JPS6373564A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6373564A
JPS6373564A JP61217509A JP21750986A JPS6373564A JP S6373564 A JPS6373564 A JP S6373564A JP 61217509 A JP61217509 A JP 61217509A JP 21750986 A JP21750986 A JP 21750986A JP S6373564 A JPS6373564 A JP S6373564A
Authority
JP
Japan
Prior art keywords
electrode
gate electrode
oxide film
film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61217509A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yamaguchi
好広 山口
Akio Nakagawa
明夫 中川
Kiminori Watanabe
渡辺 君則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61217509A priority Critical patent/JPS6373564A/en
Publication of JPS6373564A publication Critical patent/JPS6373564A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/405Resistive arrangements, e.g. resistive or semi-insulating field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve reliability by disposing a resistive field plate film so as to simultaneously cover a second main electrode and a control electrode. CONSTITUTION:An oxide film 24 is formed onto the surface of an n<-> type drain layer 12 shaped onto an n<+> type drain layer 11 through epitaxial growth, the oxide film 24 is etched to a predetermined pattern, and a gate electrode 16 is formed through a gate oxide film 15. p-type base layers 13 are formed, using the gate electrode 16 and the oxide film 24 as masks. An oxide film is shaped into a diffusion window by the gate electrode 16, and an n<+> type layer 25 as well as n<+> type sources 14 are formed, employing the oxide film and the gate electrode 16 as masks. The surface of the gate electrode 16 is coated with an oxide film 17, a hole is bored to a contact section in the gate electrode 16, and a source electrode 18 and a metallic gate electrode 19 are shaped. An a-Si film is deposited on the whole surface of an element, and a resistive field plate film 27 is formed. A drain electrode 20 is shaped onto the surface of a wafer. Accordingly, the element having high reliability can be acquired through a simple process.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体装置に係り、特に高耐圧ブレーナ型半導
体装置の表面保護構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device, and particularly to a surface protection structure for a high-voltage Brainer type semiconductor device.

(従来の技術) 従来より、ブレーナ型半導体装置の耐圧を出す構造の一
つとして、ガードリング構造が良く知られている。この
ガードリング構造を採用したMOS F E Tの例を
第2図に示す。素子基板1゜は、n+型トド942層1
1n−型ドレイン層12、p型ベース層13およびn型
ソース層14から構成されている。この素子基板10の
ドレイン層11側の第1の表面には第1の主電極である
ドレイン電極20が形成されている。また第2の表面に
は、ゲート絶縁膜15を介してゲート′I4極16が形
成され、p型ベース[113とn型ソース層14にオー
ミック接触する第2の主電極18、およびゲート電極1
6にオーミック接触する$制御電極である金屑ゲート電
極19が設けられている。
(Prior Art) A guard ring structure has been well known as one of the structures for increasing the withstand voltage of a Brehner type semiconductor device. An example of a MOS FET employing this guard ring structure is shown in FIG. The element substrate 1° is an n+ type Todo 942 layer 1
It is composed of an n-type drain layer 12, a p-type base layer 13, and an n-type source layer 14. A drain electrode 20, which is a first main electrode, is formed on the first surface of the element substrate 10 on the drain layer 11 side. Further, on the second surface, a gate 'I4 pole 16 is formed via a gate insulating film 15, a second main electrode 18 in ohmic contact with the p-type base [113 and the n-type source layer 14], and a gate electrode 1
A metal scrap gate electrode 19, which is a $ control electrode, is provided in ohmic contact with the gate electrode 6.

素子基板10の周縁部には、数本のp++ガードリング
層21が形成され、その表面には巖化膜22が形成され
ている。
Several p++ guard ring layers 21 are formed on the periphery of the element substrate 10, and a dilatation film 22 is formed on the surface thereof.

