JPS6373566A - Manufacture of nonvolatile semiconductor storage device - Google Patents

Manufacture of nonvolatile semiconductor storage device

Info

Publication number
JPS6373566A
JPS6373566A JP61217507A JP21750786A JPS6373566A JP S6373566 A JPS6373566 A JP S6373566A JP 61217507 A JP61217507 A JP 61217507A JP 21750786 A JP21750786 A JP 21750786A JP S6373566 A JPS6373566 A JP S6373566A
Authority
JP
Japan
Prior art keywords
film
oxide film
gate structure
memory cell
floating gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61217507A
Other languages
Japanese (ja)
Inventor
Hisahiro Matsukawa
尚弘 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61217507A priority Critical patent/JPS6373566A/en
Publication of JPS6373566A publication Critical patent/JPS6373566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/42Simultaneous manufacture of periphery and memory cells
    • H10B41/43Simultaneous manufacture of periphery and memory cells comprising only one type of peripheral transistor
    • H10B41/44Simultaneous manufacture of periphery and memory cells comprising only one type of peripheral transistor with a control gate layer also being used as part of the peripheral transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To control the thickness of a gate oxide film independently by depositing an insulating film, a conductive film and an oxidation-resistant film onto a semiconductor base body in succession, selectively leaving the laminated films only at a predetermined position and forming floating gate structure. CONSTITUTION:An oxide film 11 is shaped onto a P-type silicon semiconductor substrate 10, and a polycrystalline silicon film 12 is deposited onto the oxide film 11 through CVD. Laminated films 13 consisting of an oxide film, a nitride film and an oxide film are deposited onto the film 12. The oxide film 11, the silicon film 12 and the laminated films 13 are patterned and left only in a memory cell region. An oxide film 14 is shaped through a thermal oxidation method, a polycrystalline silicon film 15 is deposited on the whole surface through CVD, the gate structure of a peripheral element composed of the laminated structure of the oxide film 14 and the silicon film 15 and the floating gate structure of a memory cell are formed, and an N-type impurity is ion-implanted, using these gate structure as masks to shape regions 16. An oxide film 17 is formed while the regions 16 are activated, and the memory cell and N-type source-drain diffusion regions 18 are shaped. Accordingly, the thickness of the gate oxide films of the memory cell and the peripheral element can be controlled independently without deteriorating characteristics and reliability.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明はメモリセルとして浮遊ゲート及び制御ゲート
からなる二重ゲート構造を持つ不揮発性素子を用いた不
揮発性半導体記憶装置の製造方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention relates to a nonvolatile semiconductor memory device using a nonvolatile element having a double gate structure consisting of a floating gate and a control gate as a memory cell. Regarding the manufacturing method.

(従来の技術) 浮遊ゲート及び制御ゲートからなる二重ゲート構造を持
つ不揮発性素子をメモリセルとして用いた不揮発性半導
体記憶装置いわゆるEPROMでは、データの書込みは
浮遊ゲートに電子を注入することにより行なわれ、デー
タの消去は紫外線の照射により予め浮遊ゲートに蓄積さ
れている電子を放出することにより行われる。
(Prior Art) In a nonvolatile semiconductor memory device called an EPROM, which uses a nonvolatile element with a double gate structure consisting of a floating gate and a control gate as a memory cell, data is written by injecting electrons into the floating gate. Data is erased by emitting electrons previously stored in the floating gate by irradiation with ultraviolet rays.

