JPS6370459A - Surge absorbing semiconductor device - Google Patents

Surge absorbing semiconductor device

Info

Publication number
JPS6370459A
JPS6370459A JP21434786A JP21434786A JPS6370459A JP S6370459 A JPS6370459 A JP S6370459A JP 21434786 A JP21434786 A JP 21434786A JP 21434786 A JP21434786 A JP 21434786A JP S6370459 A JPS6370459 A JP S6370459A
Authority
JP
Japan
Prior art keywords
region
impurity concentration
low impurity
junction
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21434786A
Other languages
Japanese (ja)
Inventor
Yasuo Hasegawa
長谷川 泰男
Kuniji Mizuno
水野 邦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP21434786A priority Critical patent/JPS6370459A/en
Publication of JPS6370459A publication Critical patent/JPS6370459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To decrease a voltage drop in a forward direction, by doping a second conductivity type impurities in a low impurity concentration region on one hand, and doping second conductivity type impurities in a low impurity concen tration region so as to reach a part within the free running path distance of carriers on the other hand. CONSTITUTION:A first P-N junction J1, which is formed by a first region 3 and an embedded region 2, is subject to avalanche breakdown when a voltage exceeding a preset voltage is applied across electrodes 6 and 7. The voltage between the electrodes 6 and 7 is kept at a value less than the preset voltage. A second P-N junction J2, which is formed by a second region 4 and a low impurity concentration layer 1, has a sufficiently small area in comparison with the first P-N junction J1. A low impurity concentration layer part 1', which is held between the second region 4 and the embedded region 2, is formed so that the thickness of the part 1' is less than the free running path distance of the carriers. Even if the resistivity of the low impurity concentration layer part 1' is large, the drop in the forward direction in the low impurity concentra tion layer part 1' at a region, where a large current flows, is not increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、PN接合の逆方向非線形抵抗特性を主に利用
するサージ吸収用半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device for surge absorption that mainly utilizes the reverse nonlinear resistance characteristics of a PN junction.

〔従来の技術〕[Conventional technology]

一般に通信線及び各拙屯気惧益の制到線などにおいては
、自然雷の直撃や誘導、或いは負荷の開閉などによって
サージて圧が生じ、特に通信装置、他の電子機器などの
高密度モジュール化の進展に伴い、サージ電圧や過電圧
に極めて弱いIC,LSI素子などが多用逼れているた
め、1子機器にサージが浸入する前にサージアブソーバ
でもってサージ金吸収する必要が多くなっているコ 斯かるサージアブソーバは大別して放電型のものと、金
属Ef化物バリスタ或いはシリコン半導体バリスタの様
な固体素子とに分けられ、本発明の属する固体素子はサ
ージ′域圧?高速で吸収する機能?育するが、サージ耐
量は比較的小嘔く、サージ耐量を大きくとれは静電容量
が大きくなるという相反した関係にある。そして静電容
量が大きくなると、;江刀損失が増え、荷Vここの傾向
は扁周波伝送路、扁速のデジタル信号伝送路などにおい
て著しくなるので、サージ吸収nとカメにフラング電圧
に彪書r与えることなく半導体装置の静−!!容量て低
減芒ぜることかl要になっている0 このような静電容ik低減したものとして特開昭60−
140878号公報に開示きれた半導体装置がある。こ
れは第6図(A)に示すように半導体装置の等価的な静
電容量を小袋くすることt主目的として、1つ以上の主
PN接合J1の逆方向非線形特性全利用する不純物濃度
の小袋い半導体基板内にその主PN接合J1  とは逆
方向となる小袋な容童低減用PN接合J2yt形成して
その順方向特性を利用することにより、主PN接合によ
る静電容量に対し容量低減用PN接合による小石な容量
低減用の静電容量を直列に与え、これによって半導体素
子全体の静電容量を充分に小石<シている。
In general, in communication lines and other communication lines, pressure is generated due to surges due to direct strikes or guidance from natural lightning, or the switching of loads, especially in high-density modules such as communication equipment and other electronic equipment. With the advancement of technology, ICs, LSI devices, etc. that are extremely susceptible to surge voltages and overvoltages are being used more and more, so it is increasingly necessary to use surge absorbers to absorb surges before they can infiltrate single-device devices. Such surge absorbers can be roughly divided into discharge type ones and solid-state elements such as metal Efide varistors or silicon semiconductor varistors. Ability to absorb at high speed? However, the surge resistance is relatively small, and the larger the surge resistance, the larger the capacitance, which is a contradictory relationship. As the capacitance increases, the electric loss increases, and this tendency becomes remarkable in flat frequency transmission lines, flat speed digital signal transmission lines, etc. Stability of semiconductor devices without giving r! ! It has become necessary to reduce the capacitance.
There is a semiconductor device disclosed in Japanese Patent No. 140878. The main purpose of this is to reduce the equivalent capacitance of the semiconductor device, as shown in FIG. By forming a small PN junction J2yt in the small semiconductor substrate in the opposite direction to the main PN junction J1 and utilizing its forward characteristics, the capacitance can be reduced compared to the capacitance due to the main PN junction. A capacitance for reducing capacitance is provided in series by a PN junction, thereby sufficiently reducing the capacitance of the entire semiconductor element.