この構造では、逆バイアスをpn接合に印加した時に主
接合が降伏しないように第1段のガードリングで一定の
電圧を負担し、次に第1段のガードリングが降伏しない
ように第2のガードリングが一定の電圧を負担する、と
いうように、最終段のガートリングには十分低い電圧が
かかるようにしている。即ちガードリング構造では、ガ
ードリング間の電位差が十分小さくなるようにして、例
えばR終段ガードリングは300V程度の電圧を負担す
るように設計される。
In this structure, when a reverse bias is applied to the pn junction, the first stage guard ring bears a constant voltage to prevent the main junction from breaking down, and then the second stage guard ring bears a certain voltage to prevent the first stage guard ring from breaking down. The guard ring bears a certain voltage, so that a sufficiently low voltage is applied to the final stage guard ring. That is, the guard ring structure is designed so that the potential difference between the guard rings is sufficiently small, so that, for example, the R final stage guard ring bears a voltage of about 300V.

従ってこのガードリング構造では、十分な耐圧を得るた
めにはガードリングの数を多くしなければならず、高耐
圧素子は巨大化するという第1の問題があった。
Therefore, in this guard ring structure, the first problem is that the number of guard rings must be increased in order to obtain a sufficient breakdown voltage, and the high breakdown voltage element becomes large.

またこの様な素子では、これをパッケージに収納する前
に基本的特性を検査しており、その際にAfl等により
形成されたソース電極18および金属ゲート電極19に
タングステンなどの針を接触させることが行われる。こ
のタングステン針をソース′R極18.金属ゲートi!
1i19に接触させる時、誤って素子表面を滑らせると
、ソース電極あるいはゲート電橋19のAλが押出され
てソース・ゲート間が短絡する事故が発生する。ソース
電極18と金属ゲート電極19は通常分離幅数10μm
で近接しているため、この様な事故が容易に発生する。
In addition, the basic characteristics of such devices are inspected before they are packaged, and at that time, a needle made of tungsten or the like is brought into contact with the source electrode 18 and metal gate electrode 19 formed of Afl or the like. will be held. Connect this tungsten needle to the source 'R pole 18. Metal gate i!
If the device surface is mistakenly slid when contacting the device 1i19, the source electrode or Aλ of the gate bridge 19 may be pushed out, causing a short circuit between the source and the gate. The source electrode 18 and metal gate electrode 19 are usually separated by a width of several tens of μm.
Due to their close proximity, accidents like this can easily occur.

またこの程度の分離幅の場合、この分離領域に微少な金
z片等が付着することによっても、ソース・ゲート間が
短絡する。これが第2の問題である。
In addition, in the case of an isolation width of this extent, a short circuit between the source and the gate may also occur if a minute piece of gold Z or the like adheres to this isolation region. This is the second problem.

第1の問題を解決する構造として、第3図に示すものが
知られている。なお第3図は第2図(b)に対応する断
面図で、第2図と対応する部分には第2図と同一符号を
付しである。この素子では、素子外周部にn+型Ji2
5を形成し、これにオーミック接触するへ2電極26を
形成している。また素子表面に露出するpn接合を覆う
壊化1I24を形成し、この酸化1124上にA2電極
26とソース電極18に同時にコンタクトする抵抗性フ
ィールドプレートI[!27を形成している。
A structure shown in FIG. 3 is known as a structure that solves the first problem. Note that FIG. 3 is a cross-sectional view corresponding to FIG. 2(b), and parts corresponding to those in FIG. 2 are given the same reference numerals as in FIG. 2. In this device, n+ type Ji2 is located on the outer periphery of the device.
5 is formed, and two electrodes 26 are formed to make ohmic contact therewith. In addition, a oxidized oxide 1124 is formed to cover the pn junction exposed on the element surface, and a resistive field plate I[! 27 is formed.

この構造では、pn接合に逆バイアスしたとき、抵抗性
フィールドプレート膜27に微少電流が流れ、ここに一
定の電位勾配が形成されるため、基板表面のpn接合で
の電界強度が弱められる。これにより、高耐圧化が図ら
れる。具体的に例えば、n−型ドレイン層12の比抵抗
を100〜120Ω・αとし、n+型1125とpベー
ス!113の間隔を500μm程度とした時、耐圧18
00■以上を得ることができる。この耐圧を前述のガー
ドリング構造で実現するにはガードリングの領域を約1
1M1以上にする必要があり、このフィールドプレート
構造により素子サイズを大きくすることなく高耐圧化が
できることが判る。
In this structure, when a reverse bias is applied to the pn junction, a minute current flows through the resistive field plate film 27 and a certain potential gradient is formed there, so that the electric field strength at the pn junction on the substrate surface is weakened. This achieves high voltage resistance. Specifically, for example, the specific resistance of the n-type drain layer 12 is set to 100 to 120Ω·α, and the n+ type is 1125 and the p base! When the interval of 113 is about 500 μm, the breakdown voltage is 18
00■ or more can be obtained. To achieve this voltage resistance with the guard ring structure described above, the area of the guard ring should be approximately 1
It is necessary to make it 1M1 or more, and it can be seen that with this field plate structure, a high breakdown voltage can be achieved without increasing the element size.