ところで、従来、このようなEPROMは第2図の断面
図に示されるような工程で製造されている。すなわち、
まず、第2図(a)に示されるように、半導体基板20
上にゲート酸化膜21を堆積した後にゲート電極材料と
しての第1層目の多結晶シリコン$I22を堆積し、次
にこのゲート酸化膜21と多結晶シリコン膜22からな
る二Ii[に対してセルスリットと呼ばれる孔23を開
孔する。次に第2図(b)に示されるように表面に酸化
膜、窒化膜並びに酸化膜の三層構造からなる積層膜24
を堆積し、さらに第2図(C)に示されるようにメモリ
セル領域上をレジスト25でマスクしてメモリセル領域
以外の不要な@m膜24、多結晶シリコン膜22及びゲ
ート酸化[121をエツチング除去してメモリセル領域
にメモリセルの浮遊ゲート構造を形成する。このエツチ
ングの際、多結晶シリコン膜22の側壁に付着していた
積層1124は縦方向での厚みが厚いために残ってしま
う。この後、第2図(d)に示されように周辺素子領域
上に周辺素子のゲート酸化[A2Bを形成する。さらに
第2図(e)に示されようにその上に第2層目の多結晶
シリコン躾27を堆積し、この多結晶シリコン[127
及びゲート酸化i!26をパターニングしてメモリセル
の1111ゲート構造、周辺素子のゲート構造をそれぞ
れ形成した後、メモリセルの制御ゲート構造及び周辺素
子のゲート構造をマスクにイオン注入を行ない、イオン
注入領域28を形成する。次に第2図(f)に示される
ように、後酸化膜29を形成すると同時に上記イオン注
入領1ii128を活性化してメモリセル及び周辺素子
のソース、ドレイン拡散領域30を形成する。
Incidentally, conventionally, such an EPROM has been manufactured by a process as shown in the cross-sectional view of FIG. That is,
First, as shown in FIG. 2(a), a semiconductor substrate 20
After depositing a gate oxide film 21 thereon, a first layer of polycrystalline silicon $I22 as a gate electrode material is deposited, and then a second layer Ii consisting of this gate oxide film 21 and polycrystalline silicon film 22 is deposited. A hole 23 called a cell slit is opened. Next, as shown in FIG. 2(b), a laminated film 24 consisting of a three-layer structure of an oxide film, a nitride film, and an oxide film is formed on the surface.
Then, as shown in FIG. 2(C), the memory cell area is masked with a resist 25 to remove unnecessary @m film 24, polycrystalline silicon film 22, and gate oxide [121] outside the memory cell area. A floating gate structure of the memory cell is formed in the memory cell area by etching. During this etching, the laminated layer 1124 attached to the side wall of the polycrystalline silicon film 22 remains because it is thick in the vertical direction. Thereafter, gate oxidation [A2B] of the peripheral element is formed on the peripheral element region as shown in FIG. 2(d). Furthermore, as shown in FIG. 2(e), a second layer of polycrystalline silicon 27 is deposited thereon, and this polycrystalline silicon [127
and gate oxidation i! After patterning 26 to form the 1111 gate structure of the memory cell and the gate structure of the peripheral element, ion implantation is performed using the control gate structure of the memory cell and the gate structure of the peripheral element as masks to form the ion implantation region 28. . Next, as shown in FIG. 2(f), a post-oxidation film 29 is formed and at the same time the ion implantation region 1ii 128 is activated to form source and drain diffusion regions 30 of the memory cell and peripheral elements.

このように上記方法ではメモリセルと周辺素子のゲート
酸化II!厚を独立に制御することができるため、汎用
性の高いEPROMを製造することができるという利点
を持つ。
In this way, in the above method, gate oxidation of memory cells and peripheral elements II! Since the thickness can be controlled independently, it has the advantage that a highly versatile EPROM can be manufactured.

しかしながら、上記方法によれば、第2図(C)の工程
で残ってしまった積層rlA24の存在が後工程に悪影
響を及ぼすという問題がある。例えば、−(オン注入領
域28を形成する際に積層膜24下部の基板20には不
純物イオンが十分に注入されないので、第2図(f)に
示されるようにその部分のソース。
However, according to the above method, there is a problem in that the presence of the laminated rlA 24 remaining in the step of FIG. 2(C) has an adverse effect on subsequent steps. For example, - (when forming the on-implantation region 28, impurity ions are not sufficiently implanted into the substrate 20 below the laminated film 24, so the source in that part is removed as shown in FIG. 2(f)).