これ?回路図で示すと、第6図(君)に示すように主P
N接合J0テもつサージ吸収用素子D1と逆向きに容量
低減用PN接合J2 kもつ容量低減用素子D2 で直
列接続したものと等価になる。
this? In the circuit diagram, as shown in Figure 6 (kun), the main P
This is equivalent to connecting in series a surge absorbing element D1 having an N junction J0 and a capacitance reducing element D2 having a capacitance reducing PN junction J2 in the opposite direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしこの様な従来のサージ吸収用半導体装置は半導体
基板1の両主面から不純物をドーグせねばならないので
、製造工程が榎雑になジ、コストが誦くなるという欠点
があった、更にまた従来のものは靜電容址全小石くする
ために不純物濃度の小さい半導体基板1を用い、この半
導体基板の所定の領域に半導体基板とは別の導電型の不
純物の濃度の高い領域2.4を形成する構造なので、機
械的強度の関係及び半導体装置の特性などから半導体基
板の厚み七300〜400μmよジも更に薄くし難いた
め、前記不純物濃度の高い領域2.4間に挾まれる低不
純物濃度の半導体基板部分の厚みが大きくならざるを得
ない。その厚みW#′iキャリアの自由行程距離に比べ
薄くすることが望ましい0このようにサージ吸収機能を
行うサージ吸収用素子と直列に接続場扛る容量低減用素
子の順方向電圧降下が増大することは、サージを低く抑
えるという目的に対し逆行し、クランプ電圧が上昇して
しまうと共にサージ吸収時の成力損失が太きくなるばか
りでなく、発熱が増大し、サージ吸収能力tも制限して
しまうという欠点もめる。
However, in such a conventional surge absorbing semiconductor device, since impurities must be doped from both main surfaces of the semiconductor substrate 1, the manufacturing process is complicated and the cost is high. In the conventional method, a semiconductor substrate 1 with a low impurity concentration is used in order to reduce the electric conductivity, and a region 2.4 with a high impurity concentration of a conductivity type different from that of the semiconductor substrate is formed in a predetermined region of the semiconductor substrate. Since it is difficult to make the semiconductor substrate even thinner than 300 to 400 μm due to mechanical strength and the characteristics of the semiconductor device, it is difficult to reduce the thickness of the semiconductor substrate by 300 to 400 μm. The thickness of the semiconductor substrate portion with high concentration must become large. It is desirable that the thickness W#'i be thinner than the free path distance of the carrier. In this way, the forward voltage drop of the capacitance reduction element connected in series with the surge absorption element that performs the surge absorption function increases. This goes against the purpose of suppressing surges, and not only does the clamp voltage rise and the power loss during surge absorption increases, but also heat generation increases, limiting the surge absorption capacity t. It also has the disadvantage of being stored away.