一方、先の第2の問題に対しては、第2図に示すように
ソース電極18と金属ゲート電極19を覆うCVD絶縁
!1123を設けることが行われる。
On the other hand, for the second problem mentioned above, as shown in FIG. 2, CVD insulation covering the source electrode 18 and metal gate electrode 19! 1123 is provided.

しかしこれは、CVD工程が入る分、素子のコストが高
くなるという新たな問題を生じる。
However, this creates a new problem in that the cost of the device increases due to the CVD process involved.

(発明が解決しようとする問題点) 以上のように従来技術では、第2の主電極と制御電極間
のri絽の問題をCVD絶縁膜で覆うことが解決したが
、これはコスト高の原因となっている。
(Problems to be Solved by the Invention) As described above, in the conventional technology, the problem of ri-ga between the second main electrode and the control electrode was solved by covering it with a CVD insulating film, but this was a cause of high cost. It becomes.

本発明はこの様な問題を解決した高耐圧ブレーナ型半導
体装置を提供することを目的とする。
An object of the present invention is to provide a high breakdown voltage Brainer type semiconductor device that solves these problems.

[発明の構成コ (問題点を解決するための手段) 本発明は、半導体素子基板の第1の表面に第1の電極が
形成され、第2の表面に第2の主電極と制m’ia極が
形成され、かつ第2の表面の周縁部に露出するpn接合
上に絶縁膜を介して抵抗性フィールドプレート膜を設け
る構造において、この抵抗性フィールドプレート膜を第
2の主N也と♂すwJN極を同時に覆うように配設する
ことを特徴とする。
[Structure of the Invention (Means for Solving the Problems)] The present invention provides a first electrode formed on the first surface of a semiconductor element substrate, a second main electrode formed on the second surface, and a second main electrode formed on the second surface. In a structure in which an ia pole is formed and a resistive field plate film is provided via an insulating film on the pn junction exposed at the peripheral edge of the second surface, this resistive field plate film is used as the second main Nya. It is characterized by being arranged so as to simultaneously cover the male and female wJN poles.

(作用) 本発明の構成とすれば、抵抗性フィールドプレート膜は
素子寸法を大きくすることなく高耐圧化する機能を有す
ると同時に、素子特性検査時等に制御電極と第2の主電
極間の短F?!事故を防止する保11!lの動きをする
(Function) With the configuration of the present invention, the resistive field plate film has the function of increasing the withstand voltage without increasing the device size, and at the same time, the resistive field plate film has the function of increasing the withstand voltage without increasing the device size. Short F? ! 11 tips to prevent accidents! Make the l movement.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図は一実施例のM OS F E Tであり、(a
)は平面図、(b)、(c)はそれぞれ(a)のA−A
=、B−B′断面図である。従来例として示した第2図
および第3図と対応する部分にはこれらと同じ符号を付
して詳細な説明は省略する。
FIG. 1 shows an embodiment of the MOS FET, (a
) is a plan view, (b) and (c) are respectively A-A of (a)
=, BB' sectional view. Portions corresponding to those in FIGS. 2 and 3 shown as conventional examples are designated by the same reference numerals, and detailed description thereof will be omitted.

第1図(b)と対応する第3図を比較して明らかなよう
に、この実施例では抵抗性フィールドプレートr127
はソース電極18と金属ゲート電極19を同時に覆うよ
う配設している。
As is clear from a comparison of FIG. 1(b) and the corresponding FIG. 3, in this embodiment the resistive field plate r127
are arranged so as to simultaneously cover the source electrode 18 and the metal gate electrode 19.

