
リゾグラフイ法を利用してn+高不純物濃度の第
3の小領域9を小領域4′内に形成する。n-低不
純物濃度の半導体層1と第2の小領域4′との間
に形成されるPN接合は不要なので、導電性薄膜
10をこのPN接合に跨がるように形成して半導
体層1と第2の小領域4′とを電気的に短絡する。
そして第3の小領域9に形成された電極11と小
領域4に形成された電極6とを共通に接続するこ
とにより、同図Bに示すように主PN接合J1をも
ちアバランシエブレータダウン機能を行うダイオ
ードD1に対し、接合面積の小さなPN接合J2,J3
を夫々有するダイオードD2,D3を逆並列したも
のを直列に接続した構成と等価の構造を有する半
導体装置を得ることが出来る。斯かる半導体装置
は、この半導体素子2個の夫々の電極5を中間引
出し端子12を介して背中合せに半田付すること
により、第5図に示す様な3つの引出し端子を備
えた双方向性のアバランシエブレークダウン機能
を有するサージ吸収素子を得るのに適しており、
調整された小さな静電容量を有するだけの双方向
性の半導体装置を得ることが出来る。
Next, another embodiment of the present invention will be described with reference to FIGS. 4A and 4B. When p conductivity type impurities are diffused into the semiconductor substrate 1 to form a small region 4 with a high p + impurity concentration, the small region A second small region 4' having a p + high impurity concentration is formed separately from the p+ impurity concentration, and a third small region 9 having an n + high impurity concentration is formed as a small region 4' using a normal photolithography method. form within. Since the PN junction formed between the n - low impurity concentration semiconductor layer 1 and the second small region 4' is unnecessary, the conductive thin film 10 is formed so as to straddle this PN junction. and the second small region 4' are electrically short-circuited.
Then, by commonly connecting the electrode 11 formed in the third small region 9 and the electrode 6 formed in the small region 4, the avalanche regulator is down with the main PN junction J1 as shown in FIG. In contrast to the functional diode D 1 , the PN junctions J 2 and J 3 have a small junction area.
It is possible to obtain a semiconductor device having a structure equivalent to a structure in which diodes D 2 and D 3 each having diodes D 2 and D 3 are connected in series in antiparallel. By soldering the respective electrodes 5 of the two semiconductor elements back to back via the intermediate lead-out terminals 12, such a semiconductor device can be made into a bi-directional device with three lead-out terminals as shown in FIG. Suitable for obtaining surge absorption elements with avalanche breakdown function,
A bidirectional semiconductor device with only a small regulated capacitance can be obtained.

以上の実施例では一方向性のサージ吸収用半導
体装置について述べたが、次に第6図A,Bによ
り双方向性半導体バリスタの実施例を説明する
と、n-低不純物濃度の半導体基板1の両側から
p型不純物を拡散してp不純物濃度の半導体層
2,2′を形成することにより、主PN接合J1
J1′を形成する。半導体層2にn+高不純物濃度の
小領域4aとn不純物濃度の小領域4bとを形成
し、半導体層2′にn+高不純物濃度の小領域4′
a′とn不純物濃度の小領域4′bとを形成する。
更に、小領域4b,4′bにはp+高不純物濃度の
小領域11,11′が夫々形成され、小領域9に
形成された電極11と小領域4aに形成された電
極6とが電気的に結合され、小領域9′に形成さ
れた電極11′と小領域4′aに形成された電極
6′とが電気的に結合される。また第4図の実施
例と同様に、導電性薄膜10,10′でもつて、
半導体層2と小領域4b、半導体層2′と小領域
4′bを夫々電気的に短絡する。この様な構成に
よれば、単一の半導体基板でもつて、同図Bに示
す様な静電容量を小さくし得る双方向性半導体バ
リスタを得ることが出来る。
In the above embodiments, a unidirectional surge absorbing semiconductor device has been described. Next, an embodiment of a bidirectional semiconductor varistor will be explained with reference to FIGS . 6A and 6B. By diffusing p-type impurities from both sides to form semiconductor layers 2 and 2' with p-doped concentrations, the main PN junctions J 1 ,
form J 1 ′. A small region 4a with n + high impurity concentration and a small region 4b with n+ impurity concentration are formed in the semiconductor layer 2, and a small region 4' with n + high impurity concentration is formed in the semiconductor layer 2'.
a' and a small region 4'b with n impurity concentration are formed.
Furthermore, small regions 11 and 11' with high p + impurity concentration are formed in the small regions 4b and 4'b, respectively, and the electrode 11 formed in the small region 9 and the electrode 6 formed in the small region 4a are electrically connected. The electrode 11' formed in the small region 9' and the electrode 6' formed in the small region 4'a are electrically coupled. Further, similarly to the embodiment shown in FIG. 4, the conductive thin films 10, 10'
The semiconductor layer 2 and the small region 4b are electrically short-circuited, and the semiconductor layer 2' and the small region 4'b are electrically short-circuited. According to such a configuration, it is possible to obtain a bidirectional semiconductor varistor that can reduce the capacitance as shown in FIG. 2B even with a single semiconductor substrate.