〔問題点ケ解決するための手段及び作用〕本発明では上
述したような従来のサージ吸収用半導体装置の欠点全除
去するために、第1の専Iこ型の低不純物一度碩域に埋
め込まれたこれと同−導電型の高不純物濃度領域勿共通
とし、−万は七の高不純物濃度領域とPNN接合影形成
るよう前記低不純物濃度領域に第2の4′、!L型の不
純物?ドーグすると共に、他方は前記高不純物濃度領域
に達しないが、好ましくはキャリアの自由行程距離内ま
で届くよう前記低不純物濃度領域に第2の導く型の不純
物をドーグすること?特徴としているので、同一製造工
程にて同一″IL−導体層内にサージ吸収用素子とその
静電容量を低減するための容量低減用素子とを形成でさ
、しかもその容量低減用素子の頑方向亀圧降下ケ低減で
きる。
[Means and operations for solving the problem] In order to eliminate all the drawbacks of the conventional surge absorbing semiconductor device as described above, the present invention uses a first specialized I-type low impurity impurity that is once embedded in a small area. In addition, a high impurity concentration region of the same conductivity type is common, and a second 4',! L-type impurity? doping and doping a second type of impurity into the low impurity concentration region such that the other does not reach the high impurity concentration region but preferably reaches within the free path distance of carriers; This feature enables the formation of a surge absorbing element and a capacitance reduction element for reducing the capacitance in the same IL-conductor layer in the same manufacturing process, and the robustness of the capacitance reduction element. Directional pressure drop can be reduced.

〔実施l/+]J 第1図によシネ発+jlに係るサージ吸収用半導体装置
の一実施例について説明すると、1は単結晶子導体基板
(図示せず)上に形成された非n′に不純物濃度の低い
N−型のエピタキシャル層或いFiN−型の導電型でも
つ半導体基板(以下低不純物、A度層というり、2はイ
オン打込み技術によってリン原子などt注入することに
より形成された、或いは後述するように拡散法により形
成てれた十分に不純物濃度の商いN+型十 の埋込み鴻域、6はNuの埋込み14域2とP+ N接合J1 を形成するP 型の第1の領域、4は雄込
み顕+J22まで達せずに、その近傍において低不純物
濃度1−1とPN接合J2 r形成するよう第1の領域
2と同様にして形成場れたP+シ 型の第2の′AAs2絶縁膜、6.7はそれぞれ21.
22Q額f6.4にオーミックコンタクトとなるよう形
成場れた篭jである。
[Implementation l/+] J An example of a semiconductor device for surge absorption related to a cine +jl will be described with reference to FIG. 1. 1 is a non-n' A semiconductor substrate having an N-type epitaxial layer with a low impurity concentration or a FiN-type conductivity type (hereinafter referred to as a low impurity, A degree layer) is formed by implanting phosphorus atoms etc. using ion implantation technology. Alternatively, as will be described later, an N+ type buried region 6 with a sufficiently high impurity concentration formed by a diffusion method, and a P type first region 6 forming a P+ N junction J1 with a Nu buried region 2 are formed. Region 4 is a P+C type second region formed in the same manner as the first region 2 so as to form a low impurity concentration 1-1 and a PN junction J2r in the vicinity without reaching the male penetration junction J22. 'AAs2 insulating film, 6.7 is 21.
This is a basket j formed to make ohmic contact with the 22Q forehead f6.4.