この実施例の構造を、具体的な製造工程にしたがって次
に説明する。まずn+型トド942層11エピタキシャ
ル成長により比抵抗100〜120Ω・αのn−型ドレ
イン層12を形成したウェーハを用意する。次にn°型
トドレイン112表面に1μm程度の酸化膜24を形成
した後、これを所定パターンにエツチングし、霧出した
基板に1000人のゲート数化[115を介して多結晶
シリコン躾によるゲート電極16を形成する。
The structure of this embodiment will now be explained according to specific manufacturing steps. First, a wafer is prepared in which an n- type drain layer 12 having a specific resistance of 100 to 120 Ω·α is formed by epitaxial growth of an n + type Todo 942 layer 11. Next, after forming an oxide film 24 of about 1 μm on the surface of the n° type drain 112, this is etched into a predetermined pattern, and the number of gates is 1000 on the sprayed substrate. Electrodes 16 are formed.

次いでこのゲート電極16と酸化l1I24をマスクと
して不純物をイオン注入してp型ベース層13を形成す
る。更にゲートif極16による拡散窓内にソース層形
成用の酸化WA(図示しない)を形成し、この酸化膜と
ゲート電極16をマスクとしてAsのイオン注入を行な
い、n++ソース層14と同時にn++層25を形成す
る。この後ゲート1!116表面を酸化[6117で覆
い、ゲート電極16のコンタクト部に孔を開けて、p型
ベース層13とn++ソース層14にオーミック接触す
るソース電極(第2の主電極)18、およびゲート電極
16にオーミック接触する金属ゲート電極(制御!l電
極)19をAn膜等により形成する。そして、素子全面
にa−8illを1μm程度堆積し、抵抗性フィールド
プレートlI27を形成する。ここでフィールドプレー
ト1127は、ソース電極18と金属ゲート電極19を
同時に覆っている。
Next, impurity ions are implanted using the gate electrode 16 and the oxide l1I24 as masks to form the p-type base layer 13. Further, an oxidized WA (not shown) for forming a source layer is formed within the diffusion window formed by the gate if electrode 16, and As ions are implanted using this oxide film and the gate electrode 16 as a mask. Form 25. After that, the surface of the gate 1!116 is covered with oxidation [6117], a hole is made in the contact part of the gate electrode 16, and a source electrode (second main electrode) 18 is made in ohmic contact with the p-type base layer 13 and the n++ source layer 14. , and a metal gate electrode (control!l electrode) 19 in ohmic contact with the gate electrode 16 is formed of an An film or the like. Then, a-8ill is deposited to a thickness of about 1 μm over the entire surface of the device to form a resistive field plate II27. Here, the field plate 1127 covers the source electrode 18 and the metal gate electrode 19 at the same time.

またフィールドプレート膜27には、ソース電極18お
よび金属ゲート1ffi19上の一部に外部配線を施す
ための開口が設けられる。最後にウェーハ裏面にV−N
i−Auの蒸着によりドレイン電極(第10主電1)2
0を形成して、素子は完成する。
Further, the field plate film 27 is provided with an opening for providing external wiring in a portion above the source electrode 18 and the metal gate 1ffi19. Finally, V-N on the back side of the wafer.
Drain electrode (10th main electrode 1) 2 by vapor deposition of i-Au
0 is formed, and the device is completed.

この様な構成とすれば、ソース電極18と金属ゲート電
極19が同時にフィールドブレーl−膜27に覆われて
いるため、フィールドプレート膜27が保yt膜となっ
てソース電極18と金属ゲートl!tfA19の短絡事
故は確実に防止される。またフィールドプレートII!
$27が同時に素子の表面保護膜となっているから、従
来のようにフィールドプレート膜と別にCvDによる保
K11gを形成するという工程が要らず、製造工程が簡
略化される。
With this configuration, the source electrode 18 and the metal gate electrode 19 are simultaneously covered with the field barrier l- film 27, so the field plate film 27 acts as a protective film to protect the source electrode 18 and the metal gate l! Short circuit accidents of tfA19 are reliably prevented. Field plate II again!
Since the film 27 also serves as a surface protection film for the element, there is no need for the conventional process of forming the protective film 11g by CvD separately from the field plate film, thereby simplifying the manufacturing process.