以上述べた様に本発明によれば、逆方向非線形
抵抗特性が主に利用され主PN接合を有する半導
体素子自身に、その静電容量を補償、つまり半導
体装置全体の静電容量を小さくするための小さい
静電容量を与える接合面積の小さいPN接合を形
成しているので、所定の値に調整された静電容量
を有するサージ吸収用半導体装置を容易に製作す
ることが出来、しかも充分に小さな接合面積をも
つPN接合を容易に形成できるからサージ級数用
半導体装置の静電容量を充分に小さくできる。
As described above, according to the present invention, the reverse nonlinear resistance characteristic is mainly used to compensate for the capacitance of the semiconductor element itself having the main PN junction, that is, to reduce the capacitance of the entire semiconductor device. Since a PN junction with a small junction area that provides a small capacitance is formed, it is possible to easily manufacture a surge absorbing semiconductor device with a capacitance adjusted to a predetermined value, and it is also sufficiently small. Since a PN junction with a large junction area can be easily formed, the capacitance of the semiconductor device for surge series can be sufficiently reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための図
であり、Aは断面図、Bは半導体基板の上面図、
Cはその等価図、第2図及び第3図は夫々本発明
の他の実施例を示す断面図、第4図は本発明の他
の一実施例を示す図であつて、そのAは断面図、
Bはその等価図、第5図は本発明の他の実施例を
説明するための図、第6図は本発明の他の一実施
例を説明するための図であり、Aは断面図、Bは
その等価図である。 1……半導体基板、2,2′……半導体層、3,
3′……絶縁被膜、4,4′……小領域、5,6…
…電極、7,8……引出し端子、9,9′……小
領域、10,10′……導電性薄膜、J1,J2,J3
……PN接合。
FIG. 1 is a diagram for explaining one embodiment of the present invention, in which A is a cross-sectional view, B is a top view of a semiconductor substrate,
C is an equivalent diagram, FIGS. 2 and 3 are cross-sectional views showing other embodiments of the present invention, and FIG. 4 is a diagram showing another embodiment of the present invention, in which A is a cross-sectional view. figure,
B is an equivalent diagram thereof, FIG. 5 is a diagram for explaining another embodiment of the present invention, FIG. 6 is a diagram for explaining another embodiment of the present invention, A is a cross-sectional diagram, B is its equivalent diagram. 1... Semiconductor substrate, 2, 2'... Semiconductor layer, 3,
3'...Insulating coating, 4,4'...Small area, 5,6...
...electrode, 7,8...output terminal, 9,9'...small area, 10,10'...conductive thin film, J 1 , J 2 , J 3
...PN junction.

Claims (1)

【特許請求の範囲】 1 第1の導電型の半導体層と第2の導電型の半
導体層とにより形成される1つ以上の主PN接合
が逆方向非線抵抗特性を呈する一方向性のサージ
吸収用半導体装置において、前記第1の導電型の
半導体層に、該半導体層の面積よりも十分小さく
且つ逆の導電型の小領域を1つ以上形成し、前記
主PN接合の静電容量に比べて十分小さい静電容
量をもつ容量低減用の従PN接合を前記主PN接
合と直列に与えて半導体装置全体の静電容量を小
さくし、前記小領域に正の電圧が印加されるべき
電極を形成すると共に前記第2の導電型の半導体
層に負の電圧が印加されるべき電極を形成したこ
とを特徴とする一方向性のサージ吸収用半導体装
置。 2 少なくとも2つの第1の導電型の半導体層と
第2の導電型の半導体層とにより直列に形成され
る2つ以上の主PN接合の非線形方向特性を利用
する双方向性のサージ吸収用半導体装置におい
て、前記第1の導電型の半導体層に該半導体層の
面積より十分小さく且つ逆の導電型の小領域を複
数形成して容量低減用の従PN接合を前記主PN
接合と直列になるよう与えると共に、これら小領
域のうちの少なくとも1つにこの小領域の導電型
と逆の導電型の別の小領域を形成して静電容量低
減用のPN接合を前記主PN接合と直列になるよ
う与え、さらに前記別の小領域とこの小領域が形
成されていない前記小領域を電気的に結合すると
共に、これら小領域に電極を形成したことを特徴
とする双方向性のサージ吸収用半導体装置。
[Claims] 1. A unidirectional surge in which one or more main PN junctions formed by a semiconductor layer of a first conductivity type and a semiconductor layer of a second conductivity type exhibit reverse nonlinear resistance characteristics. In the absorption semiconductor device, one or more small regions having an area sufficiently smaller than the semiconductor layer and having an opposite conductivity type are formed in the semiconductor layer of the first conductivity type, and the capacitance of the main PN junction is increased. A secondary PN junction for capacitance reduction having a sufficiently small capacitance compared to that of the main PN junction is provided in series with the main PN junction to reduce the capacitance of the entire semiconductor device, and a positive voltage is applied to the small region of the electrode. What is claimed is: 1. A unidirectional surge absorbing semiconductor device, characterized in that an electrode to which a negative voltage is applied to the semiconductor layer of the second conductivity type is formed. 2. A bidirectional surge absorbing semiconductor that utilizes the nonlinear directional characteristics of two or more main PN junctions formed in series by at least two semiconductor layers of a first conductivity type and a semiconductor layer of a second conductivity type. In the device, a plurality of small regions having an area sufficiently smaller than that of the first conductivity type semiconductor layer and having an opposite conductivity type are formed in the semiconductor layer of the first conductivity type to form a secondary PN junction for capacitance reduction between the main PN junction and the second conductivity type semiconductor layer.
The PN junction for capacitance reduction is formed in series with the junction, and at least one of these small regions is formed with another small region of a conductivity type opposite to that of this small region. The bidirectional device is provided in series with the PN junction, further electrically coupling the other small region and the small region where this small region is not formed, and forming electrodes on these small regions. Semiconductor device for absorbing electrical surges.
JP24992083A 1983-12-28 1983-12-28 Semiconductor device Granted JPS60140878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24992083A JPS60140878A (en) 1983-12-28 1983-12-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24992083A JPS60140878A (en) 1983-12-28 1983-12-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60140878A JPS60140878A (en) 1985-07-25
JPH0516194B2 true JPH0516194B2 (en) 1993-03-03