第1の領域6と埋込み咀域2とにより形成された第1の
PN接合J1  は設定電圧以上の電圧が1謹極6,7
間に印加さnるときアバランシェ降伏紮起して、T!L
極6,7間の電圧を設定電圧以下に保持する。第2の領
域4と低不純物濃度I脅1とによp形成爆九る第2のP
N接合J2  は第1のPN接合J1  に比べて十分
小さな接合面積?!−育する。筐た第2の領域4と埋込
み領域2間に挾まれた低不純物濃度層部分1 は、好ま
しくはキャリアの自由行程距離以内の厚みになるように
形成逼れている。このことは、低不純物濃度層部分1′
の比抵抗が大きい場合でも、電流の大きい領域における
低不純物濃度層部分1′+ の順方向電圧降下上増大させないOP 型のオ+ 2の領域4、N 型の埋込み領域2及びこれらに挾まれ
た低不純物濃度ノ一部分1′は各量低減用素子を構成し
ており、これらの条件が同じときその低不純物濃度層部
分1′の比抵抗を大きく丁ればするほどその静電容量を
小妬くできることが知られているが、その反面順方向電
圧降下が増大するという欠点がろる〇 この発明では低不純物濃度ノ一部分1′の厚みが好まし
くはキャリアの自由行程距離以内になるよう設定し1い
るので、大電流演域でも低不純物濃度j一部分1′の比
抵抗を犬さくし又もそのノ・1方向電圧降下が壇太せず
、従ってPN接合J2の接合面金十分小石くすることも
併せて容量低減用素子のn寛容量を十分に小石くできる
。葦たこの実施例では低不純物濃度ノー1の不純物濃度
を十分に小ちくできるので、第1、第2の値域6.4を
比較的接近して配置することが出来るO 次にこの半導体装置の拡散法による製造方法の一実施例
を簡単に説明する。
The first PN junction J1 formed by the first region 6 and the buried mast region 2 has a voltage higher than the set voltage.
Avalanche surrender occurs when T is applied between T! L
The voltage between poles 6 and 7 is maintained below the set voltage. The second P formed by the second region 4 and the low impurity concentration I
Is the junction area of N junction J2 sufficiently smaller than that of first PN junction J1? ! -Nurture. The low impurity concentration layer portion 1 sandwiched between the second region 4 and the buried region 2 is preferably formed to have a thickness within the free path distance of the carriers. This means that the low impurity concentration layer portion 1'
Even if the specific resistance of The low impurity concentration layer portion 1' constitutes an element for reducing each amount, and when these conditions are the same, the larger the resistivity of the low impurity concentration layer portion 1', the smaller the capacitance. However, on the other hand, the disadvantage is that the forward voltage drop increases. In this invention, the thickness of the low impurity concentration portion 1' is preferably set to be within the free path distance of carriers. 1, even in a large current range, the resistivity of the low impurity concentration j part 1' can be reduced, and the voltage drop in one direction will not be too large, so the junction surface of the PN junction J2 can be made sufficiently pebble. In addition, the n tolerance amount of the capacitance reducing element can be sufficiently reduced. In this embodiment of the reed octopus, the impurity concentration of the low impurity concentration No. 1 can be made sufficiently small, so the first and second value ranges 6.4 can be arranged relatively close together. An example of a manufacturing method using a diffusion method will be briefly described.

先ずエピタキシャル成長法により単結晶半導体基板(図
示せず)上に不X元物濃度の十分に低いエビ層(i/m
)k形成する。このエビ層は第1図の低不純物d度層1
613分に相当するものであp、以下低不純?l洩度層
1aという。次に第2図(A)に示アように、低不純′
PJ栓度層1a上に絶縁膜10?形成した後に窓か′ケ
形尽し、そこから不純物?拡散して不純物濃度の十分に
篩いN 型の領域2ak形成する。次に絶縁膜10を除
去した後に丈にエビタギ7ヤル法により低不純物濃度+
*1bを成長させる(同図(8)ン。
First, a layer (i/m
) k form. This shrimp layer is the low impurity layer 1 in Figure 1.
It is equivalent to 613 minutes p, or less impurity? It is called a leakage layer 1a. Next, as shown in Figure 2 (A),
Insulating film 10 on PJ plugging layer 1a? After the window is formed, the shape is exhausted and there are impurities? Diffusion is performed to form an N type region 2ak having a sufficiently high impurity concentration. Next, after removing the insulating film 10, a low impurity concentration +
*Grow 1b ((8) in the same figure).