ドレイン拡散領域30の拡散深さが浅くなり、ソース、
ドレイン抵抗が増大する。また、この積層膜24は汚染
源となり、後工程に悪影響を与えるという問題もある。
The diffusion depth of the drain diffusion region 30 becomes shallower, and the source,
Drain resistance increases. Further, there is also the problem that this laminated film 24 becomes a source of contamination and adversely affects subsequent processes.

(発明が解決しようとする問題点) このように従来方法では、メモリセルと周辺素子のゲー
ト酸化膜厚を独立して制御することができるという利点
を持つ反面、特性や信頼性が悪化するという欠点がある
(Problems to be Solved by the Invention) Although the conventional method has the advantage of being able to independently control the gate oxide film thickness of the memory cell and peripheral elements, it has the disadvantage that the characteristics and reliability deteriorate. There are drawbacks.

この発明は上記のような事情を考慮してなされたもので
あり、その目的は、特性や信頼性を悪化させることなく
メモリセルと周辺素子のゲート酸化膜厚を独立して制御
することができる不揮発性半導体記憶記憶装置の製造方
法を提供することにある。
This invention was made in consideration of the above circumstances, and its purpose is to be able to independently control the gate oxide film thickness of the memory cell and peripheral elements without deteriorating the characteristics or reliability. An object of the present invention is to provide a method for manufacturing a nonvolatile semiconductor memory device.

[発明の構成] 〈問題点を解決するための手段) この発明の不揮発性半導体記憶装置の製造方法は、第1
導電型の半導体基体上に絶縁性の第1の膜、導電性の第
2の膜及び耐酸化性の第3の腹を順次堆積する工程と、
上記第1、第2及び第3の膜からなる積層膜を所定位置
にのみ選択的に残してメモリセル用不揮発性素子の浮遊
ゲート構造を形成する工程と、全面に絶縁性の第4の膜
及び導電性の第5の膜を順次堆積する工程と、上記第4
及び第5の膜からなる積層膜を所定位置にのみ選択的に
残して周辺素子のゲート構造並びに上記不揮発性素子の
制御ゲート構造を形成する工程と。
[Structure of the Invention] <Means for Solving the Problems> A method for manufacturing a nonvolatile semiconductor memory device of the present invention includes the first
sequentially depositing an insulating first film, a conductive second film, and an oxidation-resistant third film on a conductive type semiconductor substrate;
forming a floating gate structure of a non-volatile element for a memory cell by selectively leaving the laminated film consisting of the first, second and third films at predetermined positions; and forming a fourth insulating film on the entire surface. and a step of sequentially depositing a conductive fifth film;
and a step of forming a gate structure of a peripheral element and a control gate structure of the nonvolatile element by selectively leaving a laminated film consisting of a fifth film only at a predetermined position.

上記不揮発性素子の浮遊ゲート構造及びに上記周辺素子
のゲート構造それぞれをマスクとして用いて上記基体に
第2導電型の不純物を注入して、上記不揮発性素子及び
周辺素子それぞれのソース、ドレイン領域を形成する工
程とから構成されている。
A second conductivity type impurity is implanted into the substrate using the floating gate structure of the nonvolatile element and the gate structure of the peripheral element as a mask to form the source and drain regions of the nonvolatile element and the peripheral element, respectively. It consists of a step of forming.

(作用) この発明の不揮発性半導体記憶装置の製造方法では、第
1導電型の半導体基体上に絶縁性の第1の膜、導電性の
第2の膜及び耐酸化性のM3の膜を順次堆積した後、上
記第1、第2及び第3の摸からなる積層膜を所定位置に
のみ選択的に残してメモリセル用不揮発性素子の浮遊ゲ
ート構造を形成することにより、第1、第2及び第3の
膜からなる積層膜を必要な箇所のみに残すようにしてい
る。
(Function) In the method for manufacturing a nonvolatile semiconductor memory device of the present invention, an insulating first film, a conductive second film, and an oxidation-resistant M3 film are sequentially formed on a first conductivity type semiconductor substrate. After the deposition, the laminated film consisting of the first, second, and third patterns is selectively left only at predetermined positions to form a floating gate structure of a nonvolatile element for a memory cell. The laminated film consisting of the third film and the third film is left only in necessary locations.