Family

ID=17200149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24992083A Granted JPS60140878A (en) 1983-12-28 1983-12-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60140878A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370459A (en) * 1986-09-11 1988-03-30 Origin Electric Co Ltd Surge absorbing semiconductor device
FR2608320A1 (en) * 1986-12-16 1988-06-17 Thomson Semiconducteurs DEVICE FOR PROTECTING AGAINST LOW CAPACITY OVERVOLTAGES
FR2623663B1 (en) * 1987-11-24 1990-04-13 Sgs Thomson Microelectronics MONOLITHIC ASSEMBLY OF PROTECTION DIODES AND PROTECTION SYSTEMS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040168B2 (en) * 1972-06-02 1975-12-22
JPS5326684A (en) * 1976-08-25 1978-03-11 Hitachi Ltd Two-way zener diode
JPS5528435A (en) * 1978-08-21 1980-02-29 Onahama Seiren Kk Method of recovering waste heat of refining exhaust gas
JPS57154879A (en) * 1981-02-04 1982-09-24 Rca Corp Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040168U (en) * 1973-08-08 1975-04-24

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040168B2 (en) * 1972-06-02 1975-12-22
JPS5326684A (en) * 1976-08-25 1978-03-11 Hitachi Ltd Two-way zener diode
JPS5528435A (en) * 1978-08-21 1980-02-29 Onahama Seiren Kk Method of recovering waste heat of refining exhaust gas
JPS57154879A (en) * 1981-02-04 1982-09-24 Rca Corp Semiconductor device

Also Published As

Publication number Publication date
JPS60140878A (en) 1985-07-25

Similar Documents

Publication Publication Date Title
JP2570022B2 (en) Constant voltage diode, power conversion device using the same, and method of manufacturing constant voltage diode
JP3313431B2 (en) Monolithic unidirectional protection diode
KR940010917B1 (en) Semiconductor variable capacitor
CN109065541B (en) Bidirectional transient voltage suppressor and preparation method thereof
JPH0516194B2 (en)
JPS5967670A (en) Semiconductor device
JP2003060059A (en) Protective circuit and protective element
US5569609A (en) Bidirectional Shockley diode
JPH01214055A (en) Electrostatic breakdown protective device
JPS6373673A (en) Semiconductor device for absorbing surge
US3784886A (en) Bidirectional switching semiconductor device
JP3082714B2 (en) Semiconductor device
JPS61102766A (en) Semiconductor integrated circuit
JPH04206961A (en) Semiconductor device
JPH0614546B2 (en) Compound thyristor
JPH0685436B2 (en) Bidirectional thyristor
JPH05275687A (en) Planar-type two-terminal bidirectional thyristor
JPS60235450A (en) Semiconductor integrated circuit device
JPS6159767A (en) Semiconductor device
JP3193386B2 (en) Bidirectional thyristor
JPS5879749A (en) Semiconductor integrated circuit
JPS60235452A (en) Semiconductor integrated circuit device
JPH0145226Y2 (en)
JPS6254951A (en) Semiconductor device
JPH01125873A (en) Surge-absorbing semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term