このときN十型の領域2aから不純物が低不純物濃度層
1bに拡散でれ、その拡散は成長面11に対しほぼ対称
的に行われることにより、領域2b?!−形成する。こ
れら領域2aと2bとが形Iy、−jる領域が第1図の
埋込み領域2に相当し、また領域1aと1bとが形成す
る領域が第1図の低不純物濃度層1に相当する。次に同
図C)に示すように低不純物濃度層1bの上面に形成さ
nた絶縁膜5′に窓會投け、その窓を介してアクセクタ
不純物を所定の深場まで拡散してP“型の領域6′を形
成する0更に同図(D)に示すように絶縁膜5の所定位
置に設けた窓からアクセプ+ タネ縫物を拡散してP 型の第20領域4を形成する。
At this time, impurities are diffused from the N0 type region 2a into the low impurity concentration layer 1b, and the diffusion is performed almost symmetrically with respect to the growth surface 11, so that the region 2b? ! - form. The region formed by these regions 2a and 2b in the shape Iy, -j corresponds to the buried region 2 in FIG. 1, and the region formed by the regions 1a and 1b corresponds to the low impurity concentration layer 1 in FIG. Next, as shown in Figure C), a window is applied to the insulating film 5' formed on the top surface of the low impurity concentration layer 1b, and the accessor impurity is diffused to a predetermined depth through the window. Further, as shown in FIG. 5D, the acceptor seed material is diffused through a window provided at a predetermined position in the insulating film 5 to form a P-type 20th region 4.

この際、r型の領域6′における不純物の拡散も進行し
、第1の領域6が形成てれる。
At this time, impurity diffusion in the r-type region 6' also progresses, and the first region 6 is formed.

この様にして各領域が形成嘔れるが、第2の領域4と埋
込み領域2間には博いxd、好ましくはギヤリアの自由
行程距離以下の厚みのilt!1’が必ず介在している
In this way, each region is formed, but there is a width between the second region 4 and the embedded region 2, preferably a thickness equal to or less than the free travel distance of the gear. 1' is always present.

〔発明の効果〕〔Effect of the invention〕

以上述べたように不発明によれば、静14′8量七低減
するための容量低減用素子の構造に2いて、低不純物濃
度層の比抵抗を十分大きくしても太1流領域における7
”:n方向電圧降下か増大しないようにしており、従っ
てサージ吸収用半導体装置の静屯容iを十分に小さくで
き、また製造工程勿片面からアベて行うことが出来るの
は勿論のこと、低不純物濃興領域の比抵抗で十分大きく
できるので分離鐵域を形成することiくサージ吸収用素
子部と容量低減用素子部と金近づけて形成でき、半導体
装置?小型イヒできる。
As described above, according to the invention, even if the resistivity of the low impurity concentration layer is sufficiently increased in the structure of the capacitance reducing element for reducing the static 14'8 amount, the 7
”: The voltage drop in the n-direction is prevented from increasing, so the static capacity i of the semiconductor device for surge absorption can be made sufficiently small, and it goes without saying that the manufacturing process can be performed evenly from one side. Since the specific resistance of the impurity-concentrated region can be made sufficiently large, the isolation region can be formed, and the surge absorbing element part and the capacitance reducing element part can be formed close to the gold, allowing the semiconductor device to be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明に係るサージ吸収用半導体装置の一実施
例ケ示す図、第2図(AJ〜(D)はその製造工程で説
明するための礫1、閏・6図1(A)、(B、lは一般
のサージ吸収用半45体裟許?示す図である。 1.1′・・・低不純物1度jj  2・・・枕込み領
域6.4・・・21、第2のA域 5・・・絶縁膜 6.7・・・電極 特許出願人  オリジン電気株式会社 羊 3 図
FIG. 1 is a diagram showing an embodiment of the surge absorbing semiconductor device according to the invention, and FIGS. , (B, l are diagrams showing general surge absorption semi-45 body dimensions. 1.1'...Low impurity 1 degree jj 2...Blow-up area 6.4...21, No. 2 A area 5... Insulating film 6.7... Electrode patent applicant Origin Electric Co., Ltd. Hitsuji 3 Figure