(実施例) 以下、図面を参照してこの発明の一実施例を説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図はこの発明の一実施例の方法による製造工程を順
次示す断面図である。
FIG. 1 is a cross-sectional view sequentially showing manufacturing steps according to an embodiment of the present invention.

まず、第1図(a)に示されるように、例えばP型のシ
リコン半導体基板10上に200人の厚みのシリコン酸
化膜11を形成した後、CVD (化学的気相成長法)
によりその上に4000人の厚みの多結晶シリコン膜1
2を堆積する。さらに、その上にシリコン酸化膜、シリ
コン窒化膜及びシリコン酸化膜からなる三層構造の積層
膜13を堆積する。
First, as shown in FIG. 1(a), a silicon oxide film 11 with a thickness of 200 nm is formed on, for example, a P-type silicon semiconductor substrate 10, and then a silicon oxide film 11 is formed using CVD (chemical vapor deposition method).
Then a polycrystalline silicon film 1 with a thickness of 4,000 wafers is deposited on top of it.
Deposit 2. Furthermore, a laminated film 13 having a three-layer structure consisting of a silicon oxide film, a silicon nitride film, and a silicon oxide film is deposited thereon.

この積層I!!13は周知の方法でシリコン酸化膜、シ
リコン窒化膜及びシリコン酸化膜それぞれを順次堆積す
ることにより形成する。
This laminated I! ! 13 is formed by sequentially depositing a silicon oxide film, a silicon nitride film, and a silicon oxide film using a well-known method.

次に第1図(b)に示されるように、上記シリコン酸化
1111、多結晶シリコン1112及び積11WA13
を周知のフォトリソグラフィ技術並びにエツチング技術
によりバターニングしてメモリセル領域のみに残す。
Next, as shown in FIG. 1(b), the silicon oxide 1111, the polycrystalline silicon 1112 and the product 11WA13
is patterned using well-known photolithography and etching techniques to leave it only in the memory cell area.

次に第1図(C)に示されるように、熱酸化法により基
板10の露出面にシリコン酸化膜14を250人の厚み
に形成する。このとき、予め残されている積8I膜13
はシリコン窒化膜が耐波化性を有しているのでその周囲
にはシリコン酸化膜はほとんど成長せず、反対に多結晶
シリコン膜12の側壁にはこれよりも厚いシリコン酸化
膜が成長する。
Next, as shown in FIG. 1C, a silicon oxide film 14 is formed to a thickness of 250 nm on the exposed surface of the substrate 10 by thermal oxidation. At this time, the 8I film 13 left in advance
Because the silicon nitride film has wave resistance, hardly any silicon oxide film grows around it, and on the contrary, a thicker silicon oxide film grows on the sidewalls of the polycrystalline silicon film 12.

次に第1図(d)に示されるように、CVDにより全面
に3500人の厚みの第2層目の多結晶シリコン膜15
を堆積し、さらに周知のフォトリソグラフィ技術並びに
エツチング技術によりバターニングして、シリコン酸化
gl14及び多結晶シリコン膜15の積層構造からなる
周辺素子のゲート構造及びメモリセルの浮遊ゲート構造
を形成し、さらに周辺素子のゲート構造並びにメモリセ
ルの浮遊ゲート構造をマスクにN型不純物、例えばヒ素
イオン(AS)を40KeVr  5x10f ’ /
cm3のドーズ量でイオン注入してイオン注入領域16
を形成する。
Next, as shown in FIG. 1(d), a second layer of polycrystalline silicon film 15 with a thickness of 3,500 mm is formed over the entire surface by CVD.
is deposited and further patterned using well-known photolithography and etching techniques to form a gate structure of a peripheral element and a floating gate structure of a memory cell consisting of a laminated structure of silicon oxide GL 14 and polycrystalline silicon film 15, and further Using the gate structure of the peripheral elements and the floating gate structure of the memory cell as a mask, N-type impurities such as arsenic ions (AS) are applied at 40KeVr 5x10f'/
The ion implantation region 16 is formed by ion implantation with a dose of cm3.
form.