更に、フィールドプレート[127は抵抗性であるため
、静電気等によりゲート酸化膜中に自然に充電される電
荷を常に放電することができる。このため、D?!気に
起因するゲート酸化膜破壊が防止され、信頼姓の高い素
子が得られる。
Furthermore, since the field plate [127 is resistive, it is possible to constantly discharge charges that are naturally accumulated in the gate oxide film due to static electricity or the like. For this reason, D? ! Destruction of the gate oxide film due to air pollution is prevented, and a highly reliable device can be obtained.

実施例ではMOSFETについて説明したが、本発明は
バイポーラ型MO8FETやバイポーラトランジスタ等
に適用して同様の効果が得られる。
In the embodiment, a MOSFET has been described, but the present invention can be applied to a bipolar MO8FET, a bipolar transistor, etc. to obtain similar effects.

[発明の効果] 以上説明したように本発明によれば、本来高耐圧化のた
めに形成される抵抗性フィールドプレート膜をそのまま
素子の表面保m1llとして用いることにより、簡単な
工程で信頼性の高い高耐圧ブレーナ型半導体素子を得る
ことができる。
[Effects of the Invention] As explained above, according to the present invention, by using the resistive field plate film originally formed for high breakdown voltage as it is as the surface protection layer of the element, reliability can be improved with a simple process. A high breakdown voltage Brainer type semiconductor device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)(c)は本発明の一実陥例のMOS
FETを示す平面図とそのA−A −。 B−B−新面図、第2図(a)(b)(C)は従来例の
MOSFETを示す平面図とそのA−A−。 B−8=断面図、第3図は他の従来例を示す断面図であ
る。 11・・・n+型ドレイン層、12・・・n−型ドレイ
ン層、13・・・p型ベース層、14・・・n++ソー
ス層、15・・・ゲート酸化層、16・・・ゲート電極
、17・・・酸化膜、18・・・ソース電極(第2の主
電極)、19・・・金属ゲート電極(制御電極)、20
・・・ドレイン電極(第1の主電極)、24・・・酸化
膜、25・・・n”型層、26・・・電極、27・・・
抵抗性フィールドプレート膜。
Figures 1 (a), (b), and (c) show a MOS according to an actual example of the present invention.
A plan view showing the FET and its AA-. B-B-New view, FIGS. 2(a), (b), and (C) are plan views showing a conventional MOSFET and its A-A-. B-8 = sectional view, FIG. 3 is a sectional view showing another conventional example. DESCRIPTION OF SYMBOLS 11... N+ type drain layer, 12... N- type drain layer, 13... P type base layer, 14... N++ source layer, 15... Gate oxide layer, 16... Gate electrode , 17... Oxide film, 18... Source electrode (second main electrode), 19... Metal gate electrode (control electrode), 20
... Drain electrode (first main electrode), 24... Oxide film, 25... N'' type layer, 26... Electrode, 27...
Resistive field plate membrane.

Claims (1)

【特許請求の範囲】[Claims] 半導体素子基板の第1の表面に第1の主電極、第2の表
面に第2の主電極および制御電極が設けられ、かつ基板
の第2の表面の周縁部に露出するpn接合上に絶縁膜を
介して抵抗性フィールドプレート膜が設けられた半導体
装置において、前記抵抗性フィールドプレート膜を前記
第2の主電極と制御電極を同時に覆うように配設したこ
とを特徴とする半導体装置。
A first main electrode is provided on the first surface of the semiconductor element substrate, a second main electrode and a control electrode are provided on the second surface, and an insulating electrode is provided on the pn junction exposed at the periphery of the second surface of the substrate. A semiconductor device in which a resistive field plate film is provided with a film interposed therebetween, characterized in that the resistive field plate film is disposed so as to cover the second main electrode and the control electrode at the same time.
JP61217509A 1986-09-16 1986-09-16 Semiconductor device Pending JPS6373564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61217509A JPS6373564A (en) 1986-09-16 1986-09-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61217509A JPS6373564A (en) 1986-09-16 1986-09-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6373564A true JPS6373564A (en) 1988-04-04