Claims (1)

【特許請求の範囲】[Claims]  第1の導電型の低不純物濃度層に埋め込まれた第1の
導電型の高不純物濃度領域と、該第1の導電型の高不純
物濃度領域とPN接合を形成するよう前記第1の導電型
の低不純物濃度層に形成された第2の導電型の第1の領
域と、前記第1の導電型の高不純物濃度領域との間に前
記第1の導電型の低不純物濃度層の一部分が存在するよ
うに該第1の導電型の低不純物濃度層内に形成された第
2の導電型の第2の領域を備えたことを特徴とするサー
ジ吸収用半導体装置。
A first conductivity type high impurity concentration region embedded in a first conductivity type low impurity concentration layer and the first conductivity type high impurity concentration region such that a PN junction is formed with the first conductivity type high impurity concentration region. A portion of the low impurity concentration layer of the first conductivity type is between the first region of the second conductivity type formed in the low impurity concentration layer and the high impurity concentration region of the first conductivity type. 1. A surge absorbing semiconductor device comprising: a second region of a second conductivity type formed within the low impurity concentration layer of the first conductivity type.
JP21434786A 1986-09-11 1986-09-11 Surge absorbing semiconductor device Pending JPS6370459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21434786A JPS6370459A (en) 1986-09-11 1986-09-11 Surge absorbing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21434786A JPS6370459A (en) 1986-09-11 1986-09-11 Surge absorbing semiconductor device

Publications (1)

Publication Number Publication Date
JPS6370459A true JPS6370459A (en) 1988-03-30

Family

ID=16654260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21434786A Pending JPS6370459A (en) 1986-09-11 1986-09-11 Surge absorbing semiconductor device

Country Status (1)

Country Link
JP (1) JPS6370459A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154879A (en) * 1981-02-04 1982-09-24 Rca Corp Semiconductor device
JPS60140878A (en) * 1983-12-28 1985-07-25 Origin Electric Co Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154879A (en) * 1981-02-04 1982-09-24 Rca Corp Semiconductor device
JPS60140878A (en) * 1983-12-28 1985-07-25 Origin Electric Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US7638816B2 (en) Epitaxial surge protection device
US7943959B2 (en) Low capacitance semiconductor device
CN104851919A (en) Bidirectional punch-through semiconductor device and manufacture method thereof
CN107301994B (en) Transient Voltage Suppressor and preparation method thereof
US20150236009A1 (en) Low Voltage NPN with Low Trigger Voltage and High Snap Back Voltage for ESD Protection
CN108155225B (en) Constant current device and manufacturing method thereof
CN110518063A (en) The groove MOSFET and manufacturing method of integrated ESD protection
US4775883A (en) Asymmetrical thyristor and method for producing same
CN212434624U (en) High-power transient voltage suppressor
CN105679836B (en) Ultra-low capacitance TVS diode structure and preparation method thereof
CN109065634B (en) Current protection chip and manufacturing method thereof
CN115632056A (en) Horizontal punch-through SiC-TVS device with optional clamping voltage
JPS6370459A (en) Surge absorbing semiconductor device
JPS5921170B2 (en) MOS type semiconductor device
KR101006768B1 (en) Structure of a tvs diode array and its fabrication method
JP6594296B2 (en) Zener diode with polysilicon layer with improved reverse surge capability and reduced leakage current
CN111430305B (en) Method for manufacturing electrostatic discharge protection device and electrostatic discharge protection device
CN210443555U (en) Integrated high-density electrostatic protection chip
KR101407273B1 (en) Semiconductor Device for Surge Protection and Method for Manufacturing Thereof
JPH04262579A (en) Diode
JPS6265382A (en) Surge absorbing element
JPH01149464A (en) Semiconductor device
JPS61259501A (en) Surge absorption element
JPS584829B2 (en) semiconductor integrated circuit
CN113764406B (en) Self-isolation asymmetric vertical transient voltage suppression protection device