次に第1図(e)に示されるように、後酸化膜17を5
00人の厚みに形成すると同時にそのときの加熱処理に
より上記イオン注入領域16を活性化してメモリセル及
び周辺素子のN型ソース、ドレイン拡散領域18を形成
する。
Next, as shown in FIG. 1(e), the post-oxide film 17 is
At the same time, the ion implantation region 16 is activated by heat treatment to form the N-type source and drain diffusion regions 18 of the memory cell and peripheral elements.

このように上記実施例の方法によれば、基板10上にシ
リコン酸化膜11、多結晶シリコン1112及びv4層
模膜3を順次堆積した後、これら堆積膜を所定位防にの
み選択的に残してメモリセル用不連発性素子の浮遊ゲー
ト構造を形成し、この堆積膜を必要な箇所のみに残すよ
うにしたので、従来のように積層膜が不要箇所に残され
ることにより発生した種々の問題点が全て解消され、特
性や信頼性の悪化を防止することができる。しかもメモ
リセルと周辺素子のゲート酸化膜、すなわちシリコン酸
化[11と14とは別個に形成されるため、それぞれ独
立して膜厚を制御することができる。このため、製造さ
れるEPROMの汎用性を高めることができる。
According to the method of the above embodiment, after the silicon oxide film 11, the polycrystalline silicon 1112, and the V4 layer pattern 3 are sequentially deposited on the substrate 10, these deposited films are selectively left only in predetermined positions. The floating gate structure of the non-continuous element for the memory cell was formed using the above method, and this deposited film was left only in the necessary areas.This eliminates the various problems that occur when the laminated film is left in unnecessary areas as in the past. All the problems are solved, and deterioration of characteristics and reliability can be prevented. Moreover, since the gate oxide films of the memory cell and the peripheral elements, that is, the silicon oxides [11 and 14] are formed separately, the film thicknesses can be controlled independently. Therefore, the versatility of the manufactured EPROM can be increased.

なお。この発明は上記した実施例に限定されるものでは
なく、種々の変形が可能であることはいうまでもない。
In addition. It goes without saying that this invention is not limited to the embodiments described above, and that various modifications are possible.

例えば上記実施例では積層膜13はシリコン酸化膜、シ
リコン窒化膜及びシリコン酸化膜それぞれを順次堆積す
ることにより形成する場合について説明が、これは予め
シリコン酸化膜とシリコン窒化膜とを堆積した二層膜の
みを形成しておき、第1図(C)のゲート酸化工程の際
に同時にシリコン窒化膜を酸化しこの上にシリコン酸化
膜を形成することにより三層の積層膜としてもよい。
For example, in the above embodiment, the laminated film 13 is formed by sequentially depositing a silicon oxide film, a silicon nitride film, and a silicon oxide film. It is also possible to form a three-layer stacked film by forming only a film, oxidizing the silicon nitride film at the same time during the gate oxidation step shown in FIG. 1(C), and forming a silicon oxide film thereon.

さらに、上記実施例では基板10としてP型のものを使
用し、メモリセル及び周辺素子としてNチャネル型のも
のを形成する場合について説明が、反対にN型基板を使
用してPチャネル素子を形成するようにしてもよいこと
はもちろんである。
Furthermore, in the above embodiment, a P-type substrate is used as the substrate 10, and an N-channel type is formed as the memory cell and peripheral elements. Of course, it is also possible to do so.