Family

ID=16705345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61217509A Pending JPS6373564A (en) 1986-09-16 1986-09-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6373564A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156572A (en) * 1988-12-08 1990-06-15 Fuji Electric Co Ltd Mos type semiconductor device
US5040042A (en) * 1989-04-28 1991-08-13 Asea Brown Boveri Ltd. Bidirectional semiconductor component that can be turned off
EP0543257A2 (en) * 1991-11-13 1993-05-26 Siemens Aktiengesellschaft Method of manufacturing a power-MISFET
JPH05198816A (en) * 1991-09-27 1993-08-06 Nec Corp Semiconductor device
EP0567341A1 (en) * 1992-04-23 1993-10-27 Siliconix Incorporated Power device with isolated gate pad region
US5349223A (en) * 1993-12-14 1994-09-20 Xerox Corporation High current high voltage vertical PMOS in ultra high voltage CMOS
US5545573A (en) * 1994-06-01 1996-08-13 Mitsubishi Denki Kabushiki Kaisha Method of fabricating insulated gate semiconductor device
US5726472A (en) * 1995-03-31 1998-03-10 Rohm Co., Ltd. Semiconductor device
JP2012054592A (en) * 2004-04-30 2012-03-15 Siliconix Inc Super trench mosfet including embedded source electrode and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156572A (en) * 1988-12-08 1990-06-15 Fuji Electric Co Ltd Mos type semiconductor device
US5040042A (en) * 1989-04-28 1991-08-13 Asea Brown Boveri Ltd. Bidirectional semiconductor component that can be turned off
JPH05198816A (en) * 1991-09-27 1993-08-06 Nec Corp Semiconductor device
EP0543257A2 (en) * 1991-11-13 1993-05-26 Siemens Aktiengesellschaft Method of manufacturing a power-MISFET
EP0543257A3 (en) * 1991-11-13 1994-07-13 Siemens Ag Method of manufacturing a power-misfet
EP0567341A1 (en) * 1992-04-23 1993-10-27 Siliconix Incorporated Power device with isolated gate pad region
US5430314A (en) * 1992-04-23 1995-07-04 Siliconix Incorporated Power device with buffered gate shield region
US5445978A (en) * 1992-04-23 1995-08-29 Siliconix Incorporated Method of making power device with buffered gate shield region
US5349223A (en) * 1993-12-14 1994-09-20 Xerox Corporation High current high voltage vertical PMOS in ultra high voltage CMOS
US5545573A (en) * 1994-06-01 1996-08-13 Mitsubishi Denki Kabushiki Kaisha Method of fabricating insulated gate semiconductor device
US5726472A (en) * 1995-03-31 1998-03-10 Rohm Co., Ltd. Semiconductor device
JP2012054592A (en) * 2004-04-30 2012-03-15 Siliconix Inc Super trench mosfet including embedded source electrode and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR0175277B1 (en) Apparatus and method for manufacturing power semiconductor device with a folding fieldplate structure
US20220157807A1 (en) Mosfet device of silicon carbide having an integrated diode and manufacturing process thereof
US4101922A (en) Field effect transistor with a short channel length
JPH1084113A (en) Field-effect transistor
JPH06349849A (en) High-breakdown-strength thin- film semiconductor device
JPH04332173A (en) Planar type semiconductor device and its manufacture
JPS6373564A (en) Semiconductor device
EP0190423A2 (en) Planar semiconductor device having a field plate electrode
KR930005509B1 (en) Mos type integrated circuit
JP2003069045A (en) Semiconductor device
JP2577345B2 (en) Semiconductor device
JPH03104169A (en) Semiconductor device
US4942446A (en) Semiconductor device for switching, and the manufacturing method therefor
JPH08195443A (en) Semiconductor device and its manufacture
US5880501A (en) Semiconductor integrated circuit and manufacturing method of the same
JPH02178965A (en) Insulated isolation type field-effect semiconductor device
JPH08306911A (en) Semiconductor device and its manufacture
JP2547729B2 (en) High voltage power integrated circuit
US5270566A (en) Insulated gate semiconductor device
JP2743814B2 (en) Semiconductor device
JPS6359262B2 (en)
JPH02202063A (en) Semiconductor device
JPS61129867A (en) Semiconductor device
JPS62126663A (en) Input protecting circuit
GB1249812A (en) Improvements relating to semiconductor devices