さらに、第1図(d)の工程の際に第1層目の多結晶シ
リコンI!1112の一部を露出させ、第2層目の多結
晶シリコンl115のバターニングと同時に、ソース、
ドレイン拡散領域18の配列方向と直行する方向におい
て第1層目の多結晶シリコンl112のバターニングを
行なうことにより、メモリセルの浮遊ゲートと制御ゲー
トとを自己整合的に形成することも可能である。
Furthermore, during the process shown in FIG. 1(d), the first layer of polycrystalline silicon I! 1112 is exposed, and at the same time the second layer of polycrystalline silicon 115 is patterned, the source,
By patterning the first layer of polycrystalline silicon 112 in the direction perpendicular to the arrangement direction of the drain diffusion regions 18, it is also possible to form the floating gate and control gate of the memory cell in a self-aligned manner. .

[発明の効果] 以上説明したようにこの発明によれば、特性や信頼性を
悪化させることなくメモリセルと周辺素子のゲート酸化
膜厚を独立して制御することができる不揮発性半導体記
憶装置の製造方法を提供することができる。
[Effects of the Invention] As explained above, the present invention provides a nonvolatile semiconductor memory device in which the gate oxide film thicknesses of memory cells and peripheral elements can be independently controlled without deteriorating characteristics or reliability. A manufacturing method can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の方法による製造工程を示
す断面図、第2図は従来方法による製造工程を示す断面
図である。 10・・・P型のシリコン半導体基板、11・・・シリ
コン酸化膜、12・・・第11目の多結晶シリコン膜、
13・・・積層膜、14・・・シリコン酸化膜、15・
・・第211目の多結晶シリコン膜、16・・・イオン
注入領域、11・・・後酸化膜、18・・・N型ソース
、ドレイン拡散領域。 出願人代理人 弁理士 鈴江武彦 1゜ 第1図
FIG. 1 is a cross-sectional view showing a manufacturing process according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a manufacturing process according to a conventional method. 10... P-type silicon semiconductor substrate, 11... silicon oxide film, 12... eleventh polycrystalline silicon film,
13... Laminated film, 14... Silicon oxide film, 15.
...211th polycrystalline silicon film, 16... ion implantation region, 11... post-oxidation film, 18... N-type source and drain diffusion region. Applicant's agent Patent attorney Takehiko Suzue 1゜Figure 1

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基体上に絶縁性の第1の膜、導電性
の第2の膜及び耐酸化性の第3の膜を順次堆積する工程
と、上記第1、第2及び第3の膜からなる積層膜を所定
位置にのみ選択的に残してメモリセル用不揮発性素子の
浮遊ゲート構造を形成する工程と、全面に絶縁性の第4
の膜及び導電性の第5の膜を順次堆積する工程と、上記
第4及び第5の膜からなる積層膜を所定位置にのみ選択
的に残して周辺素子のゲート構造並びに上記不揮発性素
子の制御ゲート構造を形成する工程と、上記不揮発性素
子の浮遊ゲート構造及びに上記周辺素子のゲート構造そ
れぞれをマスクとして用いて上記基体に第2導電型の不
純物を注入して、上記不揮発性素子及び周辺素子それぞ
れのソース、ドレイン領域を形成する工程とを具備した
ことを特徴とする不揮発性半導体記憶装置の製造方法。
a step of sequentially depositing an insulating first film, a conductive second film, and an oxidation-resistant third film on a semiconductor substrate of a first conductivity type; A step of forming a floating gate structure of a non-volatile element for a memory cell by selectively leaving a laminated film consisting of a film at a predetermined position, and a step of forming a floating gate structure of a non-volatile element for a memory cell;
and a conductive fifth film, and selectively leave the laminated film consisting of the fourth and fifth films only at predetermined positions to form the gate structure of the peripheral element and the nonvolatile element. forming a control gate structure, and implanting a second conductivity type impurity into the base using the floating gate structure of the nonvolatile element and the gate structure of the peripheral element as masks, and forming the nonvolatile element and the peripheral element. 1. A method of manufacturing a nonvolatile semiconductor memory device, comprising the step of forming source and drain regions of each peripheral element.
JP61217507A 1986-09-16 1986-09-16 Manufacture of nonvolatile semiconductor storage device Pending JPS6373566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61217507A JPS6373566A (en) 1986-09-16 1986-09-16 Manufacture of nonvolatile semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61217507A JPS6373566A (en) 1986-09-16 1986-09-16 Manufacture of nonvolatile semiconductor storage device

Publications (1)

Publication Number Publication Date
JPS6373566A true JPS6373566A (en) 1988-04-04

Family

ID=16705317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61217507A Pending JPS6373566A (en) 1986-09-16 1986-09-16 Manufacture of nonvolatile semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS6373566A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0713249A1 (en) * 1994-10-28 1996-05-22 Texas Instruments Incorporated Method for forming semiconductor devices with oxide layers having different thicknesses
EP0798785A1 (en) * 1996-03-29 1997-10-01 STMicroelectronics S.r.l. High-voltage-resistant MOS transistor, and corresponding manufacturing process
EP0993036A1 (en) * 1998-10-09 2000-04-12 STMicroelectronics S.r.l. Method of manufacturing an integrated semiconductor device comprising a floating gate field-effect transistor and a logic-field effect transistor, and corresponding device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0713249A1 (en) * 1994-10-28 1996-05-22 Texas Instruments Incorporated Method for forming semiconductor devices with oxide layers having different thicknesses
EP0798785A1 (en) * 1996-03-29 1997-10-01 STMicroelectronics S.r.l. High-voltage-resistant MOS transistor, and corresponding manufacturing process
US5977591A (en) * 1996-03-29 1999-11-02 Sgs-Thomson Microelectronics S.R.L. High-voltage-resistant MOS transistor, and corresponding manufacturing process
EP0993036A1 (en) * 1998-10-09 2000-04-12 STMicroelectronics S.r.l. Method of manufacturing an integrated semiconductor device comprising a floating gate field-effect transistor and a logic-field effect transistor, and corresponding device
US6399442B1 (en) 1998-10-09 2002-06-04 Stmicroelectronics S.R.L. Method of manufacturing an integrated semiconductor device having a nonvolatile floating gate memory, and related integrated device
US6747309B2 (en) 1998-10-09 2004-06-08 Stmicroelectronics S.R.L. Method of manufacturing an integrated semiconductor device having a nonvolatile floating gate memory, and related integrated device

Similar Documents

Publication Publication Date Title
JP3383140B2 (en) Manufacturing method of nonvolatile semiconductor memory device
GB2087647A (en) Semiconductor memory manufacture
JPH043468A (en) Semiconductor device and manufacture thereof
JPS6373566A (en) Manufacture of nonvolatile semiconductor storage device
JPS6184868A (en) Nonvolatile semiconductor memory device
JPH04349670A (en) Manufacture of nonvolatile semiconductor storage device
US5290721A (en) Method of making a stacked semiconductor nonvolatile memory device
JPH0563206A (en) Manufacture of nonvolatile semiconductor memory
JPS6315749B2 (en)
JP3780057B2 (en) Manufacturing method of semiconductor device
JP3051445B2 (en) Semiconductor thin film transistor and method of manufacturing the same
JPS61239671A (en) Manufacture of semiconductor memory device
KR950011030B1 (en) Making method eeprom
KR100262002B1 (en) Method of fabricating a flash memory
JPH10189922A (en) Manufacture of flash memory element
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JP2853791B2 (en) Method for manufacturing semiconductor memory device
JPS6154661A (en) Manufacture of semiconductor device
JPS63261879A (en) Manufacture of semiconductor device
KR100358141B1 (en) Method for manufacturing eeprom
JP3546326B2 (en) Method for manufacturing semiconductor memory device
JP2961388B2 (en) Manufacturing method of nonvolatile semiconductor memory
JPH03125479A (en) Manufacture of semiconductor integration circuit with non-volatile memory element
KR100358140B1 (en) Method for manufacturing flash memory
JPH027560A (en) Manufacture of high voltage n-type channel transistor particulary for cmos technology eeprom